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Abstract

A central scheduling problem in wireless communications is that of allocating resources to one of

many mobile stations that have a common radio channel. Much attention has been given to the design of

efficient and fair scheduling schemes that are centrally controlled by a base station (BS) whose decisions

depend on the channel conditions of each mobile. The BS is the only entity taking decisions in this

framework based on truthful information from the mobiles on their radio channel conditions. In this

paper, we study the scheduling problem from a game-theoretic perspective in which some of the mobiles

may be noncooperative. We model this as a signaling game and study its equilibria. We then propose

various approaches to enforce truthful signaling of the radio channel conditions: a pricing approach,

an approach based on some knowledge of the mobiles’ policies, and an approach that replaces this

knowledge by a stochastic approximations approach that combines estimation and control. We further

identify other equilibria that involve non-truthful signaling.

I. INTRODUCTION

Short-term fading arises in a mobile wireless radio communication system in the presence

of scatterers, resulting in time-varying channel gains. Various cellular networks have downlink

shared data channels that use scheduling mechanisms to exploit fluctuations in radio conditions

(e.g. 3GPP HSDPA [2] and CDMA/HDR [7] or 1xEV-DO [1]). The scheduler design and the

obtained gain are predicated on the mobiles sending information concerning the downlink channel
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gains in a truthful fashion. In a frequency-division duplex system, the base station (BS) has no

direct information on the channel gains, but transmits downlink pilots, and relies on the mobiles’

reported values of gains on these pilots for scheduling. A cooperative mobile will truthfully report

this information to the BS. A noncooperative mobile will however send a signal that is likely to

induce the scheduler to behave in a manner beneficial to the mobile.

For some examples of nonstandard, noncooperative and aggressive transmission behavior in

WLANs, we refer the reader to Mare et al. [3], where nodes attempt more frequently than

the specifications in the IEEE 802.11 standard. See also Bianchi et al. [4]. This is presumably

because the particular equipment provider wants to make its devices more competitive. Such

behavior may occur in cellular phones with respect to channel reports for similar reasons of

competitiveness since compliance testing for cooperation is over only limited, published, and

standardized scenarios. Both HSDPA and EV-DO use an opportunistic scheduler in the downlink

to profit from multi-user diversity. For instance, a non-cooperative mobile can modify their 3G

mobile devices or laptops 3G PC cards, either by using Software Development Kit (SDK) (see

[20]) or the device firmware [27], in order to usurp time slots at the expense of cooperative

mobiles, hence denying them network access.

This paper deals with game-theoretic analysis of downlink scheduling in the presence of

noncooperative mobiles. We initially assume that the identity of players that do not cooperate is

common knowledge. In the later parts of the paper, while discussing the stochastic approximation

based approach, the BS can detect the non cooperative mobiles and hence will not require this

knowledge. We model this non cooperative downlink scheduling initially as a signaling game.

Mobiles send signals that correspond to reported channel states and play the role of leaders

in the signaling game. The BS allocates the channel resource and plays the role of a follower

that reacts to the signals. Mobile utilities (throughputs) are determined by BS’s allocation. For

efficient scheduling, BS optimizes the sum of the utilities of all the mobiles and hence naturally

the sum utility forms its utility in the game formulation. We initially focus on the study of

equilibria of this game and later on concentrate on robustification of the policies of the BS

against noncooperation.
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Contribution of the paper: We begin with the case in which BS does not use any extra

intelligence to deal with noncooperative mobiles (BS makes scheduling decisions based only

the signals from the mobiles). The only Perfect Bayesian Equilibrium (PBE) of the resulting

signaling game are of the babbling type: the noncooperative mobiles send signals independent

of their channel states, and the BS simply ignores them to allocate channels based only on prior

channel statistics (Section III). Fortunately, the BS can use more intelligent strategies to achieve

a truth revealing equilibrium henceforth called as TRE. We present three ways to obtain these

as equilibria of an appropriate form of the game (Section IV). The first relies on capabilities of

the BS to estimate the real downlink channel quality (perhaps obtained at a later stage based on

the rate at which the actual transmission took place), combined with a pricing mechanism that

creates incentives for truthful signaling. In the second approach, the BS learns mobiles’ signaling

statistics, correlates them with the true channel statistics, and punishes the deceivers. We next

come up with a practical strategy to achieve a TRE in the form of a variant of the proportional

fair sharing algorithm (PFA) which elicits truthful signals from mobiles (Section V). Further, in

Section VI, we establish the existence of other equilibria at which the BS improves its utility in

comparison to that obtained at a babbling equilibrium; the noncooperative mobiles also improve

their utilities over their cooperative shares (their utilities at a TRE).

Prior work: PFA and related algorithms were intensely analyzed as applied to CDMA/HDR

and 3GPP HSDPA systems ([10], [7], [6], [25], [5], [9], [19]). Kushner & Whiting [17] showed

using stochastic approximation techniques that the asymptotic averaged throughput can be driven

to optimize a certain system utility function (sum of logarithms of offset-rates). All the above

works assume that the centralized scheduler has true information of channel states.

However, as seen in the simulations of Kong et al. [15], noncooperative mobiles can gain in

throughput (by 5%) but cause a decrease in the overall system throughput (by 20%). Nuggehalli

et al. [21] considered noncooperation by low-priority latency-tolerant mobiles in an 802.11e LAN

setting capable of providing differentiated quality of service. Price & Javidi [24] consider an

uplink version of the problem with mobiles being the informed parties on valuations of uplinks

(queue state information is available only at the respective mobiles).

December 3, 2010 DRAFT



4

Our problem is closely related to signaling games with cheap talk, i.e., signals incur no costs

[16, Sec. 7], for which it is well-known that babbling equilibria exist. While the above works

[21] and [24] use mechanism design techniques [12] to induce truth revelation, with pricing

implemented via “carrots” on the opposite link, our problem differs from mechanism design not

only in not having pricing but also in considering the BS as a player.

We now begin with a precise formulation of the problem before proceeding to solutions.

II. PROBLEM FORMULATION

Consider the downlink of a wireless network with one base station (BS). M mobiles compete

for the downlink data channel. Time is divided into small intervals or slots. In each slot one

of the M mobiles is allocated the channel. Mobile m can be in one of the channel states

hm ∈ Hm, where |Hm| < ∞. Fading characteristics are independent across mobiles. Let h :=

[h1, h2, · · · , hM ]t be the vector of channel gains in a particular slot. Its distribution is pH(h) =∏
m pHm(hm), where pHm is that of the random variable hm. We assume mobile m can estimate

hm perfectly using pilots transmitted by the BS. Mobile m sends signal sm to the BS to indicate

its channel gain. Some mobiles (say those with indices 1 ≤ m ≤ M1 where M1 ≤ M ) are

noncooperative and may signal a different (say good) channel condition other than their true

channel (say bad) in order to be allocated the channel. Channel statistics and noncooperative

mobile identities are common knowledge to all players. Signal values are chosen from the

channel space itself, i.e., sm ∈ Hm. BS makes a scheduling decision based on signals s :=

[s1, s2, · · · , sM ]t.

1) Utilities: Let A denote the mobile to which channel is allocated. If A = m, mobile m gets

a utility Um(sm, hm, A) given by f(hm) which depends only on its own channel state and the

allocation, but not on the signal. Thus Um(sm, hm, A) = 1{A=m}f(hm)1. An example f function

is f(hm) = log(1+h2
mSNR) where SNR is the average received signal-to-noise ratio. BS utility

1This is the case if the BS allocates based on the mobile’s signal when the signaled channel gain is more than or equal to the
true channel gain. In the later sections that develop robust BS policies, we will come across situations when the BS allocates
to provide a utility (say ũ) different from the one requested. In these cases, Um(sm, hm, A) = 1{A=m}min{ũ, f(hm)}.
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is the sum of mobile utilities:

UBS(s,h, A) =
∑
m

Um(sm, hm, A).

Optimizing the BS’s sum utility results in an efficient solution, our main object of study. Fairness

may be incorporated appropriately; see our extensions [13] where utilities are concave functions

of long-term average throughputs.

How is f(hm) achievable when the transmitting BS does not know the true hm? Even if a

mobile signals more than its true value and the BS attempts to transmit at that higher transmitted

rate, the actual rate at which the transmission takes place will still be f(hm). This is reasonable

given the following observations. The reported channel is usually subject to estimation errors

and delays, an aspect that we do not consider explicitly in this paper. To address this issue,

the BS employs a rate-less code, i.e., starts at an aggressive modulation and coding rate, gets

feedback from the mobile after each transmission, and stops as soon as sufficient number of

redundant bits are received to meet the decoding requirements. This incremental redundancy

technique supported by hybrid ARQ is already implemented in the aforementioned standards

(3GPP HSDPA and 1xEV-DO). Then a rate close to the true utility may be achieved.

2) A Motivating Example: To illustrate the main concepts, consider two mobiles in the toy one-

shot game with channel states, probabilities, and achieved throughputs as given in Table I. The

fifth column shows utilities when allocation A ≡ m (BS always allocates mobile m). The sixth

column shows utilities when mobiles signal truthfully and allocation A∗(s1, s2) = arg maxm{sm}

is to mobile with the best channel, yielding the best total utility of 6 + 2.50 = 8.50 for the

BS. If mobile 2 is strategic, noncooperative, and therefore always signals 10, sm ≡ 10, an

ignorant BS always allocates to mobile 2 and attains a utility of 3.75 < 8.50. Since the mobile 2

noncooperative utility is 3.75 which is greater than the 2.50 attained under cooperative signaling,

mobile 2 will not cooperate. If the BS is aware of such noncooperative behavior, we will soon

see that it will always allocate the channel to mobile 1 (based only on priors) yielding utilities

of 8 to mobile 1, 0 to mobile 2, and 8 to BS; the last quantity is less than 8.50 under cooperative

signaling. We will also see that 8 and 8.50 are two extremes of what the BS can achieve.
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TABLE I
PARAMETERS AND UTILITIES FOR THE MOTIVATING EXAMPLE

Player Hm pHm f(Hm) E [Um(·, hm,m)] E [Um(hm, hm, A
∗)]

(A ≡ m) A∗ = arg maxm{sm}

Mobile 1 {h0
1} {1} {8} 8 6

Mobile 2 {h1
2, h

2
2, h

3
2}

{
1
4
, 1

2
, 1

4

}
{10, 2, 1} 3.75 2.50

3) Terminology: We define [M ] := {1, 2, · · · ,M}. For a set C let P(C) denote the set of

probability measures on C. As is usual in games, all players employ randomized strategies.

Hence, in the one-shot model, a policy of mobile m is a mapping hm 7→ µm(·|hm) ∈ P(Hm),

i.e., a random signal is generated as per the mapped distribution given the channel state hm. A

policy of the BS is a mapping s 7→ β(·|s) ∈ P([M ]), i.e., a random allocation is made based on

the signal vector. Let

µ(s|h) :=
∏

m≤M1

µm(sm|hm)
∏
j>M1

δ(hj − sj).

As is usual, to exclude mobile m, define h−m := [h1, · · · , hm−1, hm+1, · · · , hM ], pH−m(h−m) :=∏
j 6=m pHj

(hj) and

µ−m(s−m|h−m) :=
∏

j 6=m;j≤M1

µj(sj | hj)
∏

j 6=m;j>M1

δ(hj − sj).

We reuse Um to denote the instantaneous utility of mobile m when its channel condition is hm,

when the mobiles use strategies µ, and when the BS uses strategy β. More precisely,

Um(µ, hm, β) := Eh−m

[∑
s

Um(sm, hm,m)β(m | s)µ(s | h)

]

= f(hm)Eh−m

[∑
s

β(m | s) µ(s | h)

]
.
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Similarly, UBS(µ,h, β) :=
∑

m Um(µ, hm, β).

4) Strategic Form Game : This noncooperative downlink game results in a strategic form

game with M1 + 1 players 1, 2, · · · ,M1, and the BS. The strategy set of the players are

µ1, µ2, · · · , µM1 , and β, respectively. The payoffs are E[U1],E[U2], · · · ,E[UM1 ], and E[UBS],

respectively, where the expectations are with respect to h. A Nash Equilibrium (NE) for this

game is a strategy-tuple (µ∗1, · · · , µ∗M1
; β∗) that satisfies

µ∗m ∈ arg max
µm

Ehm [Um((µm, µ
∗
−m), hm, β

∗)] (1 ≤ m ≤M1)

β∗ ∈ arg max
β

Eh

[∑
m

Um(µ∗, hm, β)

]
.

An ε-Nash Equilibrium (ε-NE) for this game is a strategy-tuple (µ∗1, · · · , µ∗M1
; β∗) that satisfies

µ∗m > max
µm

Ehm [Um((µm, µ
∗
−m), hm, β

∗)]− ε (1 ≤ m ≤M1)

β∗ > max
β

Eh

[∑
m

Um(µ∗, hm, β)

]
− ε.

5) Signaling Game : For the problem under study, the BS has to act based on the signals

sent by the mobiles and hence this is better modeled by the two stage signaling game. For such

signaling games, a refinement of NE based on the rationale of credible posterior beliefs (Kreps

& Sobel [16, Sec. 5], Sobel [26]) is the Perfect Bayesian Equilibrium defined below.

Definition 2.1 (Posterior beliefs): π := {πm;m ≤ M1} is the set of posterior beliefs where

πm(hm | sm) is the BS’s belief of the posterior probability that the mobile’s true channel is hm

given that its signal is sm. �

Definition 2.2 (Perfect Bayesian Equilibrium (PBE)): A strategy profile (µ∗1, · · · , µ∗M1
; β∗)

and a posterior belief π∗ constitute a PBE if (a) for each signal vector s, we have

β∗(· | s) ∈ arg max
γ∈P([M ])

∑
m>M1

γ(m)f(sm) +
∑
m≤M1

γ(m)
∑
hm

π∗m(hm | sm)f(hm); (1)

December 3, 2010 DRAFT



8

(b) for each mobile m ≤M1 and hm ∈ Hm, we have

µ∗m(· | hm) ∈ arg max
α∈P(Hm)

∑
sm∈Hm

α(sm)

∑
s−m

β∗(m | s)
∑
h−m

pH−m(h−m)µ∗−m(s−m|h−m)f(hm)

 ;

(2)

(c) for each m ≤M1 and sm ∈ Hi, the BS updates

π∗m(hm | sm) =
pHm(hm)µ∗m(sm | hm)∑

h′m∈Hm
pHm(h′m)µ∗m(sm | h′m)

, (3)

if the denominator in (3) is nonzero, and π∗m(· | sm) is any element in P(Hm) otherwise. �

In Definition 2.2, equation (2) ensures that (µ∗1, · · · , µ∗M1
) is a NE of the subgame of

noncooperative mobiles, (1) ensures that β∗ is the Bayes-Nash equilibrium of the subgame with

the BS, and (3) determines a consistent Bayesian approach to determining posterior beliefs.

In the sequel, we will come across two types of PBE ([26]). The first is the babbling

equilibrium where the sender’s (mobile’s) strategy is independent of the channel state, and

the receiver’s (BS’s) strategy is independent of signals. The second is the desirable separating

equilibrium where sender sends signals from disjoint subsets of the set of available signals for

each channel state. Clearly then, the receiver gets complete information about the true channel

states of the leaders (mobiles). If this equilibrium is achieved, the BS can design a scheduling

algorithm as in a fully cooperative environment. Hence a separating PBE is a Truth Revealing

Equilibrium (TRE).

The question then is what kind of equilibria do we encounter in the above signaling game.

Refinements to handle the more realistic repeated game over multiple slots and availability of

more information at the BS are handled subsequently.

III. BABBLING EQUILIBRIUM

The following theorem characterizes all the possible PBE of the signaling game as babbling

equilibria.
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Theorem 1: The M1 + 1 player signaling game has a PBE of the following type:

π∗m(·|sm) = pHm (for all m, sm),

µ∗m(·|hm) equals any fixed µm ∈ P(Hm) (for all m, hm),

β∗(·|s) equals any fixed γs ∈ P(M∗(s)) (for all s),

where M∗(s) is the set of mobiles with the best expected throughput among noncooperative

mobiles and the conditional throughput given s among cooperative mobiles, i.e.,

M∗(s) := arg max
m∈M∗NC∪M

∗
C(s)

Ehm [f (hm) | sm] with

M∗
NC := arg max

m≤M1

Ehm [f(hm)] and M∗
C(s) := arg max

m>M1

f(sm).

Further, any PBE for this game is of the above type. �

Proof: See Appendix A.

The above theorem shows that if the BS makes scheduling decisions based only on the signals

from the (noncooperative) mobiles: at any equilibrium π∗m(·|sm) = pHm for all m ≤ M1, i.e.,

mobile signals do not improve BS’s knowledge of current channel states. BS allocates based

only on prior statistics and signals of cooperative mobiles. As a consequence, multiuser diversity

gain cannot be exploited and the best possible BS utility under this situation is

U∗cop := Ehm;m>M1

[
max

{
max
m>M1

f(hm),max
j≤M1

Ehj
[f(hj)]

}]
(4)

To do better, we exploit the fact that typical connections last several slots enabling the BS to

learn more about mobiles’ strategies, for example the statistics of their signals. We first study

two punitive strategies to elicit truthful signals from mobiles and then go on to study other

equilibria.

IV. SEPARATING EQUILIBRIUM

We showed in the previous section that there exist only babbling equilibria in the presence of

noncooperative mobiles. In this section we obtain the desired TRE using two different approaches.
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A. Penalty for deviant reporting

The BS does not have access to the true channel state of the mobile. But based on the actual

throughput seen on the allocated link, the BS may extract the squared error {(hm − sm)2;m ≤

M1} after the transmission is over. This error can used to punish mobiles for deviant reporting.

More precisely, let mobile m report sm when its channel is hm and suppose it succeeds in

getting the channel. For a ∆ ∈ (0,∞), let us impose a penalty proportional to the squared error

if it exceeds a threshold cm, as follows:

Um(hm, sm, A) = 1{A=m}
(
f(hm)−∆1{(hm−sm)2>cm}(hm − sm)2

)
, (5)

where cm > 0 is chosen small enough such that for all hm ∈ Hm,

{
sm : (sm − hm)2 ≤ cm

}
∩Hm = {hm}.

If we now choose ∆ such that

∆ > max
{m≤M1, (hm,sm)∈Hm×Hm:(hm−sm)2>cm}

{
f(hm)

(hm − sm)2

}
, (6)

then it is clear that Um(hm, sm, A) is negative whenever the action A is m, i.e., any deviant

signaling results in negative utility to the mobile. This new utility function is closely related to

a pricing mechanism, a powerful tool for achieving a more socially desirable result. Typically,

pricing is used to encourage the mobile to use system resource more efficiency and generate

revenue for the system. Usage-based pricing is an approach commonly encountered in the

literature. In usage-based pricing, the price a mobile pays for using resource is proportional

to the amount of resource consumed by the mobile. In our case, the price corresponds to the

cost a mobile pays for deviant reporting if the error exceeds cm. Through pricing, we obtain a

separating PBE for the modified game.

Theorem 2: With ∆ satisfying (6), the M1+1-noncooperative game with the modified utilities
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has the following separating PBE:

µ∗m(sm|hm) = δ(sm − hm) for all m ≤M1 and hm ∈ Hm,

π∗m(hm|sm) = δ(hm − sm) for all m ≤M1 and sm ∈ Hm,

and with A∗(s) = arg maxj f(sj), β∗(·|s) is any probability measure with support set A∗(s).

Proof: See Appendix B.

We thus achieve a TRE using this method. However it is important to note here that one

may not be able to estimate the instantaneous channel error of (5) even after the transmission is

complete. We propose in the following subsection another (impractical) method based on signal

statistics with the intention of introducing our ideas on robustification. More practical policies

based on average throughput error will be dealt in the next section.

B. ’Predicting’ the Signal Statistics

Data transmissions are not just one-shot, but occur over several slots. This enables the BS

to learn the statistics of the signals sent by mobiles. To explore this idea we begin with the

simplifying restriction that mobile strategies are stationary. This enables us to study, yet again,

a one-shot game where mobile signaling statistics are known to the BS. This leads to a strategic

form game with mobile actions as before whereas the BS’s action depends not only on the signals

s, but also on the (learned and therefore assumed perfectly known) statistics of signals, pS :=

(pSm ,m ∈ [M ]), i.e., (s, pS) 7→ β(· | s, pS) ∈ P([M ]). (Recall that pSm =
∑

h µm(·|h)pHm(h)).

The payoff for the mobiles and BS are as before.

Consider the following BS policy denoted β∗p . Find the set of mobiles m whose signaled

statistics pSm equals pHm . The strategy β∗p makes an equiprobable choice among those mobiles

in this subset that have the largest signal amplitudes. If the set is empty, the BS does not allocate

the channel to any of the mobiles.

Some remarks are in order. First, “pSm equals pHm” assumes knowledge of statistics of the

signals. This is not available in practice, must be estimated, and will therefore have estimation

errors. The term “equals” should therefore be interpreted in practice as “approximately equals”
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to within a desired level accuracy. Second, β∗p is a punitive strategy in that only those mobiles

whose signaling statistics match the channel’s true statistics obtain a strictly positive utility. Third,

mobiles may deceive and yet obtain a strictly positive utility so long as signaling statistics match.

But inflationary signaling for lower levels have to be compensated by deflationary signaling at

higher levels.

Clearly µ∗m(sm|hm) = δ(sm − hm), for all sm ∈ Hm,m ∈ [M1] and β∗p constitute a NE, i.e.

a TRE, with BS utility

U∗max := Eh

[
max
m≤M

f(hm)

]
, (7)

the maximum possible. Multiuser diversity gains are thus obtained but under simplifying as-

sumptions.

V. STOCHASTIC APPROXIMATION

The BS policies of the previous section, though yielding a TRE, are based on an artificial

assumption that the BS has perfect knowledge of either the signal statistics or the (delayed)

deviation of the signaled rate from the true rate. The aim there was to motivate a method to

get a TRE. We now develop that idea and describe a realistic policy based on the technique of

stochastic approximation (SA). Briefly, the policy works as follows. It continuously (i) estimates

the average throughput that each mobile gets; (ii) estimates the excess utility that each mobile

accumulates beyond its share when in a cooperative setting; (iii) applies a “correction” based on

the excess utility. The resulting estimates are then used to make scheduling decisions.

The policy of a BS is now a time-varying function prescribing it’s actions at every time point.

The action at time k depends on mobile signals up to and including time k. Throughout this

section, Hm is a compact subset of R for each m ∈ [M ]. We restrict attention to stationary and

memoryless policies for mobiles, i.e., sm : Hm → Hm maps the current channel state hm,k in

a deterministic and stationary fashion to sm(hm,k) for any slot index k. For convenience, we

define sm(hm,k) = hm,k for the cooperative mobiles m > M1. We make the following additional

assumptions for mathematical tractability.
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A.1 The processes {hm,k}k≥1 is an independent and identically distributed (IID) sequence for

every m and is further independent across mobiles. For each m, the distribution of the

random variable hm,1 has a bounded density. The range of the function f , f(Hm), is

bounded.

A.2 The function f : Hm → R+ is continuously differentiable and invertible. So is f−1.

A.3 The induced random variables sm(hm,1) have bounded densities for each m.

Instead of A.2 and A.3, the following assumption may be used.

A.4 The induced random variables f(sm(hm,1)), representing the reported rates, have bounded

densities for each m.

We now define the utilities of all the players. Let φm,k be the slot-level utility derived by

mobile m in slot k. Obviously 0 ≤ φm,k ≤ f(hm,k) and φm,k = 0 if the channel is not assigned

to mobile m in slot k. Then if the following limits exist, set

Um = lim
k→∞

1

k

∑
l≤k

φm,l and UBS =
M∑
m=1

Um. (8)

In the following we describe a BS policy which along with truthful signals from the mobiles

constitutes a NE, i.e., a TRE, for the game described by the above utilities.

Under true signaling, the BS achieves its maximum utility U∗max given in (7) while the mth

mobile gets

U∗m = θ0
m := Eh

[
f(hm)1{f(hm)≥f(hj) for all j}

]
.

With the information available, the BS can calculate Θ0 := (θ0
1, · · · , θ0

M), which we will refer

henceforth by cooperative shares.

The (deterministic) BS policy β∗ is defined using the following set of recursive updates. Let

∆ ∈ R+ be a parameter and let εk = 1/(k + 1). Initialize θm,0 = θ0
m for all m and let

Policy β∗ : θm,k+1 = θm,k + εk

(
f̃m,k+1Im,k+1 − θm,k

)
, where (9)

f̃m,k+1 = f(sm(hm,k+1))−
(
θm,k − θ0

m

)
∆, (10)

Im,k+1 = 1{f(sm(hm,k+1))≥f(sj(hj,k+1)) for all j}1{f̃m,k+1≥0}. (11)

December 3, 2010 DRAFT



14

In words, the BS (i) tracks average reported utility via θm,k (see (9)), (ii) computes excess

utility θm,k − θ0
m relative to the mobiles’ cooperative shares and subtracts the excess from the

instantaneous signaled utility after magnification by ∆ (see (10)), and (iii) uses updated values to

make a current scheduling decision : the allocation distribution at time k+1 is (Im,k+1,m ∈ [M ]),

a delta function (with probability 1) that places all its mass on the unique mobile with the

largest reported value f(sm(hm,k+1)); however BS allocates only the corrected value f̃m,k+1 to

the scheduled mobile. The choice of ∆ determines the proximity of the converged solution to

Θ0 (as will be seen later).

If BS schedules mobile m in slot k, the latter gets a utility

f̄m,k := max
{

0,min
{
f̃m,k, f(hm,k)

}}
(12)

because, if f̃m,k < 0 for the selected mobile no transmission is made, and if f̃m,k < f(hm,k)

transmission is made at a lesser rate to get a slot-level utility f̃m,k, and if f̃m,k ≥ f(hm,k)

then the obtained slot-level utility is only f(hm,k) (see section II-1 for justification of this

utility). Consequently, φm,k = f̄m,kIm,k, and the limiting utility for mobile m may be written as

Um = limk→∞ θ̄m,k with θ̄m,k := 1
k

∑
l≤k φm,l. Incidentally, θ̄m,k satisfies the following recursive

update equation:

θ̄m,k+1 = θ̄m,k + εk
(
f̄m,k+1Im,k+1 − θ̄m,k

)
with initialization θ̄m,0 = θ0

m. (13)

We employ the commonly used ordinary differential equations (ODE) approximation technique

(see [17] or [8]) to analyze utilities (8) and obtain optimality properties of policy β∗ (9)-(11).

Let S := (s1, · · · sM), Θk := (θ1,k, · · · , θM,k) and Θ̄k := (θ̄1,k, · · · , θ̄M,k). Also let Θ :=

(θ1, · · · , θM) and Θ̄ := (θ̄1, · · · , θ̄M). Further define the following for all m ≤M :

f̃Sm(hm, θm) := f(sm(hm))− (θm − θ0
m)∆ (14)

ISm(h, θm) := 1{f(sm(hm))≥f(sj(hj)) for all j 6=m}1{f̃S
m(hm,θm)≥0}, and (15)

f̄Sm(hm, θm) := max
{

0,min
{
f̃Sm(hm, θm), f(hm)

}}
. (16)
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We will show that the trajectories of (Θk, Θ̄k) given by (9) and (13), for any finite time, converge

to the solution of the system of ODEs

�
Θ (t) = HS(Θ(t))−Θ(t); HS

m(Θ) = Eh

[
f̃Sm(hm, θm)ISm(h, θm)

]
with Θ(t0) = Θ0; (17)

�

Θ̄ (t) = H̄S(Θ(t))− Θ̄(t); H̄S
m(Θ) = Eh

[
f̄Sm(hm, θm)ISm(h, θm)

]
with Θ̄(t0) = Θ0. (18)

By Lemma 1 given below, the ODE system (17) - (18) has a unique bounded solution (Θ(t), Θ̄(t))

for any finite time interval t ∈ [0, T ] where 0 < T <∞. Further the system has a unique global

exponentially stable attractor.

Lemma 1: The function HS(·) is continuously differentiable, while the function H̄S(·) is

globally Lipschitz. The ODE system (17) - (18) thus has a unique solution. Moreover, for

any strategy profile S, the ODE system has a unique global exponentially stable attractor

(Θ∗,S, H̄S(Θ∗,S)) satisfying

|Θ(t)−Θ∗,S| ≤ |Θ0 −Θ∗,S|e−t, (19)

|Θ̄(t)− H̄S(Θ∗,S)| ≤ e−t
(
|Θ0 − H̄S(Θ∗,S)|+ ∆|Θ0 −Θ∗,S|t

)
for all t,

where Θ∗,S is the unique fixed point of the function HS(·).

Proof: See Appendix C-A

Let us define

t(r) :=
r∑

k=0

εk,

Ψk :=
(
Θk, Θ̄k

)
,

m(n, T ) := arg max
r≥n
{t(r)− t(n) ≤ T}.

Let Ψ(t, t0, (Θ0, Θ̄0)) represent the solution of the ODE system (17) - (18) with Ψ(t0) = (Θ0, Θ̄0).

We then have the following ODE approximation theorem.

Theorem 3: Assume A.1-A.3 and {εk = (k + 1)−1}. Fix any T > 0, any δ > 0, any h,

and let (hn,Ψn) be initialized to (h,Φ) = (h, (Θ, Θ̄)). Let Pn:h,Φ denote the distribution of
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{(hn+k,Ψn+k)}k≥0 with initializations hn = h, Ψn = Φ. Then, as n→∞, we have

Pn:h,Φ

{
sup

{n≤r≤m(n,T )}
|Ψr −Ψ (t(r), t(n), Φ)| ≥ δ

}
→ 0 uniformly for all Φ ∈ Q1, (20)

where Q1 is any compact set. �

Proof: See Appendix C-C.

Theorem 3 approximates the trajectories on (any) bounded time interval; see (20). However

for analyzing the (time) limits of the trajectories using the attractor of the ODE system, Theorem

3 is not sufficient. In [13], we study the extension of the above algorithm for generalized α-

fairness, and prove the ODE approximation theorem for infinite time using weak convergence

methods of Kushner et al. ([17]). The error between the tail of actual trajectory and that of the

ODE trajectory is the object of study there. The algorithms (13) and (9) are special cases. In fact

in [13], the algorithm is studied under much general conditions, which do not require the IID

conditions. Hence the results described below are applicable under stationary channel conditions

given in Section VII of [13].

We thus analyze the utilities (8) corresponding to (13) by replacing the limits of the trajectories

with the unique attractor of the ODE (18). Using this, with S = I representing the truth revealing

strategy profile (sm(hm) = hm for all hm, m), we next show below that the policy β∗ along

with truth revealing signals I forms an ε-NE (see Section II-4) and hence a TRE.

Step 1: When S 6= I , we claim that Um ≤ θ0
m + O(1/∆), in probability. Indeed, the unique

attractor Θ∗,S of the ODE (17) is the unique fixed point of function HS(·) (Lemma 1) and hence

satisfies

θ∗,Sm − θ0
m =

Eh

[
f(sm(hm))ISm(h, θ∗,Sm )

]
− θ0

m

1 + ∆E
[
ISm(h, θ∗,Sm )

]
≤

CfE
[
ISm(h, θ∗,Sm )

]
1 + ∆E

[
ISm(h, θ∗,Sm )

] ,
where Cf is the upper bound on f . It follows that θ∗,Sm ≤ θ0

m + O(1/∆). Further, the unique

attractor of ODE (18) satisfies θ̄∗m = H̄S
m(Θ∗,S) ≤ θ∗,Sm for all m. The time limit of the utility
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Um converges weakly to the constant θ̄∗m (the weak convergence is shown in [13]), and therefore

in probability. Hence

Um → θ̄∗m ≤ θ∗,Sm ≤ θ0
m +O(1/∆), (21)

where the first convergence is “in probability”.

Step 2: When S = I , it is easy to see that the time limit Um equals the cooperative shares

in probability, i.e., Um = θ0
m, the mth component of Θ0 that constitutes the unique attractor for

the ODE system (Θ0,Θ0), in probability.

Step 3: Under S = I , the optimal allocation strategy β∗ for the BS attains the maximum

possible BS utility, in probability.

The above three steps show that S = I together with β∗ constitutes a TRE.

We conclude this section with an interesting observation. For large values of ∆, we have

(θ∗,Sm − θ0
m)∆ =

∆(Eh

[
f(sm(hm))ISm(h, θ∗,Sm )

]
− θ0

m)

1 + ∆E
[
ISm(h, θ∗,Sm )

]
≈

Eh

[
f(sm(hm))ISm(h, θ∗,Sm )

]
− θ0

m

E
[
ISm(h, θ∗,Sm )

]
which can be significant but is bounded (independently of ∆) because of the boundedness of f .

If any mobile reports much larger than its true value, i.e., if f(hm)� f(sm(hm)), and if in fact

it is large enough that f(hm)� f(sm(hm))− (θ∗,Sm − θ0
m)∆, then

Um � Eh[(f(sm(hm))− (θ∗m − θ0
m)∆)ISm(h, θ∗m)] = θ∗m.

Hence Um � θ0
m, i.e., that particular mobile’s utility is much lesser than θ0

m, its own cooperative

share. Hence a mobile that deviates more loses more (see Figure 3).

A. Further Robustification of the SA Policy

The policy β∗ (9) induces a truth revealing equilibrium. The robustness in (9) is achieved

by reducing the allocation to the selected mobile, based on its deviation from the cooperative
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share. This however does not rule out the possibility of non-robust scheduling decisions which

can result in a significant loss for other truthful mobiles, as can be seen in Figure 2(d), and in

a significant loss for the BS.

In the following we propose a better variant of the policy (9) where robustness is also built

into decision making, i.e, we use decisions {Îm,k} given below in place of {Im,k} of (11) :

Policy β̂∗ : θm,k+1 = θm,k + εk

(
f̃m,k+1Îm,k+1 − θm,k

)
, with (22)

Îm,k+1 = 1{f̃m,k+1≥f̃j,k+1 for all j}1{f̃m,k+1≥0} (23)

and the corresponding true utility adaptation (the actual utility obtained by the user) is given by

θ̄m,k+1 = θ̄m,k + εk

(
f̄m,k+1Îm,k+1 − θ̄m,k

)
(24)

with the initialization θ̄m,0 = θm,0 = θ0
m.

Using the assumptions A.1-A.3 or A.1 and A.4, and using Lemma 3 of Appendix C-D, the

policy β̂∗ can be analyzed in exactly the same way as we analyzed β∗. As a first step it is

approximated using the ODE system

�
Θ (t) = ĤS(Θ(t))−Θ(t); ĤS

m(Θ) = Eh

[
f̃Sm(hm, θm)ÎSm(h,Θ)

]
; (25)

�

Θ̄ (t) = ˆ̄HS(Θ(t))− Θ̄(t); ˆ̄HS
m(Θ) = Eh

[
f̄Sm(hm, θm)ÎSm(h,Θ)

]
; (26)

ÎSm(h,Θ) := 1{f̃S
m(hm,θm)≥f̃S

j (hj ,θj) for all j 6=m}1{f̃S
m(hm,θm)≥0},

with the initializations (Θ(t0), Θ̄(t0)) = (Θ0,Θ0).

However in contrast to the previous section, the question of uniqueness of the attractor for

the new ODE system remains open, let alone global asymptotic stability. Step 1 of the previous

section, but without the time limiting argument, holds for any (single point) attractor of the

new ODE system. Similarly Step 2 and further remarks on the properties of the attractors also

hold for the new ODE system. The analysis would be complete if it can be shown that under

truthful strategies, i.e., S = I , the new ODE system has a global asymptotically stable, and
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hence unique, attractor. This would then show that the time limits of the utilities are indeed

given by the components of the attractor. While numerical results (given in the next subsection)

support this on the examples studied, a proof remains elusive.

B. Examples

We start this section with an example that reinforces our observation that ODE attractors are

good approximations for time limits of almost all trajectories, under the true utility adaptations

(13) or (24). In Figure 1, we consider an example with two statistically identical and cooperative

mobiles. Let fZ(z;σ2) = ze−z
2/2σ2

, z ≥ 0 represent the density of the Rayleigh distributed

random variable Z(σ2). The channel gains hm of the two mobiles are conditional Rayleigh

distributed, i.e., for both m = 1, 2, we have

hm ∼ fZ(z; 3)1{z≤2}dz/Prob(Z(3) ≤ 2).

The utilities as before are the achievable rates f(h) = log(1 + h2). We plot two independent

trajectories (sample paths) of the two mobiles, {θ̄m,k}m=1,2 k≥1 initialized away from their

cooperative shares; the initial values are set to θ0
1 = θ0

2 = 0.456. We set ∆ = 100. Figure 1(a)

is for the policy β̂∗ (22) while Figure 1(b) is for the policy β∗ (9). All the trajectories converge

close to the attractors of the ODE thus corroborating theory.

We present another example in Figure 2 to illustrate the robustness and comparison of both

the BS policies. Here too we consider two statistically identical mobiles, but now with

hm ∼ fZ(z; 1)1{z≤2}dz/Prob(Z(1) ≤ 2).

The first mobile can be noncooperative with s1(h) = h + (2 − h)δ. We consider the policy β̂∗

in Figures 2(a), (c) and the policy β∗ in Figures 2(b), (d). In Figures (a)-(b) we plot trajectories

corresponding to cooperative behavior (δ = 0) while the curves in Figures (c)-(d) are for the

case when the first mobile is noncooperative with δ = 0.95 and with ∆ = 100.

All the cooperative curves (Figures 2 (a)-(b)) converge towards the cooperative share (which

is the same for both the mobiles because they are statistically identical). The true utility of the
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Fig. 1. Time limits. For both policies β̂∗ and β∗, the ODE attractors (cooperative shares in this case) approximate the time limits
of the adaptations (13) and (24). This is demonstrated via two independent set of trajectories (thick lines form one set while
the thin ones form the other set). Each set has two trajectories corresponding to the true utility adaptations {θ̄m,k}k,m = 1, 2
of the two mobiles. The cooperative shares for both mobiles are equal and the dotted straight lines in both the figures represent
the common cooperative share.

noncooperative mobile (mobile 1) under both the BS policies converges to a value less than the

cooperative share; this confirming the theory of the previous sections. However, there are two

important differences in the behavior of the two policies under noncooperation. 1) The utility of

the noncooperative mobile (thin dash lines) under policy β̂∗ (which is close to 0.41 in Figure

2(c)) is lesser than that under policy β∗ (which is close to 0.45 in Figure 2(d)). Of course, both

are less than the cooperative shares. 2) The utility of the cooperative mobile (that of mobile

2, given by thick lines) under policy β̂∗ is closer to its cooperative share, but is close to zero

under the policy β∗. These two observations go well with the extra robustification built into the

strategy β̂∗ via the decisions in (23).

We conclude this section with another example in Figure 3 to illustrate the further properties

of both policies. The settings of this figure remain same as that in Figure 1, except that we now

use the Rayleigh random variable Z(0.01) for channel amplitude gain. We see that the more

a mobile deviates from cooperative behavior, the more it loses. This is clearly visible under

both policies, as the limit of the true utility of the noncooperative mobile deviates most from

its cooperative share when δ = 0.95. Further, the policy β̂∗ penalizes the deviant mobile more

than the policy β∗, and hence is more robust.

Some final remarks on the simulation results are the following. Simulation results showed that
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is given in figures (c)-(d). The cooperative shares for both the mobiles are equal and the dotted straight lines in all the figures
represent the common cooperative share.
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Fig. 3. More the noncooperation, the more the loss. For both policies β̂∗ and β∗, the asymptotic true utility is maximum and
equal to cooperative share when the mobile is cooperative (δ = 0). The utility reduces as the level of noncooperation increases
(i.e., as δ increases).
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the reported rate trajectories {θm,k} (see 9) and (22) tend to the cooperative shares θ0
m much

faster than the true rate trajectories. They however are not relevant and are not presented. In

Figure 1, the step sizes are larger than those in the other two figures, and hence the curves in

the latter two figures are smoother. Convergence, on the other hand, is faster in Figure 1 as one

would expect.

VI. EXISTENCE OF OTHER NASH EQUILIBRIA

Thus far we obtained two types of NE. Under the first type (babbling equilibrium of Theorem

1) BS schedules using only the signals from cooperative mobiles and channel statistics of

noncooperative mobiles. The BS utility is minimum among all the possible equilibrium utilities

and equals U∗cop given in (4). The second type (equilibria of Sections IV and V) constitutes

truth revealing equilibria (TRE). BS achieved these equilibria by using ITR (incentives for truth

revealing) policies. When in a TRE, the BS achieves the maximum possible equilibrium utility

U∗max given in (7).

Clearly U∗cop ≤ U∗max. This raises a natural question on the existence of other NE with BS’s

equilibrium utility taking values in the interval [U∗cop, U
∗
max]. In this section we further study

“predictive” policies, β(.|s, pS), of Section IV-B and prove the existence of other NE (in Theorem

4).

A. Motivating Example continued

We first return to the motivating example of Section II to describe the main ideas.

Optimal policy for mobile 2 : The mobile uses the policy µ̄2 described as follows. It declares

to be in state h1
2 yielding utility 10 when in the same state, i.e., µ̄2(h1

2 | h1
2) = 1 and in addition

declares with probability ρ to be in h1
2 whenever in state h2

2, i.e., µ̄2(h1
2|h2

2) = ρ = 1− µ̄2(h2
2|h2

2).

Finally µ̄2(h3
2|h3

2) = 1. Choose ρ such that the best response of BS to this policy is to allocate

to mobile 2 whenever state h1
2 is declared. For this to hold, ρ should be such that the utility of

the BS is at least U∗cop = 8 obtained by always allocating to the cooperative mobile 1. For such
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ρ, the utility of BS and mobile 2 are given by

UBS =
1

4
· 10 + ρ · 1

2
· 2 + (1− ρ) · 1

2
· 8 +

1

4
· 8

= 8.5− 3ρ

and

U2 = 2 · 1

2
· ρ+ 10 · 1

4
.

The ρ that maximizes the utility of mobile 2 and yet keeps the BS utility above U∗cop (i.e., which

satisfies constraint 8.5−3ρ ≥ 8) is ρ = 1
6
. The probability that mobile 2 declares that its channel

is in state h1
2 is pS2(h

1
2) = 1

4
+ 1

2
· 1

6
= 7

24
. Thus with the above policy µ̄2 for mobile 2, BS’s

best response among the simple policies is to select mobile 2 whenever it declares a h1
2. Denote

it by β̄. The couple (µ̄2, β̄) is not an equilibrium because mobile 2’s best response against β̄ is

simply to declare h1
2 always. Thus the BS should allocate channel to mobile 2 upon hearing the

signal h1
2, only if it is guaranteed a utility of 8 or more. This can be done in a way similar to that

in Section IV-B by allocating the channel to mobile 2 after further verifying that the mobile 2

declares to be in h1
2 for not more than 7

24
of time. More precisely, the BS chooses the following

“signal predictive” policy2 β̂ : whenever mobile 2 declares h1
2 allocate channel to mobile 2 with

probability q(pS2) where

q(pS2) := min

{
1,
pS2(h

1
2)

7/24

}
.

One can verify that (µ̄2, β̂) is an equilibrium that guarantees a rate of 8/3 (resp. 16/3) to mobile

2 (resp. 1) and a rate of 8 to the BS.

Infinitely many equilibria in feedback policies : In the sequel, we show that there exists a

continuum of NE where the BS gets a utility greater than 8. We use the same type of policy µ̄2

for mobile 2, but we choose ρ < 1/6. Then the probability that mobile 2 declares that it is in

state 10 is p̄S2(h
1
2) = 1/4+ρ/2. Consider the BS policy β̃ : BS selects mobile 2 with probability

2This policy knows a priori the signal probabilities of mobile 2 and uses it for decision making.
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q whenever the mobile declares that it in state h1
2 where

q = min
(

1,
pS2(h

1
2)

1/4 + ρ/2

)
.

Thus the utilities of BS and mobile 2 are 8 + (1/2)q(1− 6ρ) and (10/4)q + qρ, respectively. It

is easy to show that the couple (µ̄2, β̃) is a NE for each ρ ∈ [0, 1/6]. In Figure 4, we plot the

utility of BS, mobile 1 and mobile 2 at equilibrium as function of ρ.
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Fig. 4. Infinitely many NE. The utility of the BS, mobile 1, and mobile 2 at equilibrium as function of ρ.

B. Main result : A generalization

In this subsection we generalize the example of the previous subsection to an arbitrary number

of players and states. We assume that signal statistics of all the mobiles pS is known to the BS.

Hence the BS’s policy is given by β(.|s, pS) as in Section IV-B.

Let Eµm [f(hm)|sm] represent the conditional expectation of the mobile’s utility conditioned

on the signal sm when mobile m uses strategy µm, i.e., for every sm ∈ Hm

Eµm [f(hm) | sm] :=
∑

hm∈Hm

pHm(hm)µm(sm | hm)∑
h̃m∈Hm

pHm(h̃m)µm(sm|h̃m)
f(hm).

With Es representing the expectation w.r.t. pS, the payoff for mobile m is

Um(µm, β) = Es,h [β(m|s, pS)f(hm)] = Es [β(m|s, pS)Eµm [f(hm)|sm]] . (27)
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Given a signal probability M -tuple pS, let µ∗ (or more appropriately µ∗(pS)) represent what

we shall call best mobile strategy that satisfies the condition

f(hi) ≥ f(hj) =⇒ Eµ∗m [f(hm)|sm = hi] ≥ Eµ∗m [f(hm)|sm = hj].

for every hi, hj ∈ Hm and for all m ≤M

Construction of µ∗ : Consider mobile 1 without loss of generality. LetH1 = {h1, h2, · · · , hN1}

and assume f(h1) > f(h2) > · · · > f(hN1). In the following few lines we omit subscript 1

to improve readability, i.e., h1, s1 etc. are represented by h, s, etc. Strategy µ∗1 is defined in a

iterative way as follows.

We first define {µ∗1(s = h1|h);h ∈ H1}, i.e., the conditional probability that mobile 1 declares

that it is in its best state h1 when it is actually in state h ∈ H1. Find the minimum index j∗1

such that the probability that the channel is in one of the top j∗1 states is greater than or equal

to pS1(h
1), i.e., let,

j∗1 := arg min
j

{
j∑
i=1

pH1(h
i) ≥ pS1(h

1)

}
.

Declare state h1 whenever the true channel is one among the top j∗1 − 1 states, i.e., for all h

with f(h) > f(hj
∗
1 ), set µ∗1(s = h1|h) := 1. When h = hj

∗
1 , signal the best state h1 for a fraction

of time, where the fraction is chosen so that the overall probability of the signal s = h1 equals

pS1(h
1), i.e.,

µ∗1(s = h1|h = hj
∗
1 ) =

pS1(h
1)−

∑
l<j∗1

pH1(h
l)

pH1(h
j∗1 )

.

Set µ∗1(s = h1|hi) = 0 whenever i > j∗1 . Now we define {µ∗1(s = h2|h);h ∈ H1}. Let

j∗2 := arg min
j

{
j∑
l=1

pH1(h
l)− pS1(h

1) ≥ pS1(h
2)

}
.
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The definitions below are for j∗2 > j∗1 ; if not, one can appropriately modify the definitions. Define

µ∗1(s = h2 | hj∗1 ) = 1− µ∗1(s = h1|hj∗1 ),

µ∗1(s = h2 | hi) = 1 whenever j∗1 < i < j∗2 ,

µ∗1(s = h2 | hj∗2 ) =
pS1(h

1) + pS1(h
2)−

∑
l<j∗2

pH1(h
l)

pH1(h
j∗2 )

and

µ∗1(s = h2 | h) = 0 for the remaining h.

With the above,

Eµ∗1 [f(h1)|s = h1] ≥ f(hj
∗
1 ) ≥ Eµ∗1 [f(h1)|s = h2].

Continue in the same way to obtain

Eµ∗1 [f(h1)|s = h1] ≥ Eµ∗1 [f(h1)|s = h2] ≥ · · · ≥ Eµ∗1 [f(h1)|s = hN1 ]. (28)

For m > M1, we set µ∗(hm | sm) = 1{hm=sm}. These strategies are called ‘best’ because

mobile m gets the best payoff for masquerading a signal probability pSm . More precisely, if

mobile 1 uses any other strategy µ1 that results in the same signal probability pS1 of pS while

all other mobiles use their ‘best’ strategy, and the BS uses the policy

β(m|s, pS) := 1{m=arg maxm E[f(hm)|sm]},

then by Lemma 2 given below, we have U1(µ∗1, β) ≥ U1(µ1, β).

Lemma 2: Fix signal probabilities at p̄S, consider the best mobile policies µ̄∗ = {µ̄∗m}

associated with p̄S, and the BS policy β̄∗ given by (30) and (31) below. Amongst all strategies

that preserve the signaling probabilities, mobile 1’s best response to µ̄∗−1 and β̄∗ is µ̄∗1.

Proof: See Appendix D.

With the help of the best strategies we obtain the existence of other NE.

Theorem 4: For every signal probability vector p̄S with the associated best strategies µ̄∗, we

have

U∗cop ≤ Eh,s [f (hm∗)] (29)
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with

m∗ := arg max
1≤m≤M

Eµ̄∗m [f(hm)|sm].

The ordered pair
(
µ̄∗, β̄∗

)
is a NE at which the BS obtains the right-hand side of (29) as its

utility, where the feedback policy β̄∗ of the BS is given by the following.

Let µ = (µ1, · · · , µM1) be any signaling policy of the mobiles and let pS = {pSm ;m ≤ M1}

be the signaling probabilities resulting from µ. Define

qm(pS, sm) := min

{
1,
p̄Sm(sm)

pSm(sm)

}
for all sm ∈ Hm, and for all m ≤ M1. For m > M1 define qm(·, ·) = 1. For any given signal

vector s, define

m∗1(s) := arg max
m≤M

Eµ̄∗m [f(hm)|sm],

the best among all the mobiles, and

m∗2(s) := arg max
m>M1

f(sm),

the best among the cooperative mobiles. Then define β̄∗(m|s, pS) = 0 for all m 6= m∗1,m
∗
2, and

finally

β̄∗(m∗1|s, pS) = qm∗1
(
pS, sm∗1

)
, (30)

β̄∗(m∗2|s, pS) =
(
1− qm∗1

(
pS, sm∗1

))
. (31)

Proof: If all the noncooperative mobiles are fixed with signaling policy µ̄∗ then the signaling

probabilities will be given by p̄S and we have, qm(p̄S, sm) = 1 for all sm ∈ Hm and for all

m ≤ M. Hence β̄∗(m|s, p̄S) = 1{m=m∗1(s)}. From (27), the total payoff of the BS with signal

probabilities fixed at p̄S, when it uses some arbitrary channel allocation say β(.|s), is given by

UBS = Es

[
M∑
m=1

β(m|s)Eµ̄∗m [f(hm)|sm]

]
.

Clearly, the BS achieves the maximum with β̄∗.
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Assume now that the base station uses the policy β̄∗. Without loss of generality assume

mobile 1 unilaterally deviates from strategy µ̄∗1 and signals instead using µ1 such that the signal

probabilities remain the same. Then by the Lemma 2 mobile 1 gets lesser utility than before. If

now µ1 is such that even the signal probabilities are different from p̄S1 then the payoff of the

mobile 1 is further reduced as is seen from (30) and (31), as now it is possible that q1(µ1, s1) < 1

for some values (note that (1−q1(µ1, s1)) fraction of the time channel is allocated to a cooperative

mobile) and the remaining steps are as in the proof of Lemma 2 given in the Appendix D.

Remarks : The above theorem establishes the existence of NE, other than TRE, at which a

noncooperative mobile’s utility can be greater than that at a TRE while the utility of the BS

though less than that at a TRE, is greater than U∗cop under noncooperation.

CONCLUDING REMARKS

We studied centralized downlink transmissions in a cellular network in the presence of nonco-

operative mobiles. We modeled this as a signaling game with several players serving as leaders

that send signals and with the BS serving as a follower. In the absence of extra intelligence,

only the babbling equilibrium is obtained where both the BS and the noncooperative players

make no use of the signaling opportunities. We then proposed three approaches to obtain an

efficient equilibrium (TRE), all of which required extra intelligence from the BS but resulted in

the mobiles signaling truthfully. We further showed the existence of other inefficient equilibria

at which a noncooperative mobile achieves a better utility than at a TRE; the BS achieves better

utility than that at a babbling equilibrium but a lower value than that at a TRE.

We see several avenues open for further research on scheduling under noncooperation. We

recall that we assumed that a player is either cooperative or not. What if the player can choose?

Preliminary research show that there is no clear answer: it depends on the channel statistics of

the player as well as that of others. Another related question is, what if the BS does not know

whether a mobile cooperates or not?

The objective of throughput maximization used by base station favor a few strong users

with “relatively best” channel, thereby resulting in unfair resource allocation. In [17], Kushner
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and Whiting studied a stochastic approximation based algorithm that achieves generalized alpha

fairness. In [13], we show that this algorithm is not robust to noncooperation. We further proposed

a modification of the corrective SA algorithm to make it robust once again to noncooperation

and yet be fair to all users.

APPENDIX A

PROOF OF THEOREM 1

By definition, at any PBE, for any m ≤M1, and for any hm ∈ Hm,

µ∗m(· | hm) ∈ arg max
α∈P(Hm)

∑
sm∈Hm

α(sm)

∑
s−m

β∗(m | s)
∑
h−m

pH−m(h−m)µ∗−m(s−m|h−m)f(hm)

 .
Since f(hm) is independent of sm,h−m, s−m (true for every m),

µ∗m(· | hm) ∈ arg max
α∈P(Hm)

∑
sm∈Hm

α(sm)

∑
s−m

β∗(m | s)
∑
h−m

pH−m(h−m)µ∗−m(s−m|h−m)

 , (32)

which is independent of hm. Thus µ∗m(· | hm) = µ∗m(·) for some probability distribution µ∗m on

Hm, for all m ≤M1, hm, i.e., the optimal signaling policy does not depend upon hm. However

µ∗m(·) can depend on m as pHm need not be identical across mobiles.

With the above, for any 1 ≤ m ≤M1 and for any sm ∈ Hm with µ∗m(sm) 6= 0, Definition 2.2

yields

π∗m(hm | sm) =
pHm(hm)µ∗m(sm)∑
h′ pHm(h′)µ∗m(sm)

= pHm(hm).

When µ∗m(sm) = 0, the denominator is zero, but we may set π∗m(hm | sm) = pHm(hm) for such

sm. This implies that in equilibrium the posterior beliefs cannot be improved.

For any s = (s1, · · · , sM), the first optimization in the definition of PBE becomes

β∗(· | s) ∈ arg max
γ∈P([M ])

 M1∑
j=1

∑
hj

pHj
(hj)f(hj)γ(j) +

∑
j>M1

f(sj)γ(j)

 .
The above optimization is independent of {sm; m ≤M1} and hence the optimization reduces
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to maximizing
M1∑
j=1

γ(j)E [f(hj)] +
∑
j>M1

γ(j)f(sj),

justifying the definition of β∗(· | ·) in the statement of the theorem.

Since β∗(· | s) = β∗(·|sM1+1, · · · , sM) for all s, the optimization in (32) can be rewritten as

µ∗m(· | hm) ∈ arg max
α∈P(Hm)

∑
sm∈Hm

α(sm)

 ∑
sM1+1,··· ,sM

β∗(m | sM1+1, · · · , sM)
∏
l>M1

pHl
(sl)


= arg max

α∈P(Hm)

 ∑
sM1+1,··· ,sM

β∗(m | sM1+1, · · · , sM)
∏
l>M1

pHl
(sl)

 ,
where the last inequality follows because the term within square brackets does not depend on sm

and
∑

sm
α(sm) = 1. The objective function is thus a constant over the variable of optimization

α, and therefore µ∗m(· | hm) can be any fixed µ∗m ∈ P(Hm). This concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

Let µ∗m and π∗m be as specified in the theorem statement for every m. Then,

β∗(·|s) ∈ arg max
γ

[
M∑
k=1

f(sk)γ(k)

]
for all s.

Thus β∗(m|s) is any probability measure with support set A∗(s) as specified in the theorem

statement.

Fix m, hm. With β∗, µ∗−m as given in the theorem statement, we have

µ∗m(· | hm) ∈ arg max
α∈P(Hm)

∑
sm∈Hm

α(sm)

[∑
s−m

pH−m(s−m)β∗(m|s)Um(hm, sm,m)

]
. (33)
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By the choice of {cm} and ∆ as in (6), for any α, we have

∑
sm

α(sm)

[∑
s−m

pH−m(s−m)β∗(m|s)Um(hm, sm,m)

]

=
∑

{sm:(sm−hm)2>cm}

α(sm)

[∑
s−m

pH−m(s−m)β∗(m|s)Um(hm, sm,m)

]
∑

{sm:(sm−hm)2≤cm}

α(sm)

[∑
s−m

pH−m(s−m)β∗(m|s)Um(hm, sm,m)

]

≤ α(hm)

[∑
s−m

pH−m(s−m)β∗(m|(hm, s−m))Um(hm, hm,m)

]

≤

[∑
s−m

pH−m(s−m)β∗(m|(hm, s−m))Um(hm, hm,m)

]
.

Hence the maximum in (33) is achieved by the choice of µ∗m given in theorem statement. This

completes the proof.

APPENDIX C

PROOFS OF RESULTS ON STOCHASTIC APPROXIMATION BASED POLICIES

A. Proof of Lemma 1

Define Aj(hm) := {hj : f(sm(hm)) ≥ f(sj(hj))}. After substitution of (14) and (15) in (17),

and after using the independence of hm across mobiles, we get

HS
m(Θ) = Eh

[
f̃Sm(hm, θm)ISm(h, θm)

]
= Eh

[
f̃Sm(hm, θm)1{f̃S

m(hm,θm)≥0}

∏
j 6=m

Pr{Aj(hm)}

]
. (34)

Similarly, starting from (18), we get

H̄S
m(Θ) = Eh

[
f̄Sm(hm, θm)1{f̃S

m(hm,θm)≥0}

∏
j 6=m

Pr{Aj(hm)}

]
.

The definitions of f̃Sm and f̄Sm in (10) and (16), respectively, indicate that these are continuous

and piecewise linear functions of θm. The maximum magnitude of the slope is ∆. It follows that
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the terms that depend on θm inside the expectations above have the following property:

|f̃Sm(hm, θm)1{f̃S
m(hm,θm)≥0} − f̃

S
m(hm, θ

′
m)1{f̃S

m(hm,θ′m)≥0}| ≤ ∆|θm − θ′m|

|f̄Sm(hm, θm)1{f̃S
m(hm,θm)≥0} − f̄

S
m(hm, θ

′
m)1{f̃S

m(hm,θ′m)≥0}| ≤ ∆|θm − θ′m|.

Since this is true for each m, the global Lipschitz property of HS and H̄S is an immediate

consequence.

Observe next that f̃Sm(hm, θm)1{f̃S
m(hm,θm)≥0} are almost surely differentiable, thanks to as-

sumption A.2. Moreover, assumption A.3. is that the distribution of the induced random variable

f(s(hm)) has bounded density. These two observations and the dominated convergence theorem

imply that the expectation in the right-hand side of (34) is differentiable. Thus HS is differen-

tiable.

We next address the global exponential stability property of the solution to the ODE system.

Fix S. It is easy to see that for any m, the function HS
m(·) depends on Θ only through

θm. Furthermore, it is non-increasing in θm because each of the functions f̃m(hm, θm) and

1{f̃m(hm,θm)≥0} are non-increasing in θm for each hm. Consequently,

(
HS
m(θm)−HS

m(θ′m)
)

(θm − θ′m) ≤ 0

for any θm and θ′m, and therefore

〈
HS(Θ)−HS(Θ′), Θ−Θ′

〉
≤ 0 (35)

for any Θ and Θ′.

We claim that the function HS is bounded. To see this, consider (17). From the definition of

ISm(h, θm) in (15), we have that f̃Sm(hm, θm)ISm(h, θm) is bounded below by 0. We now show an

upper bound. The cooperative share θ0
m is easily seen to be bounded between 0 and the bound on

f . Furthermore, the iteration in (9) is such that the iterates are always nonnegative, and therefore

θm may be restricted to nonnegative values. It follows that f̃Sm(hm, θm) in (14) is upper bounded

by twice the bound on f . The same bounds hold for its expectation, yielding that HS is bounded.
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Since HS is continuous and bounded, the Brouwer fixed point theorem3 yields that HS has a

fixed point Θ∗ in the positive Orthant. This may of course depend on the strategy profile S.

Define the error e(t) = Θ(t) − Θ∗ (with e = [e1, · · · , eM ]T ). Then, we can write
�
e= g(e),

where

g(e) := HS(e + Θ∗)− (e + Θ∗) = HS(e + Θ∗)−HS(Θ∗)− e.

From (35), we get

〈
�
e, e
〉

=
〈
HS(e + Θ∗)−HS(Θ∗), e

〉
− |e|2 ≤ −|e|2.

A standard argument (see [23, pp. 169-170]) then shows that |e(t)| ≤ |e(0)|e−t for all t ≥ 0,

i.e.,

|Θ(t)−Θ∗| ≤ |Θ(0)−Θ∗|e−t for all t ≥ 0. (36)

We shall have occasion to use this argument a few times in the sequel. It follows from (36) that

Θ∗ is the unique fixed point for HS , and is a global exponentially stable attractor for the ODE

(17).

Let us turn to the actual rate trajectory Θ̄(t). Define the error for the actual rate trajectory as

ēm(t) := θ̄m(t)− H̄S
m(Θ∗) for all m, and the actual rate error vector as ē = [ē1, · · · , ēM ]T . Then

�
ē (t) = H̄S(Θ(t))− H̄S(Θ∗)− ē(t).

Using the Cauchy-Schwarz inequality, the global Lipschitz property of H̄S , with say the Lipschitz

constant L, and the upper bound (36), we obtain〈
�
ē (t), ē(t)

〉
=

〈
H̄S(Θ(t))− H̄S(Θ∗)− ē(t), ē(t)

〉
≤ L |Θ(t)−Θ∗| |ē(t)| − |ē(t)|2

≤ L |Θ(0)−Θ∗| e−t|ē(t)| − |ē(t)|2.

3Brouwer fixed point theorem: Every continuous function f from a closed ball of a Euclidean space to itself has a fixed point,
i.e., an x∗ that satisfies x∗ = f(x∗).
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By the standard argument in [23, pp. 169-170], we have |ē(t)| ≤ k̄(t), where k̄(t) is the solution

of the ODE
�

k̄ (t) = L |Θ(0)−Θ∗| e−t − k̄(t)

with the initial condition k̄(0) = |ē(0)|. It is easy to verify that the solution to the above ODE

is

k̄(t) = e−t
(
k̄(0) + L |Θ(0)−Θ∗| t

)
.

Thus

|Θ̄(t)− H̄S(Θ∗)| ≤ e−t
(
|Θ̄(0)− H̄S(Θ∗)|+ L|Θ(0)−Θ∗|t

)
,

and hence H̄S(Θ∗) is the unique global asymptotically stable attractor of the ODE (18). This

concludes the proof. .

B. The ODE Approximation Theorem

Benveniste et al. obtain the ODE approximation [8, Th.9, p.232] for the system

Ψk+1 = Ψk + µk Z(Ψk, Gk+1). (37)

We reproduce the result here in a form suitable for use in this paper.

Let Ψ take values in an open subset D of Rm. We make the following assumptions:

B.0 {µk} is a decreasing sequence with
∑

k µk =∞ and
∑

k µ
1+δ
k <∞ for some δ > 0.

B.1 There exists a family {Pψ} of transition probabilities Pψ(g,A) such that, for any Borel set

A,

P [Gn+1 ∈ A|Fn] = PΨn(Gn,A)

where Fk := σ(Ψ0, G0, G1, · · · , Gk). Thus {Gk,Ψk} forms a Markov chain.

B.2 For any compact Q ⊂ D, there exist C1, q1 such that |Z(ψ, g)| ≤ C1(1 + |g|q1) uniformly

for all ψ ∈ Q.

B.3 There exists a function z on D, and for each ψ ∈ D a function νψ(·) such that the following
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hold:

a) z is locally Lipschitz on D.

b) (I − Pψ)νψ(g) = Z(ψ, g)− z(ψ) where Pψνψ(g) = E[νψ(G1)|G0 = g,Ψ0 = ψ].

c) For all compact subsets Q of D, there exist constants C3, C4, q3, q4 and λ ∈ [0.5, 1],

such that for all ψ, ψ′ ∈ Q

(i) |νψ(g)| ≤ C3(1 + |g|q3),

(ii) |Pψνψ(g)− Pψ′νψ′ (g)| ≤ C4 (1 + |g|q4)
∣∣(ψ)− (ψ

′
)
∣∣λ.

B.4 For any compact set Q in D and for any q > 0, there exists a µq(Q) <∞, such that for all

n, g, and ψ ∈ Rd (with Eg,ψ representing the expectation taken with (G0,Ψ0) = (g, ψ)),

Eg,ψ

{
I{Ψk∈Q;∀k≤n} (1 + |Gn+1|q)

}
≤ µq(Q) (1 + |g|q) .

Define t(r) :=
∑r

k=0 µk and m(n, T ) := arg maxr≥n{t(r) − t(n) ≤ T}. Let Ψ(t, t0, ψ)

represent a solution of
�

Ψ (t) = z(Ψ(t)),

with initial condition Ψ(t0) = ψ. Let Q1 and Q2 be any two compact subsets, such that Q1 ⊂ Q2

and such that we can choose a T > 0 and a δ0 > 0 satisfying

d (Ψ(t, 0, ψ), Qc
2) ≥ δ0, (38)

for all ψ ∈ Q1 and all t ∈ [0, T ]. Let Pn:g,ψ denote the distribution of {(Gn+k,Ψn+k)}k≥0 with

Gn = g,Ψn = ψ. We then have the following theorem:

Theorem 5: Assume B.0–B.4. Pick Q1, Q2, T and δ0 satisfying (38). Then for all δ ≤ δ0,

for any (ψ, g) and when (Gn,Ψn) is initialized with (g, ψ),

Pn:g,ψ

{
sup

{n≤r≤m(n,T )}
|Ψr −Ψ (t(r), t(n), ψ)| ≥ δ

}
→ 0 as n→∞,

uniformly for all ψ ∈ Q1. �
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C. Proof of Theorem 3

Results of Benveniste et al. ([8]) (see Appendix C-B) are used in this proof.

Let Gk := hk = (h1,k, h2,k, · · · , hM,k). The equations (9) and (13) can be rewritten in the

format of Benveniste et al. ([8]; see Appendix C-B) as follows. Let us define

Wm(Gk+1,Θk) =
(
f̃m,k+1Im,k+1 − θm,k

)
,

W̄m(Gk+1,Θk, Θ̄k) =
(
f̄m,k+1Im,k+1 − θ̄m,k

)
.

Then

Θk+1 = Θk + εkW (Gk+1,Θk) (39)

Θ̄k+1 = Θ̄k + ε̄kW̄ (Gk+1,Θk, Θ̄k). (40)

We obtain the proof using Theorem 5 of Appendix C-B and towards this, we first verify the

assumptions B.0 - B.4 of Appendix C-B. Let, Ψ := (Θ, Θ̄) and Z = (W, W̄ ). By assumption A.1,

Gk is a IID sequence and hence PΨ(g, .) = P (.), with P the probability distribution of G1 for

all Ψ and all initial conditions g. Thus assumption B.1 is satisfied. By boundedness of function

f , variables f̃ , f̄ are also bounded and hence the assumption B.2 is satisfied. For assumption

B.3, we define the following four quantities, which readily satisfy assumption B.3(b):

w(Θ) := Eh[W (G,Θ)],

w̄(Θ, Θ̄) := Eh[W̄ (G,Θ, Θ̄)] = H̄S(Θ)− Θ̄,

νΨ(G) = νΘ(G) := W (G,Θ)− w(Θ),

ν̄Ψ(G) = ν̄Θ,Θ̄(G) = W̄ (G,Θ, Θ̄)− w̄(Θ, Θ̄).

By Lemma 1, the functions z := (w, w̄) satisfy assumption B.3(a). Assumption B.3(c).(i) is

satisfied by boundedness while the assumption B.3(c).(ii) is satisfied because Pψνψ = 0 and

Pψν̄ψ = 0. Assumption B.4 is satisfied again by boundedness.

By Lemma 1, the two ODE system have bounded solution for any finite time. Hence, for any
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compact set Q1 and any finite T , we can find a compact Q2 that satisfies assumption (38) of

Appendix C-B for all t ≤ T and all Ψ ∈ Q1. Thus the theorem follows from Theorem 5 of

Appendix C-B.

D. The Modified SA Policy Analysis

The following Lemma establishes the properties needed to show that the ODE system (25) -

(26) has a unique solution.

Lemma 3: The function ĤS(·) in (25) is continuously differentiable, and the function ˆ̄HS(·)

in (26) is locally Lipschitz. Consequently, the ODE system (25) - (26) has a unique solution for

any finite time. Furthermore, the solution is bounded uniformly for any finite time.

Proof: The initial part of the proof proceeds as in proof of Lemma 1 in Appendix C-A,

with some modifications. Define the set

Aj(hm,Θ) :=
{
hj : f(sm(hm))− f(sj(hj)) ≥ ∆(θm − θj − θ0

m + θ0
j )
}
.

By independence of hm across the mobiles,

ĤS
m(Θ) = Eh

[
f̃Sm(hm, θm)ÎSm(h,Θ)

]
= Ehm

[
f̃Sm(hm, θm)1{f̃S

m(hm,θm)≥0}Πj 6=m Pr(Aj(hm,Θ))
]
.

The first part of the lemma follows from the bounded convergence theorem if we show that

the functions {Pr(Aj(hm,Θ))}j 6=m and

f̃Sm(hm, θm)1{f̃S
m(hm,θm)≥0}

are, almost surely, continuously differentiable (with respect to Θ) with uniformly bounded

derivatives, for almost all hm. This is immediately evident for f̃Sm1{f̃S
m≥0} by assumptions A.2

- A.3. The same holds for {Pr(Aj(hm,Θ))}j 6=m by assumptions A.2 - A.3 because

∂ Pr(Aj(hm,Θ))

∂θl
= (−1)δ(l−m)gsj

(
f−1

(
f(sm(hm))−∆

(
θm − θj − θ0

m + θ0
j

)))
·f−1′ (f(sm(hm))−∆

(
θm − θj − θ0

m + θ0
j

))
∆ (41)
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for l = m, j, where gsj
is the (bounded) density of signal sj(hj). In the above the continuous

derivative f−1′ will also be uniformly bounded for all Θ coming from a compact set, because of

the boundedness of f . It is easy to see that one can achieve the result instead using assumption

A.4 instead of A.2 - A.3. Since

f̄Sm(hm, θm)− f̄Sm(hm, θ
′
m) ≤ ∆ |θm − θ′m| ,

with Cf representing the upper bound on f , we have

ˆ̄HS
m(Θ)− ˆ̄HS

m(Θ′)

= Eh

[(
f̄Sm(hm, θm)− f̄Sm(hm, θ

′
m)
)
ÎSm(h,Θ)

]
+ Eh

[
f̄Sm(hm, θ

′
m)
(
ÎSm(h,Θ)− ÎSm(h,Θ′)

)]
≤ ∆|θm − θ′m|Eh

[
ÎSm(h,Θ)

]
+ CfEh

∣∣∣ÎSm(h,Θ)− ÎSm(h,Θ′)
∣∣∣ .

Let D be any compact set. Let CgS
represent the common upper bound on density gsm for all m,

and let Cf−1(D) represent the upper bound (which is independent of h) on f−1′ for all Θ ∈ D.

From (41), it follows that there is a constant C(M) such that

Eh

∣∣∣ÎSm(h,Θ)− ÎSm(h,Θ′)
∣∣∣ ≤ C(M)CgS

Cf−1(D)∆ |Θ−Θ′|

and hence ˆ̄HS(Θ) is locally Lipschitz. From standard results in ODE systems [23, pp. 169-170],

it follows that the system of ODEs has a unique solution for any finite time. Furthermore, the

solution is bounded for any finite time. Indeed, one has〈
�

Θ (t),Θ

〉
≤ Cf |Θ| − |Θ|2,〈

�

Θ̄ (t), Θ̄

〉
≤ Cf |Θ̄| − |Θ̄|2,

with Cf being the upper bound on function f , and hence,

|Θ(t)| ≤ |Θ0|e−t + Cf ,

|Θ̄(t)| ≤ |Θ̄0|e−t + Cf .
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This concludes the proof of the lemma.

APPENDIX D

PROOF OF LEMMA 2

Under the given hypothesis, the BS’s policy from (30) and (31) would be 1{m=m∗1(s)}. From

(27), the payoff for mobile 1 under policy µ1 is

U1(µ1, β̄
∗) = Es

[
1{m=m∗1(s)}Eµ1 [f(h1) | s1]

]
.

Define the probability measure

p̃(u) := Pr

(
s−1 : u = max

1<m≤M
Eµ̄∗m [f(hm) | sm]

)
for all possible u resulting from P̄s and {µ̄∗m;m > 1}. Also define

Ē(s) := Eµ̄∗1 [f(h1)|s1 = s] =
∑
h̃∈H1

µ̄∗1(s|h̃)pH1(h̃)

p̄S1(s)
f(h̃).

By independence, we are interested in the constrained optimization problem:

max
{µ1}

∑
ũ

∑
s∈H1

p̃(ũ)1{Ē(s)>ũ}

∑
h∈H1

pH1(h)µ1(s|h)f(h)

subject to
∑
s∈H1

µ1(s|h) = 1 for all h ∈ H1,∑
h∈H1

pH1(h)µ1(s|h) = p̄S1(s) for all s ∈ H1.

If H1 = {h1, h2, · · · , hN1} with f(h1) ≥ f(h2) · · · ≥ f(hN1), then clearly by definition of the

best strategies µ̄∗, we have

Ē(h1) ≥ Ē(h2) ≥ · · · ≥ Ē(hN1). (42)
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Define r(h, s) := pH1(h)µ1(s|h). One can rewrite the objective function in the above optimization

problem as

∑
s

∑
h

r(h, s)f(h)

(∑
ũ

1{Ē(s)>ũ}p̃(ũ)

)
. (43)

From (42), we have(∑
ũ

1{Ē(h1)>ũ}p̃(ũ)

)
≥

(∑
ũ

1{Ē(h2)>ũ}p̃(ũ)

)
≥ · · · ≥

(∑
ũ

1{Ē(hN1 )>ũ}p̃(ũ)

)
.

Hence, the maximum of the objective function in (43) is achieved under the required constraints

by first maximizing the term (the constraints on this alone will be less strict)
∑

h r(h, h
1)f(h)

subject to ∑
h

r(h, h1) = p̄S1(h
1), r(h, h1) ≤ pH1(h) for all h,

to obtain {r∗(h, h1), µ∗1}, and then maximizing the term (while ensuring that these variables and

the optimal variables from the previous step jointly satisfy the required constraints)

∑
h

r(h, h2)f(h) subject to
∑
h

r(h, h2) = p̄S1(h
2) and r(h, h2) ≤ (1− µ∗1(h, h1))pH1(h),

for all h, and so on. Assuming condition p̄S1(h
1) ≥ pH1(h

1), it is easily seen that,

r∗(h1, h1) = pH1(h
1),

r∗(h2, h1) = min{(pS(h1)− pH1(h
1)), pH1(h

2)},

r∗(hk, h1) = max

{
0,min

{(
pS(h1)−

∑
l<k

pH1(h
l)

)
, pH1(h

k)

}}
for all k > 2.

Further,

r∗(h1, h2) = 0,

r∗(h2, h2) = min{pS(h2), (1− p∗h,s(h2, h1))pH1(h
2)},

r∗(hk, h2) = min

{
pS(h2)−

∑
l<k

r∗(hl, h2), (1− p∗h,s(hk, h1))pH1(h
k)

}
for all k > 2.
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The above defines the joint distribution r∗(h1, s1) with prescribed marginals. It is now straight-

forward to see that the conditional distribution r∗(h1, s1)/pH1(h1) is indeed µ∗1(s1|h1). This

completes the proof.
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