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Abstract—We consider the problem of ’fair’ scheduling the
resources to one of the many mobile stations by a centrally
controlled base station (BS). The BS is the only entity taking
decisions in this framework based on truthful information from
the mobiles on their radio channel. We study the well-known
family of parametric α-fair scheduling problems from a game-
theoretic perspective in which some of the mobiles may be
noncooperative. We first show that if the BS is unaware of the
noncooperative behavior from the mobiles, the noncooperative
mobiles become successful in snatching the resources from the
other cooperative mobiles, resulting in unfair allocations. If
the BS is aware of the noncooperative mobiles, a new game
arises with BS as an additional player. It can then do better
by neglecting the signals from the noncooperative mobiles. The
BS, however, becomes successful in eliciting the truthful signals
from the mobiles only when it uses additional information
(signal statistics). This new policy along with the truthful signals
from mobiles forms a Nash Equilibrium (NE) which we call a
Truth Revealing Equilibrium. Finally, we propose new iterative
algorithms to implement fair scheduling policies that robustify
the otherwise non-robust (in presence of noncooperation) α fair
scheduling algorithms.

I. INTRODUCTION

Short-term fading arises in a mobile wireless radio commu-
nication system in the presence of scatterers, resulting in time-
varying channel gains. Various cellular networks have down-
link shared data channels that use scheduling mechanisms to
exploit the fluctuations of the radio conditions (e.g. 3GPP
HSDPA [2] and CDMA/HDR [8] or 1xEV-DO [1]). A central
scheduling problem in wireless communications is that of
allocating resources to one of many mobile stations that share
a common radio channel. Much attention has been given to the
design of efficient and fair scheduling schemes that are cen-
trally controlled by a base station (BS) whose decisions depend
on the channel conditions of each mobile. These networks
use various fairness criteria ([6], [4]) called generalized α-fair
criteria to design a class of parametric scheduling algorithms
(which we henceforth call as α-fair scheduling algorithms or
α-FSA). One special case, proportional fair sharing (PFS),
has been intensely analyzed as applied to the CDMA/HDR
system. See [12], [8], [7], [20], [3], [11], [17]. These results
are applicable to the 3GPP HSDPA system as well. Kushner
& Whiting [15] analyzed the PFS algorithm using stochastic
approximation techniques and showed that the asymptotic
averaged throughput can be driven to optimize a certain system
utility function (sum of logarithms of offset-rates). See also
Stolyar [21].

The BS is the only entity taking decisions in all the above
methods, and the BS depends crucially on truthful reporting
of their channel states by the mobiles. For example, in the
frequency-division duplex system, the BS has no direct infor-
mation on the channel gains, but transmits downlink pilots, and
relies on the mobiles’ reported values of gains on these pilots
for scheduling. A cooperative mobile will truthfully report this
information to the BS. A noncooperative mobile will however
send a signal that is likely to induce the scheduler to behave
in a manner beneficial to the mobile.

In [13], [14] we analyzed efficient scheduling (a special
case with α = 0, wherein the scheduler maximizes the sum
throughput at the BS) in presence of noncooperation using a
signaling game ([22]). The signaling game can be used only
for that special case and an α-fair scheduler with α > 0 cannot
be modeled by a signaling game: for α-fair schedulers with
α > 0, the utilities of the BS are not expected utilities but are
concave combinations of the users’ expected utilities. Further,
α-fair scheduler (with α > 0) has an inherent feedback in its
structure (more details in section II) and this feedback makes
the study difficult and different from the above paper. This
paper has contributions to three main areas:
Networking Aspects: (1) We identify cases where noncoop-
eration results in an unfair bias in the channel assignments
in favor of noncooperative mobiles, if the base station is
unaware of the noncooperative behavior. (2) We characterize
the limitation of the base station, and obtain conditions under
which even when it is aware of noncooperation, it is not able
to share fairly the resources. (3) We show that the ability
to achieve fair sharing, in the presence of noncooperation,
depends on the parameter α. (4) We design robust iterative
algorithms that, under suitable conditions, fairly share the
resources even in the presence of noncooperative signaling.
Game theoretical modeling: (1) We model a noncooper-
ative mobile as a rational player that wishes to maximize
its throughput. Since the α-fair assignment is related to the
maximization of a related utility function, one can view the
BS as yet another player. We thus have a game model even
if there is a single noncooperative mobile. (2) We formulate
three games of which one is a concave game. The formulation
of the games turn out to be surprisingly complex. Except
for the special case of α = 0 (where the game can be
shown to be equivalent to a matrix game), the games are
defined over an infinite set of actions. We are however able to
prove the existence and characterize the equilibrium policies
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for two games. (3) The third game arises when the BS is
unaware of noncooperation. BS only responds to the mobiles,
but in a optimal way. We could model this as a hierarchical
game where the mobiles are involved in a game played at
the higher level and the BS optimizes some utility at the
lower level, unaware of the rationality of the mobiles. (4) To
analyze iterative algorithms, we consider a stochastic game
with asymptotic time limits of the iterative algorithm as cost
criteria.
Design of the networking protocols based on stochastic
approximation techniques. (1) We analyze the parametric
α-fair scheduling algorithm (α-FSA) of [15] in presence of
noncooperation. We identified its robustness properties as a
function of α. (2) Using the knowledge of channel and signal
statistics, one can control the excess utilities that the mobiles
would have otherwise obtained by noncooperation. This is
the basic idea behind robust policies. We then use stochastic
approximation based approach to combine estimation (which
replaces the knowledge required) and control to design robust
fair scheduling algorithms.

We first motivate the problem using a simple example.

A Motivating example

We consider two users sharing a common channel. User 1
has two channel states with utilities 7 and 3 occurring with
probabilities 0.33 and 0.67 respectively. User 2 has constant
channel with utility 4. The BS has to assign the channel to one
of the two users for every realization of the channel state and
every such assignment rule results in a pair of users’s average
utilities. The BS uses an α-fair scheduler (described in the next
section) to fair share these average utilities. First we assume
that both users cooperate and report their individual channel
states correctly. In figures 1 and 2 (the case with δ = 0) we plot
the average utilities obtained by users under α-fair scheduler as
a function of the fairness parameter α. We make the following
observations: (1) For every α, the BS always allocates the
channel to user 1 if he is in good state. (2) For α = 0, the
expected share of user 1 (7∗0.33) is less than that of the user 2
((1−0.33)∗4). This corresponds to efficient scheduling point.
(3) For small values ofα, BS allocates the channel to user 1
only when he is in good state. (4) The expected share of user
1 increases while that of the user 2 decreases as α increases
and eventually become equal. To achieve this, the BS starts
allocating the channel to the user 1 even when that user is in
bad state with increasing probability.

The above scenario depends crucially on the truthful report-
ing of channel by the user 1. Now, we consider the scenario
when user 1 is noncooperative and tries to increase his utility.
He declares to be in good state 7 when actually in bad state 3
with probability δ. BS now observes the user 1 to have good
channel with better probability 0.33+δ∗0.67 and will schedule
as before but based on reported channel conditions. In figures
1, 2 we plot the resulting expected utilities of both the users
as a function of fairness α for δ = 0.1, δ = 0.5 respectively.
We observe that the utility of user 1 for small values of α is
improved in comparison with its cooperative utility. This also
reduces the utility of the user 2 below its cooperative share,
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resulting in unfair allocations. This effect is seen for all values
of α less than α = 1.75, α = 6.85 respectively for δ = 0.5,
δ = 0.1. However, for alpha greater than the above values,
user 1 loses; in fact its utility gets below its cooperative share,
while that of the user 2 is much above the later’s cooperative
share. The above example indicates the α-fair scheduler: (1)
might be robust against noncooperation for large values of α
(2) fails for smaller values of α. (3) the larger the δ the larger
the amount of gain at α = 0. (4) the larger the δ the smaller
the α till which the mobile gains. As α increases, the two user
utilities converge towards equal values at a rate that directly
depends upon the difference at α = 0. This is the reason for
the above observation. An important point to note here is that,
there is no threshold of α beyond which the scheduler will be
robust to all types of noncooperation, i.e., for all values of δ.
However one can guess that for max min fairness (α = ∞)
the scheduler will be robust. The study of this noncooperation
and design of robust policies will be the focus of our paper.

II. THE PROBLEM SETTING AND α-FAIR SCHEDULER

The Downlink We consider the downlink of a wireless
network with one base station (BS). There are M mobiles
competing for the downlink data channel. Time is divided
into small intervals or slots. In each slot, one of the M
mobiles is allocated the channel. Each mobile m can be in
one of the states hm ∈ Hm, where Hm is finite valued.
We assume fading characteristics to be independent across the
mobiles. Let h := [h1, h2, · · · , hM ]t be the vector of channel
gains in a particular slot. The channel gains are distributed
according to: ph(h) =

∏M
i=1 phi(hi), where {phm ;m ≤ M}

represent the statistics of the mobile channels. When the
mobile’s channel state is hm, it can achieve a maximum
utility given by f(hm). An example of utility is the rate
f(hm) = r(m) = log(1 + hmSNR) where SNR captures
the nominal received signal-to-noise ratio under no channel
variation.

The decision rule In every slot, the BS has to make
scheduling decisions, i.e., allocate the downlink slot to one
of the M users, based on the current realization of the
channel state vector h. For any set C, let P(C) be the set
of probability measures on C. With that definition, a BS’s
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decision is a function β that assigns to any given h an element
in P({1, 2, · · · ,M}), the probability distribution over the set
of users. Thus, β(m|h) is the probability that the BS schedules
current slot to mobile m given channel state vector h.

The α-fairness criterion and scheduler We introduce
the well known generalized α-fair criterion ([4]) where the
quantity that we wish to share fairly is the expectation of the
random (instantaneous) utilities corresponding to the assign-
ment by the scheduler to the mobiles:

Gα(β) :=
M∑
m=1

Γα(θm(β)) (1)

where θm(β) := Eh [f(hm)β(m|h)] is the expected share of
mobile m under policy β and where the α-fair function is

Γα(u) :=
{

log(u), for α = 1
u1−α

1−α , for α 6= 1.

One can view β(.|.), the scheduling policy, as a vector in
RB space, with B := M |H|, where |H| is the cardinality of
the product space H = ΠM

m=1Hm. More precisely the domain
of optimization is1:

D :=

{
β(.|.) :

M∑
m=1

β(m|h) = 1, β(m|h) ≥ 0 for all h,m

}
.

The objective function Gα given by (1), is concave and
continuous in β for each α, while the domain D is compact
and convex. Hence there always exists a cooperative α-fair
scheduling BS strategy β∗:

β∗(.|.) ∈ arg max
β∈D

Gα(β). (2)

Remarks II-1: We may view the BS’s schedule as a static
optimization problem that corresponds to a single choice of β.
Notice that the optimal schedule β∗ maximizes some function
of the expected shares of utilities. This expected share depends
on assignments at all channel states, and is therefore a joint
optimization problem. This feature arises when α > 0. When
α = 0 the problem is separable, and the solution β∗(· | h)
for a given h depends only on that h. Indeed, for α > 0, the
implicit equation (3) below highlights a certain ’feedback’ that
is absent in case with α = 0. This makes the present study
significantly different from our previous work on efficient
scheduling with strategic mobiles ([13]).

Below we show a key (feedback) property of α fair sched-
ulers. Define β∗ as the vector (fixed point) that satisfies (if it
exists) the following:

β∗(m|h) =
1{m∈arg maxj dΓα(θj(β∗))f(hj)}

|arg maxj dΓα(θj(β∗))f(hj)|
(3)

where dΓα(θj(β)) := dΓα

du

∣∣
u=θj(β)

is the derivative of Γα

with respect to (w.r.t.) u, evaluated at θj(β). We now have
Lemma 1: If there is a β∗ satisfying (3), then β∗ is a

global maximizer of the objective function in (2) over domain
D and hence is an α-fair scheduler.

1For a given channel realization h the BS will choose the mobile randomly
according to the measure β(.|h).

Let Θ := [θ1 · · · θM ]T , Θ(β) := [θ1(β) · · · θM (β)]T

and Θ(D) := {Θ(β) : β ∈ D} . The map Θ 7→
∑
m Γα(θm)

is strictly concave. Hence, there exists an unique maximizer
(of the expected assigned shares) over the convex set Θ(D):

Θ∗ = max
Θ∈Θ(D)

∑
m

Γα(θm). (4)

Hence, if there is a β∗ satisfying (3) then Θ∗ = Θ(β∗).
Further, any β∗ which is a global maximum of the objec-
tive function (2) satisfies the ’efficiency’ property: whenever
f(hm) > f(h′m)

either β∗(m|hm,h−m) > β∗(m|h′m,h−m) (5)
or β∗(m|hm,h−m) = β∗(m|h′m,h−m) ∈ {0, 1}

for all h−m ∈ Πj 6=mHj and for all m.
Proof : Please refer to Appendix B. �

The above Lemma 1 gives the exact characterization of an
optimal solution of α-fairness problem (3). It further talks
about the efficiency of every possible α-fair solution (5):
the assignment for particular state (hm) for any mobile m
increases with the increase in the utility (f(hm)) of the state.
This property is used in the analysis under noncooperation. A
part of Lemma 1, regarding the possible solution (3), when
restricted to proportional fairness, is already stated in [16].

Remarks II-2: The solution (3) explicitly shows the feed-
back we mentioned in Remark II-1. This solution has al-
ready been used in practical scenarios ([16]) to achieve ’fair’
scheduling: The α-fair solution for the dynamic setting with
ergodic channel states is the optimal β that fair shares the
time average utilities over a single realization of a whole
sample path2. In fact, the solution (3) under ergodicity can be
implemented by the following procedure: 1) At any time slot k,
obtain the scheduling decision using the current channel vector
hk and using the time averaged assigned utilities obtained till
the last step {θm,k−1} in place of {θm(β∗)} of (3); 2) Update
(in the obvious way) the time averaged assigned utilities up
to step k {θm,k} using the current scheduling decision.

III. PROBLEM FORMULATION UNDER NON COOPERATION

In every slot, the BS needs the knowledge of h for
scheduling purposes. In practice, mobile m estimates channel
hm using the pilot signals sent by BS. We assume perfect
channel estimation. The mobiles send signals {sm} to BS,
as indications of the channel gains. Thus BS does not have
direct access to channel state h, but instead has to rely on
the mobiles for it. If the mobiles have selfish motives, they
can signal a better channel condition to grab the channel even
when their channel is bad.

The main purpose of this paper is to study the effect of this
noncooperation on the α-fair scheduler (2). We assume that

2For ergodic channels under appropriate conditions on the function g,

lim
K→∞

1

K

K∑
k=1

g(hk) = Eh [g(h)]

We are interested in a particular function g(h) = f(hm)β(m|h) whose
average is exactly θm(β).
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signals are chosen from the channel space itself, i.e., sm ∈ Hm
for all mobiles. We shall consider two types of scenarios :

Hierarchical game G1: The BS is unaware of the possible
noncooperative behavior from the mobiles and applies the α-
fair scheduler (2) to the signals s = [s1, · · · , sM ]t (as if they
were the true channel values). The mobiles are aware of BS’s
scheduler, signal to optimize their own goals. When the base
station is unaware, we model this game as hierarchical game
with two levels: where leaders, the noncooperative mobiles,
involve in a game problem while BS, the follower does the
optimization. In this game, there is no common knowledge: the
base station does not know the rationality of the mobiles. This
game is related to that discussed by Aumann in [5] through
many examples. For several years it has been thought that
the assumption of common knowledge of rationality for the
players in the game was fundamental. It turns out that, in N -
player games, common knowledge of rationality is not needed
as an epistemic condition for equilibrium strategies (see [5]).

A game approach: The BS is modeled as an additional
player in a one-shot game. When the BS becomes aware of
the possible noncooperation, it could implement better policies
to do better. We first consider a M1 + 1 player game G2,
where the BS schedules still only using the signals from the
mobiles. Because of its awareness, it could do better than the
situation of game G1, but however will not be successful in
compelling the mobiles to reveal the truthful signals (Section
V-A). In Section V-B we construct more intelligent (which
require more information) BS policies which would be robust
against noncooperation: the new robust BS policies and the
truthful signals from the mobiles form a Nash Equilibrium.
This we refer as game G3.

We now introduce the important concepts and definitions
that are used in the paper. These are more specific to the
first two game scenarios. The corresponding definitions and
concepts may vary slightly for the game G3 and the differences
are explained directly in Section V-B.

Common Knowledge : Channel statistics {phm ;m ≤M}
of all mobiles is a common knowledge, i.e., known to all the
mobiles and the BS. We also assume that, the information
about which mobiles are noncooperative, is a common knowl-
edge in case of the last two games G2 and G3. If the rational
BS does not know which mobiles are cooperative, it will treat
every mobile as noncooperative.

Mobile Policies : Some mobiles (with indices 1 ≤ m ≤M1

where (0 ≤ M1 ≤ M ) are assumed to be noncooperative. A
policy of mobile m is a function {µm(.|hm)} that maps a state
hm to an element in P(Hm).

BS Policies : A policy of the BS is a function which maps
every signal vector s to a scheduler β ∈ P({1, 2, · · · ,M}).
These policies are used in major part of the paper, while more
complicated policies are considered in section V-B.

Utilities for a given set of strategies : The instanta-
neous/sample utility of the mobile m depends only upon the

true channel hm and the BS decision β and is given by :

Um(sm, hm, β) = 1{β=m} min{f(hm), f(sm)}3.

Define the following to exclude mobile m:

h−m := [h1, · · · , hm−1, hm+1, · · · , hM ] ,
ph−m(h−m) := Πj 6=mphj (hj),

µ−m(s−m|h−m) := Πj 6=m;j≤M1µj(sj | hj)
Πj 6=m;j>M1δ(hj = sj).

Also define, µ = {µm;m ≤M1} to represent strategy profile:

µ(s|h) := Π1≤j≤M1µj(sj | hj)Πj>M1δ(hj = sj).

With the above definitions, each noncooperative user chooses
its strategy µm in such a way as to maximize its own utility:

Uαm(µ, β) = Eh

[∑
s

Um(sm, hm,m)β(m | s)µ(s | h)

]
(6)

Under the α-fair criterion (1), the natural selection of utility
for BS will be:

UαBS(µ, β) =
∑
m

Γα(Uαm(µ, β)). (7)

Throughout when arg maxS has more than one element, by
i = arg maxS we mean i ∈ arg maxS. By j := arg maxS
we mean that j is a chosen element of arg maxS.
ASA, ATA Utilities : When mobile signals do not match the
true channel values, the game under consideration will have
two important average utilities for any given strategy profile
(µ, β) : (1) average signaled utilities under assignment β
(ASA) utility, which a (more intelligent) BS can observe, and
(2) average true and assigned (ATA) utility, which is the true
average utility gained by the mobile and whose value cannot
be estimated (as long as the mobile is noncooperative) at the
BS. These are defined by

UASAm (µ, β) := Eh

[∑
s

f(sm)µ(s|h)β(m|s)

]
(8)

UATAm (µ, β)

:= Eh

[∑
s

min{f(hm), f(sm)}µ(s|h)β(m|s)

]
. (9)

Indeed, it is easy to observe that the utility of mobile m is its
ATA utility, i.e., Uαm(µ, β) = UATAm (µ, β).
Truth Revealing Strategy : In the following, by truth reveal-
ing strategy at mobile m we mean the strategy

µTm(sm|hm) = 1{sm=hm} for all hm, sm ∈ Hm,

which signals the true channel state. Let µT := (µT1 , · · · , µTM ).
Under truthful strategies µT , ATA and ASA utilities coincide.
For any BS policy β, if strategy profile (µT , β) forms a
Nash Equilibrium, then we call the NE as a Truth Revealing
Equilibrium (TRE).

3The mobile achieves rate f(hm) even if the BS allocates it a higher rate
f(sm) because of the inflated signal sm sent by the noncooperative mobile.
The justification of this is provided in detail in Appendix C (we used similar
assumption also in [13], [14]).
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Cooperative Shares : Best response of BS to truthful signals
µT is any maximizer β∗ of Gα (1). By Lemma 1, the best
response results in unique maximum average ATA utilities,

θαcm := θm(β∗) = Uαm(µT , β∗), (10)

which will be referred as Cooperative Shares.
Contrast between hierarchical optimization and the

game perspective: Recall that computing a fair assignment by
BS involves maximization of (1). Thus in the first scenario,
when mobiles choose profile µ, the unaware BS fair shares
ASA utilities under µ by maximizing (12) (given in the next
section). However, what needs fair sharing is the ATA utilities.
This is achieved via the game perspective, wherein the rational
BS tries to fair share the ATA utilities gained by the mobiles.

We study the various scenarios via three games mentioned
above.

IV. SCHEDULING UNDER NONCOOPERATION :
HIERARCHICAL GAME PROBLEM G1

We consider the scenario in which the BS is unaware of the
presence of noncooperative mobiles. As in cooperative setting,
the BS schedules (using optimal scheduler (2)) the channel to
one of the mobiles using the mobile signals, assuming them
to reflect the channel state perfectly. The mobiles, aware of
BS’s scheduler, maximize their utilities.

Utilities of G1: For any given mobile strategy profile µ,
let the induced signal probabilities be represented by ps, i.e.,
ps(s) =

∑
h ph(h)µ(s|h). Since the BS observes ps (instead

of ph), it assumes the expected shares of mobile m to be
θm(µ, β) := Eps [f(sm)β(m|s)] and hence maximizes,

UASABS (β, µ) =
∑
m

Γα(θm(µ, β))). (11)

One can identify that θm(µ, β) are the ASA utilities. The equi-
librium appropriate to this scenario is Stackelberg Equilibrium.
Stackelberg Equilibrium for G1: is a profile (β∗µ, µ

∗) which
satisfies the following for all m:

β∗µ = arg max
β

UASABS (β, µ), (12)

µ∗m = arg max
µm

UATAm

((
µm, µ

∗
−m
)
, β∗(µm,µ∗−m)

)
.(13)

We now present some examples in which a user m deviates
unilaterally from µT and increases its utility above its cooper-
ative share, resulting in unfair allocations. These examples do
not have TRE for G1, i.e., truthful strategy profile µT is not
a part of any Stackelberg Equilibrium of G1. In particular for
(12), we consider α-fair scheduler given by (3). This scheduler
is a widely used practical solution (see Remark II-2), α-FSA
being one of them.

A. Asymmetric Examples

1) Proportional fair scheduler (α = 1) : We continue with
the motivating example given in Section I. User 1 has a single
state with utility a. User 2 has 2 states with respective utilities
given by rb, b and with r > 1. The respective probabilities to
be in one of these states are p, (1−p) with p ∈ (1/(1+r), 1/2).

Using (3), one can easily estimate β∗, {θm(β∗)} to be:

β∗(2|a, rb) = 1, β∗(1|a, b) = 1,
θ1(β∗) = a(1− p) and θ2(β∗) = rbp.

(14)

Note that θ1(β∗), θ2(β∗) are the mobile’s cooperative shares.
It is important to note here that β∗ satisfying (3) exist only if
p ∈ (1/(1 + r), 1/2) as in this case :

dΓα(θ2(β∗))rb = rb
rbp >

a
a(1−p) = dΓα(θ1(β∗))a

dΓα(θ2(β∗))b = b
rbp <

a
a(1−p) = dΓα(θ1(β∗))a.

Suppose user 2 signals rb (when actually in state b) with
probability q, i.e., µ2(rb|b) = q. Then user’s maximum ASA
rates (note that β∗q = β∗ defined in (14)) are:

UASA1 (q, β∗q ) = (1− p− q)a, UATA2 (q, β∗q ) = rb(p+ q)

respectively whenever

rb

(p+ q)rb
>

a

a(1− p− q)
>

b

rb(p+ q)
.

With this, the mobile 2 obtains an improved ATA utility
UATA2 (q, β∗q ) = rbp+bq > θ2(β∗), i.e., mobile 2 is successful
in improving its utility (above it’s cooperative share) by
signaling noncooperatively. The maximum possible value of
q is q = (0.5− p) . �

2) Extension to general α: One can extend the above to
general α, an α-fair scheduler satisfying (3) exists if,

(rb)α−1pα < aα−1(1− p)α < r(rb)α−1pα.

From above, as α increases, p for which (3) exists reduces
and thus given (a, r, b, p), there exists a maximum αmax,
beyond which there does not exist α-fair scheduler of the type
(3). However another type of alpha-fair scheduler exist; for
example for max-min fairness (when α = ∞, θ∗1 = θ∗2) a
α-fair scheduler {β∗(1|rb, a), β∗(1|b, a)} given by:

β∗(1|rb, a) =
a

rbp+ ap
;β∗(1|b, a) = 0 if a(1− p) < rbp

β∗(1|b, a) =
a(1− p)− rbp
(b+ a)(1− p)

;β∗(1|rb, a) = 0 else.

When α-fair scheduler (3) exists the noncooperative mobile
benefit; the maximum q(α) satisfies:

(p+ q(α))α(rb)α−1 = aα−1(1− p− q(α))α.

For example with a = 4, r = 3, b = 3, p = 0.33 the
maximum α for which α-fair scheduler (3) exists is 7.9 and
user 1 can benefit by signaling with q = .05 for all α ≤ 4.

3) Generalization to more states and general α: Consider
two asymmetric users under the following assumptions :
N.1 The cooperative α-fair solution β∗ (3) exists and without

loss of generality let 1 = arg maxm θαcm .
N.2 There exists an i > 1 such that,

η := inf
h2∈H2

dΓα(θαc1 )f(h1,i−1)− dΓα(θαc2 )f(h2) > 0,

where H1 = {h1,1, · · · , h1,N1} are arranged such that
f(h1,1) > f(h1,2) > · · · > f(h1,N1).
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Lemma 2: Under assumptions N.1-N.2, there exist a non
truth revealing policy µδ1 for mobile 1 such that its ATA utility
UATA1 (µδ1, (f, β

∗
µδ1

)) is larger than its cooperative share θαc1 .
Proof : The proof is available in Appendix B. �

B. Symmetric Case

We consider a simple symmetric two mobile example.
The mobiles have two states with utilities a1, a2 occurring
respectively with probabilities p1, p2. Let a1 = ra2, p1 = pp2

with r > 1, p > 0. Under truthful signaling, by Lemma 1, an
α-fair optimal BS policy (for any α) is given by:

β∗(1|a1, a1) = 1/2 = β∗(1|a2, a2), β∗(1|a1, a2) = 1,
β∗(1|a2, a1) = 0

with equal cooperative shares

θ1(β∗) = θ2(β∗) =
(
p2

1

2
+ p1p2

)
a1 + p2

2

a2

2

= p2
2a2

(
p2r + 1

2
+ pr

)
.

Without loss of generality say mobile 1 deviates unilaterally
from his truthful strategy with µ1(a1|a2) = t. If mobile 1
was successful, his reported rate would be greater than θ1(β∗)
and this rate he would have obtained only when his declared
state is a1 with mobile 2’s being a2. Thus, mobile 1 will be
successful with maximum ASA utilities (α = 1):

UASA1 = (p1a1 + p2ta1)p2 = (p+ t)p2
2a1 and

UASA2 = 1p1a1 + p2(1− t)p2a2 = (pr + (1− t)p2)p2a2

and the corresponding ATA utility,

UATA1 = (p1a1 + p2ta2)p2 = (pr + t)p2
2a2

if the following conditions are met:
a1

UASA1

>
a2

UASA2

and θ1(β∗) < UATA1 ,

i.e., if t satisfies:

1
(p+ t)p2

>
1

(pr + (1− t)p2)
and

p2r + 1
2

< t. �

C. Robustness at large α

For small values of α, α fair scheduler fails. However we see
a different phenomenon at higher α. As α increases to infinity,
the ’fairness’ increases and the expected shares, i.e., ATA
utilities, of all the mobiles tend to becoming equal ([18]), pro-
vided all the mobiles signal truthfully. However, in presence of
noncooperation, it will be the ASA utilities that start becoming
equal for higher values of α. This results in all the cooperative
(ATA equal ASA utilities) mobiles getting equal ATA shares
which will be bigger than that for the noncooperative (ATA
are strictly less than ASA utilities) mobiles. Thus the α-fair
scheduler (2) itself becomes more and more robust towards
noncooperation as fairness factor α increases, in spite of the
BS’s unawareness of the noncooperation.4 This effect is seen

4However as noticed in motivating example, we can only say the max min
fairness will be robust against all types of noncooperation from mobiles and
cannot identify an α beyond which the scheduler will be robust.

in the motivating example as well as in Figure 3 given in a later
section. In Figure 3, the noncooperative mobile’s ATA utility
diminishes as α increases and goes below its cooperative share
beyond α = 1.2 and further, the cooperative mobile gets more
share than its cooperative share for these large values of α.

V. SCHEDULING UNDER NONCOOPERATION : GAME
THEORETIC STUDY

In this section the BS knows about noncooperative behavior
of mobiles and is considered as an additional player resulting
in the M1 + 1 player game.

A. BS Scheduling policies of section IV : Game G2

In contrast to section IV, the BS knows the mobiles that
are noncooperative. The resulting game is a one-shot concave
game: the utility of mobile m (6) is linear in its policy µm
while that of the BS (7) is continuous and concave in its
policy β. By [19], this game always has a NE5 (µ∗, β∗) which
satisfies, for all m,

µ∗m = arg max
µm

Uαm((µm, µ∗−m), β∗)

and β∗ = arg max
β

UαBS(µ∗, β).

For game G2 we obtain a ’babbling’ equilibrium. We further
show that G2 does not have a TRE.

1) G2 has Babbling NE : We will now show that this game
has a Nash equilibrium where the BS neglects the signals
from the noncooperative users. Let h>M1 := [hM1+1, · · ·hM ]t

represent the channel states of the cooperative mobiles. With
θ>M1
m (β) := Eh

[
f(hm)β

(
m|h>M1

)]
, the BS maximizes:∑

m

Γα
(
θ>M1
m (β)

)
. (15)

We note here that for any non cooperative mobile,

θ>M1
m (β) = E[f(hm)]Eh>M1

[
β
(
m|h>M1

)]
for m ≤M1.

As in Lemma 1, there always exists a β maximizing (15).
Call one such β by β>M1∗. Choose any mobile profile µ
which satisfies for all m ≤ M1, µm(sm|hm) = 0 for all
hm, sm with f(sm) < f(hm). It is easy to see that (µ, β>M1∗)
forms a Nash Equilibrium. Note here that a noncooperative
mobile m can obtain the utility θ>M1

m (β>M1∗) only if it
signals better than its channel true value (as only in this case
min{f(hm), f(sm)} = f(hm)) and hence the requirement of
above condition on the set of mobile strategies.

This is a NE at which the BS ignores the signals from the
noncooperative mobiles and is similar in sense to the Babbling
equilibrium defined in the context of signaling games ([22]).
Hence we chose to call this also as Babbling equilibrium.

We end this subsection with a useful, practically imple-
mentable α-fair scheduler involving only cooperative signals

5Note that when adding further concave constraints the game remains
concave even if the constraints are coupled [19]. We thus obtain equilibrium
also for constrained versions of the game. Examples of such constraints are:
the (possible weighted) sum of throughputs is bounded by a constant.
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(if exists). Define (if exists),

β>M1∗
(
m|h>M1

)
=

1{m∈A>M1(h>M1 ,β>M1∗)}
|A>M1 (h>M1 , β>M1∗) |

A>M1
(
h>M1 , β

)
= arg max

j
dΓα(θ>M1

j (β))uj

with uj = f(hj)1{j>M1} + E[f(hj)]1{j≤M1}.

Using similar steps which obtained (3), one can show that
β>M1∗ is a maximizer of (15). �

2) G2 has No TRE : We now examine the existence of the
desired TRE. The case of α = 0, the efficient scheduling is
studied in [13]. In [13], G2 corresponding to efficient schedul-
ing was modeled by a signaling game and it is shown that the
game G2 has only babbling equilibrium as NE and hence does
not have a TRE. We will now consider the case α > 0. If the
M1 + 1 player game were to have a TRE, the corresponding
(equilibrium) strategy of the BS, by definition the NE, should
be the best response to mobile’s truthful strategies µT and
hence will be maximizer of UαBS(µT , β) = Gα(β). Hence,
the best response for truth revealing strategy profile µT indeed
equals one of the maximizers of Lemma 1, which satisfies the
efficiency property (5).

Let β̄∗ be any maximizer of Lemma 1. The strategy profile
(µT , β̄∗) does not form a NE because: Let m̃ be any mobile
with non zero cooperative share and let h̃ be its channel
value with largest utility, i.e., let h̃ = arg maxh∈Hm̃ f(h).
The mobile by changing its policy from truthful signals µTm̃
to µm̃(sm̃|hm̃) := 1{sm̃=h̃} for all hm̃, sm̃ increases its ATA
utilities as by (5) for any h−m̃ and for any h 6= h̃ ∈ Hm̃,
β̄∗(m̃|h̃,h−m̃) ≥ β̄∗(m̃|h,h−m̃), and hence,

UATAm̃ ((µT−m̃µm̃), β̄∗)− UATAm̃ (µT , β̄∗))

=
∑
h

ph(h)
(
β̄∗(m̃|h̃,h−m̃)f(hm)− β̄∗(m̃|h)f(hm)

)
=
∑
h

ph(h)f(hm)
(
β̄∗(m̃|h̃,h−m̃)− β̄∗(m̃|h)

)
> 0.

Strict greater than zero results in the last line for all α >
0, as all the mobiles obtain non zero utility under an alpha
fair scheduler. Thus, the mobile m̃ can improve its utility by
unilaterally moving away from µTm, contradicting the definition
of NE. �

Thus the BS, even when aware of the noncooperation, is not
successful in eliciting the truthful signals. In the following
we construct more intelligent policies which induce a TRE.
Hence, BS has to use more intelligent scheduling algorithms
to be robust against noncooperation.

B. Robust BS Policies : Game G3 has TRE

BS can estimate statistics ps after sufficient observation of
the mobile signals. We use ps to build robust policies for
BS which give us the desired TRE. The policy of BS now
maps every ordered pair of signal and signal statistics (s, ps)
to an ordered pair (Φ, β) = {(φm(s, ps), β(.|s, ps))} with
allocation φm(s) ≤ f(sm) for all m. All the utilities will

change appropriately to include Φ, for example:

Uαm(µ, (Φ, β))

= Eh

[∑
s

min{φm(s), f(hm)}µ(s|h)β(m|s)

]
.

A profile (µ∗1, · · · , µ∗M1
, (Φ∗, β∗)) is a NE for G3 if,

µ∗m = arg max
µm

Uαm((µm, µ∗−m), (Φ∗, β∗)) for all m

(Φ∗, β∗) = arg max
(Φ,β)

UαBS(µ∗, (Φ, β)). (16)

When BS knows signal statistics, {ps}, it can estimate the
ASA utilities for any scheduling policy and for any mobile
profile µ as:

UASAm (µ, (Φ, β)) = UASAm (ps, (Φ, β)) := Es [φ(s)β(m|s)] .

In the above the expectation is w.r.t. ps. It can also estimate
their cooperative shares {θαcm } of (10) using its prior knowl-
edge: the channel statistics. We now propose a robust policy
at the BS which uses both these average utilities. The key idea
is to design a policy at BS which does not allow the (average)
utility of any mobile m to be greater than θαcm .

When a noncooperative mobile uses a signaling strategy to
improve its ATA utility UATAm , even its ASA utility UASAm im-
proves. The BS can estimate UASAm of each of the mobiles and
hence can sense the increase in the noncooperative mobile’s
ASA utility in comparison to its cooperative share. The BS
can ensure none of the cooperative mobiles is allocated more
than its corresponding cooperative share: by allocating only a
fraction and not the total signaled utility at every sample. The
fraction to be allocated, is set based on the present excess over
the cooperative share as follows:

φm(sm, ps, β) :=
(
f(sm)−

(
UASAm (ps, (Φ, β))− θαcm

)
∆
)

1{(f(sm)−(UASAm (ps,(Φ,β))−θαcm )∆)>0} (17)

for some large value of ∆. Hence, to ensure that none of the
mobiles get more ASA utility than its cooperative share, BS
needs to allocate (choose Φ = {φm}) to satisfy the following:

UASAm (ps, (Φ, β)) = Es [φm(sm, ps, β)β(m|s)] . (18)

Both the equations (18) and (17) are satisfied if there exists a
fixed point UASAm = UASAm (ps, β) which satisfies:

UASAm = Es

[
φmβ(m|s)1{φm>0}

]
; (19)

φm := f(sm)−
(
UASAm − θαcm

)
∆.

With Cf representing the upper bound on f ,(
f(sm)−

(
UASAm − θαcm

)
∆
)

1{(f(sm)−(UASAm −θαcm )∆)>0}

≤ Cf + θαcm ∆ for all sm and UASAm .

Thus the map UASAm 7→ φmβ(m|s)1{φm>0} is bounded and
continuous almost surely and hence by bounded convergence
theorem the map of (19), UASAm 7→ Es

[
φmβ(m|s)1{φm>0}

]
,

is continuous. Thus there exists an UASAm satisfying the fixed
point equation (19) by Brouwer fixed point theorem6.

6Brouwer fixed point theorem: Every continuous function f from a closed
ball of a Euclidean space to itself has a fixed point, i.e., an x∗ which satisfies
x∗ = f(x∗).
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With the above allocation, ATA utility gained by mobile m,

UATAm (µ, (Φ, β)) = Eh,s

[
fgainm (hm, sm, ps, β)β(m|s)

]
(20)

fgainm (hm, sm, ps, β) := min{f(hm), φm(sm, ps, β)}.

Equation (19) satisfies :

UASAm = Es[f(sm)β(m|s)1m]+θαcm ∆Es[β(m|s)1m]
1+∆Es[β(m|s)1m] (21)

with 1m := 1{∆UASAm <f(sm)+∆θαcm }.

Hence, for any strategy profile (µ, β)

UASAm (ps, (Φ, β))− θαcm

=
Es

[
f(sm)β(m|s)1{∆UASAm <f(sm)+∆θαcm }

]
− θαcm

1 + ∆Es

[
β(m|s)1{∆UASAm <f(sm)+∆θαcm }

]
≤ Cf

∆
≤ o(1/∆),

and hence,

UATAm (µ, (Φ, β)) ≤ UASAm (µ, (Φ, β)) ≤ θαcm + o(1/∆).

The above is true as, fgainm (hm, sm, µ, β) ≤ φm(sm, µ, β).
In other words, with new allocation (19) at BS, no mobile
can gain o(1/∆) more than its cooperative share for any pair
(µ, β).

Further, if BS uses any α-fair scheduler β∗ of (2), along with
allocation policy (19), it is easy to check using (21) and (20)
that under truthful strategies (note ps = ph) UASAm (µT , β∗1) =
UATAm (µT , β∗1) = θαcm for all m. Also now,

UASAm (ph, (Φ, β∗))− θαcm

=
Eh [f(hm)β∗(m|h)1m]− Es [f(hm)β∗(m|h)]

1 + ∆Eh [β∗(m|h)1m]

= −
Eh

[
f(hm)β∗(m|h)1{∆UASAm ≥f(hm)+∆θαcm }

]
1 + ∆Eh [β∗(m|h)1m]

.

The above indicates that UASA(ph, (Φ, β∗)) ≤ θαcm . If it was
strictly less than the cooperative share, then the indicator in
the numerator of the second line can never be true and hence
there exists only one fixed point, θαcm with (µT , β∗). We have
thus proved:

Theorem 1: If BS knows cooperative shares {θαcm } and
the signal statistics {ps}, the M1 +1 player strategic game has
an ε−NE, i.e., TRE:

(
µT , ({φm(sm, ps, β∗)} , β∗(m|s))

)
.�

In the coming sections, we will turn our attention to iterative
algorithms which can achieve a desired level of ’fairness’ even
in the presence of some noncooperative mobiles. We begin this
task by first studying α-FSA ([15]).

VI. FAIR SCHEDULER ALGORITHM (α-FSA)

From this section onwards the channel states h as well as the
signaled states s (the states reported by the mobiles) are con-
tinuous random variables with stationary rates across the time,

{rm,k}k≥1 = {f(hm,k)}k≥1, {rsm,k}k≥1 = {f(sm,k)}k≥1 for
all m, satisfying the assumptions of Appendix A7.

This section and the coming section use various types of
rates and hence the notations become complicated. Thus a
table (in table III) of notations specific to these two sections
is given in Appendix A, where all the rate notations are listed
at one place.

By assumption A.3 of Appendix A, the rates are integrable
and hence the map

Θ 7→ [Eh[f(h1)β(1|h,Θ), · · · , Eh[f(hM )β(M |h,Θ)] ,

β(m|h,Θ) =
1{m=arg maxj dΓα(θj)f(hj)}

|{arg maxj dΓα(θj)f(hj)}|

has a fixed point Θ̄ by Brouwer’s fixed point theorem and
β∗(.|h) := β(.|h, Θ̄) exactly satisfies (3) and hence is a
α-fair solution. Thus with continuous rates we always have
fixed point α-fair solution (3). We outlined an algorithm
to implement α-fair scheduler (3) in Remark II-2 following
Lemma 1. The α-FSA ([15]), a stochastic approximation based
fair scheduling algorithms, exactly follows this outline (with
Θα
k :=

[
θα1,k, · · · , θαM,k

]
, rk := [r1,k, · · · , rM,k]):

θαm,k = θαm,k−1 + εk
[
Iαm(rk,Θα

k−1)rm,k − θαm,k−1

]
Iαm(r,Θ) = 1{m=arg maxj dΓα(dj+θj)rj} (22)

= 1{m=arg maxj rj(θj+dj)
−α}

where dm are small positive constants (added for stability).
While making decisions {Iαm}, if there are more than one users
attaining maximum, one of the maximizers is chosen by the
BS randomly. In [15, Th. 2.2], the authors show that {θαm,k}
of (22), with α ≤ 1, converges weakly to the unique limit
point Θ∗ that satisfies E [rmIαm(r,Θ∗)] = θ∗m for all m. A
close look at this limit point (when we neglect {dm}) reveals
that Iαm(r,Θ∗) is the α-fair scheduler (3) and that Θ∗ are the
unique cooperative shares, {θm(β∗)} = {θcαm }. Thus, α-FSA
weakly converges to the unique point (cooperative shares) that
maximizes the α-fair criterion (1).

A. Convergence of α-FSA in presence of noncooperation

The α-FSA uses signaled rates, rsm,k := f(sm,k) and rsk =
[rs1,k, · · · , rsM,k]t to make decisions, as in Section IV:

θαm,k = θαm,k−1 + εk
[
Iαm(rsk,Θ

α
k−1)rsm,k − θαm,k−1

]
.

These signaled rates reflect the statistics ps (instead of ph),
there again is weak convergence, however this time to a
different attractor corresponding to ps. It is very easy to see
as in Section IV that, when mobiles are noncooperative with

7For understanding the asymptotic limits of the dynamic algorithms of this
section we will need the results corresponding to the static settings of Section
II. But, all the results of Section II correspond to discrete channel states and
rates. We assume that even for the more general case under study in this
section, an α-fair solution of the form (3) exists and that the corresponding
shares {θαcm }are unique as in Lemma 1. Sufficient conditions for this to occur
are under study. This result is required for showing that α-FSA asymptotically
converges to the cooperative shares (i.e., limits maximize the α-fair criterion)
for all α. In [15] Theorem 2.3 does this job approximately at least for α ≤ 1:
any other assignment rule results in a limit Θ with

∑
m Γα(θm) less than

that corresponding to scheduler {Iαm} of α-FSA (22). The simulations of this
section also confirm the results we obtained based on this assumption.
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profile µ, α-FSA converges weakly to unique maximum ASA
rates,

{
UASAm (µ, β∗µ)

}
with β∗µ defined by (12).

B. Failure of α-FSA in presence of noncooperation

As noted above, the α-FSA (22) converges to the maximum
ASA utility (under µ) which need not be equal to the ATA util-
ity, in the presence of noncooperation. However, to understand
the behavior of (22) in presence of noncooperation, one needs
to study the asymptotic true utilities gained by the mobiles
under (22). Towards this, we consider a second iteration
running in parallel with (22), with only the instantaneous
signaled utility rsm,k replaced by the true instantaneous utility
obtained by the mobile, r̄m,k := min{rm,k, rsm,k}:

θ̄αm,k = θ̄αm,k−1 + εk
[
Iαm(rsk,Θ

α
k−1)r̄m,k − θ̄αm,k−1

]
(23)

As in [15], one can show that θ̄m,k converges weakly to
UATAm (µ, β∗µ), the ATA utility under (µ, β∗µ).

Thus, the asymptotic limits of α-FSA equal maximum ASA
utilities of section IV while the true utility adaptation (23)
converges to the corresponding ATA utilities. These time limits
will thus have all the properties of section IV: the α-FSA will
fail for small α and will be robust for large α as discussed in
section IV. The only difference here is that the channel rates
are continuous.

C. Numerical examples

Two asymmetric users are considered in Figure 3. Let Z(σ2)
be a Rayleigh random variable with density fZ(z;σ2) =
ze−z

2/2σ2
. Channel state of user 1 is conditional Rayleigh

distributed, i.e.,

h1 ∼
fZ(z; 1)1{z≤2}dz

P (Z(1) ≤ 2)
.

User 2 has almost a constant channel,

h2 − 0.45 ∼
fZ(z; 0.05)1{z≤2}dz

P (Z(0.05) ≤ 2)
.

The utilities are the achievable rates f(h) = log(1+h). User 1
is noncooperative with s1(h) = h(1−δ)+2δ with δ = 0.9. We
plot the limit of the α-FSA, the limits of true utility adaptation
(23) as function8 of α. We also plot the cooperative shares,
obtained by the limits of α-FSA, i.e., with δ = 0. We observe
that the cooperative shares tend towards equal values as α
tends to infinity. User 1 is successful in gaining more utility
in comparison with its cooperative share for all α less than 1.2.
Beyond 1.2, user 1 actually loses and the loss increases as α
increases. The observations are similar to that in motivating
example and indicate that α-FSA is robust only for large α.

In table I, we consider a symmetric example. In this exam-
ple, we consider the discrete channels of section IV. We could
have constructed examples with symmetric continuous channel
states as in previous example and demonstrate the failure of
α-FSA. But we note that the α-FSA even with discrete rates

8The author in [15] analyze these algorithms only for α ≤ 1. However we
confirm using numerous examples that they work in fact for all values of α,
i.e., when all mobiles are cooperative the α−FSA for all α converge to the
unique shares which maximize the objective function (4).
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works as explained in this section and hence this example is
given to demonstrate the same. We consider two users, both
of them having two channel states with utilities a1 = 4,
a2 = 2 occurring with probabilities p1 = 0.3, p2 = 0.7
respectively. In this example we work only with α = 1,
i.e., the proportional fair scheduler. Both users have equal
cooperative share, θ1(β∗) = θ2(β∗) = 1.51. Hence when both
the mobiles report the channel states truthfully, under α−FSA
scheduler, the asymptotic throughputs of both the mobiles
converge to 1.51, i.e., limk→∞ θm,k = 1.51 for m = 1, 2.
Hence maximum proportionally fair BS (asymptotic) utility is
U∗BS = 2log(1.51) = 0.824.

µ1(a1|a2) True Rates

t (UATA1 , UATA2 )
∑
m UATAm

∑
m log(UATAm )

0 (Coop) (1.51, 1.51) 3.02 0.824
0.8 (1.62, 1.39) 3.01 0.812
0.9 (1.72, 1.3) 3.02 0.804
0.98 (1.70, 1.3) 3.0 0.793

TABLE I
A SYMMETRIC EXAMPLE IN WHICH α−FSA FAILS AGAINST

NONCOOPERATION

The user 1 becomes noncooperative with µ1(a1|a2) = t.
We see that the user 1 is successful in grabbing the channel
more often and increasing its utility in comparison with its
cooperative share. The more he cheats (the more t is) the more
he gains (look at the asymptotic throughput UATA1 , given in
the second column in table I). He gains up to 12.5% more than
its cooperative share. The cooperative user, user 2 has lost due
to the non cooperative mobile resulting in unfair allocations.

VII. ROBUST α-FAIR ALGORITHMS : ROBUST FAIR SA

We saw that α-FSA fails in the presence of noncooperative
users. Hence, we propose a robustification of α-FSA against
noncooperation using the policies of subsection V-B. In V-B,
we proposed BS policies robust against noncooperation and
in this section we propose stochastic approximation based
algorithms to converge towards the ASA utilities of those
policies given by (20) . The policy of section V-B requires the
knowledge of signal statistics ps, which has to be estimated.
Basically the methods described in this section (as is done by
α−FSA) combine the estimation and control using stochastic
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approximation based methods. We will show robustness of
these policies by using appropriate game theoretic tools.
Robust Policy 1 : We now propose a robustification of (22)
against noncooperation in the following :

θαm,k+1 = θαm,k + εk
[
φαm,k+1I

α
m

(
rsk+1,Θ

α
k

)
− θαm,k

]
φαm,k+1 = max

{
0,

(
rsm,k+1 −

(
θαm,k − θαcm

)
∆
)}
,(24)

θαm,0 = θαcm (25)

where the decisions Iαm(r,Θ) are same as that in α-FSA (22)
and only the allocations Φαk := [φα1,k, · · · , φαM,k]T are made
robust. As in the case of α-FSA, to understand the behavior of
this algorithm we need the following iteration which estimates
the true utilities gained by the mobiles :

θ̂αm,k+1 = θ̂αm,k + εk

[
r̂αm,k+1I

α
m

(
rsk+1,Θ

α
k

)
− θ̂αm,k

]
,

r̂αm,k+1 = min
{
rm,k+1, φαm,k+1

}
(26)

A. Analysis :

We analyze the robustness of the proposed algorithm using
game theoretical tools. Fix any α. We consider a M1+1 player
game with utilities defined by :

Um := lim
k→∞

θ̂αm,k+1 for all m and UBS :=
∑
m

Γα(Um).

We analyze the limits of (26) using ODE approximation
methods (for e.g., [15], [9]). As a first step, we obtain the
following ODE approximation result .

Theorem 2: Assume that algorithms (24), (26) satisfy
assumptions A.1, A.2, and A.3 of Appendix A . For any initial
conditions, (Θα

k , Θ̂
α
k ) converge weakly to the set of limit points

of the solution of the ODE (for all m ≤M ):
�
θm= h̄m(Θ)− θm, h̄m(Θ) = E [φαmI

α
m (rs,Θ)] , (27)

�

θ̂m= ¯̂
hm(Θ)− θ̂m, ¯̂

hm(Θ) = E [r̂αmI
α
m (rs,Θ)] . (28)

These conclusions hold whenever εn → 0,
∑
n εn = ∞ and

for some αn →∞, limn sup0≤l≤αn |εn+l/εn − 1| = 0.
Remarks about the proof and the assumptions : This
theorem can be proved exactly in the same way as is done for
α−FSA by Theorem 2.1 of Kushner et al’s [15]. The required
assumptions A.1-3 are also very similar to that in [15] and
these are satisfied in almost the same conditions as mentioned
in [15]. �

Hence, one can upper bound utilities {Um} by upper
bounding all the attractors of ODE (28). Any attractor Θ∗

of the ODE (27) satisfies

θ∗m − θαcm =
E
[
rsmI

α
m (rs,Θ∗) I{φαm>0}

]
− θαcm

1 + ∆E
[
Iαm (rs,Θ∗) I{φαm>0}

] . Hence

θ∗m − θαcm ≤
CfE

[
Iαm (rs,Θ∗) I{φαm>0}

]
∆E

[
Iαm (rs,Θ∗) I{φαm>0}

] =
Cf
∆

where Cf is the upper bound on signaled rates {rsm}. Thus,
θ∗m ≤ θαcm + o(1/∆). Further, any attractor of ODE (28)
satisfies θ̂∗m = ¯̂

hm(Θ∗) leading to θ̂∗m ≤ θ∗m. Thus for any
mobile strategy profile µ,

Um
w= θ̂∗m ≤ θ∗m ≤ θαcm + o(1/∆). (29)

So, none of the users, no matter what strategy they use or the
others use, can gain more than θαcm .

Under µT , Θαc = [θαc1 , · · · , θαcM ]T is the only zero of
RHS of both the ODEs (27), (28) as shown using fixed point
analysis in section V-B (note here that Iαm(rs,Θ) is the α-
fair scheduler β∗(|s) satisfying (3)). By virtue of Lemma 4,
one can easily show that it will indeed be an attractor (for
large enough values of∆) for ODE (27) by showing that the
derivative of {h̄m(Θ)−θm;m ≤M} is negative definite9 near
Θαc. And then it is immediate that Θαc is also an attractor
for the ODE (28). Thus, Θαc, is the only attractor of both the
ODEs under µT . Thus

Um
w= θαcm for all m under µT . (30)

From (29), (30), the robust policy (24) at BS together with the
truth-revealing policy of users forms an ε-NE.
Robust Policy 2 : The policies of previous subsection, Robust
Policy 1 will not allow the ATA utility of any user to go
above the cooperative share. Nevertheless, when a user is
noncooperative, these policies may still result in a loss for
the cooperative users: the noncooperative user can still grab
the channel from other users, without getting a gain because
of the robust allocation policies (19). To avoid this problem,
we may robustify the decisions as well:

θαm,k+1 = θαm,k + εk
[
φαm,k+1I

α
m

(
Φαk+1,Θ

α
k

)
− θαm,k

]
. (31)

The analysis of this policy would be similar to the policy
1. We need to change the assumptions of the Appendix A
appropriately (need to replace the decisions Iαm(rs,Θ) with
Iαm(Φα,Θ) in all the places) for ODE approximation. However
these policies are more complicated and hence further analysis
is more difficult. We will still be able to go through all steps
in the analysis exactly in a similar way, except that we will not
be able to show the uniqueness of the attractor under truthful
strategies µT . However, we could ensure the robustness of
these policies using the numerical examples given below. The
examples also show that these policies outperform Robust

9Using similar steps as those used for deriving (34) of Appendix B, one
can easily see that

∂
(
h̄m(Θ)− θm

)
∂θm

∣∣∣∣∣
Θ=Θαc

= −1−∆Es[Iαm(rs,Θαc)]

−αEs

(rsm)2
∑
j 6=m

Πk 6=j,iPr(Ak(rsm,Θ
αc))

gsj (κ)(θαcj + dj)
α

(θαcm + dm)α+1


which is always negative and whose magnitude increases as ∆ increases for
all m while for any m 6= j

∂
(
h̄m(Θ)− θm

)
∂θj

∣∣∣∣∣
Θ=Θαc

=

αEs

[
(rsm)2Πk 6=j,iPr(Ak(rsm,Θ

αc))
gsj (κ)(θαcj + dj)

α−1

(θαcm + dm)α

]

whose magnitude is bounded independent of ∆. Define the map H̄(Θ) :=
[h̄1(Θ), · · · , h̄M (Θ)]T , the total derivative w.r.t Θ A := DΘ

(
H̄(Θ)−Θ

)
and the matrix B as a diagonal matrix consisting of only diagonal entires
of matrix A. Note that matrix B has all negative eigenvalues. Now, when
[10, Corrollary III 2.6, pp. 63] is applied to matrices A, B (this corollary
compares the eigenvalues of the two matrices) we get that matrix A becomes
negative definite as the value of ∆ increases.
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policy 1 in many ways, while Robust policy 1 would be
simpler to implement.

Numerical examples

We continue with the example of Figure 3 (in which α-
FSA failed) in Figure 4. We use Robust Fair SA Policy 1 in
place of α-FSA. We set ∆ = 1000. We plot only the ATA
utilities for both values of δ = 0, δ = 0.9. We do not plot the
ASA utilities in this figure as these utilities for all the cases are
very close to cooperative shares Θαc. We see that this policy is
indeed robust : 1) the time limits of {θm,k} (which correspond
to ASA utilities) are very close to the cooperative shares; 2)
the time limit of the asymptotic true (ATA) utilities are lesser
than the cooperative shares for the noncooperative mobile. It
is also lesser for cooperative mobile, but the gap between the
cooperative shares and the ATA utilities is much lesser for a
cooperative mobile (plots corresponding to δ = 0.9); 3) when
all the mobiles are cooperative both the ASA as well as ATA
utilities are close to the cooperative shares for all the mobiles
(plots corresponding to δ = 0).

In Figures 5, 6 we compare the two robust policies. Here

h1 ∼
fZ(z; 1)1{z≤2}dz

Prob(Z(1) ≤ 2)
, h2 ∼

fZ(z; 0.5)1{z≤2}dz

Prob(Z(0.5) ≤ 2)
,

f(h) = log(1 + h) and ∆ = 1000. Mobile 1, can be
noncooperative using s1(h) = h + (2 − h)δ with δ = 0.9.
We see from the figures that both the policies are robust.
Even with high values of δ = 0.9 (which indicates large
amount of noncooperation) both the policies do not allow the
ATA utilities to go beyond the cooperative shares. However
the policy 2 is way better than the policy 1 as: 1) the
noncooperative mobile in fact is punished by policy 2, its ATA
utility is lesser than the cooperative share θαc1 (Figure 6), but
the same is not true for policy 1 (Figure 5). 2) the cooperative
mobile loses because of the noncooperation from the other
mobile to much greater extent in policy 1. This goes in line
with the extra robustification built into the decision making by
policy 2. When BS uses policy 1, the noncooperative mobile is
successful in grabbing the channel (almost always with large
values of δ = 0.9), however will not be able to gain much from
it because of the robust allocation (19)-(21). When mobile is
aware that he cant gain from being noncooperative, he will as
well have to stick to truthful signaling, unless his intentions are
that of jamming the other mobile (in which case the BS needs
to use policy 2). However the policy 1 is easier to implement
than the policy 2 because of simpler decisions and may also
have faster convergence.

µ1(a1|a2) = True Rates UBS =
t (UATA1 , UATA2 )

∑
m UATAm

∑
m log(UATAm )

0 (Coop) (1.51, 1.51) 3.02 0.824
0.8 (1.30, 1.41) 2.7 0.606
0.9 (1.31, 1.37) 2.68 0.585

0.98 (1.32, 1.36) 2.68 0.585

TABLE II
ROBUST POLICY 1 AGAINST NONCOOPERATION EXAMPLE OF TABLE I

0 2 4 8

0.05

0.25
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0.5

α

Robust Fair SA : Policy 1
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1
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θ
2
α c Mob 2

ASA Mob 1 (δ = 0.9)
ASA Mob 2 (δ = 0.9)

ATA Mob 1(δ = 0.9)

ATA Mob 2(δ = 0.9)

ASA Mob 1 (δ = 0)
ASA Mob 2 (δ = 0)

ATA Mob 1 (δ = 0)

ATA Mob 2 (δ = 0)

Fig. 5. Robust Policy 1 : Maximal
ASA and corresponding ATA shares
versus α.
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0.05

0.25

0.3

0.4

0.5

α

Robust Fair SA : Policy 2

 

 

θ
1
α c  Mob 1

θ
2
α c  Mob 2

ASA Mob 1 (δ = 0.9)
ASA Mob 2 (δ = 0.9)

ATA Mob 1 (δ = 0.9)

ATA Mob 1 (δ = 0.9)

ASA Mob 1 (δ = 0)
ASA Mob 2 (δ = 0)

ATA Mob 1 (δ = 0)

ATA Mob 2 (δ = 0)

Fig. 6. Robust Policy 2 : Maximal
ASA and corresponding ATA shares
versus α.

In table II we continue with the symmetric example of table
I wherein the α−FSA fails. We see once again that (even
with discrete and symmetric conditions) the Robust Fair SA
policy 1 is robust against noncooperation, it does not allow
the noncooperative user to improve its asymptotic throughput.

VIII. CONCLUSIONS

We studied centralized downlink transmissions in a cellular
network in the presence of noncooperative mobiles. Using α-
fair scheduler, the BS has to assign the slot to one of the many
mobiles based on truthful information from mobiles about
their time-varying channel gains. A noncooperative mobile
may misrepresent its signal to the BS so as to maximize his
throughput. We modeled a noncooperative mobile as a rational
player who wishes to maximize his throughput. For this game,
we identified several scenarios related to the awareness of
BS. When the BS is unaware of this noncooperative behavior,
we model this game as hierarchical game with two levels.
We identify that, the presence of noncooperative users, re-
sults in an α-fair bias in the channel assignment for small
values of α. As α increases, an α-fair scheduler becomes
more and more robust to noncooperation irrespective of the
awareness of BS and a max-min fair scheduler is always
robust. When the BS is aware of the noncooperative mobiles,
we characterized a babbling equilibrium which is obtained
when both the BS and the noncooperative players make no use
of the signaling opportunities. This game has no TRE (Truth
Revealing Equilibrium). Using additional knowledge of the
statistics of the signals observed at the BS, we built new robust
policies to elicit the truthful signals from mobiles and achieve
a Truth Revealing Equilibrium. We then studied the popular,
iterative fair scheduling algorithm (which we called α-FSA)
analyzed by Kushner and Whiting in [15]. We showed that α-
FSA fail under noncooperation. Finally, we proposed iterative
robust fair sharing to robustify the α-FSA in the presence of
noncooperation.
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APPENDIX A : ASSUMPTIONS

We first reintroduce some of the notations. This table lists
all the various rates used in the sections VI, VII and their
description. The last column of this table also provides the

corresponding vector notation which basically represents the
vector of all the M components.

Variable Description Vector

rm,k = f(hm,k) True rate of rk
mobile m at time k

rsm,k = f(sm,k) Rate signaled by rsk
mobile m at time k

r̄m,k = True rate obtained by
min{rm,k, rsm,k} mobile m at time k

under α-FSA
φαm,k = Allocated rate by Φαk
max{0, (rsm,k − (θαm,k−1 − θ

αc
m )∆)} Robust fair SA to

mobile m at time k
r̂αm,k = True rate obtained by
min{rm,k, φαm,k} mobile m at time k

under Robust fair SA

TABLE III
TABLE OF NOTATIONS FOR DIFFERENT RATES

We now state the assumptions required for sections VI, VII.
A.1 Let ζk denote, {(rl, rsl ) : l ≤ k}, the past. For each

i, k, ζk,

hm,k(Θ, ζk) := Ek
[
φαm,k+1I

α
m

(
rsk+1,Θ

)]
,

ĥm,k(Θ, ζk) := Ek
[
r̂αm,k+1I

α
m

(
rsk+1,Θ

)]
,

are continuous in Θ ∈ RM+ . Here Θ is considered fixed.
Let δ > 0 be arbitrary. The continuity is uniform in k
and in ζk in the set {Θ : θi ≥ δ, i ≤M}.

A.2 The sequence {(rl, rsl ) : l ≤ ∞} is stationary. Define
the following stationary expectations:

h̄m(Θ) = E
[
φαm,1I

α
m (rs1,Θ)

]
,

¯̂
hm(Θ) = E

[
r̂αm,1I

α
m (rs1,Θ)

]
.

In the above Θ is considered fixed. Also,

lim
k,n→∞

1
k

n+k−1∑
l=n

[
En
[
φαm,l+1I

α
m

(
rsl+1,Θ

)]
− h̄m(Θ)

]
= 0,

lim
k,n→∞

1
k

n+k−1∑
l=n

[
En
[
r̂αm,l+1I

α
m

(
rsl+1,Θ

)]
− ¯̂
hm(Θ)

]
= 0

in the sense of probability. There are small positive δ and
δ1 such that for every m ≤M

P
{
rsm,k
dm
≥ rsj,k

dj−δ + δ1, j 6= m
}
> 0, if α = 1

P
{
rsm,k

d1−αm
≥ rsj,k

(dj−δ)1−α + δ1, j 6= m
}
> 0, else.

A.3 True, signaled rates {(rl, rsl ) ; l ≤ ∞} are defined on
some compact set and have bounded density.

Remarks VIII-1: The assumption A.1 can be ensured as in
Lemma 4 given the assumption A.3.

APPENDIX B : PROOFS !!

Proof of Lemma 1 : Since Γα is a concave function,

Gα(β)−Gα(β∗)≤
∑
m

[θm(β)− θm(β∗)] dΓα(θm(β∗)). (32)
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From (3) β∗ maximizes the function

β 7→
∑
m

θm(β)dΓα(θm(β∗))

= Eh

[∑
m

f(hm)dΓα(θm(β∗))β(m|h)

]
over D and hence we have,∑

m

[θm(β)− θm(β∗)] dΓα(θm(β∗)) ≤ 0.

This along with (32) proves that β∗ is a global maximizer of
the objective function in (2) over domain D and hence is a
α-fair solution (2).

Most of the times there may not be a unique global opti-
mizer for the α-fair objective function. However, by unique-
ness of Θ∗ and by Lemma 3 the rest of the proof follows.
�

Lemma 3: If there is a BS policy β which is inefficient
in the following sense: without loss of generality consider the
mobile indexed by 1. If there exists an h1, h

′
1 ∈ H1 and h̄−1 ∈

Πm>1Hm such that

0 < β(1|h1, h̄−1) ≤ β(1|h′1, h̄−1) < 1 when f(h1) > f(h′1)
(33)

then one can construct another BS policy β̃ which would be
better : which yields θm(β̃) = θm(β) for all m > 1 and
θ1(β̃) > θ1(β). One can construct a better policy even if there
exists an h1, h

′
1 ∈ H1 and h̄−1 ∈ Πm>1Hm such that

0 ≤ β(1|h1, h̄−1) < β(1|h′1, h̄−1) ≤ 1 when f(h1) > f(h′1).

Proof : We first construct a better policy for the condition
(33). Define a new policy β̃: for all m, let

β̃(m|h) = β(m|h) when h 6=
(
h1, h̄−1

)
or h 6=

(
h′1, h̄−1

)
.

We will pickup constants {εm,1}, {εm,2} such that for all m

β̃(m|h1, h̄−1) = β(m|h1, h̄−1) + εm,1 and

β̃(m|h′1, h̄−1) = β(m|h′1, h̄−1) + εm,2.

and such that the constructed policy β̃ satisfies the require-
ments of the lemma. First we note that, the sum

∑
m εm,j

need to be zero for both j = 1, 2, i.e.,
∑
m εm,j = 0. This is

required because the newly constructed policy should satisfy∑
m β̃(m|h) = 1 for all h ∈ ΠmHm. Let h−1,m represent the

component of h−1 corresponding to mth user. Then since,

θm(β̃) = θm(β) + εm,1f(h̄−1,m)ph1(h1)ph−1(h̄−1)
+εm,2f(h̄−1,m)ph1(h′1)ph−1(h̄−1)

= θm(β) + [εm,1ph1(h1) + εm,2ph1(h′1)]
f(h̄−1,m)ph−1(h̄−1)

to make θm(β) = θ(β̃) we need to set for all m > 1,

εm,1 = −εm,2
ph1(h′1)
ph1(h1)

and hence,

ε1,1 = −
∑
m>1

εm,1 = −
∑
m>1

εm,2
ph1(h′1)
ph1(h1)

= −ε1,2
ph1(h′1)
ph1(h1)

.

Thus,

θ1(β̃) = θ1(β) + ε1,1f(h1)ph1(h1)ph−1(h̄−1)
+ε1,2f(h′1)ph1(h′1)ph−1(h̄−1)

= θ1(β) + ε1,1ph−1(h̄−1)ph1(h1) [f(h1)− f(h′1)] > 0

if we set ε1,1 > 0 and because of the following :
• Because ε1,1 > 0, we need

∑
m>1 εm,1 < 0 and thus

need at least one m > 1 such that β(m|h1, h̄−1) > 0.
This is always possible under the hypothesis of the lemma
as other wise,

β(1|h1, h̄−1) = 1 ≥ β(1|h′1, h̄−1)

and hence contradicts the hypothesis.
• ε1,2 < 0 and hence we need β(1|h′1, h̄−1) > 0, which is

also true because of the hypothesis.
The above two reasons are required to ensure the basic
necessary of the policy : 0 ≤ β̃(m|h) ≤ 1.

The maximum value of ε1,1 is easily seen to be :∑
m>1

min
{
β(m|h1, h̄−1), 1− β(m|h′1, h̄−1)

}
.

The last condition can also be taken care in a similar way. If for
example, if there exists an h1, h

′
1 ∈ H1 and h̄−1 ∈ Πm>1Hm

such that

0 ≤ β(1|h1, h̄−1) < β(1|h′1, h̄−1) = 1 when f(h1) > f(h′1),

then for all m > 1 β(m|h′1, h̄−1) = 0, there exists at least
one m̄ > 1 for which β(m̄|h1, h̄−1) > 0. Then one can chose
ε1,1

ph1 (h1)

ph1 (h′1) = −ε1,2 = εm̄,2 = −εm̄,1
ph1 (h1)

ph1 (h′1) and rest 0 with

0 < εm̄,2 < min
{
β(m̄|h1, h̄−1), (1− β(1|h1, h̄−1))

ph1(h1)
ph1(h′1)

}
.

�
Proof of Lemma 2: As in Lemma 1, for any µ if there exists
a β∗µ which satisfies :

β∗µ(1|s) = 1{dΓα(θ1(µ,β∗µ))f(s1)>dΓα(θ2(µ,β∗µ))f(s2)}
then it maximizes (12). Define the following for mobile 1,

µδ1(h1,i|h1,i′) =

 1{i=i′} if i′ 6= i∗

δ if i = i∗ − 1 and i′ = i∗

1− δ if i′ = i = i∗,

where i∗ is the maximum i satisfying N.2. Define,

θlow := Eh

[
f(h1)β∗(1|m)1{f(h1)≤f(h1,i∗}

]
.

Mobile 1 can deviate unilaterally from the truth revealing
strategy using µδ1 and increase its truth revealing utility θαc1 to
a higher utility UATA1 ≥ θαc1 + δf(hi∗)− θlow, whenever the
following conditions hold :

δf(hi∗) > θlow,

dΓα (θαc1 )− dΓα (θαc1 + δf(h1,i∗−1)) <
η1

f(h1,i∗−1)
and dΓα (θαc2 − δumax2 )− dΓα (θαc2 ) < η2 with

umax2 := max
h2∈H2

f(h2)
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with η1 + η2f(h2) < η for all h2 ∈ H2. This is because with
the above choice of δ, the mobile 1, as in cooperative case,
will grab the channel with signal s1 = h1,i∗−1 because,
• the corresponding ASA utility

UASA1 ≤ θαc1 + δf(h1,i∗−1),

• for every α, the function dΓα(.) is decreasing in its
argument and hence

dΓα(UASA1 )f(h1,i∗−1)
≥ dΓα(θαc1 + δf(h1,i∗−1))f(h1,i∗−1)
≥ dΓα(θαc1 )f(h1,i∗−1)− η1

≥ dΓα(θαc2 )f(h2)− η1 + η

≥ dΓα(θαc2 − δumax2 )f(h2)− η1 + η − η2f(h2)
> dΓα(θ̃2(β∗))f(h2) for all h2 ∈ H2,

with θ̃2(β∗) = UATA2 (µδ, β∗µδ) representing the new
lower utility of the mobile 2, reduced because of the
noncooperation of the mobile 1, by an amount not more
than δumax2 . �

Lemma 4: The function h̄m(Θ) is continuously differen-
tiable and the function ¯̂

h(Θ) is locally Lipschitz, both w.r.t. Θ
for every m.
Proof : The result is implied for both the robust policies, if
we prove the differentiability of the following functions:

ψm(Θ) := Es [φαmI
α
m(Φα,Θ)]

ψ̂m(Θ) := Es [r̂αmI
α
m(Φα,Θ)]

By independence of channel states {hm} across the mobiles,

ψm(Θ) = Es [φαm(sm, θm)Iαm(Φα,Θ)]
= Esm [φαm(sm, θm)Πj 6=m Pr(Aj(rsm,Θ))]

where

Aj(rsm,Θ) :=
{
rsj : rsj ≤

(
θj − θαcj

)
∆+

(rsm − (θm − θαcm )∆)
(
θj + dj
θm + dm

)α}
.

Note in the definition of the sets Aj , the flag 1{φαm>0}
is dropped, as for the samples with the flag equal to 0,
integrand would any way be zero. The first part of the
lemma is proved by BCT if we show that the functions
{Pr(Aj(sm,Θ))}j 6=m and φαm(sm, θm) are continuously dif-
ferentiable (w.r.t. Θ) with uniformly bounded derivatives for
almost all sm. This is immediately evident for φαm. The same
holds for {Pr(Aj(sm,Θ))}j 6=m by assumption A.3 as,

∂ Pr(Aj(rsm,Θ))
∂θl

= gsj (κ)
dκ(rsm,Θ)

dθl
(34)

κ(rsm,Θ) = (rsm − (θm − θαcm )∆)
(
θj + dj
θm + dm

)α
+
(
θj − θαcj

)
∆

for l = m, j, where gsj is the (bounded) density of signaled
rates rsj . Note in the above that the continuous derivative
dκ/dθl will also be uniformly bounded for all Θ coming from
a compact set, because of boundedness of f , i.e., of rsm.

Easy to see that r̂αm(rsm, θm)− r̂αm(rsm, θ
′
m) ≤ ∆ |θm − θ′m|.

Hence, with Cf representing the upper bound on function f ,

ψ̂α(Θ)− ψ̂α(Θ′)
= Es [(r̂αm(rsm, θm)− r̂αm(rsm, θ

′
m)) Iαm(Φα,Θ)]

+Es [r̂αm(rsm, θ
′
m) (Iαm(Φα,Θ)− Iαm(Φα,Θ′))]

≤ ∆|θi − θ′i|Eh [Iαm(Φα,Θ)]
+CfEs |Iαm(Φα,Θ)− Iαm(Φα,Θ′)| .

The lemma follows from the uniform boundedness of the
derivative in (34) and the mean value theorem. �

APPENDIX C : REMARKS ON CHOICE OF UTILITY :

Even if a mobile signals more than its true value and the
BS attempts to transmit at that higher transmitted rate, the
actual rate at which the transmission takes place will still be
f(hm). This is reasonable given the following observations.
The reported channel is usually subject to estimation errors
and delays, an aspect that we do not consider explicitly in this
paper. To address this issue, the BS employs a rate-less code,
i.e., starts at an aggressive modulation and coding rate, gets
feedback from the mobile after each transmission, and stops
as soon as sufficient number of redundant bits are received to
meet the decoding requirements. This incremental redundancy
technique supported by hybrid ARQ is already implemented in
the aforementioned standards (3GPP HSDPA and 1xEV-DO).
Then a rate close to the true utility may be achieved.


