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Abstract In this paper we focus on a class of polling systems encountered
while modeling a class of ferry based wireless local area networks (FWLAN). A
ferry facilitates local communication between the nodes (or users) as well as the
communication between the nodes and a base station (BS) that serves as the
gateway with the external world. The ferry, while walking in a predetermined
cyclic path, communicates with the static nodes of the network via a wireless
link. The ferry is assumed to stop and communicate with a node that has
a packet to send or to receive, when it is closest to that node. The location
distribution of the node to which (or from which) a packet arrives is assumed to
have a support of positive Lebesgue measure. These features imply that polling
models with finite number of queues cannot be used to model the system.
Further, in almost all studied continuous polling systems, the user leaves the
system after his service is completed. But for every local data transfer, the
ferry has to collect the data from the source and then deliver the same to the
sink. It either delivers the data to the sink on its own or has to be guided by
the BS for the same. Thus each transfer may require services at two or three
independent locations. Such an application can be modeled by polling systems
with rerouting. We study the continuous polling models with rerouting, via
discretization approach and by using the known Pseudo conservation laws of
discrete systems. We obtain its stationary expected workload as the limit of
the same for a discrete system. Our results rely heavily on fixed point analysis
of infinite dimensional operators.
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1 Introduction

Polling systems are a special class of queueing systems wherein, while walking
in a fixed cyclic path, a single server attends to a number of queues as and
when it meets one. Continuous polling systems are the ones in which arrivals
can occur and the service can be derived, anywhere in a continuum. Most of
these systems are studied under standard gated service. The server attends to
the users immediately, as and when it encounters one. We then have a globally
gated service ([23]), wherein the server closes a global gate when it arrives
say at 0 and tags all the users that arrived before the gate closure. Before
retuning to 0, it only serves the tagged users. In all these systems, the user
leaves the system after its service. But there can be applications, wherein the
users require a second service or more.

In a Ferry assisted Wireless LAN (FWLAN), a message Ferry is a mo-
bile relay station that serves as a ”postman” to deliver (collect) messages to
(from) the static or dynamic wireless nodes in an otherwise disconnected net-
work. The ferry moves periodically in a cyclic route halts on its way only when
it encounters a user with request. Every point on the ferry path is a potential
stop and each stop is assigned an area that contains all points closer to that
stop than to other stops. In this paper, we study one such FWLAN, where the
ferry facilitates communication not only between the base station (a gateway
to the external world) and the network users, but also facilitates the inter user
or local communication. Every local data transfer demands the ferry to pro-
vide its service at two independent locations in the network: 1) ferry collects
data from the source; and 2) ferry deposits the collected data at the sink. The
mobile units like ferries, are complicated from a designer’s perspective and it
is often preferred to design such structures with minimal intelligence. We also
consider a hybrid architecture, in which the ferry does facilitate local commu-
nication, but with the help of the base station. This architecture requires 3
independent services, an extra intermediate communication with the base sta-
tion, in comparison with the previous architecture. To model such FWLANs
we need systems that support more than one service.

In [22], we consider a polling system in which the user after its first ser-
vice may be rerouted to a different point to obtain a second service. In this
paper we further extend it to multiple but finite number of services. We now
can model the hybrid architecture. In addition, we consider polling systems in
which the arrival position distribution can be a mixed (mixture of continuous
and discrete probability measures). This extension required significant changes
in the convergence proofs in comparison with our previous paper ([22]). This
extension facilitates modeling of many more variants (more practical systems)
of Ferry aided Wireless LANs. We consider more practical examples of ferries
that operate in a rectangular area and when the ferries can travel in a rect-
angular path, like for example the route of a bus. One can handle many more
practically implementable paths and systems, for example zig zag paths.

Using the discretization approach of our earlier papers [23,22], we obtain
the stationary expected workload as the limit of the stationary expected work-
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load of a discrete system. We discretize the continuous polling system in such a
way that the Pseudo conservation laws of of Sidi et.al ([6]) for discrete polling
systems with rerouting, are applicable. To the best of our knowledge this is
the first paper which considers a continuous polling system with rerouting.

An important performance measure for FWLAN design is the expected
waiting time, i.e., the average time an arrival has to wait before it’s service
starts. The waiting time depends on: 1) the over-all service times (the time
required to complete an uplink or downlink request using wireless medium);
2) the walking time, i.e., the time taken by the ferry to traverse the cyclic
path once. The over-all service times reduce if one uses longer ferry routes
as, then, the users can be served by the ferry standing relatively at a shorter
distance. However the walking time increases with longer routes. The objective
of this paper is to study these trade-offs using stationary expected workload
performance. By this, we minimize the expected waiting times at all users in
the Pareto sense.

Related Work: Continuous polling systems were first introduced by Fuhrmann
and Cooper [16], further explored by Coffman and Gilbert [12,13] and Kroese
and Schmidt [20,17–19] in a series of works. Stability results are available in
[24,21,11]. The continuous systems are usually analyzed under simplified con-
ditions, which we refer as ’symmetric conditions’: Poisson arrivals and every
arrival picks up a uniformly-distributed landing site on the circle while the
server is moving at a constant speed in a fixed direction. Further, the service
times are identically distributed.

Snowplowing systems generalize many of the above assumptions and study
a more general continuous system. For example, the incoming work-flow to the
system is taken to be a general Lévy random measure and the walking times
are assumed to be random (see for example [14,15]).

In literature, continuous polling systems have been usually analyzed with
simple gated/exhaustive service. In [23] we study continuous polling systems
which offer either globally gated service or gated service or a mixture of the two
services or elevator service, without requiring symmetry. Even in this paper, we
do not assume the symmetric assumptions and additionally consider rerouting.

Polling systems are widely used for modeling and analysis in various sce-
narios, like in communication systems, computer hardware and software, road
traffic control. For example, in [29,28,30], authors analyze FWLANs. Apart
from FWLANs, there are many other applications, in which customers may re-
quire more than one service. Various such applications are mentioned in [6], for
example: 1) selective-repeat ARQ protocol used to recover from transmission
errors; 2) computer system where a single processor often has the responsibility
of performing many distinct tasks, such as computation, sending information
to memory, retrieve information. The results of this paper can be applied in
the aforementioned applications, whenever the arrivals are on a continuum.
This paper (in contrast to [6]) supports many but finite number of reroutings
and hence can model almost all the (continuous versions of the) applications
mentioned in [6].
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The system, model and the notations of the paper are introduced in section
2. In the same section we also brief upon the main result of the paper, Theorem
1. We discuss the discretization in section 3 and the proof of the Theorem 1
in sections 4 and 5. Ferry based wireless LANs are analyzed in section 6.

2 Continuous Polling Systems

We consider a continuous polling system, where the server moves continuously
on a circle C with speed α and stops at a point only when it finds a user with
request. The external arrival process is modeled by a Poisson process with
intensity λ and every external/new arrival is associated with two marks: the
position R0 ∈ C distributed as PR0 and the service times Br0 . The service
times in general can depend upon the position R0 of the arrival. Let br0(q)

b
(2)
r0 (q) represent the conditional first two moments of the service time Br0

conditioned on the event that the position of arrival is at point q. The service
times of different users are independent of each other.

Every user is serviced the first time the server encounters him on the circle.
After his service is completed, the user is either rerouted, independent of all the
previous events, to a new point q′ on the circle with probability ǫ1PR1(dq

′) or
exits the system with probability 1−ǫ1. So the rerouting probabilities are inde-
pendent of the position at which the previous service is obtained. The rerouted
users are serviced the next time the server meets them and then again either
they exit with probability 1 − ǫ2 or are rerouted to another point with prob-
ability ǫ2PR2(dq) independent of all the earlier events. This kind of rerouting
can take place at maximum for N times with N <∞ and using the rerouting
probabilities {ǫjPRj (dq)}0≤j<N . These arrival probabilities can be mixed, i.e.,

PRj (dq) =

Mj
∑

i=1

pj,i1{qj,i}(q) + fRj(q)dq for all 0 ≤ j < N. (1)

With these, there can be more than one user waiting at the same point. In
this case, the server first serves the user with maximum services completed
and then the second maximum and so on. Further, the users belonging to the
same type are serviced in FIFO (first in first out) order.

The users are rerouted independent of the previous happenings, however
their service requirements for the (j+1) service can depend upon the position
of the j-rerouted (after completing j number of services) point Rj , which is

distributed as PRj . Let brj (q), b
(2)
rj (q) represent the conditional first and second

moments of the service time, Brj , demanded by the j-rerouted users given that
the rerouted arrival is at point q. Let b̄rj := ERj [brj (R)] (the expectations
are with respect to PRj ), for every 0 ≤ j < N , represent the unconditional

moments. Similarly define the second moments: b̄
(2)
rj := ERj [b

(2)
rj (Rj)].

Notations: The circular path is mapped to an interval [0, |C|] (|C| is length
of C) for the purposes of analysis. The variables like brj , fRj , τ etc. repre-
sent nonnegative functions on interval [0, |C|] while terms like brj (q) or τ(q)
represent their value at a point q ∈ [0, |C|]. The bar of the same variable, for
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example b̄rj , represents the average w.r.t. to the corresponding position distri-

bution. Similarly variables like τ (2), τ̃ (2) etc. are functions on [0, |C|] × [0, |C|]
while τ (2)(q, q′) represents the function value at (q, q′). The expectations are
represented by symbol E and these expectations are either with respect to Rj
for some j or the stationary measure of the process under consideration. E0

represents the expectation with respect to Palm stationary measure. In situ-
ations of ambiguity we suffix E with variables like, Rj . Define the following

(with ǫ0 := 1 ǫ̂j := Πj
i=0ǫi):

ρrj ([a, c]) := λ

∫ c

a

brj (q)PRj (dq), ρrj := ρrj([0, |C|]), for all 0 ≤ j < N

ρ([a, c]) := ρr0([a, c]) +

N−1
∑

j=1

ǫ̂jρrj ([a, c]) and ρ = ρr0 +

N−1
∑

j=1

ǫ̂jρrj .

2.1 Main Result

Virtual workload of a polling system is defined as the total workload corre-
sponding to all the waiting users, i.e., the sum of the service times of all the
waiting users. Not much theory is available for calculating the expected vir-
tual workload of polling systems with arrivals in a continuum. In this section
we derive new (stationary expected workload) results related to continuous
polling systems with rerouting. Throughout we consider stationary and ergodic
systems. We obtain the stationary expected virtual workload:

Theorem 1 Assume that {brj ; j} and {fRj ; j} are continuous functions. Then
there exists a threshold λ0 (given by equation (24) in Appendix A) and for
all Poisson input arrivals at rates λ < λ0, the expected stationary virtual
workload for the continuous polling system with rerouting, Vrrt, equals (with
ρ̂(q) := ρ([0, q]), ǫ̌kj := Πk

i=jǫi):

Vrrt =
ρλ

2(1 − ρ)

N−1
∑

k=0

ǫ̂k b̄
(2)
rk +

ρλ

1 − ρ

N−1
∑

l=0

N−1
∑

k=l+1

ǫ̂lb̄rk b̄rl +
ρ|C|α−1

2

+
λα−1

1 − ρ

∫ |C|

0

∫ |C|

0



br0(q) +

N−1
∑

j=1

ǫ̂j b̄rj





(

ρ̂(y) − ρ̂(q) + 1{y<q}ρ
)

PR0
(dq)dy

+

N−2
∑

j=0

ǫ̂j+1λα−1

1 − ρ

∫ |C|

0

∫ |C|

0



brj+1 (q′) +

N−1
∑

k=j+2

ǫ̌k
j+2b̄rk



 (q′ − q + |C|1{q>q′})

PRj+1
(dq′)PRj (dq). (2)

Special Cases: It is easy to verify that, when N = 2 and when {PRj} have
densities, (2) matches with the stationary expected workload derived in [22,
Theorem 1]. We now simplify this formula for some special cases.

1) Under symmetric conditions: Uniform arrivals, i.e., {PRj} are all uni-

form. For every j, the service time moments brj (q), b
(2)
rj (q) are equal at all
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points q and equal b̄rj , b̄
(2)
rj . Then ρ̂(q) = ρq/|C| and (2) simplifies to:

V symrrt =
ρλ

2(1 − ρ)

N−1
∑

k=0

ǫ̂kb̄
(2)
rk

+
ρλ

1 − ρ

N−1
∑

l=0

N−1
∑

k=l+1

ǫ̂lb̄rk b̄rl +
ρ|C|α−1

2(1 − ρ)

+

N−2
∑

j=0

ǫ̂j+1λα
−1

1 − ρ



b̄rj+1 +

N−1
∑

k=j+2

ǫ̌kj+2b̄rk





|C|

2
. (3)

2) Gated polling under symmetric conditions: (similar to case 1) is analyzed
in [20]. By [20, Theorem 5.1], the stationary expected number of waiting users:

E[N ]g = λb̄r0 +
λ
(

α−1 + λb̄
(2)
r0

)

2
(

1 − λb̄r0
) with |C| = 1.

They also considered the user under service. Excluding the user under service
and applying Wald’s lemma the expected virtual workload equals :

V symg = b̄r0E[N ]r0 =
λb̄r0

(

α−1 + λb̄
(2)
r0

)

2
(

1 − λb̄r0
) .

This matches with (3) when |C| = 1, N = 1 (no rerouting).
3) Gated polling system under general conditions: In [23] we studied a

mixed polling system which supports gated as well as globally gated service
users. From Theorem 1, [23] the expected stationary virtual workload for pure
gated service is obtained by substituting pgg = 0 = 1 − pg and it equals:

Vg = λb̄
λb̄(2)

2(1 − λb̄)
+
λb̄|C|α−1

2
+

|C|α−1

2(1 − λb̄)

(

λ2b̄2
)

. (4)

The first integral in the formula (2) with no rerouting (N = 1) equals1:

λα−1

1 − ρ
λ

∫ |C|

0

∫ |C|

0

br0(q
′)
(

b̂r0(q) − b̂r0(q
′) + 1{q<q′}b̄r0

)

PR0(dq
′)dq

=
λα−1

1 − ρ
λ

(

b̄r0

∫ |C|

0

b̂r0(q)dq − |C|ER0 [br0(R0)b̂r0(R0)] + b̄r0

∫ |C|

0

(

b̄r0 − b̂r0(q)
)

dq

)

=
λα−1

1 − ρ
λb̄2r0

|C|

2
, where b̂r0(q) :=

∫ q

0

br0(y)PR0(dy).

1 By interchanging the order of the two integrals,

E[br0(R0)b̂r0 (R0)] =

∫ |C|

0

(

∫ q′

0
br0(q)PR0

(dq)

)

br0 (q′)PR0
(dq′)

=

∫ |C|

0

(

∫ |C|

q

br0 (q′)PR0
(dq′)

)

br0 (q)PR0
(dq)

=

∫ |C|

0

(

b̄r0 −

∫ q

0
br0(q′)PR0

(dq′)

)

br0(q)PR0
(dq) and so, E[br0(R0)b̂r0 (R0)] = b̄2r0

/2.
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Upon further simplification, (2) (with N = 1) matches with (4).
4) Globally gated systems under general conditions: A globally gated sys-

tem (all the arrivals wait till the server reaches the global gate point 0 to
get tagged and the server attends only the tagged users) can be obtained
from our continuous polling system with rerouting by substituting N = 2,
PR0(dq) = 1{q=0}, bR0(0) = 0, ǫ1 = 1. With these (2) simplifies to2:

Vgg =
ρλb̄

(2)
r1

2(1 − ρ)
+
ρ|C|α−1

2

1 + ρ

1 − ρ
+ λα−1ER1 [Qbr1(Q)],

which matches with the formula derived for globally gated system in [23, eqn.
(5)].

The main aim of this paper is to obtain the proof of Theorem 1. We later
apply the result, formula (2), to analyze Ferry aided Wireless LANs in section
6. The proof is obtained in the following 3 major steps (as done in [23,22]).
There are major changes in the proof, especially the third step, because of
mixed probability measures modeling the distribution of the arrival positions
as in (1).
1)Discretization: Continuous polling system with rerouting is converted to an
appropriate discrete polling system with rerouting in section 3, for which the
Pseudo conservation laws and hence the stationary expected virtual workload
is known (see [6]).

Let δσ(q) for every point q on C represent the point, in the discrete system
with σ discretization levels, standing at which the server attends the possible
users of point q. Let δ∞ represent the same for continuous system. Note that
δ∞(q) = q for all q, i.e., that δ∞ is the identity map.
2)Fixed point equations: We express the stationary moments of the time to
reach δσ(q) and start the service of the external users, for every q on the
circumference C, starting from 0 (any reference point) as a fixed point (in the
space of left continuous and right limit functions) of an affine linear operator in
section 4. We obtain a common operator ((F , Θ) defined in section 4), which is
further parametrized by σ. The fixed point of the common operator at σ <∞
gives the required stationary moments for the discrete system while that at
σ = ∞ (the identity map) corresponds to the continuous system. We show the
continuity of these fixed points as σ → ∞ via contraction mapping theorem
and hence show that the stationary moments of the discrete system converge
to that of the continuous system.
3)Alternate expression for Virtual Workload: We express the stationary ex-
pected virtual workload in terms of the stationary moments of Step 2. Note,
that this common expression cannot be computed easily and is used only for
proof. We show the continuity of this common expression as σ → ∞ and hence

2 note for example, as PR0
is concentrated only at 0, the first integral of (2) simplifies to

λα−1

1 − ρ

∫ |C|

0
(b̄r1 )(ρ̂(y))dy =

λα−1

1 − ρ
λb̄r1

(

|C|b̄r1 − E[Qbr1(Q)]
)

.
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the convergence of the stationary expected virtual workload of the discrete sys-
tem to that of the continuous system in section 5.

3 Discretization

For each integer σ, we construct a discrete polling system with Nσ queues
such that the limit (as σ → ∞) of the performance measure of this system
converges to that of the continuous system of Theorem 1. The external arrivals
to the system are served at σ number of queues while the rerouted users are
served in the remaining (N−1)σ queues: each σ of them are dedicated entirely
for the j-rerouted users (i.e., the users that already received j services and are
awaiting the (j + 1)-th service), for 1 ≤ j < N . The circumference |C| is
divided to σ equal segments {Ii}σi=1 with I1 = [0, C/σ]. External Arrivals are
as in the continuous system. Users arriving in area Ii are treated as though
arriving in queue numbered N(i− 1) +N − j (for ”j-rerouted” users) or Ni
(for external users). For every i, the server stops upon reaching the starting
point, iσ := (i−1)|C|/σ, of Ii and serves the users of Ii before moving further.
Hence, δσ(q), the point standing at which the server attends the users at q,
equals

δσ(q) =

{
∑σ

i=1 i
σ1{q∈Ii} with Ii := [iσ, (i+ 1)σ) when σ <∞

q when σ = ∞.
(5)

The server first attends the ”(N − 1)-rerouted” queue (N(i − 1) + 1 queue),
using gated service: the server attends all those users that were rerouted for
the (N − 1)-th time, before the server reached iσ. Then it serves (N − 2)-
rerouted queue and so on till 1-rerouted queue, all using gated service. After
all the rerouted queues, the server attends the ”external” queue once again
using gated service, i.e., it serves all the external arrivals of Ii that arrived
before the server completed with all the rerouted queues of Ii.

Within a queue, the server attends the users using a special order which
we call as arrival position order. In this special order, the users within a queue
are served in the order of their distance from the stop iσ of the server, i.e.,
the user at minimum distance is served first. Further, the users if waiting at
the same point, are served in FIFO order. So, the users are almost served in
the same order as done in a continuous system. The main difference b/w the
continuous system and the discretized system is that some of the users are
postponed to the next cycle in the discretized system. This is mainly because
of the combined effect of discretization and the gated service. But we will see
that the effect of these difference users reduces to zero as σ tends to ∞.

Define {i, j} := N(i − 1) + N − j. The external arrivals after their first
service (at one of the {i, 0} numbered queues) are either rerouted to one of
{k, 1} queues or exit. Similarly users of queues {i, j−1} are either rerouted to
queues {k, j} or exit and these transitions happen according to the following
probabilities (by independence):

P{i,j−1},{k,j} = Prob (User in [iσ, (i+ 1)σ] j-rerouted to [kσ, (k + 1)σ])
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= ǫjPRj (Ik) for all 1 ≤ j ≤ N − 1, i, k and

P{i,j},{k,j′} = P{i,j},{k,0} = 0 for all i, k, j and j′ with j′ 6= j + 1.

Poisson arrivals into the system occur with intensity λ and land in one of the
{i, 0} queues: the arrivals in Ii form the external arrivals to queue {i, 0}. Thus,
the rate of external arrivals at different queues are:

λ{i,0} = λPR0(Ii) and λ{i,j} = 0 for all i ≤ σ and 0 < j < N.

An user at external (j-rerouted) queue {i, 0} ({i, j}), demands service Br0
(Brj ) and this service is conditioned on the event that the arrival is in Ii.
Thus, the service time moments at different queues are:

b{i,j} =
E[Brj 1{R∈Ii}

]

PRj (Ii)
b
(2)
{i,j} =

E[B2
rj

1{R∈Ii}
]

PRj (Ii)
for all 0 ≤ j < N.

The overall arrival rates γi (resulting after rerouting) can be calculated solving
[6, eqn. (2.1)] inductively as (recall ǫ̂j = Πj

k=0ǫk):

γ{i,0}=λ{i,0} +

Nσ
∑

k

γkPk,{i,0} ⇒ γ{i,0} = λ{i,0} for all i and so

γ{i,j}=λ{i,j} +

Nσ
∑

k=1

γkPk,{i,j} = ǫjPRj (Ii)

σ
∑

l=1

γ{l,j−1} ⇒ γ{i,j} = ǫ̂jλPRj (Ii).

The overall service time requirements resulting from the first and the possible
second service, b̃, can be calculated as below (solving [6, equations 2.3 and 2.4]
by induction starting with j = N − 1 and with ǫ̌kj := Πk

i=jǫi):

b̃{i,j}=b{i,j} +

N−1
∑

k=j+1

ǫ̌kj+1b̄rk

b̃
(2)
{i,j}=b

(2)
{i,j} +

N−1
∑

k=j+1

ǫ̌kj+1b̄
(2)
rk

+ 2b{i,j}

N−1
∑

k=j+1

ǫ̌kj+1b̄rk + 2
N−2
∑

l=j+1

N−1
∑

k=l+1

ǫ̌lj+1b̄rk b̄rl.

Define, ρ{i,j} := γ{i,j}b{i,j} and ρ =
∑

i,j

ρ{i,j} = λb̄r0 +

N−1
∑

j=1

ǫ̂jλb̄rj .

Note that ρ is same for all σ. It represents the total work load in the system
and the discrete system is stable only when ρ < 1 ([6]). This condition is
guaranteed because: continuous polling system is assumed to be stable, so the
stationary moments of Theorem 2 (given in section 4) exist and by the same
theorem it is possible if and only if ρ < 1.
Expected Stationary Workload for discrete system: We thus have a Nσ stable
polling system with σ queues experiencing the gated service with external
arrivals and the remaining (N−1)σ queues also experiencing the gated service
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but with only rerouted users. Further we have fixed walking times between
queues, that between the queues of the same stop is zero, r{i,j} = 0 when j > 0
and r{i,0} = |C|α−1/σ. This type of a discrete polling system with rerouting is
considered in [6]. By Pseudo Conservation Laws of [6] the expected stationary
workload of the σ-polling model with rerouting is (from [6, eqn. (6.4)] after
removing the zero terms):

V σrrt =

∑σ
i=1 λ{i,0}b̃

(2)
{i,0}

2(1 − ρ)
−
N−1
∑

j=0

σ
∑

i=1

γ{i,j}





b
(2)
{i,j}

2
+
(

b̃{i,j} − b{i,j}

)

b{i,j}





+
ρ|C|α−1

2
+

|C|

1 − ρ

σ
∑

i=1

α−1

σ

σ
∑

l=1

λ{l,0}b̃{l,0}

Ni
∑

k=Nl

ρk

+
1

1 − ρ

N−2
∑

j=0

σ
∑

i=1

σ
∑

l=1

γ{i,j}ǫj+1PRj+1 (Il)b̃{l,j+1}

Nl+j
∑

k=Ni

rk (6)

The results of [7,5,9,6] are valid for any work conserving order at each queue
and hence the results are also valid for our arrival position order.

We will prove that the limit of the ’discrete’ expected stationary virtual
workload, V σrrt, indeed equals that of the continuous system. This basically
forms the proof of the Theorem 1 and is given in the next two sections. We
conclude this section by computing the limit of (6) (proof in Appendix A):

Lemma 1 The limit of V σrrt (6) equals Vrrt given by (2) of Theorem 1. �

4 Fixed point equations

Let 0 be any arbitrary point of the circumference, C. We call the time period
between two successful visits of the server at point 0 as cycle. Let φσn(q) rep-
resent the time at which the server starts the service of the external queue

({i, 0} numbered queue with only external arrivals) in the nth cycle, to which
the point q belongs. In case of the continuous system, this corresponds to the
instance when the server reaches the point q, completes the service of all the
rerouted users (if any) of point q and is ready to start with the external users

of q, in the nth cycle. Let T σn (q) := φσn(q)−φσn(0), represent the time taken by
the server to travel starting from 0 while serving all the users (with requests)
on the way till the time the service of the external queue, to which point q

belongs, begins in the nth cycle. Let Tr0([a, c], T ) represent the total workload
of the Poisson (external) arrivals that arrived in strip [a, c] ⊂ [0, |C|], such
that a user at point q ∈ [a, c] can arrive during a period of time T (q). Let
Trj ([a, c], T ) represent the workload (in the j-th service) due to that fraction
of the external arrivals, Tr0([0, |C|], T ), which were j-rerouted to the strip [a, c].
Let

Cσn (q)
△
= φσn+1(q) − φσn(q) = T σn+1(q) + T σn (|C|) − T σn (q) (7)
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represent the cycle time w.r.t. q. With this, (note at σ = ∞, |C|/σ = 0):

T σn (q) = T σn (δσ(q)) = δσ(q)α−1 + Tr0([0, δ
σ(q)), Cσn−1)

+

N−1
∑

j=1

Trj

([

|C|

σ
, δσ(q) +

|C|

σ

)

, Cσn−1−j

)

. (8)

This is the most important equation and is derived as follows. In (8), the
first term represents the time taken to travel the distance. The second term
represents the time taken to complete service of the external arrivals at posi-
tions before δσ(q) while the third term represents the time taken to complete
service of the rerouted users, that arrived at positions in between C|/σ and
δσ(q) + |C|/σ. Note that T σn (q) = φσn(0) − φσn(q), hence is the time period be-
tween the time starts of gated service at external queues at stop 0 and the
stop δσ(q) and so the time taken to service the rerouted users of the first stop,
{Trj ([0, |C|/σ])}, is not included in it. It instead includes the time taken to
serve the rerouted users of the stop δσ(q), {Trj([δ

σ(q), δσ(q)+ |C|/σ])}. The +
in the third term is in modulo |C|/σ sense.

4.1 First Moments

We obtain integral representation of the first moments of Tr0([0, q], T
σ
n ), the

workload, using [23, Lemma 1] whose statement is reproduced3 here:

Lemma 2 Let T : [a, c] 7→ R+ be either monotone (increasing or decreasing)
or constant nonnegative random function on interval [a, c]. Then,

E[Tr0([a, c], T )]=λ

∫ |C|

0

1{[a,c]}br0(q)τ(q)PR0 (dq) where τ(q) := E[T (q)]∀q,

= λ

(

M0
∑

i=1

1{qj,i∈[a,c])}τ(qj,i)br0(qj,i)pj,i +

∫ c

a

br0(q)τ(q)fR0 (q)dq

)

�

Lemma 2 is also true for open ((a, c)), semi-open ((a, c], [a, c)) intervals and
singletons ({a}). Similarly for rerouted users (proof in Appendix A):

Lemma 3 With T as in Lemma 2, the expected workload due to j-rerouted
users equals (with τ(q) := E[T (q)]) for j > 1:

E
[

Trj ([a, c], T )
]

= ǫ̂jρrj ([a, c])

∫ |C|

0

τ(q)PR0 (dq) with ǫ̂j := Πj
i=1ǫi.

3 In [23] the proof is provided when PR0
is a continuous, i.e., when PR0

(dq) = fR0
(q)dq.

But the proof goes through in a similar way by replacing the Riemann sum with the
sums defining the Riemann-Stieltjes integral, defined using the cumulative density function
FR0

(q) := PR0
([0, q]), as in the proof of Lemma 1. Further there will be a corresponding

change in the statement of Lemma to incorporate arrival distributions as in (1).
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Let τσn (q) := E[T σn (q)] represent the first moment of T σn (q) when the num-
ber of stops equal σ and let τ∞n (q) represent the same for continuous system.
Similarly, define cσn(q) := E[Cσn (q)]. Note that cycle time Cσn (q) is the sum of
monotone increasing (q 7→ T σn (q)) and decreasing (q 7→ T σn−1(|C|) − T σn−1(q))
random function of q ∈ [0, |C|]. Further the workload that arrived in two non
overlapping intervals is the sum of the workloads that arrived in individual
intervals. Thus by Lemmas 2 and 3:

τσn (q) = δσ(q)α−1 + λ

∫ |C|

0

1{[0,δσ(q))}br0(y)c
σ
n−1(y)PR0(dy) (9)

+

N−1
∑

j=1

ǫ̂jρrj

([

|C|

σ
, δσ(q) +

|C|

σ

))∫ |C|

0

cσn−1−j(y)PR0(dy) and

cσn(q) = τσn (q) + τσn−1|C| − τσn−1(q).

Let D represent the Banach space of left continuous functions with right
limits on [0, |C|] equipped with sup norm, ||τ ||∞ := supq∈[0,|C|] |τ(q)|. Let N :=
{1, 2, · · · ,∞} be an Euclidean metric space. Define function F , parametrized
by σ ∈ N, where the image F(τ ;σ) is defined for any τ ∈ D, point-wise by:

F(τ ;σ)(q) := δσ(q)α−1 + τ(|C|)ρr0([0, δ
σ(q)))

+τ(|C|)
N−1
∑

j=1

ǫ̂jρrj

([

|C|

σ
, δσ(q) +

|C|

σ

))

for all q ∈ [0, |C|] .

Let τσ∗ (q), cσ∗ (q), for σ ∈ N, represent stationary moments corresponding
to τσn (q), cσn(q) respectively. By Palm stationarity4 and from equation (9),
the stationary first moments of the discrete system is the fixed point of the
parametrized function F , at σ < ∞ while that of the continuous system is
fixed point of the same function at σ = ∞.

The only limit point of the set N (in Euclidean metric) is ∞. Thus the
function F is continuous in (τ, σ) (with τ ∈ D, σ ∈ N) because: 1) F is

4 For any stationary point process, for example in our case {φσ
n(q)} for any fixed q ∈ C

(for further explanations we consider example case of q = 0 and discuss the cycle times
{Cσ

n (0)}n), there will be two associated probabilities: Stationary and Palm Stationary ([1]).
In general, {φσ

n(0)} are defined such that φσ
0 (0) ≤ 0 < φσ

1 (0). Palm probabilities are the
stationary probabilities obtained after conditioning on the event that {φσ

0 (0) = 0} (see [1]).
Throughout the paper, the expectation under Palm stationary measure is represented by
E0 and the corresponding moments are usually denoted with a ∗ as under-script. In [1], the
stationary moment of the residual cycle Cσ

1 (0) (which we refer as Cσ
R(0)) as well as the past

cycle Cσ
0 (0) (which we refer as Cσ

P (0)) is obtained in terms of Palm probabilities as

E[Cσ
R(0)] = E[Cσ

P (0)] =
E0
[

(

Cσ
1

)2
(0)
]

2E0[Cσ
1 (0)]

.

This result is also explicitly derived specifically for cycle times in a special polling system
in Section 3.1 of [8]. This result will be used in the next subsection.
In Palm stationary regime, τσ

n , cσ
n are same for all n, the common values are represented by

τσ
∗ , cσ

∗ and hence we get a fixed point operator, F , to represent equation (9).
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bounded linear in τ ; 2) as σ → ∞, δσ → δ∞ in sup norm and F is continuous
in δ ∈ D (when F is viewed as a function of τ, δ, σ after replacing δσ with
δ). Hence (see proof of [23, Theorem 2] for some more details) by contraction
mapping theorem:

Theorem 2 For any σ, the map F has an unique fixed point, τσ∗ , if and only

if ρ = ρr0 +
∑N−1

j=1 ǫ̂jρrj < 1. Further, τσ∗ , the stationary moments of discrete
system with σ stops, converges to that of the continuous system:

sup
q∈C

|τσ∗ (q) − τ∞∗ (q)| → 0 as σ → ∞.

Indeed because of modulo |C|/σ addition for all q

τσ∗ (|C|) =
δσ(|C|)

α(1 − ρ)
and

τσ∗ (q) =
δσ(q)

α
+ τσ∗ (|C|)



ρr0 ([0, δσ(q))) +
N−1
∑

j=1

ǫ̂jρrj

([

|C|

σ
, δσ(q) +

|C|

σ

))



 .

4.2 Second Moments

The equivalent of Lemma 2 for the second moments is obtained in [23, Lemma
2] and we reproduce it’s statement (after modifying, as in Lemma 2, with a
possible non continuous PR0 and is true for any general interval):

Lemma 4 Assume the hypothesis of Lemma 2. Further, let T1 be any positive
random variable with E[T1] <∞. Then for any interval I

E[T (I, T )T1] = λ

∫ |C|

0

1{q∈I}E[T (q)T1]br0(q)PR0 (dq). �

Using Lemma 4 and using the logic as in proof of Lemma 3 we can obtain
the following lemma for the rerouted users:

Lemma 5 Assume the hypothesis of Lemma 4. Then for any 1 ≤ j < N ,

E
[

Trj (I, T )T1

]

= ǫ̂jρrj (I)

∫ |C|

0

E[T (q)T1]PR0(dq). �

We will be working with the following N + 1 second moments,

τ
(σ2)
j,n (q, q′) := E[T σn (q)T σn−j(q

′)] with 0 ≤ j ≤ N and let

⊤(σ2)
n (q, q′) :=

[

τ
(σ2)
0,n (q, q′), τ

(σ2)
1,n (q, q′), · · · , τ

(σ2)
N,n (q, q′)

]

.
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We obtain fixed point equations for these N + 1 second moments as in the
case of first moments. Taking expectation after multiplying equation (8) with
T σn−j(q

′), for any 0 ≤ j ≤ N , we get:

τ
(σ2)
j,n (q, q′) = δσ(q)α−1τσn−j(q

′) + E
[

Tr0([0, δ
σ(q)), Cσn−1)T

σ
n−j(q

′)
]

+
N−1
∑

j′=1

E

[

Trj′

([

|C|

σ
, δσ(q) +

|C|

σ

)

, Cσn−1−j′

)

T σn−j(q
′)

]

.

Let τ
(σ2)
j,∗ (for any 0 ≤ j ≤ N), and ⊤

(σ2)
∗ respectively represent the stationary

moments corresponding to τ
(σ2)
j,n and ⊤

(σ2)
n . By stationarity, the moments are

fixed points of the following (using Lemmas 4 and 5):

Θjq,q′ (⊤
(2);σ) = Υq,q′(τ

σ
∗ ) +Ωjq,q′(⊤

(2);σ) for all 0 ≤ j ≤ N, (10)

where τσ∗ are given by Theorem 2 (note these are continuous as σ → ∞) and
the remaining operators are defined point wise (for every (q, q′)) as

Υq,q′(τ ;σ) := δσ(q)α−1τ(q′) (11)

Ωjq,q′(⊤
(2);σ) = λ

∫ δσ(q)

0

(

τ
(2)
j (q′, y) + ψ

q′,|C|
j,1 − ψq

′,y
j,1

)

br0(y)PR0(dy) (12)

+

N−1
∑

j′=1

ǫ̂j′ρrj′

([

|C|

σ
, δσ(q) +

|C|

σ

])∫ |C|

0

(

ψq
′,y
j,j′ + ψ

q′,|C|
j,j′+1 − ψq

′,y
j,j′+1

)

PR0(dy)

with ψy,y
′

j,j′ = 1{j>j′}τ
(2)
j−j′ (y, y

′) + 1{j′≥j}τ
(2)
j′−j(y

′, y).

As explained in footnote 4, the stationary second moments of the discrete
system are the fixed points of the map, Θ := (Θ0, Θ1, · · · , ΘN ), at σ < ∞,
while that of the continuous system are fixed points of the same map at σ = ∞.
We have the following convergence result (proof in Appendix A):

Theorem 3 There exists a threshold λ0 (given by equation (24) in the proof)
and for all the Poisson arrival rates less than λ ≤ λ0 as σ → ∞ the stationary
second moments (uniform convergence in q, q′),

sup
q,q′∈[0,|C|]

∣

∣

∣⊤
(σ2)
∗ (q, q′) −⊤

(∞2)
∗ (q, q′)

∣

∣

∣→ 0. �

5 Proof of Theorem 1

By Theorems 2 and 3, the first and second stationary moments of T σn , of the
discretized polling system, converge towards the corresponding ones of the
continuous polling system. We obtain a common expression for the expected
virtual workload using these moments and complete the proof.
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From (7), the first two (Palm) stationary moments of cycle time w.r.t. the

point q, E0[Cσn (q)] and E0 (Cσn (q))
2

are:

cσ∗ (q) = τσ∗ (|C|) and c
(σ2)
∗ (q) = 2τ

(σ2)
0,∗ (q, q) + τ

(σ2)
0,∗ (|C|, |C|) + 2τ

(σ2)
1,∗ (q, |C|)

−2τ
(σ2)
1,∗ (q, q) − 2τ

(σ2)
0,∗ (q, |C|).

Thus the stationary first moment of the residual of the cycle Cσn (q) as seen
by a random user is given by (see footnote 4),

E[CσR(q)] =
c
(σ2)
∗ (q, q)

2 (cσ∗ (q))
2 . (13)

In the following we calculate the stationary expected workload due to ex-
ternal users and rerouted users separately, in terms of the stationary moments
of the previous section, using Little’s law and then the Wald’s Lemma.

Workload due to External users: A randomly arriving external user,
arriving at q, has to wait on average for: 1) residual of his own cycle cσ∗ (q); 2)
the time taken to service the external users waiting at q that arrived before
him (FIFO); 3) in a discrete system (arrival position order service), till the
external users waiting in [δσ(q), q)) are served. The total time due to 2 and

3 points is given by E
[

Tr0

(

[δσ(q), q] , C̈
)]

, where C̈(q′) := C(q′) (stationary

cycle corresponding to Cn(q′)) for all q′ 6= q and C̈(q) := CσP (q) (past cycle as
in footnote 4 and note E[CσR(q)] = E[CσP (q)]). By Lemma 2 (see (1)),

E
[

Tr0

(

[δσ(q), q] , C̈
)]

= τσ
∗ (|C|)ρr0 ([δσ(q), q)) +

M0
∑

i=1

p0,i1{q0,i}
(q)E[Cσ

R(q)]. (14)

Thus the expected waiting time of an external user is:

E[W σ
r0 ](q) = E[CσR(q)] +E

[

Tr0

(

[δσ(q), q] , C̈
)]

. (15)

While that for a continuous system equals:

E[W∞
r0 ](q) = E[C∞

R (q)] +

M0
∑

i=1

p0,i1{q0,i}(q)E[C∞
R (q)]. (16)

By Little’s law ([3]), the stationary expected number of waiting users (await-
ing first service) that belong to infinitesimal segment [q − dq, q + dq] equals,
λE[W σ

r0 ](q)PR0 (dq) and thus by Wald’s Lemma, the stationary expected vir-
tual workload (by independence) due to external users that belong to infinitesi-
mal segment [q−dq, q+dq] equals λE[W σ

r0 ](q)br0(q)PR0(dq). Thus the expected
stationary workload due to all the external users is:

V σr0 =

∫ |C|

0

λE[W σ
r0 ](q)br0(q)PR0 (dq).

By lemma 7 (Appendix B) ρr0 ([δσ(q), q)) → 0 as σ → ∞. By Bounded Con-
vergence Theorem (BCT) and Theorems 2, 3 terms like E[CσR(q)] → E[C∞

R (q)]
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and hence the expected waiting time E[W σ
r0 ](q) → E[W∞

r0 ](q) as σ → ∞ for
every q (see equations (13)-(16)). By BCT again, V σr0 → V∞

r0 .

Workload due to Rerouted users (j > 0): A j-rerouted user arrives just

after completion of his j-th service and because of immediate rerouting to
another point in the circle. Consider one such user who arrived at a point q
in C. His waiting time depends upon the point at which his j-th service was
completed. Conditioned that the position of the j-th service was at q′ (whose
distribution is given by PR(j−1)(dq

′) because of independence), he will have
to wait on average for: 1) if q′ < q then τσ∗ (q) − τσ∗ (q′) period of time; 2)
if q′ > q then τσ∗ (|C|) − τσ∗ (q′) + τσ∗ (q) period of time. The above gives the
waiting time till the point at which the external arrivals belong to his strip
[δσ(q), δσ(q) + |C|/σ) are served. But the rerouted user will be served before
this time point and let νσj (q) represent the average of this time difference.
This difference is calculated and its convergence is studied for all the polling
systems in Lemma 6 of Appendix B. Then the stationary average waiting time
of a j-rerouted user arrived at point q equals:

E[W σ
rj

](q) =

∫ |C|

q

τσ
∗ (|C|)PR(j−1)

(dq′) +

∫ |C|

0

(

τσ
∗ (q) − τσ

∗ (q′)
)

PR(j−1)
(dq′) − νσ

j (q)

= τσ
∗ (q) + τσ

∗ (|C|)PR(j−1)
([q, |C|]) −

∫ |C|

0
τσ
∗ (q′)PR(j−1)

(dq′) − νσ
j (q)

By Little’s law ([3]) and Wald’s lemma, as before, the stationary expected
workload due to j-rerouted users is (note the effective arrival rate equals
ǫ̂jλPRj (q)dq)

V σrj = λǫ̂j

∫ |C|

0

E[W σ
rj ](q)brj (q)PRj (dq).

By theorems 2, 3 and BCT (as done before for the external users) and further
using Lemma 6 of Appendix B, we obtain: V σrj → V∞

rj .

Total workload: The total expected stationary virtual workload is the work-
load due to all types of users and hence V σ = V σr0 +

∑N−1
j=1 V σrj . From the

above arguments, V σ → V∞, i.e., total stationary expected virtual workload
of the discrete polling system converges towards that of the continuous polling
system as σ → ∞. The workload, V σ, is obtained as an easily computable
expression for each σ in section 3 using results of [6] as equation (6) and it’s
limit (2) thus represents the stationary expected workload of the continuous
system. This completes the proof of Theorem 1. �

In the following, we use the formula (2) to obtain performance of some
examples of ferry based wireless LANs (FWLAN).

6 Ferry based Wireless LAN

Static users are scattered in a geographical area ∆. The network is sparse and
there is no direct global connectivity. The actual communication is facilitated
by a ferry which moves in a closed cyclic path C, placed inside ∆, repeatedly
with constant speed α and serves as a postman. The ferry collects the data from



Title Suppressed Due to Excessive Length 17

the source users as and when it encounters one. We call this as uplink service.
The uplink data also comes with the address of the destination user to which
it is intended. The ferry downloads the data to the destined user the first time
it meets the later, after collecting the uplink data. We refer this service as
downlink service.

The base station (BS) forms the global gateway to the external world. The
communication between the users of the network and the BS is also established
via ferry as is done between two users of the node. That is, every download
starts with uplink from BS to the ferry followed by the downlink from the
ferry to the destined user and every upload starts with uplink from the source
user to the ferry followed by the downlink from ferry to the BS.

Each point q in the cyclic path is assigned with a set of points I(q) ⊂ ∆
and ferry stops at q if there is an user in I(q) with either downlink or uplink
request. For example, if we consider ∆ to be an annular ring, the ferry is
moving along a co-centric circle and if the sets {I(q)} are decided based on
the nearest point criterion then the Ferry will stop at a point on the circle if
there is an active user located at the same angle (see Figure 1).

Ferry basically facilitates data transfer between two nodes of the area. The
data transfer request arrivals are modeled as Poisson arrivals and each of these
arrivals are associated with two marks: X the position of source distributed
as PX and Y the position of the destination/sink distributed as PY . Every
such request requires fixed size, η, of data to be transfered from source X to
destination Y . The position of the source and destination are independent of
each other.

We use the following notations in this section. The points in the two di-
mensional area ∆ are represented by x, y (if it is a sample point) or X , Y (if
it is a random position). The points on the cyclic path C are represented by q
or Q. We shall use the superscript u or d to denote uplink or downlink.

Ferry uses a wireless link to serve the users. It can receive/transmit the
messages from/to the users at a distance of d from it at a rate κ(d) for some
decreasing function κ. Thus the total time required for transmitting a message
of size η, when the user is located at x ∈ ∆ and is associated with q(x) ∈ C is
equal to its size divided by the service rate:

B(x) =
η

κ(||q(x) − x||)
. (17)

In this paper the objective function to be minimized will always be the ex-
pected virtual workload (which is obtained in Theorem 1 of section 2) and a
ferry path which minimized the expected virtual workload is a Pareto optimal
path for the multi-objective problem where the expected waiting times at differ-
ent locations are to be minimized (for details see the discussions in Appendix
C of [23]).

We discuss design of optimal ferry paths C and optimal partitioning of the
area into line segments {I(q); q ∈ C}. The aim of this section is to obtain these
objects in an optimal way that minimizes the virtual workload. Solving this
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problem in complete generality will be a very difficult task. Hence we instead
obtain optimal ferry path among a special class of ferry paths.

Prior to discussing the optimality issues one first needs to map the FWLAN
to a continuous polling, so that Theorem 1 can be used. This task is taken up
immediately.

6.1 Mapping to a Continuous Polling system

We analyze this FWLAN using Theorem 1. We begin with identifying the
components of the continuous polling system.

Server and path of the polling system : The ferry represents the server of
the polling system. The ferry stops at a point q in its path only when there is
a user with (downlink/uplink) request anywhere on the strip I(q). Thus the
entire strip I(q) is modeled as a point on the server’s path, in an equivalent
continuous polling system.

Service times: An arrival (X,Y ) is associated with the points q(X), q(Y )
of the ferry route if X , Y lie in corresponding strips, i.e., if X ∈ I(q(X)) and
Y ∈ I(q(Y )). Thus time required for uplink and downlink services respectively
are:

B(X) =
η

κ(|X − q(X)|)
and B(Y ) =

η

κ(|Y − q(Y )|)
.

Note these two service times are independent of each other as required by
Theorem 1. The moments of the uplink or downlink service times, in general
depend upon the point q ∈ C. For uplink (which is the first service required),

br0(q) = bu(q) = E[B(X)|q(X) = q] = EX

[

η

κ(|q −X |)

∣

∣

∣

∣

X ∈ I(q)

]

,

b(2)r0 (q) = b(2)u (q) = EX

[

η2

κ(|q −X |)2

∣

∣

∣

∣

X ∈ I(q)

]

.

Downlink (second service) moments br1 = bd, b
(2)
r1 = b

(q)
d can be defined in a

similar way.
External and Rerouted arrivals: Every data transfer requires two services:

starts with uplink service and ends with downlink service. A Poisson process
models the arrival of a data transfer request and the same marks the arrival of
an uplink service requirement. Hence, uplinks represent the external arrivals to
the polling system that models the FWLAN. The completion of uplink service
marks the arrival of a downlink service requirement and hence the down-links
represent the rerouted arrivals. Here every uplink is converted to a downlink
and hence ǫ1 = 1 and N = 2.

Position of arrival in the ’polling system’ : The position of uplink arrival
in FWLAN is given by PX , a distribution over ∆. Every arrival in the strip
I(q) marks the arrival at point q of C in the equivalent polling system. Thus,

PR0(A) = PX(∪q∈AI(q)) for any Borel set A ⊂ C,
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represents the external arrival distribution. For example, in an annular ring
with circular path, i.e., for some h1 ≤ l ≤ h2

∆ := {x ∈ R2 : h2
1 ≤ |x| ≤ h2

2} and C := {q : ||q|| = l},

and if PX ∼ U(∆) (uniform distribution) and I(q) = {x : ∠x = ∠q} (with
∠x representing the angle made by the line joining 0, x with the x axis), then
PR0 will be uniform over C. Similarly PR1(A) := PY (∪q∈AI(q)), for all Borel
A ⊂ C.

Thus the FWLAN can be modeled by a continuous polling system with
rerouting, Theorem 1 can be applied and the stationary expected virtual work-
load of the FWLAN can be calculated using (2) for any given cyclic path C and
the corresponding line segments {Iq}q∈C. The Theorem can be applied only for
those cases which satisfy the hypothesis of the Theorem, like for example the
arrival rate should be less than λ0 of Theorem 1.

In the following we consider some examples and compute the workload
performance of FWLAN.

Fig. 1 Ferry in an annular ring

Fig. 2 Ferry in a rectangular area

6.2 Ferry in a Rectangular area

We consider a rectangular area ∆ of length 2D1 and breadth 2D2 with a ferry
which moves in a rectangular path as in Figure 2. This example could not be
modeled using our previous results (see [22]) as it requires the arrival position
measures that are mixed. But with Theorem 1 of this paper it is possible to
model this example. We consider the following configuration of FWLAN: 1)
uniform arrivals i.e., PX ∼ U(∆) and so is PY ; 2) rate function resulting from
the losses in wireless medium considers only the direct path for attenuation
and is calculated assuming a receive transmit antennae difference of 1 and
pathloss factor β (where d is the distance between the user and the ferry):

κ(d) = (1 + d2)−β/2 for every d ≥ 0.
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The ferry moves on rectangular path, Cd1,d2 , which is completely defined in
terms of d1 and d2, the distances of the ferry path from the sides of the
rectangular area as in Figure 2. The best possible thing with κ as above, is
to associate every arrival with the nearest point on the ferry route, i.e., X is
associated with q(X) := argminq∈Cd1,d2

|q − X |. Hence, {I(q)} will either be
rectangular region of area d1 × d2 for the corner points (for example point a
in the figure) or line segments (for example the line segments passing through
points b, c and e of the ferry path in the figure). Let point a represent 0 of the
line segment representing the entire cycle path. In the following we consider
a suboptimal problem with d1 = d2. This will simplify the explanations, will
result in a one dimensional optimization problem and if required one can easily
extend all the below computations to the case with d1 6= d2. Let d = d1 = d2.
With the ferry moving in the direction as shown in the figure, the arrival
probabilities PR0 = PR1 =: Ψ are common and are given by

Ψ(dq) =

3
∑

i=0

p01qi + p1fψ(q)dq where p0 := d2p1, p1 :=
1

4D1D2
,

q0 = 0, q1 = 2(D1 − d), q2 = q1 + 2(D2 − d),

q3 = q2 + 2(D1 − d), q4 = q3 + 2(D2 − d) and

fψ(q) =







d+ (q − qi) if qi < q < qi +D1 − d for some 0 ≤ i ≤ 3
d+ (qi − q) if qi − (D1 − d) < q < qi for some 1 ≤ i ≤ 4
D1 else.

The service time moments are same for both the services and can be calculated
as (with b := br1 = br0 and b(2) := b

(2)
r0 = b

(2)
r1 representing the common

moments):

b(qi) =
η

d2

∫ d

0

∫ d

0

(1 + x2
1 + x2

2)
β
2 dx1dx2 for every 0 ≤ i ≤ 3

b(q) =
η

fψ(q)

∫ fψ(q)−d

−d

(1 + l2)
β
2 dl for every q /∈ {qi} and

b(2)(qi) =
η2

d2

∫ d

0

∫ d

0

(1 + x2
1 + x2

2)
βdx1dx2 for every 0 ≤ i ≤ 3

b(2)(q) =
η2

fψ(q)

∫ fψ(q)−d

−d

(1 + l2)βdl for every q /∈ {qi}.

The average moments can be computed using Ψ and {b(q)} and {b(2)(q)}.
For example, because of symmetry by interchanging the integrals and using
change of variable formula, the first moment simplifies to (note that |C| =
4(D2 − d) + 4(D1 − d))

b̄ = 4p0b(q0) + 8ηp1

∫ D1−d

0

∫ q

−d

(1 + l2)
β
2 dldq + 2ηp12(D2 − D1)

∫ D1−d

−d

(1 + l2)
β
2 dl

=
η

D1D2



|C|h(β, d) + 8
(1 + (D1 − d)2)

β
2

+1 − (1 + d2)
β
2

+1

β/2 + 1
+ 4g(β, d)



 with
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h(β, d) :=

∫ D1

0
(1 + (l − d)2)

β
2 dl and g(β, d) :=

∫ d

0

∫ d

0
(1 + x2

1 + x2
2)
β
2 dx1dx2.

Aim is to find the optimal ferry rectangular path:

d∗ = arg min
0<d≤D1

Vfwlan(d)

where Vfwlan(d) represents the expected stationary workload in FWLAN when
the ferry moves in rectangular path defined by d1 = d2 = d. This is calculated
by substituting the common moments {b(q)}, {b(2)(q)} and common PR0 =
PR1 = Ψ into the stationary expected workload given by (2), which simplifies
to (ρ = 2λb̄):

Vfwlan(d) =
ρλ

1 − ρ

(

b̄(2) + b̄2
)

+ ρ|C|α−1 2 + ρ

4(1 − ρ)
(18)

+λα−1
(

EΨ [Qb(Q)] − b̄EΨ [Q] + |C|EΨ [b̂(Q)]
)

.

Here EΨ represents the expectation w.r.t. Ψ , for example for any integrable
function g,

EΨ [g(Q)] =

∫ |C|

0

g(q)Ψ(dq) =

3
∑

i=0

g(qi)p0 + p1

∫ |C|

0

g(q)fψ(q)dq.

We thus obtained the stationary expected workload performance of FWLAN
for every value of d. This expression however can’t be simplified and one has
to compute the optimal path only via numerical examples.

Numerical Examples

We find the optimal path parameter d∗ (which we refer as d∗V to reinforce that
it is the minimizer of expected workload Vfwlan) for few numerical examples
of FWLAN with ferry operating in a rectangular area. We also compute d∗b the
optimizer of the first moment of the service time, b̄ (see Figure 3). In Figure 3
we plot the optimal parameter as a function of the ferry speed α for different
values of the longer dimension D2. We set β = 2, η = 1000, D1 = 10 and
λ = 10−8. We notice that the two optimizers d∗V and d∗b move closer to each
other either as the speed α increases or as the longer dimension D2 increases.
This could partially be explained observing the equation (18) for Vfwlan. The
first term of (18) depends upon d mainly via the service moments and hence
will be optimized by a d∗ which will be close to d∗b . The rest of the terms are
weighted by a common factor α−1 and hence the influence of all these terms
on the optimizer reduces for large ferry speeds. More important observation is
that the optimal d∗ approaches D1/2 as D2 increases.

The same inferences are reinforced again in Figure 4. Here we plot the
optimal path parameter as a function of D2 for various ferry speeds α. In
this example we set D1 = 100. We notice that the optimal path parameter
converges to one fourth the lower dimension D1/2 as the larger dimension
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increases. Further the optimizers are close to d∗b as either the speed increases
or D2 increases. Thus we make the following two interesting observations:

O.1) The optimizer d∗V , for most of the cases, is close to the optimizer of
the first moment of the overall service times b̄;

O.2) For thin or long strips of area the optimal ferry path parameter is
one fourth of the lower dimension.
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6.3 Ferry in an Annular ring

Here we consider still a simpler configuration of FWLAN, that in a annular
ring ∆ := {x ∈ R2 : h2

1 ≤ |x| ≤ h2
2}. Remaining setting are as in the previous

example. The ferry moves on one concentric circle of radius l in the annular ring
(Figure 1), i.e., Cl = {q ∈ R2 : ||q|| = l}. Again, with κ as above, every arrival
is associated with the nearest point on the ferry route, i.e., X is associated
with q(X) := arg minq∈Cl |q − X |. Hence, I(q) = {x ∈ ∆ : ∠(x) = ∠(q)},
the angular segments for all q ∈ Cl, (see figure 1). Aim is to find the optimal
radius:

l∗ = arg min
l∈[h1,h2]

Vfwlan(l;h1, h2)

where Vfwlan(l;h1, h2) represents the expected stationary workload in FWLAN
when the ferry moves in Cl.

Since {I(q)} are angular segments, for calculating the service time moments
one will require the radius Γ = ||X || of the arrival. Under the assumptions of
this section, Γ ∼ 2rdr/(h2

2 − h2
1) and further because of symmetry the service

time moments will be independent of the position q ∈ Cl, are same for uplink
and downlink, but depend upon the ferry path radius l. The common service
moments are:

b̄ = η

∫ h2

h1

(

1 + (r − l)2
)β/2 2rdr

h2
2 − h2

1

,

b̄(2) = η2

∫ h2

h1

(

1 + (r − l)2
)β 2rdr

h2
2 − h2

1

.

The stationary expected workload (2) for this setting is simplified and is given
by (3). Using this, ρ = 2λb̄ and

V symfwlan(l;h1, h2) =
ρλ
(

b̄(2) + b̄2
)

1 − ρ
+

6πlρα−1

4(1 − ρ)
. (19)

Once again, one has to perform numerical computations using the above for-
mula to obtain the optimal radius. However one can get the following asymp-
totic characteristic of l∗ from the formula itself: 1) as the propagation coef-
ficient β tends to zero l∗ tends to h1, i.e., the optimal path for the ferry is
the inner circle. (2) as the speed of the ferry, α, increases to infinity, the sec-
ond term in the formula becomes negligible and hence optimal radius will be
determined only by the service time moments and so the optimal radius will
be above the middle of the ring, i.e., larger than (h1 + h2)/2. Interestingly in
contrast to the previous (rectangle) example, this optimal path (valid for the
cases with large ferry speeds) is not in the center of the annular ring. This
is because the uniform arrivals in the annular ring do not translate into uni-
form arrivals in the angular direction. The density of arrival distribution, as
one moves along the same angle, increases linearly with the distance from the
inner circle.
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6.4 Hybrid Architecture

The previous architecture of FWLAN is called Autonomous architecture as
the ferry itself facilitates the local communications. But in certain situations,
the ferries are built with minimal intelligence, the rerouting tasks are taken
up only by the base station (BS). This architecture with finite number of ferry
stops is discussed in [28]. In this case every local data transfer happens in
three phases, uplink from the source node to the ferry, transfer to BS and BS
to ferry back with the sink address and downlink to the sink node. All the
other details remain as in the previous section.

The polling systems considered in this paper, can model this architecture
also. Note here that our previous results ([22]) could not model this architec-
ture. Most of the mapping aspects remain the same as in the previous section,
we point out only the differences. Every arrival demands 3 services, uplink,
downlink and BS-transfer service. Thus there are 3 reroutings, i.e.,N = 3, with
ǫ1 = ǫ2 = 1. As in the previous section, PR0 and PR2 are defined using PX
and PY respectively. However PR1 is concentrated only at the BS (which we
assume is associated with 0 of the ferry path), i.e., PR1({0}) = 1. The service
moments br0 = br2 are same as the common moments b defined in the two pre-
vious sections and so are the second moments. If the BS is at db distance from
the ferry path, then bb := b̄r1 = br1(0) = η1/κ(db) and b̄

(2)
r1 = b

(2)
r1 (0) = br1(0)2

where η1 can be different from η.

Rectangular Area of Figure 2: In this case, when PX is same as PY

ρ = 2λb̄+ bbλ, and ρ̂(q) = bbλ+ 2λb̂(q) for all q.

The stationary workload for the FWLAN in hybrid architecture is given by:

V hybridfwlan=
ρλ
(

2b̄(2) + 2b̄2 + b2b + 4bbb̄
)

2(1 − ρ)
+

|C|α−1
(

2ρ+ 2λ2b̄2 − λ2b2b
)

4(1 − ρ)

+
λ|C|α−1(bb + b̄)

1 − ρ
+ λα−1

(

EΨ [Qb(Q)] − (b̄ + bb)EΨ [Q]
)

−
2λ2|C|α−1(bb + b̄)EΨ [b̂(Q)]

1 − ρ
.

When bb = 0, i.e., when the base station transfers the control orders to ferry
using negligible information,

V hybridfwlan =
ρλ
(

b̄(2) + b̄2
)

(1 − ρ)
+

|C|α−1
(

2ρ+ λ2b̄2
)

2(1 − ρ)

+λα−1

(

EΨ [Qb(Q)] − b̄EΨ [Q] −
ρ

1 − ρ
|C|EΨ [b̂(Q)]

)

. (20)

This can be ensured by placing the base station on the ferry path.
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Numerical Examples

We continue with the example of Figure 4 for the hybrid architecture in Figure
5. We notice that the minimizers behave in a way very similar to that in au-
tonomous architecture. In fact, they are very close to the ones in autonomous
architecture either when ferry speeds are large or when D2 is large. From the
two figures we notice that the two optimizers differ (that too not significantly)
only when the ferry speeds are moderate and D2 is close to D1. This could
easily be expected observing the two workloads (18) and (20). The two work-
loads close towards each other for large values of ferry speeds. Thus we make
the following third observation:

O.3) The optimal path remains more or less the same irrespective of
whether the ferry facilitates the local communication completely on its own
or with the aid of the base station.

In this paper we studied some interesting examples and configurations of
the FWLAN. One can use this analysis for more interesting case studies (for
example zig zag paths, shadowing effects etc.).

7 Conclusions

We study a continuous polling system in which the users can be rerouted to a
new independent position to await another service, after completing a service.
We obtain an expression for the expected stationary workload. We obtain this
result under more general conditions than the usual symmetric conditions.
Further the position of arrivals are modeled by a distribution that can be a
mixture of discrete and continuous probability measures. We come up with a
way of discretization such that the available Pseudo conservation laws of dis-
crete polling systems can be utilized for obtaining the results for the continuous
counterparts. We expressed the expected workload as a parametrized function
of moment fixed points. The later are some stationary moments obtained as
fixed points of a function defined on spaces of left continuous functions with
right limits equipped with supremum norm and which are further parametrized
by the number of discretization levels. We show the required convergence via
the continuous dependence of the fixed points on the parameter. This way we
obtained a common expression, which represents the expected virtual workload
for continuous as well as the discretized polling systems, at different values of
the parameter. We then showed the continuity of the expected virtual workload
with respect to the parameter and hence obtained the expected virtual work-
load for the continuous system as the limit of the expected virtual workloads
of the discrete systems, when the levels of discretization tend to infinity.

We applied these results to a wireless LAN in which a ferry assists data
transfer among the users of the network as well as the users and the gateway
to the external world. We also consider a hybrid architecture in which the
ferry facilitates local communication with the help of the base station. We
make the following observations with the aid of numerical examples. The ferry
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path optimizing the first moment of service times approximately optimizes the
workload, whenever the ferry moves with significant speeds. The optimal ferry
rectangular path divides the breadth of rectangular area into equal partitions
as the length of the area increases and or the ferry speed increases, while the
optimal circular path in annular areas (with large ferry speeds) is above the
middle path of the annular area. The optimal ferry path does not change with
the mode in which the ferry assists local communication: i.e., with or without
the aid of the base station.

Appendix A

Proof of Lemma 1: The first 3 terms of (6) are independent of σ and simplify
as the first 3 terms of (2). With FRj (q) := PRj ([0, q] for all j,

PR0
(Ii)b{i,0} = br0 (iσ)(FR0

(iσ + |C|/σ) − FR0
(iσ)) (21)

+ER0

[

(br0 (R0) − br0(iσ))1{R0∈Ii}

]

+ E
[

br0 (R0)
[

PR0
({iσ}) − PR0

({iσ + C|/σ})
]]

In similar lines the fourth term of (6) can be approximated5 by:

α−1

1 − ρ

σ
∑

i=1

|C|

σ

σ
∑

l=1

λ{l,0}b̃{l,0}

Ni
∑

k=Nl

ρk ≈ λα−1

1−ρ

∑σ
i=1

|C|
σ

∑σ
l=1

(

br0(lσ) +
∑N−1

j=1 ǫ̂j b̄rj

)

(

FR0

(

lσ + |C|
σ

)

− FR0
(lσ)

)

∑Ni
k=Nl ρk. (22)

Circular sum (see [6]), approximately (error again converges to 0) equals:

Ni
∑

k=Nl

ρk = 1{i≥l}

Ni
∑

k=Nl

ρk + 1{i<l}

(

Nσ
∑

k=Nl

ρk +

Ni
∑

k=1

ρk

)

≈ 1{i≥l}ρ ([lσ, iσ)) + 1{i<l} [ρ− ρ ([iσ, lσ))]

= ρ([0, iσ]) − ρ([0, lσ]) + 1{i<l}ρ = ρ̂(iσ) − ρ̂(lσ) + 1{i<l}ρ.

Substituting the above in (22) results in a Riemann-Stieltjes sum which con-
verges and hence the fourth term of (6) converges to:

λα−1

1 − ρ

∫ |C|

0

∫ |C|

0



br0(q) +
N−1
∑

j=1

ǫ̂j b̄rj





(

ρ̂(y) − ρ̂(q) + 1{y<q}ρ
)

PR0(dq)dy.

5 Let ̺i,l :=
∑Ni

Nl ρk and ¯̺iσ ,lσ := ̺i,l and note ¯̺iσ ,lσ < ρ. Also, br0(δσ(q))−br0 (q)) → 0

as σ → ∞ for every q and
(

PR0
({δσ(q)}) − PR0

({

δσ(q) + |C|
σ

}))

→ 0 almost for all q by

Lemma 7. By bounded convergence theorem (BCT) (since ||br0 ||∞ < ∞) as σ → ∞,

σ
∑

i=0

1

σ

σ
∑

l=0

(

λbr0 (lσ)

[

FR0

(

lσ +
|C|

σ

)

− FR0
(lσ)

]

− λ{l,0}b{l,0}

)

̺i,l

= λ

∫ |C|

0

∫ |C|

0
(br0(δσ(q)) − br0(q))) ¯̺δσ(q),δσ(y)PR0

(dq)dl

+λ

∫ |C|

0

∫ |C|

0
br0(δσ(q))

(

PR0
({δσ(q)}) − PR0

({

δσ(q) +
|C|

σ

}))

¯̺δσ(q),δσ(y)dqdl → 0.
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Similarly, every j-th term in the fifth term of (6) is approximated by:

ǫ̂j+1λα−1

1 − ρ

σ
∑

i=1

[

FRj

(

iσ +
|C|

σ

)

− FRj (iσ)

] σ
∑

l=1



brj+1 (lσ) +
∑

k=j+2

ǫ̌k
j+2b̄rk





[

FRj+1

(

lσ + |C|
σ

)

− FRj+1
(lσ)

] (

l−i
σ

|C|1{i<l} + σ−(i−l)
σ

|C|1{i≥l}

)

and hence it converges to (note (i− 1)|C|/σ = iσ):

ǫ̂j+1λα−1

1 − ρ

∫ |C|

0

∫ |C|

0



brj+1 (q′) +

N−1
∑

k=j+2

ǫ̌k
j+2b̄rk



 (q′ − q + |C|1{q>q′})PRj+1
(dq′)PRj (dq).

Proof of Lemma 3 : Let N represent the number of users that caused the
workload Tr0([0, |C|], T ). Note that N = T̂r0([0, |C|], T ), where T̂r0([0, |C|], T )
represents workload due to the arrivals which request unit service time (i.e.,
T̂ is with Br0 ≡ 1, so br0(q) = 1 for all q). Hence by Lemma 2

E[N ] = λ

∫ |C|

0

fR0(q)τ(q)dq where τ(q) = E[T (q)].

Let Nrj represent the number of j-rerouted users among these N . Then (by
independence of rerouted locations)

Nrj =
N
∑

i=1

1{user i j-rerouted to [a, c]
} . (23)

The user after every service reroutes himself independent of everything else
and hence by applying Wald’s lemma to (23):

E[Nrj ] = E[N ]E
[

1{j-reroute to [a,c]}

]

= E[N ]Πj
i=1ǫiPRj ([a, c]).

The service time requirements in the (j+1)-service Brj is independent of every
other process and its average conditioned that the arrival is in interval [a, c] is
E[Brj |Rj ∈ [a, c]] and hence by applying Wald’s lemma again:

E[Trj ([a, c], T )] = ǫ̂jPRj ([a, c])E[Brj |Rj ∈ [a, c]]E[N ]. �

Proof of Theorem 3: Continuity properties: We consider function Θ defined

over the Banach space, ⊤ ∈ (D(N+1))N+1, where D(N+1) := D
(

[0, |C|]N+1
)

, is
the space of left continuous functions with right limits on [0, |C|]N+1 equipped
with sup norm, and parametrized by σ ∈ N. It is easy to see by boundedness
that Θ is continuous and linear in variable ⊤. The continuity of Ω function (12)
with respect to σ (the only limit point is at ∞, i.e., as σ → ∞) is readily seen
by inspection itself while the continuity of the function σ 7→ Υ (τ∗δσ ) as σ → ∞
in sup norm is given by Theorem 2. Thus the function Θ defined in (10) is
continuous at σ = ∞.
Contraction: From equations (10), for any σ

||Ω(⊤1;σ) −Ω(⊤2;σ)||∞ ≤ 3ρ ||∆1 −∆2||∞ .
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Let λ0 :=
1

3
(

∫ |C|

0
br0(q)PR0 (dq) +

∑N−1
j=1 ǫ̂j

∫ |C|

0
brj(q)PRj (dq)

) . (24)

For all λ < λ0, 3ρ < 1 and so Θ is a contraction for all σ. Thus by Contraction
Mapping Theorem (Corollary 3.1.4, page 112, [2]) we obtain: 1) the existence
of unique fixed points for all σ; and 2) the continuous dependence upon the
parameter, σ and hence the theorem is proved. �

Appendix B

Lemma 6 For every q and j (with N̂σ
j (y, q) defined recursively via (26), (27)

and (28)),

νσ
j (q) = brj (q)ER(j−1)

[

N̂σ
j (R(j−1) , q)

]

+λτσ
∗ (|C|)



ǫ̂jρrj

((

q, δσ(q) +
|C|

σ

))

+

j−1
∑

j′=1

ǫ̂j′ρr
j′

([

δσ(q), δσ(q) +
|C|

σ

))



 (25)

Further, ERj
[

νσj (Rj)brj (Rj)
]

→ ERj
[

ν∞j (Rj)brj (Rj)
]

.

Proof : We refer the user under consideration (who is j-rerouted to q and for
whom the time difference, νσj (q), is being calculated) as the tagged user. The
time νσj (q) is the difference between the instance the external service for users
belonging to [δσ(q), δσ(q) + |C|/σ) starts and the instance the tagged user’s
service started (which happened before the ’external’ service). Thus we will
need to consider the time taken by the users that were served after the tagged
user and before the external users and so the time difference νσj (q) is due to
the time taken to serve:

1) the j-rerouted users belonging to strip (q, δσ(q)+ |C|/σ) (arrival position
order service);

2) all the j′-rerouted users of strip [δσ(q), δσ(q) + |C|/σ) with 1 ≤ j′ < j
(users with maximum completed services is served first and so on); and

3) j-rerouted users that arrived exactly at q and after the tagged user
(FIFO).

All 3 points contribute in case of a discrete system while the continuous system
has contribution only due to points 3 and 2. Note that, in case of a continuous
system, νσj is non zero only at point masses of PRj , i.e., at {qj,i}i≤Mj

(see (1)).

By Lemma 4, time taken to serve the j-rerouted users belonging to strip
(q, δσ(q) + |C|/σ) and all the j′-rerouted users with 1 ≤ j′ < j, is given by the
last two terms of νσj given by (25).

We are now left with the service time due to j-rerouted users of point 3.
We calculate this, conditioned on location (say y) at which j-th service was
received (whose distribution equals PR(j−1)

by independence) by the tagged

user. Let N̂σ
j (y, q) represent the total number of users j-rerouted to point q
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after the tagged user, who received his j-th service at y. These will be among
the ones that were (j − 1)-rerouted to6:

i) segment (y, δσ(q)) (if y < δσ(q));

ii) segment (y, |C|) ∪ [0, δσ(q)) (if y ≥ δσ(q));

iii) point {y} but after the tagged user.

The average number of (j − 1)-rerouted users of case (i) (i.e., when y <
δσ(q)), equals E[T̂r(j−1)

((y, δσ(q)), C) where T̂r(j−1)
is similar to Tr(j−1)

except
that it is due to unit service times (as done in the proof of Lemma 3). By
Lemma 3, the average of the sum due to cases (i) and (ii) will be7:

N̄σ
j (y, q) := λτσ∗ (|C|)ǫ̂j−1

(

Pr(j−1)
((y, δσ(q)))1{y<δσ(q)}

+Pr(j−1)
((δσ(q), y))1{δσ(q)≤y}

)

. (26)

The average number of users of case (iii) has to be calculated by induction.
The users j-rerouted to q from the same point y after the tagged user, because
of FIFO service, must be the among the users that were (j − 1)-rerouted to y
after the tagged user in the previous cycle. Hence,

N̂σ
j (y, q) =







ǫjPRj ({q})
(

N̄σ
j (y, q) + ER(j−2)

[

N̂σ
(j−1)(R(j−2), y)

])

if j ≥ 2

ǫ1PR1({q})
(

N̄σ
1 (y, q) + N̂σ

0 (y)
)

if j = 1

(27)

with N̂σ
0 (q) representing the external users originated at point q before the

tagged user, i.e., in his residual cycle time and is obtained as in (14):

N̂σ
0 (q) =

M0
∑

i=1

p0,i1{q0,i}(q)E[CσR(q)] for all y. (28)

By un-conditioning using PR(j−1)
we obtain the average number of j-rerouted

users to point q after the tagged user and then applying Wald’s lemma (by
independence) gives the time required to service all of them and hence the first
part of the lemma follows. Note that when σ = ∞ the same quantities define
{ν∞j } for continuous systems. Here the terms with empty sets are deleted, and
some sets are replaced by singletons etc. (like the third term is deleted in (25)
and the fourth term instead contains ρrj′ (q)).

The convergence part of the lemma follows by Lemma 7, Theorems 2, 3
and BCT recursively starting with j = 1 and all the way up to j = N − 1. �

6 ǫjPRj ({q}) fraction of these users form N̂σ
j (y, q). Note that the users of points (i)-(iii)

are the ones that were (j − 1)-served after the tagged user and if they are j-rerouted to the
same point q then by FIFO order will receive the (j + 1)-service also after the tagged user.

7 In case (ii) this number results due to users rerouted from 2 adjacent cycles. But by
stationarity, the two average cycles equal and hence the expressions.
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Lemma 7 Let g be a nonnegative function with ||g||∞ <∞ and define f(I) :=
∫

I
g(y)PRj (dy) for every subset, I ⊂ [0, |C|]. Then, for any decreasing sequence

{Iσ}, if

i)∩σIσ = {q}, then f(Iσ) → PRj ({q})g(q); ii) ∩σIσ = ∅, then f(Iσ) → 0

iii) general, then f(Iσ) → f(∩σIσ).

Proof : The new measure g(y)PRj (dy) is again a finite measure and this
lemma follows by continuity of probability measures, i.e., that Prob(∩nAn) =
limn Prob(An). �

References
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