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Abstract— In this paper we study an LMS-DFE. We use the
ODE framework to show that the LMS-DFE attractors are close
to the true DFE Wiener filter (designed considering the decision
errors) at high SNR. Therefore, via LMS one can obtain a
computationally efficient way to obtain the true DFE Wiener
filter under high SNR. We also provide examples to show that
the DFE filter so obtained can significantly outperform the usual
DFE Wiener filter (designed assuming perfect decisions) at all
practical SNRs. In fact, the performance improvement is very
significant even at high SNRs (up to 50%), where the popular
Wiener filter designed with perfect decisions, is believed to be
closer to the optimal one.

Keywords : ODE approximation, LMS-DFE, Convergence

analysis.

I. INTRODUCTION

In any communication system a channel equalizer is

an important component. Equalizers are usually FIR filters

designed either as Linear Equalizers (LE) or as Decision

Feedback Equalizers (DFE) (Figure 1). One often uses the

mean square error (MSE) criterion proposed by Widrow

([21]) to obtain an equalizer. A minimum MSE (MMSE)

DFE usually outperforms the MMSE LE ([1], [15], [17]) and

has interesting optimality properties ([4]). Thus it is preferred

over LE.

A MMSE equalizer (also called the Wiener filter) is given

by,

θ∗ = arg min
θ

E
[

θtX − s
]2

, (1)

where the vector X includes channel outputs and decisions

(decisions are included only in case of a DFE) while s
represents the channel input and θt is the transpose of vector

θ.
In case of an LE it is straightforward to perform the above

optimization and the Wiener filter is given by,

θ∗ = R−1
XXRXs, (2)

where RXX = E
[

XXt
]

is the auto-correlation matrix of the

channel outputs and RXs = E [Xs] is the cross correlation

vector.

For a DFE, vector X includes previous decisions along

with channel outputs and hence its distribution depends upon

the parameter θ. Thus, it is very difficult to directly compute

a Wiener filter. One gets around this problem by assuming

perfect decisions (see, e.g., [5], [11], [19]) and design a
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Wiener filter (which is once again given by (2), the only

difference being the vector X now includes channel outputs

as well as the previous inputs). For convenience, for the rest

of the paper, we will call it IDFE (Ideal DFE). The IDFE

often outperforms the Linear Wiener filter significantly ([1],

[15], [17]). But it is generally believed that the true optimal

DFE Wiener filter (considering the decision errors, we will

call it simply DFE Wiener filter) can significantly outperform

even this. However, so far the performance of such a filter

is not known.

One way to solve this problem is to replace the feedback

filter at the receiver by a precoder at the transmitter ([4],

[15]). This way one can indeed obtain the optimal filter but

this requires the knowledge of the channel at the transmitter.

However for wireless channels, which are time varying, this

is often not an attractive solution ([11] [15]). Some research

has been done to deal with the decision errors. Either the

distribution of the decisions errors were approximated in

designing an MSE optimal filter (IDFE being one such

example) or some other appropriate criterion was used to

get the optimal filter considering the errors in decisions.

For example, in [20], authors approximated the errors in

decisions with an additive noise uncorrelated with the input

data and AWGN and obtained the DFE Wiener filter. But

as is stated in the paper this approximation is not realistic.

In [6], the authors obtain an H∞ optimal DFE considering

decision errors. However it is not compared to the DFE

Wiener filter.

We address this problem directly via the iterative algo-

rithm, LMS (Least Mean Square). LMS is a very popular,

easily implementable and a widely used iterative algorithm

([2], [8], [17]) usually designed to converge to the MMSE

solution. It has also been used to implement the DFE (called

LMS-DFE); see [11], [15]. However LMS is only used

as a convenient tool to implement the DFE (this is also

used for tracking purpose but that aspect is not considered

here) and the performance of the LMS-DFE has not been

compared with the DFE Wiener filter. We show that the

LMS-DFE converges to a limit that is close to the DFE

Wiener filter at high SNRs. In fact, we show using examples

that an LMS-DFE attractor will be close to the DFE Wiener

filter at practical SNRs itself. Further, these examples show

that unlike what is commonly believed ([19]) the IDFE

even under high SNR conditions can have much worse

performance.

LMS is given by the following iteration,

θk+1 = θk − µkXk

(

Xt
kθk − sk

)

, (3)

where {µk} is a decreasing sequence. In case of an LE there
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are many results showing the convergence of LMS to the

Wiener filter, θ∗ ([2], [12]). Hence it is known that for an

LE, the performance of the limiting LMS is not degraded

much with respect to the Wiener filter as the length of the

training sequence increases. For a DFE, such results are not

available.

Performance analysis of any DFE is complicated because

of the feedback loop. Existence of a hard decoder inside the

feedback loop, makes the study all the more difficult (DFE

mainly exploits finite alphabet structure of the hard decoder

output ([6], [11]) and hence one cannot get away with the

hard decoder). One can study attractors of an adaptive algo-

rithm by first approximating its trajectory with the solution of

an ODE and then studying the ODE’s attractors. We follow

the same approach for analyzing LMS-DFE. Trajectory of the

LMS-DFE algorithm without a hard decoder in the feedback

loop has been approximated by an ODE in [10]. Beneveniste

et al. ([2]) have shown the ODE approximation of the LMS-

DFE with a hard decoder inside the feedback loop. However

the ODE obtained by them does not give clear insights

into the behavior of the LMS-DFE algorithm. Furthermore,

they do not relate the attractors of this ODE to the DFE

Wiener filter. We show the existence of a unique stationary

distribution for the vector X for every θ and using this

stationary distribution we equate the ODE obtained in [2]

with a more tractable ODE,

�

θ (t) = −Eθ

[

∇θ

[

θtX − s
]2
]

. (4)

The attractors of the LMS-DFE will be the zeros of the RHS

of the above ODE while the DFE Wiener filter will be a zero

of the gradient (if it exists) of the RHS of equation (1). Under

certain conditions these two terms can be related by,

∇θEθ

[

[

θtX − s
]2
]

= Eθ

[

∇θ

[

θtX − s
]2
]

+

E
[

[

θtX − s
]2

∇θπθ

]

, (5)

where πθ is the stationary density of X when the DFE θ is

used. One can expect the LMS-DFE attractors to be close

to the DFE Wiener filter if the second term in the RHS

of (5) is close to zero. We show in this paper that it is

true at high SNRs for a decoder that is slightly perturbed

from the original one. The perturbation of the decoder is

required because with the original decoder πθ may not be

differentiable. We show that the DFE Wiener filter and an

LMS-DFE attractor of this perturbed decoder converge to

that of the original hard decoder as the level of perturbation

tends to zero. Then we analyze this perturbed decoder and

show that the LMS-DFE attractors of this decoder are close

to the DFE Wiener filters of this decoder at high SNR.

The paper is organized as follows. In Section II we

define the model and specify our assumptions. In Section

III we show that the trajectory of the LMS-DFE can be

approximated by the solution of an Ordinary Differential

Equation (ODE). We use this ODE for further analysis of

the LMS algorithm. We study the differentiability of the

stationary distribution of the system in Section IV. In Section

Decoder
+

+θf

θb

ukZ
sk

nk

sk̂Channel

Q(.)

Fig. 1. Block Diagram of Decision Feedback Equalizer (DFE)

V we show that the LMS attractors are close to that of the

DFE Wiener filters at high SNRs. Section VI provides some

examples while Section VII concludes the paper. Proofs are

contained in the appendices.

II. THE MODEL AND NOTATIONS

We consider the system shown in Figure 1. Inputs {sk} en-

ter a time invariant finite impulse response channel {zl}
L−1
l=0

and are corrupted by additive white Gaussian noise {nk}
with variance σ2. The channel output, uk, at any time k, is

given by,

uk =
L−1
∑

l=0

sk−lzl + nk.

We use a DFE with forward filter θf and feedback filter

θb. The decisions are made by hard decoding. We make

the following assumptions (some of these can be easily

extended) and notations.

• We assume BPSK modulation, i.e., inputs sk ∈
{+1,−1}.

• Sequences {sk} and {nk} are IID (independent, iden-

tically distributed) and independent of each other. The

inputs sk are uniformly distributed.

• fN (y) is the Nf dimensional standard IID Gaussian

density,

fN (y) =
1

(2π)Nf /2
exp−

|y|2

2 .

• The equalizer forward filter is given by {θfl
}

Nf−1
l=0 ,

while the feedback filter is given by {θbl
}Nb

l=1. Also,

NL
△
=Nf+L−1.

• The decisions are obtained after hard decoding. Hence

decision ŝk is given by,

ŝk = Q





Nf−1
∑

l=0

θf luk−l +

Nb
∑

l=1

θblŝk−l



 , where

Q(x) :=

{

+1 if x ≥ 0,
−1 if x < 0.

(6)
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• The following vector notations are used throughout.

Sk
△
= [ sk sk−1 . . sk−NL+1 ]T ,

Nk
△
= [ nk nk−1 . . nk−Nf +1 ]T ,

Uk
△
= [ uk uk−1 . . uk−Nf +1 ]T ,

Ŝk
△
= [ ŝk ŝk−1 . . ŝk−Nb+1 ]T ,

Xk
△
= [ UT

k Ŝ
T

k−1
]T ,

Gk
△
= [ ST

k Ŝ
T

k−1 NT
k

]T ,

θf
△
= [ θf 0 θf 1 . . θf Nf−1 ]T ,

θb
△
= [ θb1 θb2 . . θbNb

]T ,

θ
△
= [ θf

T θb
T ]T .

• With S := {+1,−1}, for a fixed θ, Gk is a Markov

chain taking values in SNL×SNb×RNf , where R is the

set of real numbers. We represent throughout this paper

the current and previous state values of this Markov

chain by the ordered pairs (i, y), (j, y′) respectively.

Here i, j are taking values from the discrete part of the

state space, SNL × SNb , while y, y′ are taking values

in RNf .

• For any vector, x, we use xl to represent its

lth component. xk
l , l ≤ k, represents the vector

[

xk xk−1 · · · xl

]T
.

• Zθ = {zθl}
NL−1
l=0 represents the convolution of the

channel {zl}and forward filter θf .

• The input to the hard decoder for a given state of the

Markov chain is represented by,

eθ(i, y) :=

NL−1
∑

l=0

zθlsk−l +

Nf
∑

l=0

θf lnk−l +

Nb
∑

l=1

θblŝk−l.

Note that ŝk−1 = Q(eθ(j, y
′)).

• The equalizer output without noise, eθ(i, 0) 6= 0 for all

values of i at the LMS attractor. Without this assumption

the LMS algorithm makes more errors than the correct

decisions.

• B(θ, δ), B̄(θ, δ) are the open and closed balls respec-

tively with center θ and radius δ.

One can easily extend this theory to the case when {sk}
belongs to any finite alphabet with arbitary distribution.

Currently the theory to follow, considers an optimal equalizer

for delay 0. However, the entire theory will go through for

any arbitrary delay. Indeed in Section VI, an example with

an optimal equalizer for delay 1, is presented.

III. LMS-DFE

As mentioned earlier, the DFE Wiener filter, given by (1),

is difficult to compute. The difficulty is in computation of the

distribution of the decisions. It is usual practice to assume

perfect decisions (i.e. Ŝk = Sk
k−Nb+1) and design a Wiener

filter, which we called as IDFE. The IDFE given by (2) is

reproduced here for convenience,

θIDFE =
(

E
[

XkXk
t
])−1

E
[

Xksk

]

.

This computation may be expensive because of matrix inver-

sion and one uses the famous iterative algorithm LMS (3) as

an alternative. Our claim is that in case of a DFE, apart

from being computationally efficient the LMS algorithm

also outperforms the popularly used Wiener filter, IDFE,

θIDFE . We achieve this goal by showing that the LMS-

DFE attractors are close to that of the DFE Wiener filter

(1) at least for high SNRs (later in Section VI we show via

examples that this covers the practically used SNRs).

We first show the following useful result, which will also

be used later.

Theorem 1: For every θ, Markov chain {Gk} has a

unique stationary probability distribution Πθ with density

πθ (with respect to the measure fN (y)dy). This stationary

distribution (density) is continuous with respect to θ in total

variation norm (L1 norm). Also the MSE, the cost in the

RHS of (1), under stationarity is continuous in θ.

Proof : Please refer to Appendix A.

Because of the continuity of MSE as a function of θ, by

confining our search to a compact region, we obtain the

existence of the Wiener filter. Next we consider the LMS

attractors. For this we first approximate the trajectory of the

LMS-DFE with an ODE and then study the ODE’s attractors.

DFE with a hard decoder has been approximated by an

ODE in [2]. We start our LMS-DFE analysis with this ODE.

Towards this goal, as a first step the LMS-DFE algorithm

(3) is rewritten to fit in the setup of [2], p. 276,

ξ
k

:=
[

St
k Xt

k

]t
,

H(θ, ξ) := Xt
(

θtX − s
)

,

θk = θk−1 − µk−1H(θk−1, ξk).

Let θ(t, t0, a) denote the solution of the following ODE

with initial condition θ(t0) = a,

�

θ (t) = −h(θ) where

h(θ) = lim
n→∞

Pn
θ Hθ(j, y

′), (7)

where Pn
θ is the n-step transition function of the Markov

chain Gk with DFE θ, and Pn
θ Hθ(j, y

′) is the expecta-

tion of the function H(θ, ξ) using the conditional measure

Pn
θ (.|j, y′) (note that ξk is a fixed function of Gk). The above

limit will be independent of the initial condition (j, y′) ([2],

p. 252).

It is easy to see that the LMS algorithm satisfies all the

required hypothesis of Theorem 13, p. 278, [2] and hence

one can approximate its trajectory on any finite time scale

with the solution of the ODE (7). We reproduce the precise

result below.

For any initial condition θ0 and for any finite time T, with

t(r) :=
∑r

k=0 µk, m(n, T ) := maxr≥n{t(r) − t(n) ≤ T}

sup
{n≤r≤m(n,T )}

|θr − θ (t(r), t(n), θ0)|
p
→ 0

as n → ∞, whenever
∑

k µ1+δ
k < ∞ for some δ < 0.5,

µk ≤ 1 for all k and if lim infk
µk+r

k > 0 for every integer

r.
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We will show below that the RHS of the ODE (7) is same

as that of the ODE (4) and hence equate the ODE (7) with

more tractable ODE (4).

For each θ, Gk is a Markov chain taking values in a

general state space. Its transition function is given by (the

definitions of δ̃(., .), δ̄(., .) and details are given in [9]),

Pθ(i, y ∈ B|j, y′) = δ̃(i, j)δ̄(y, y′)P (i1)P (y
1
∈ By′)

Pθ(iNL
|j, y′), (8)

The only component of the transition function (8) that

depends upon θ is, Pθ(iNL
|j, y′) given by,

Pθ(iNL
= 1|j, y′) = 1{eθ(j,y′)>0}.

By IID nature of the input sk and noise nk one can choose

n0 large enough such that the n step transition function

Pn
θ (i, y ∈ B|j, y′) is absolutely continuous with respect to

fN (y)dy for all n ≥ n0. Further, n0 is chosen bigger than

NL to ensure Sk, Sk−n0
are independent. Fix one such n.

The corresponding density (Raydon-Nikodyn derivative)

pn
θ

(

i, y|j, y′
)

=
∑

l

∫

v

P (Sk+n
k+1 )Πn

q=1Pθ(ŝk+n−q|x(q))fN (v) dv, (9)

where (the following notations are used throughout),

l := (Sk+n−NL

k+1 , Ŝ
k+n−1−Nb

k ),

v := N
k+n−Nf

k+1 ,

x(q) :=
(

Sk+n−q
k+n−q−NL+1, Ŝ

k+n−q−1

k+n−q−Nb
, σNk+n−q

k+n−q−Nf +1

)

.

It is easy to see that the density of the n−step transition

function pn
θ (i, y|j, y′) ≤ 1, for all values of i, y , j, y′. Using

Theorem 1, boundedness of the function H and Lemma 1 in

Appendix E of [9], we get (for any initial condition (j, y′)),

h(θ) = lim
n→∞

Pn
θ Hθ(j, y

′) = ΠθH(θ, ξ),

= Eθ

[

∇θ

[

θtX − s
]2
]

.

Thus the trajectory of the LMS-DFE can be approximated in

any finite time by the solution of the ODE (4), reproduced

here for convenience,

�

θ (t) = −Eθ

[

∇θ

[

θtX − s
]2
]

.

One can expect that the attractors of the above ODE will

be LMS-DFE attractors. The ODE attractors will be zeros

of the RHS of the above equation. While the DFE Wiener

filters will be the zeros of the gradient (if it exists) of the

MSE (the cost in the RHS of (1)). Under certain conditions

(which will be discussed in Section V) we get,

∇θEθ

[

[

θtX − s
]2
]

= Eθ

[

∇θ

[

θtX − s
]2
]

+
∑

S,Ŝ

EfN

[

[

θtX − s
]2

∇θπθ

]

,

where ∇θπθ represents the gradient of the stationary density.

One can easily see that the LMS-DFE attractors will exactly

be (may be close to) the DFE Wiener filters if in addition

the gradient of the stationary density equals zero (is close to

zero). This shows that to get the connection between LMS-

DFE attractors and the DFE Wiener filter one needs to look

at the differentiability of the stationary density.

IV. DIFFERENTIABILITY OF THE STATIONARY DENSITY

WITH RESPECT TO θ.

One can see from equation (9) that it is very difficult

to comment on differentiability of the n-step transition

density itself. It will be all the more difficult to talk about

differentiability of the stationary density. To proceed further

with the analysis, we perturb the hard decoder Q such that the

n-step transition density and the stationary density become

differentiable. Next we show that the LMS attractors and

the DFE Wiener filter of this perturbed decoder converge to

that of the original decoder as the level of perturbation tends

to zero. Finally we study the DFE using these perturbed

decoders in Section V.

We alter the decoder function Q(x) to,

Qǫ0(x) =










1 with prob 1 x > ǫ0
−1 with prob 1 x < −ǫ0

1 with prob 1
2

[

cos
(

(x−ǫ0)π
2ǫ0

)

+ 1
]

|x| ≤ ǫ0,

where ǫ0 is a small constant. Observe that the perturbed

decoder is also a hard decoder. With the perturbed decoder

Qǫ0(x), the θ dependent component of the transition func-

tion, P ǫ0
θ (iNL

= 1|j, y′), equals

1{|eθ(j,y′)|≤ǫ0}

2

[

cos

(

(eθ(j, y
′) − ǫ0)π

2ǫ0

)

+ 1

]

+1{eθ(j,y′)≥ǫ0}.

The partial derivative,
∂P

ǫ0
θ

(iNL
=1|j,y′)

∂θ exists everywhere

and equals,

−1{|eθ(j,y′)|≤ǫ0}π

4ǫ0
sin

(

(eθ(j, y
′) − ǫ0)π

2ǫ0

)

∂eθ(j, y
′)

∂θ
. (10)

By the uniform upper bound on the derivative (10) and by

the bounded convergence theorem one can see that the n-step

transition density (9) (with n ≥ n0) becomes differentiable

(more details are given in [9]) and equals (using the

notations of equation (9)),

∂pǫ0,n
θ

∂θ

(

i, y|j, y′
)

=

∑

l

∫

v

n
∑

m=1

Πn
q=1

q 6=m
P ǫ0

θ (ŝk+n−q|x(q))
∂P ǫ0

θ (ŝk+n−m|x(m))

∂θ

P (Sk+n
k+1 )fN (v) dv. (11)

For these perturbed decoders we show that the stationary

density also becomes differentiable. Furthermore, we get a

bound on the norm of this gradient using an Implicit function

theorem.
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Theorem 2: For every ǫ0 > 0, for every θ0, the Markov

chain Gk has a unique stationary density (with respect to

Nf dimensional Gaussian IID vector), πǫ0
θ . Also, πǫ0

θ is

continuously differentiable in L2 norm. Furthermore, there

exists a δ > 0, σ2
0 > 0 such that for all θ ∈ B(θ0, δ),

σ2 ≤ σ2
0 ,

∣

∣

∣∇θπ
ǫ0
θ

∣

∣

∣

2

≤

C

(

∑

i

P
(∣

∣

∣St
kZθ + θt

bŜk−1 + θt
fNk

∣

∣

∣ ≤ ǫ0

)

+ σ2

)

for some positive constant C < ∞.

Proof : Please refer to Appendix B.

We conclude this section by showing that the DFE Wiener

filters and the LMS-DFE attractors of the perturbed decoder

converge to that of the original decoder. Let θ∗n and θLMS
n

denote the DFE Wiener filter and LMS-DFE attractor for

perturbation ǫ0n.
Theorem 3: There exists a sequence ǫ0n → 0, θ∗, a DFE

Wiener filter of the original decoder, and θLMS an LMS-

DFE attractor of the original decoder, such that,

θ∗n → θ∗,

θLMS
n → θLMS ,

for any fixed σ2.
Proof : Please refer to Appendix C.

Hence forth, we analyze the perturbed decoder to draw

important conclusions.

V. LMS ATTRACTORS VERSUS WIENER FILTER AT HIGH

SNRS

In this section we would like to understand the connection

between an LMS attractor and a DFE Wiener filter for a

perturbed decoder. Since the former is a zero of RHS of

equation (4) while the later is the zero of the gradient of

the MSE, the cost in RHS of equation (1), we study the

connection between these two.

Fix an ǫ0 > 0. With the error defined by, errθ(Gk) :=
(

sk − eθ(Gk)
)

(note that i defined in notations represents,

(Sk, Ŝk−1), the discrete part of the state value of the Markov

chain, Gk),

∇θEGk(θ)

[

errθ(Gk)2
] a
=

∑

i

∇θEfN

[

errθ(Gk)2πǫ0
θ (Gk)

]

b
=
∑

i

EfN
∇θ

[

errθ(Gk)2πǫ0
θ (Gk)

]

=
∑

i

EfN

[

∇θ

(

errθ(Gk)2
)

πǫ0
θ (Gk)

]

+
∑

i

EfN

[

errθ(Gk)2∇θπ
ǫ0
θ (Gk)

]

= EGk(θ)

[

∇θ

(

errθ(Gk)2
)]

+
∑

i

EfN

[

errθ(Gk)2∇θπ
ǫ0
θ (Gk)

]

.

(12)

Here equality a follows by the existence of the stationary

density πǫ0
θ with respect to the Gaussian measure fN (y)dy.

Equality b follows by Cauchy Schewartz inequality and

bounded convergence theorem, because of the following two

consequences (see in [9]). We have shown in the previous

section that the derivative ∇θπθ, exists in L2 norm and

is bounded uniformly in a neighborhood of θ. Secondly

∇θerrθ(Gk) exists and is bounded uniformly in a neigh-

borhood of θ by an integrable function of only the sample

value of Gk. The above equality (12) is true for any ǫ0 > 0
and for any σ2.

We will show that the DFE Wiener filter will be close to

the limiting LMS-DFE if the second term on the right hand

side of (12) is small.

We have assumed that St
kZθ + θt

bŜk−1 6= 0 at an LMS

attractor. By continuity, we choose an ǫ1 small enough such

that

0 /∈ [St
kZθ + θt

bŜk−1 − ǫ1, S
t
kZθ + θt

bŜk−1 + ǫ1],

for all (Sk, Ŝk−1) and for all θ in a small neighborhood of an

LMS attractor. Choose ǫ0 ≤ ǫ1. By Chebyshev’s inequality,

if 0 /∈ [c− ǫ0, c+ ǫ0] and if n is a Gaussian random variable

with mean zero and variance σ2,

P (|c + n| ≤ ǫ0) ≤ P (|n| ≥ min{|c − ǫ0| , |c + ǫ0|}) → 0

as σ2 → 0. Thus, from Theorem 2, for any fixed ǫ0 ≤ ǫ1,

∣

∣∇θπθ

∣

∣→ 0 as σ2 → 0.

Thus by Cauchy Schewartz inequality as σ2 → 0,

∣

∣∇θEθ

[

errθ(Gk)2
]

− Eθ

[

∇θ

(

errθ(Gk)2
)]∣

∣

=

∣

∣

∣

∣

∣

∑

i

EfN

[

errθ(Gk)2∇θπθ(Gk)
]

∣

∣

∣

∣

∣

→ 0.

Now we show that this implies that the LMS-DFE attrac-

tors will be close to the DFE Wiener filters. In general two

functions f1, f2 can be close to each other at each point, but

their zeros may be far apart, i.e., if x1 is a zero of f1 then

f2(x1) will be close to zero but the zero of f2 closest to x1

may still be far away. It is useful to rule out this possibility

in our scenario. We show this using the following theorem.

Define,

f(θ, σ2) := EGk(θ)

[

∇θ

(

errθ(Gk)2
)]

and

g(θ, σ2, η) := f(θ, σ2) + η.

Theorem 4: There exists an ǫ2 with 0 < ǫ2 ≤ ǫ1 such

that for any ǫ0 ≤ ǫ2, there exists a continuous function

q : B(0, δ) ⊂ R×R 7→ RNf , such that,

g
(

q
(

σ2, η
)

, σ2, η
)

= 0.
Proof : The proof is given in the technical report [9].

For any fixed ǫ0 ≤ ǫ2, the gradient of the stationary

density, near an LMS attractor, is tending to zero as σ2 → 0.
Thus there exists a small enough σ0 such that for all σ2 ≤ σ2

0 ,

∣

∣

(

σ2, ∇θEθerrθ(Gk)2 − Eθ∇θerrθ(Gk)2
)∣

∣ ≤ δ.
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For these σ2 ≤ σ2
0 , the LMS attractors, q(σ2, 0),

will be close to that of the Wiener filters,

q
(

σ2,
(

∇θEθerrθ(Gk)2 − Eθ∇θerrθ(Gk)2
))

.

It is clear from the above Theorem that at high SNRs

for very small ǫ0 (close to the practical decoder), the LMS

attractor is close to the DFE Wiener filter. Since, IDFE

θIDFE , is designed with an improper assumption (like

perfect decisions), there is a good chance of these filters to

be inefficient in comparison to the LMS attractors. We will

see this in the examples of the next section.

VI. EXAMPLES

In this section we reinforce the theory developed so far

using some examples. We take a few examples of channels

obtained from previous studies and show the proximity of

the DFE Wiener filter and the LMS attractor for practical

values of SNRs. We also show that in many cases, the IDFE

performs much worse than the DFE Wiener filter and the

LMS attractor. Probability of Error (Pe) is used to compare

the various equalizers. We used Monte-Carlo simulations to

estimate Pe using one million samples of data.

DFE Wiener filter, θ∗ for these examples was obtained

by running a gradient descent type of algorithm on the cost

function (1) itself where the gradient was approximated at

each point by finite difference approximation via a large

number of samples. Details are provided in [9].

In Table 1, we have used an interesting example (signifi-

cant part of the raised cosine channel of [7], p. 199) to show

that the LMS attractors will be very close to the Wiener filters

at practical SNRs. Its coefficients are provided in the table.

We also provide Pe in this table. One can see an improvement

up to 25% in Pe in LMS in comparison with the IDFE.

In fact this improvement is more at high SNRs (where the

IDFE is assumed to have lesser problem because of error

propagation). We can also see that the Pe of the DFE Wiener

filter is very close to that of the LMS attractor.

We have developed the entire theory for an equalizer

with delay zero. One can easily extend these results to the

equalizer with any arbitrary delay. In fact, the channel in

Table 2 is one such example. Here the equalizer with delay 1

will be the best one. The channel of example 2 is very widely

used (see p. 414 of [8], p. 165 of [7]) We can see once again

a huge improvement (up to 50%) in Pe of LMS with respect

to θIDFE . We can also see that the LMS attractors are very

close to the DFE Wiener filter, θ∗ for all practical SNRs.

VII. CONCLUSIONS

Obtaining MSE optimal filter for DFE is a long-standing

problem. Precoding provides one practical solution but can

at best be used for slowly varying channels. Otherwise one

commonly uses the optimal Wiener filter obtained assuming

perfect past decisions.

In this paper we show via ODE analysis, that LMS itself

can provide the optimal Wiener filter. We show it by proving

that the attractors of the LMS are close to that of the optimal

DFE at high SNRs. Proofs become nontrivial partly because

of the non-differentiability of the hard decoder. Next, we

TABLE I

EXAMPLE 1 : COMPARISON OF VARIOUS EQUALIZERS CHANNEL =

[0.45 0.59 0.43 0.11 − 0.22 − 0.32 − 0.27 0 0.11 0.11]

Nf = 5 Nb = 10

SNR θ
∗

θIDFE θLMS

M Pe Dist M Pe Dist M Pe

S from S from S
E θ

∗ E θ
∗ E

16.7 .21 .024 1.1 .26 .027 .035 .21 .024

14.5 .38 .089 1.7 .64 .10 .037 .38 .091

12.5 .49 .150 1.6 .94 .184 .027 .49 .151

11.5 .54 .176 1.5 1.0 .215 .023 .54 .177

4.5 .81 .311 .64 .94 .33 .021 .80 .311

1.5 .87 .353 .37 .93 .364 .023 .87 .353

TABLE II

EXAMPLE 2: COMPARISON OF VARIOUS EQUALIZERS Nf = 2 Nb = 2

CHANNEL = [ 0.41 .82 0.41]

SNR θ
∗

θIDFE θLMS

M Pe Dist M Pe Dist M Pe

S from S from S
E θ

∗ E θ
∗ E

16.7 .11 .0027 .13 .12 .0035 .014 .11 .0028

14.5 .16 .01 .26 .18 .015 .021 .16 .011

12.5 .23 .03 .35 .26 .037 .025 .23 .032

11.5 .27 .047 .40 .30 .055 .031 .28 .050

4.5 .54 .184 .43 .59 .2 .009 .54 .184

1.5 .65 .235 .32 .69 .25 .008 .65 .235

show by examples that the SNRs need not be very high, i.e.,

in fact practically used SNRs can be sufficient. We also show

that the BER of the commonly used Wiener filter, designed

assuming perfect past decisions, can be up to 50% higher

than the optimal Wiener filter even at high SNRs (where the

former is believed to be closer to the later).

Of course, one advantage of LMS over Precoding is that it

can be used at the receiver and has tracking capability when

the channel is time varying. In future we will be studying

the tracking performance of LMS-DFE.

APPENDIX A

Proof of Theorem 1 : We provide rough sketch of the proof

here. The detailed proof is in [9].

We prove the existence and continuity of the stationary

distribution of the Markov chain, Gk, using the results on

Markov chains and Stochastic stability ([14]).

For any θ0 and for any ǫ > 0,

M1
△
= min

Sk,Ŝk−1
,θ∈B̄(θ

0
,ǫ)

ZθtSk + θt
bŜk−1.

Then for the decoder (6),
{

Nk : min
θ∈B̄(θ

0
,ǫ)

θt
fNk > −M1

}

(13)

is a subset of noise vectors, for which the decoder outputs 1

for any input, for any past decisions and for any θ ∈ B̄(θ0, ǫ).
By continuity of the map (θ,Nk) 7→ θf

tNk, if required one
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can choose a smaller δ ≤ ǫ and an open set C such that

for all θ ∈ B̄(θ0, δ), for all inputs, past decisions and for

all noise vectors in C the decoder outputs 1, i.e., for any

θ ∈ B̄(θ0, δ),

P (Ŝk = [ 1 . . 1 ]) ≥ P
(

∩k
l=k−Nb−1{N l ∈ C}

)

,

≥ P (Nk
k−Nb−Nf +1 ∈ C1 × C2),

where sets C1 ∈ RNb , C2 ∈ RNf are selected such that their

respective Lesbague measures are not equal to zero and such

that the open set,

∩k
l=k−Nb−1{N l ∈ C} ⊃ C1 × C2.

Define G := [ 1 . . 1 ] × [ 1 . . 1 ] × RNf . For

any n0 > max{Nb + Nf + 1, NL}, for any Gk−n0
, for any

E = [ 1 . . 1 ] × [ 1 . . 1 ] × BE ⊂ G, and for any

θ ∈ B̄(θ0, δ),

P (Gk ∈ E|Gk−n0
) ≥ αP (Nk ∈ BE ∩ C2)

where α := P (Sk = [ 1 . . 1 ])P (N
k−Nf

k−Nb+Nf
∈ C1).

Thus for any θ ∈ B̄(θ0, δ), and for any initial condition

Gk−n0
, the n0-step conditional measure is majorized :

Pθ(Gk ∈ E|Gk−n0
) ≥ νn0

(E ∩ G),

where the measure νn0
() is defined by,

νn0
([ 1 . . 1 ] × [ 1 . . 1 ] × BE) :=

αP (Nk ∈ BE ∩ C2).

Thus the entire state space SNL ×SNb ×RNf is νn0
−small

(hence also a petite set) for all the Markov chains, {Gk},

parameterized by θ ∈ B̄(θ0, δ). Thus using Proposition

9.1.7, p. 206 and Theorem 10.01, p. 230, [14] one obtains

the existence and uniqueness of the probability stationary

distribution, Πθ for each θ.

Define ρ = 1 − νn0
(G). Further, by Theorem 16.2.4 in

page 392 of [14], for all θ ∈ B̄(θ0, δ), we get the following

uniform convergence in total variation norm,
∣

∣

∣Pn
θ (.|j, y′) − Πθ

∣

∣

∣ ≤ ρ
n

n0 for all initial conditions (j, y′).

This along with the continuity of transition function, estab-

lishes the continuity of the stationary distribution Πθ under

total variation norm at θ0 (see [9]).

The stationary distribution, Πθ, has discrete and con-

tinuous components. The continuous component of Πθ, is

absolutely continuous with respect to the measure fN (y)dy
for every θ. Hence the stationary density, πθ for Gk exists.

Continuity in total variation norm of the stationary distribu-

tion implies the continuity of the stationary densities in L1

norm (Theorem 8.2, p. 110, [18]). It is also easy to see that

the stationary density πθ(i, y) ≤ 1 for all (i, y).
MSE, the cost in RHS of equation (1), can be rewritten

as,

Eθ

[

θtX − s
]2

=
∑

S,Ŝ

EfN

[

(

θtX − s
)2

πθ

]

.

Lemma 1 in Appendix E of the technical report [9], now

gives the continuity of the MSE with respect to θ. �

APPENDIX B

Proof of Theorem 2 : We provide rough sketch of the proof

here. The detailed proof is in [9].

The existence and continuity of the stationary density πǫ0
θ

for every ǫ0 is achieved in a similar way as in the proof

of the Theorem 1. We leave superscript ǫ0 to simplify the

notation in the rest of the proof.

We use an implicit function theorem to prove differentia-

bility. For that, we will need to prove the following results.

Consider the Banach spaces :

• X = RNf +Nb with Euclidean norm.

• Y = {g : SNL+Nb × X → R; |g| < ∞} with L2 norm

defined by,

|g| :=
1

|S|

∑

i

(

∫

y

∣

∣g(i, y)
∣

∣

2
fN (y)dy

)1/2

,

where |S| represents the cardinality of set SNL+Nb .

Fix n0 > max{Nf +Nb, NL}. We consider the following

continuous map f : X × Y 7→ Y ,

f(θ, π) = g(θ, π) − π +





∑

j

∫

y′

π(j, y′)fN (y′)dy′ − 1



 ,

where,

g(θ, π)(i, y) :=
∑

j

∫

y′

pn0

θ (i, y|j, y′)π(j, y′)fN (y′)dy′.

Observe that (θ, πθ) is a zero of f .

In the following we prove that f is differentiable with

respect to π and the derivative is a homeomorphism.

Note that the above function is affine linear in the second

variable π ∈ Y and hence,

∂f

∂π

∣

∣

∣

∣

(θ,π̂)

(π) = g(θ, π) − π +





∑

j

∫

y′

π(j, y
′)fN (y′)dy′



 .

We have shown that this map is one-one through contradic-

tion (the details are in [9]). Also this partial derivative

equals I −T , where T is a compact operator (see [9]). Then

by Riesz-Schauder Theory (Theorem 1, p. 283, [22]), the fact

that ∂f
∂π is one-one implies that it is onto also and further that

the inverse is bounded. Hence it is a linear homeomorphism.

Furthermore, the mapping (σ2, θ) 7→

∣

∣

∣

∣

∣

[

∂f
∂π

∣

∣

∣

(θ,πθ)

]−1
∣

∣

∣

∣

∣

is

continuous (see [9]). Thus one can get the following uniform

upper bound,
∣

∣

∣

∣

∣

∣

[

∂f

∂π

∣

∣

∣

∣

(θ,πθ)

]−1
∣

∣

∣

∣

∣

∣

≤ C0 for all θ ∈ B(θ0, δ), σ
2 ≤ σ2

0 , (14)

for some δ, σ2
0 .

From (11), by bounded convergence theorem, (see [9]),

∂f

∂θ

∣

∣

∣

∣

θ,π

(i, y) =
∑

j

∫

y′

∂pn
θ

∂θ

(

i, y|j, y′
)

π(j, y′)fN (y′)dy′
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Also (see [9]),
∣

∣

∣

∣

∣

∂f

∂θ

∣

∣

∣

∣

(θ,πθ)

∣

∣

∣

∣

∣

2

≤C1

∑

i

P
(∣

∣

∣St
kZθ + θt

bŜk−1 + θt
fNk

∣

∣

∣ ≤ ǫ0

)

+C2σ
2, (15)

where C1, C2 are constants independent of θ, σ2.

Using similar logic one can easily show that both the

partial derivatives of f are continuous in (θ, π). Hence

by Implicit function theorem on Banach spaces, (Theorem

3.1.10 and corollary 3.1.11, p. 115, [3]), the map θ 7→ πθ is

continuously differentiable and the derivative is given by,

∇θπθ = −

[

∂f

∂π

∣

∣

∣

∣

(θ,πθ)

]−1
∂f

∂θ

∣

∣

∣

∣

(θ,πθ)

.

The theorem follows by upper bounding this gradient using

the upper bounds (14), (15). �

APPENDIX C

Proof of Theorem 3 : Let

f1(θ, ǫ0) := Eǫ0
Gk(θ)

[

errθ(Gk)2
]

,

f2(θ, ǫ0) :=
∣

∣

∣Eǫ0
Gk(θ)∇θ

[

errθ(Gk)2
]

∣

∣

∣ .

Note that for any fixed ǫ0, LMS attractors will be zeros,

i.e., minima of f2(., ǫ0) while the DFE Wiener filters are the

minima of the MSE cost function f1(., ǫ0). Also note that

ǫ0 = 0 corresponds to the original decoder.

Let {ǫ0n} be any sequence converging to 0. Let Ω =
{ǫ0n}. Take a compact set C large enough such that the

Wiener filter is inside it (as θ is increased to infinity, even-

tually MSE will start increasing and will tend to infinity).

One can follow steps similar to Theorem 1 and show that

the stationary density πǫ0n

θn
converges to π0

θ as (ǫ0n, θn) →

(0, θ). Similarly, one can also show that both functions f1, f2

are jointly continuous in (θ, ǫ0) ∈ C × Ω.

The domain of the parameter θ for every ǫ0, say D(ǫ0),
is the same compact set C and hence the correspondence

ǫ0 7→ D(ǫ0) is compact and continuous (definitions are in

[16]). Then by the maximum theorem (p. 235, [16]),

D1
∗
n := arg min

θ∈C
f1(θ, ǫ0n),

D2
∗
n := arg min

θ∈C
f2(θ, ǫ0n),

are compact valued upper semi-continuous correspondences

on Ω. Then by Proposition 9.8, p. 231, [16] there exists a

subsequence of LMS attractors θLMS
nk

converging to an LMS

attractor of the original decoder, θLMS
0 . Once again by the

same proposition there exists a further subsequence such that

the DFE Wiener filters θ∗nkl
converge to a DFE Wiener filter

of the original decoder, θ∗0. Thus there exists a sequence

(after renaming) ǫ0n → 0 such that

θLMS
n → θLMS

0 and

θ∗n → θ∗0. �

REFERENCES

[1] C. A. Belfiore, J. H. Park Jr, ”Decision feedback equalization”, Proc.
IEEE, Vol. 67, No. 8, Aug 1979, 1143 - 1156.

[2] A. Benveniste, M. Mietivier, P. Priouret, ”Adaptive Algorithms and
Stochastic Approximation”, Springer-Verlag, April 1990.

[3] M. S. Berger, ”Nonlinearity and Functional Analysis”, Academic
Press, New York, 1977.

[4] J. M. Cioffi, C. P. Dudevoir, M. V. Eyuboglu, G. D. Forney Jr, ”MMSE
Decision-Feedback Equalizers and Coding-Part I: General Results”,
IEEE Trans. Comm., Vol 43, 1995, 2582-2594.

[5] N. A. Dhahir, A. H. Sayed,”The Finite-Length Multi-Input Multi-
Output MMSE-DFE”, IEEE Trans. Signal Processing, Vol. 48, No.
10, October 2000 pp 2921-2936

[6] A. T. Erdogan, B. Hassibi, T. Kailath, ”MIMO Decision Feedback
Equalization from an H∞ Perspective”. IEEE TRANSACTIONS ON
SIGNAL PROCESSING, VOL. 52, NO. 3, MARCH 2004, pp 734-
745.

[7] G. B. Giannakis, Y. Hua, P. Stoica, L. Tong, ”Signal Processing Ad-
vances in Wireless and Mobile Communications”, Trends in Channel
estimation and equalization. Vol.1, Prentice Hall, Upper Saddle River,
NJ 2000.

[8] S. Haykin, ”Adaptive Filter theory”, Third Edition, Prentice-Hall
International inc, 1996.

[9] V. Kavitha, V. Sharma, ”LMS Versus Wiener filter for a
Decision feedback equalizer”, Technical report no: TR-PME-
2006-06, DRDO-IISc program on mathematical engineering,
ECE Dept., IISc, Bangalore, June 2006. (downloadable from
http://www.pal.ece.iisc.ernet.in/PAM/tech rep06.html).

[10] H. Kushner, G. George Yin, ”Stochastic Approximation Algorithms
and Applications”, Springer, 1997.

[11] E. A. Lee, D. G. Messerschmitt, ”Digital communications”, 2nd Edn.,
Kluwer Academic Publishers, 1994.

[12] O. Macchi, E. Eweda, ”Convergence Analysis of Self-Adaptive Equal-
izers”, IEEE Trans on Information Theory, Vol.30, No.2, March 1984,
pp 161-176.

[13] D. G. Manolakis, V. K. Ingle, S. M. Kogon, ”Statistical and adap-
tive signal processing: spectral estimation, signal modeling, adaptive
filtering” 0 - McGraw-Hill , 2000.

[14] S. P. Meyn, R. L. Tweedie ”Markov chains and Stochastic Stability”,
Communications and Control Engineering Series Springer-Verlag,
London, New York, 1993.

[15] J. G. Proakis, ”Digital Communications”, New York: McGraw-Hill,
2000.

[16] R. K. Sundaram, ”A First Course in Optimization Theory”, New York:
Cambridge Univ. Press, 1996.

[17] D. P. Taylor, G. M. Vitetta, B. D. Hart, A. Mammela, ”Wireless
channel equalization”, Eur. Trans. Telecom., Vol. 9,1998, 117-143.

[18] H. Thorisson, ”Coupling, Stationarity, and Regeneration”, Probability
and its Applications Springer-Verlag, New York, 2000.

[19] C. Tidestav, A. Ahln, M. Sternad,”Realizable MIMO Decision Feed-
back Equalizers: Structure and Design”, IEEE Trans. on Signal
Processing, Vol. 49, No. 1, Jan 2001, pp 121 - 133.

[20] M. Sternad, A. Ahln, and E. Lindskog, ”Robust decision feedback
equalizers”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process,
vol. 3, Minneapolis, MN, Apr. 1993, pp. 555-558.

[21] B. Widrow ”Adaptive filters I : Fundamentals”, Report SEL-66- 126,
TR 6764-6, Stanford Electronics Laboratories, Stanford, USA, 1966.

[22] K. Yoshida, ”Functional Analysis” Springer-Verlag, Heidelberg, 1995.

WID.170

208


	--------------------
	Main Menu
	Foreword
	44 Years of Allerton
	Table of Contents
	List of Authors
	--------------------

