
1

Fair assignment of base stations in cellular networks
Sreenath Ramanath1, Eitan Altman1, Vinod Kumar2, Veeraruna Kavitha1,Thomas Laurent2

1INRIA, Sophia Antipolis, FRANCE.2Alcatel-Lucent Bell Labs, Paris, FRANCE.

Abstract—We address the problem of fair assignment of base
station locations in a cellular network. We use the generalized
α-fairness criterion, which encompasses the different notions
of fairness: that of global, proportional, harmonic or max-min
fairness in our study. We derive explicit expression forα-fair BS
locations under ’large population’ limits in the case of simple 1D
models. We show analytically that asα increases asymptotically,
the optimal location for a single BS converges to the center of the
cell. We validate our analysis via numerical examples. We further
study throughput achievable as a function ofα-fair BS placement,
path-loss factorβ and noise varianceσ2 via numerical examples.
We also briefly address the problem of optimal placement of two
base stations and obtain similar conclusions.

Index Terms—Cellular network, Throughput, Fairness.

I. I NTRODUCTION

In a cellular network, models used to derive analytic ex-
pressions for capacity, coverage, etc, often assume base station
(BS) locations to be at the center of the cell. Such a model
brings in a regular geometry to the problem being addressed
and many a times results in closed-form analytic expressions
for metrics of interest.

While, this indeed facilitates analysis, the actual throughput
achievable at the BS, tends to vary significantly, dependingon
the BS placement and cell geometry. The regular geometric
model with a centrally located BS is a good model, when
one assumes uniform density of users. But, today’s cellular
networks have concentration of users, for example hot-spots
or indoor-outdoor partitions that offer various levels of attenu-
ation to radio signals, not to mention the ever present channel
fading and shadowing effects above this.

The goal of our research is to place the BS in a manner
which is optimal for any general fairness criterion; that of
α-fairness [1], [3], which addresses popular fairness criterion
like global, proportional, harmonic and max-min fairness.We
show that theα-fair BS location varies continuously with
fairness parameterα and moves close to the center of the cell
as α increases asymptotically. This implies that, the regular
geometric models (which place BS at the center) have max-
min fair BS placement.

We further observe (via some numerical examples) thatα-
fair BS location varies significantly based on system parame-
ters like path-loss, noise variance. However we show that the
max-min fair BS placement is close to the center of the cell
irrespective of the system parameters.

To bring in the importance of BS placement, we consider
cells which are completely outdoors or which have indoor-
outdoor partitions (Split cells). We consider cases where user
density can be uniform or tend to increase along the cell

(a simplistic model for a hot spot) [6]. We consider cases
where adjacent cells can use the same frequency or different
frequencies. For the later case, we look at the problem of
fair assignment of two base stations (BS), where the cell gets
divided into sub-cells from the users’ perspective based on
SINR association criteria. We limit our study to free space
path-loss and the analysis with fading and shadowing would
be our subsequent focus.

We derive simplified expressions forα-fair objective func-
tions using large population limits, i.e., as the number of users
become large. We use Strong Law of Large Numbers (SLLN)
to replace summation of large number of terms in the objective
function with appropriate expected value almost surely (AS).
The expected value is expressed as integrals. Using these large
population limits, we obtain both theoretical and numerical
results of this paper. Theα-fair BS locations obtained are
optimal for almost all realizations of the users locations.

We begin our study by introducing our model and review the
generalizedα-fair fairness criterion in Section II. In Section
III, we derive the α-fair placement criterion under large
population limits. In Section IV, we analyzeα-fair placement
of base stations asα increases asymptotically and come across
some interesting insights. In Section V, we study theα-fair
BS locations for the case of a) an outdoor cell and b) a mixed
partition cell (split-cell) via some numerical examples. Next,
in Section VI, we derive theα-fair BS locations for an outdoor
cell which has two BS. We conclude our study in Section VII.

II. OUR MODEL AND ASSUMPTIONS

Our focus is on communication in the uplink (UL) direction.
Large number,N , of users are located on i.i.d. locations on
the line segment[−D,D]. The line segment is divided into
cells of lengthL and one or more base stations, each of unit
height, are placed in every cell.

The placement of the BS(s) is the issue that we address
in this paper. One is usually interested in maximizing global
throughput (the sum throughput due to all users) at each
BS, i.e., place the BS(s) such that the global throughput is
maximized. However, maximizing the global throughput can
result in starving the users at a far away location, which in
turn can reduce the network efficiency. Hence, several fairness
criterion have been suggested and implemented in various
network architectures ([1], [3]).

In [1] it is shown that all these fairness criterion are special
cases of a generalized fairness concept: theα-fairness. Given
a positive constantα 6= 1, consider for example the problem
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of determiningz so as to maximize

max
z∈[0,L]

∑

xi∈[0,L]

θ(xi, z)
1−α

1 − α
(1)

where,θ(xi, z) is the throughput at the BS located atz from
a user located atxi. Note that the above objective function is
defined over the convex set[0, L]. Further, when the objective
function is concave (we will show in later sections that this
is the case most of the times) and the constraints are linear,
this defines a unique allocation which we call theα-fair
allocation. It turns out thatα-fairness gives global optimum for
α → 0, proportional fairness whenα → 1, harmonic (delay
minimization) fairness forα = 2 and max-min fairness when
α→ ∞.

We begin our study by first deriving explicit expressions
for power, throughput andα-fair placement criterion under
large population limits (as the number of users become large).
Throughout the paper, we use large population limits for
analytical purposes. The idea is similar to fluid limits (see[4]),
where summation of large number of terms is approximated
by appropriate integrals.

III. L ARGE POPULATION LIMITS AND PROBLEM

STATEMENT

Large number,N , of users are located at{Xi}i≤N , where
the locationsXi of the users are i.i.d., according to some
probability measureP (dx) = λ(x)dx. We assume that each
user uses the same power for transmission.Without loss of
generality, the total power in the system equals1 and hence
the power used by each user is1/N .

We first consider the case of a single BS in the cell and
compute the total power received, throughput achievable and
theα-fair placement for the BS under large population limits.
The case of two base stations follows in a similar way and is
addressed in Appendix.

A. Power computation :

The power received at a BS located atz from a user atXi

is given by,

P (Xi, z) =
1

N
(1 + (z −Xi)

2)
−β

2 .

Thus the total power received at the BS is

Ptot(z) =

N
∑

i=1

P (Xi, z) =
1

N

N
∑

i=1

(1 + (z −Xi)
2)

−β

2 .

This is a random power. By the Strong Law of Large Number
(SLLN) this converges P-a.s. to a constant limit

lim
N→∞

Ptot(z) = E
[

(1 + (z −Xi)
2)

−β

2

]

=

∫ D

−D

(1 + (z − x)2)
−β

2 λ(x)dx. (2)

Hence for large values ofN one can approximatePtot(z)

almost surely with the above integral.

B. Throughput computation:

The signal to interference noise ratio (SINR) at the BS
located atz from a user atXi is

SINR(Xi, z) =
P (Xi, z)

σ2 + Ptot(z) − P (Xi, z)
,

where σ2 is the noise variance. In the above,Ptot(z) is
approximatedP−almost surely by a constant value, i.e., by the
integral of (2). HoweverSINR(Xi, z) is still random because
of the termP (Xi, z). The Shannon capacity or throughput
achievable at the BS located atz from a user atXi is

θ(Xi, z) = log (1 + SINR(Xi, z))

Considering a receiver with an adapted filter and using the
approximationlog(1 + x) ≈ x (for smaller values ofx), the
throughput achievable is

θ(Xi, z) =
P (Xi, z)

σ2 + Ptot(z) − P (Xi, z)

The total (global) throughput achievable at the BS from all
the users in the cell of interest is:

f(z) =

N
∑

i=1

1{Xi∈[0,L]}θ(Xi, z)

=
1

N

N
∑

i=1

1{Xi∈[0,L]}
(1 + (z −Xi)

2)
−β

2

σ2 + Ptot(z) − P (Xi, z)

≈
1

N

N
∑

i=1

1{Xi∈[0,L]}
(1 + (z −Xi)

2)
−β

2

σ2 + Ptot(z)
,

as for large values ofN , P (Xi, z) is negligible in comparison
with Ptot(z). Again, the above Random sum can be approx-
imated using Strong Law of Large Numbers whenever the
number of users inside the cell is large P-almost surely, giving
rise to the following large population approximation:

f(z) ≈ E
[

I{X1∈[0,L]}ψ(X1, z)
]

=

∫ L

0

ψ(x, z)λ(x)dx with (3)

ψ(x, z) :=
(1 + (z − x)2)

−β

2

σ2 + Ptot(z)
.

C. α-fair placement criterion :

Theα-fair objective function of (1) in a similar way can be
approximated almost surely under large population limits by:

f̃α(z) := Nα 1

1 − α

∫ L

0

ψ(x, z)
(1−α)

λ(x)dx
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Thusα-fair placement of the BS is given by,

z∗(α) = arg max
z
f̃α(z)

= arg max
z
fα(z) where (4)

fα(z) :=
1

1 − α

∫ L

0

ψ(x, z)(1−α)λ(x)dx.

Important point to note here is that,for almost all realizations
of the locations of the users the objective function is approx-
imated by the constant integral and hencez∗(α) is optimal
α-fair location for almost all users locations.

D. Problem statement

Now with this background, we pose the following problems:
1. Find BS locationz so as to maximize global throughput

f(z). See large population limit (3).
2. Find theα-fair BS locationz∗ which maximizesfα(z)

for various fairness criterion. See large population limit(4)
In subsequent sections, we analyze and apply theα-fair

placement criterion to obtain BS locations which are both
optimal and fair in various cellular environments considered.

IV. A NALYSIS : SINGLE BS PLACEMENT

We notice that both the global throughput (large population
limit (3)) and theα-fair placement (large population limit (4))
of the BS is dependent on the total power receivedPtot(z)

at the BS, which in-turn depends on its locationz. In many
cases, the total-power received can be assumed independentof
the location of the BS, whenever the cell size is small (which
is typical of pico cells). This for example is true for cells with

user densityλ(x) being symmetric aboutL2 (uniform being
the trivial case) and completely located outdoors.

The above assumption simplifies analysis to a good extent
and is considered in the first subsection, while an approximate
analysis is given in the following subsection without this
assumption.

We consider asymptotic analysis in this section and hence
consider only the cases withα > 1. For notational simplicities,
we redefinefα(z) of equation (4) after dropping the division
by (1 − α) factor and now,

z∗(α) := arg max
z∈[0,L]

(−fα(z)) .

A. Ptot(z) is independent of BS locationz :

As Ptot(z) is independent ofz, the α-fair location is
obtained by minimizing the function,

f̄α(z) :=

∫ L

0

(

1 + (z − x)2
)− β

2
(1−α)

λ(x)dx

We can easily show that̄fα(z) is concave inz. We also have
joint continuity in (α, z) by Bounded Convergence theorem.
Hence, by maximum theorem [5] under convexity, we get

Lemma 1: The functionz∗(α) is continuous inα. �

By differentiability of f̄α(.),

g(α, z∗(α)) = 0.

where withγ := β
2 (α− 1) − 1 (for some appropriatec 6= 0),

g(α, z) := c
∂f̄α(z)

∂z

=

∫ L

0

(z − x)
(

1 + (z − x)2
)γ
λ(x)dx.

If z < L
2 then,

(

1 +

(

L

2

)2
)−γ

g(α, z)

=

∫ L
2
+z

0

(z − x)

(

1 + (z − x)2

1 + (L
2 )2

)γ

λ(x)dx

+

∫ L

L
2
+z

(z − x)

(

1 + (z − x)2

1 + (L
2 )2

)γ

λ(x)dx

tends to−∞ as α ↑ ∞, because the first term tends to
zero while the later tends to−∞ (by bounded convergence
theorem). Therefore there existsα0 > 0 such that,g(α, z) < 0

and hence such that,

g(α, z) 6= 0 for all α > α0.

Similarly if z > L
2 then,

(

1 +
(

L
2

)2
)−γ

g(α, z) tends to∞

asα ↑ ∞ and hence we have,

g(α, z) 6= 0 for all α > α0(z) wheneverz 6=
L

2
.

However
(

1 +
(

L
2

)2
)−γ

g
(

α, L
2

)

→ 0 asα ↑ ∞.

In fact, we have (by monotonicity arguments) for allz0 <
L
2 :

g(α, z) 6= 0 for all α > α0(z0), z ∈ [0, z0] ∪ [L− z0, L],

and hence the optimizer lies in a smaller interval aroundL
2

for all larger values ofα and thus we get the following:

Lemma 2: For everyǫ < L
2 there exists anα0(ǫ) (de-

pending uponǫ), such that for allα > α0(ǫ)

z∗(α) ∈

[

L

2
− ǫ,

L

2
+ ǫ

]

.

i.e, the optimizer lies in a smaller interval aroundL
2 for all

larger values ofα. That is,z∗α(z) → L
2 asα→ ∞. �

Whenever the densityλ(x) is symmetric aboutL2 within the

cell [0, L], using similar derivative arguments one can get,
Lemma 3: The partial derivatives under symmetric condi-

tions, for allα

∂f̄α(z)

∂α

∣

∣

∣

∣

z=z0

= 0
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and hence optimal locations for allα are at L
2 . �

Summary of the results :
1. α-fair location is continuous inα (by Lemma 1).

2. When the density functionλ is symmetric aboutL2 then
by Lemma 3 all theα-fair locations are at the center of the
cell.

3. If density is not symmetric aboutL2 then, by Lemma 2,

theα-fair locations tend toL
2 asα tends to infinity.

4. Lemma 2, 3 are correct as long as the support of measure
λ contains both the end points, i.e.,{0, L} ⊂ supp(λ).

If not, the same results are true withL2 replaced with

length(supp(λ))/2.

B. Ptot(z) is dependent on BS locationz :

Next, we consider cases when the total powerPtot(z) is
dependent on base station locationz. This is true for cases
with non-symmetric user densities, cells with partitions,etc.

Let h(.; z) represent the following parametrized function :

h(x; z) :=
(

σ2 + Ptot(z)
) (

1 + (x− z)2
)

β

2 .

and let ||h(.; z)||p represent itsLp norm with respect to the

probability measure λ(x)dx
∫

L

0
λ(x)dx

.

With the above definitions, forα > 1, we can equivalently
write the optimalα-fair location as,

z∗(α) = arg min
z∈[0,L]

||h(.; z)||α−1.

As α → ∞, ||h(.; z)||α−1 → ||h(.; z)||∞ and one can show
that,

lim
α→∞

z∗(α) ≈ arg min
z∈[0,L]

||h(.; z)||∞.

Since,

||h(.; z)||∞ =
(

σ2 + Ptot(z)
)

sup
x∈[0,L]

(

1 + (x− z)2
)

β

2

=
(

σ2 + Ptot(z)
)

(

1 + (max{z, L− z})2
)

β
2

=
(

σ2 + Ptot(z)
)

max{(1 + z2)
β

2 , (1 + (L− z)2)
β

2 },

the asymptoticα-fair location approximately equals:

lim
α→∞

z∗(α) ≈ arg min
z∈[0,L]

(

σ2 + Ptot(z)
)

max {z, L− z} .

and note that,

max {z, L− z} = 1{z≥L
2 }

(z) + 1{z< L
2 }

(L− z) .

Clearly if Ptot(z) was independent ofz, asymptoticα-fair

location would be atL2 .
In the subsequent sections, we consider some interesting

examples and show the validity of the results of this Section.
We also derive many more interesting conclusions using the
large population limits of Section III for those examples.

V. OPTIMAL AND FAIR PLACEMENT OF A SINGLE BS

In this section, we consider two cases. In the first, we
consider an outdoor cell, while in the second, we consider
a cell which spans over both indoor and outdoor environment
(split-cell).

A. Outdoor cell

An outdoor cell is typically characterized by a cell placed in
open environment/free space, i.e., the signals from the users
are attenuated only due to path-loss. We assume a cellular
deployment which uses the same frequency throughout. i.e.,
the power received from the entire line segment[−D,D]

will interfere with the power received from the user under
consideration.

By Lemma 3, theα-fair solution for uniform user density,
λ(x) ≡ 1/2D, is trivial (all the α-fair locations are at the

center of the cellL2 ).
Next, we consider another interesting case where user

densityλ(x) = x; to mimic a simplistic hot-spot (i.e, the user
density proportionally increases towards the hot-spot, which
is located aroundL). Figure 1 depicts the scenario. We want
to place the BS such that the locations are optimal and fair.

Fig. 1. Open-cell: BS located atz, user densityλ(x) = x

By Lemma 1, theα-fair location varies continuously w.r.t.
α. Also, by Lemma 2 and discussions in Section IV-B, the

α-fair locations should tend toL2 as α increases to infinity.
We will indeed show that this is the case in the following
numerical example. We further make some more interesting
observations.

Numerical example: We evaluate equation (4) for some
typical cases: forα = 0 (global), α = 0.99 (proportional),
α = 2 (harmonic) andα = 128 (max-min). The example
considers cell lengthL = 10, noise varianceσ2 = 1 and path-
loss exponentβ = 2, 4. Fig 2 - 4 shows example plots for the
α-fair objective functionsf(z) (equation (3) corresponding
to α = 0), fα(z) (equation (4)) forα = 0.99, 2. Note that
the case of global fairness (α = 0) is also the case which
maximizes sum throughput. Also, note that Fig 2 gives the
global throughput as function of BS locationz.

We compute theα-fair BS placement for increasing values
of α. In Figure 5, we plot theα-fair BS location as a function
of α. As given by Lemma 1 theα-fair location is continuous
in α. We further, observe that the BS location shifts rapidly
going from optimally fair to proportionally fair and finally

tends toL
2 for being max-min fair.
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Fig. 2. Open cell: Global through-
put (3) as a function of the BS
location. User densityλ(x) = x

andβ = 2)
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f(z)

0 108
alpha=0.99, beta=2      

Fig. 3. Proportional fair objec-
tive function fα given by (4) with
α ≈ 1, as function of BS location
z. User densityλ(x) = x, β = 2)
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Fig. 4. Harmonic fair objective
function fα given by (4) withα =

2, as function of BS locationz.
User densityλ(x) = x, β = 2)
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Fig. 5. α-fair BS location,z∗(α)

as a function ofα.

We tabulate normalized throughput (ratio of the global
throughput with BS atα-fair location, z∗(α) to the maxi-
mum achievable global throughput, i.e., the total throughput
achieved when BS is placed atz∗(0)) achievable for these
α-fair BS locations in Table I.

We show the impact of path-loss factorβ and noise variance
σ2 on the optimally-fair BS placement in Table II and Table
III, respectively. In those tablesf(z;β, σ2) represents the
global throughput when BS is placed atz and with path-loss
factor β and noise varianceσ2.

TABLE I
OUTDOOR CELL: THE α-FAIR BS LOCATIONS AND NORMALIZED

THROUGHPUT. USER DENSITYλ(x) = x, L = 10 AND PATH-LOSSβ = 2

α-fairness BS lox Normalized
throughput

global (α = 0) 7.4 1.000
proportional (α = 0.99) 6.8 0.998
harmonic (α = 2) 6.3 0.995
max-min (α = 128) 5.0 0.981

TABLE II
OUTDOOR CELL: BS PLACEMENT FOR GLOBALLY-FAIR THROUGHPUT FOR

VARIOUS PATH-LOSSβ. USER DENSITYλ(x) = x AND L = 10

Path-lossβ BS lox Throughput ratio
f(z∗(0); β, 1)/f(z∗(0); 2, 1)

(w.r.t β = 2)
2 7.4 1.00
4 8.2 0.99
6 8.8 0.98

TABLE III
OUTDOOR CELL: BS PLACEMENT FOR GLOBALLY-FAIR THROUGHPUT FOR

VARIOUS NOISE-VARIANCE σ2 . USER DENSITYλ(x) = x, PATH-LOSS

β = 2 AND L = 10

Noise BS lox Throughput ratio
varianceσ2 f(z∗(0); 2, σ2)/f(z∗(0); 2, 1)

(w.r.t σ2 = 1)
1

4
6.9 1.05

1 7.4 1.00
4 7.9 0.58

Observations:
a. We observe that the placement of BS affects the through-

put achievable in case of an outdoor cell, modeling a hot-spot.

b. The BS location shifts rapidly going from globally

fair to proportionally fair and finally settles close toL2 for
being max-min fair (Refer Figure 5). This is an interesting
observation which implies that the regular geometric models,
which assume centrally placed BS are actually positioned to
be max-min fair. But, such assumptions does not seem to
impact the throughput achievable as seen in this case. The
max-min fair throughput is just about 2% below the maximum
achievable global throughput. For the other fair locations, the
reduction in throughput is quite negligible (Refer Table I).

c. The optimal throughput does not seem to be sensitive to
path-loss (Refer Table II)

d. The achievable optimal throughput is very sensitive to
noise varianceσ2. A four fold increase in noise variance
degrades the throughput by 40%.

B. Indoor-outdoor cell (Split-cell)

In this section, we consider a cell which covers both indoor
and outdoor environments, partitioned by solid structureslike
walls etc. We consider a cell which has a single partition or
wall, located aty within the cell[0, L] and offers an attenuation
of η dB. Here again, a single BS of unit height is located at
z. The scenario is depicted in figure 6. We want to find BS
locations which optimize various fairness criterion.

Fig. 6. Split-cell: BS located atz, wall located aty

The total power, throughput andα− fair objective function
for this case can be derived exactly in the same way as before
to obtain the following large population limits :
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Ptot(z) =

∫

[−D,y)∪[L,D)

(1 + x2)
−β

2 λ(x)dx

+η

∫ L

y

(1 + x2)
−β

2 λ(x)dx (5)

f(z) =

∫ y

0

ψ(x, z)λ(x)dx + η

∫ L

y

ψ(x, z)λ(x)dx(6)

fα(z) =
1

1 − α

[
∫ y

0

ψ(x, z)1−αλdx

+η

∫ L

y

ψ(x, z)1−αλ(x)dx

]

(7)

The equations (5), (6) and (7) are similar respectively to
(2), (3) and (4) ifλ(x) is replaced by (an appropriate constant
multiple of) λ(x)(1{x/∈[y,L] + η1{x∈[y,L]}). Hence the results
of Section IV hold good here also. From Lemma 1, Lemma
2 and discussions in Section IV-B, we would expect theα-

fair location to vary continuously w.r.t.α and tend close toL2
as α increases asymptotically. We shall validate this via the
following numerical example for uniform user density, i.e., for
λ(x) ≡ 1/2D.

Numerical example: We evaluate equation (7) for some
typical cases: for global (α = 0), proportional (α = 0.99) and
harmonic (α = 2) fairness with path-loss exponentβ = 2, 4,
noise varianceσ2 = 1 ,wall attenuationη = 12dB and wall
located aty = 0.75L. The results are presented in Fig 7 - 12.
Note that the case of global fairness (α = 0) is also the case
which maximizes global throughput (Refer Figure 7).

In Fig 10, we plot theα-fair BS location as a function of
α. We observe that the BS location shifts rapidly going from
globally fair to proportionally fair and finally converges close

to L
2 for max-min fair.

Next, we plot global throughput as a function of BS location
z and wall locationy in Figure 11. In Fig 12, we show global
throughput as a function of BS locationz and attenuationη.

Table IV tabulates the normalized throughput achievable
for various α-fairness criterion along with theα-fair BS
locations, While, Tables V and VI tabulate the BS placement
for globally-fair throughput for various path-loss factorsβ and
noise varianceσ2, respectively.

In the tables, Normalized throughput,f(z;β, σ2) represent
similar terms as in the previous section.

TABLE IV
SPLIT-CELL: THE α-FAIR BS LOCATION AND NORMALIZED THROUGHPUT.

USER DENSITYλ(x) ≡ 1/2D, L = 10, y = 0.75L, PATH-LOSSβ = 2

AND WALL ATTENUATION η = 12dB

α-fairness BS lox Normalized
throughput

global (α = 0) 4.35 1.0000
proportional (α = 0.99) 3.90 0.9983
harmonic (α = 2) 3.88 0.9983
max-min (α = 128) 5.00 0.9981

642

f(z)

0 108
alpha=0,    beta=2      

Fig. 7. Split-cell: Global through-
put (Objective functionfα(z) (6)
with α = 0) as a function of BS
location z.
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0 108
alpha=0.99, beta=2      

Fig. 8. Split-cell: Objective func-
tion fα(z) (7) for proportional fair-
ness (α = 0.99) as a function of
BS locationz.
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Fig. 9. Split-cell: Objective func-
tion fα(z) (7) for harmonic fair-
ness (α = 2) as a function of BS
location z.
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Fig. 10. Split-cell: α-fair BS
location z∗(α) as a function ofα.
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Fig. 11. Split-cell: Global
throughput (6) as a function of BS
location z and wall locationy.
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Fig. 12. Split-cell: Global
throughput (6) as a function of BS
location z and attenuationη.

TABLE V
SPLIT CELL: BS PLACEMENT FOR GLOBALLY-FAIR THROUGHPUT FOR

VARIOUS PATH-LOSSβ. USER DENSITYλ(x) ≡ 1/2D AND L = 10

Path-lossβ BS lox Throughput ratio
f(z∗(0); β, 1)/f(z∗(0); 2, 1)

(w.r.t β = 2)
2 4.35 1.00
4 4.15 0.93
6 4.00 0.83

Observations:
a. We observe that the BS location shifts rapidly going from

globally fair to proportionally fair and finally settles atL
2 for

being max-min fair (Refer Figure 10).
b. Further, we observe that the placement of BS does not

seem to affect the throughput achievable in case of an indoor-
outdoor cell.

c. The price in throughput is negligible and the deployment
can satisfy various fairness criterion (Refer Table IV).

d. The reduction in globally-fair throughput is quite signif-
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TABLE VI
SPLIT CELL: BS PLACEMENT FOR GLOBALLY-FAIR THROUGHPUT FOR

VARIOUS NOISE-VARIANCE σ2 . USER DENSITYλ(x) ≡ 1/2D, PATH-LOSS

β = 2 AND L = 10

Noise BS lox Throughput ratio
varianceσ2 f(z∗(0); 2, σ2)/f(z∗(0); 2, 1)

(w.r.t σ2 = 1)
1

4
4.65 1.30

1 4.35 1.00
4 3.90 0.21

icant (as much as 20%) with an increase in path-loss factorβ
(Refer Table V)

e. As the indoor portion of the split-cell reduces, the
globally-fair throughput response tends to become flat. (Refer
Figure 11)

f. Wall attenuation does not seem to alter the globally-fair
BS placement much, though one can observe a significant
reduction in throughput initially (Refer Figure 12)

g. The reduction in globally-fair throughput is quite drastic
(as much as 80%) with an increase in noise varianceσ2 (Refer
Table VI)

VI. OPTIMAL AND FAIR PLACEMENT OF TWO BS IN AN

OUTDOOR CELL

In this section we consider optimal placement of two BS
in a single cell for variousα-fair criterion. We consider a
new scenario in this section, that of a single isolated cell (i.e.,
no interference from the other cells). One can easily study
a single BS problem with this new scenario and vice versa
using the tools of this paper. This new scenario is considered
for covering all varieties of the settings/scenarios.

Users are located on this segment with densityλ(x), x ∈

[−L,L]. AssumeBS1 and BS2 are located atz1 and z2,
respectively and uses the same frequency and cooperate with
each other. Further, we assume that the neighboring cells do
not use the same frequency. The users associate themselves
with one of the two base stations which maximize their SINR.

Under these assumptions, we first calculate the global (sum)
throughput from all the users associated with a particular
BS. Under cooperative setting, the sum of these two global
throughputs would be the appropriate criteria for optimization.
In Appendix A, we derived simplified expressionsf(z1, z2),
for this sum of global throughputs, under large population
limits. In a similar way, a general simplifiedα-fair objective
functionfα(z1, z2) is also derived in the same Appendix. We
now re-state the problem of Section III for the two BS case :

1. Find location(z1, z2) so as to maximize global through-
put f(z1, z2). See large population limit (10) (same as
fα(z1, z2) with α = 0) of Appendix A.

2. Find the α-fair location (z∗1 , z
∗
2) which maximizes

fα(z1, z2) for various fairness criterion. See large population
limit (13) of Appendix A.

We reproduce from Appendix A, theα-fair location as given
by

(z∗1α, z
∗
2α) = argmax

z1,z2

fα(z1, z2).

Fig. 13. Open-cell:BS1 located atz1, BS2 located atz2, user density
λ(x) ≡ 1/2D

where,

fα(z1, z2) =

∫

C(z1,z2)

(

1 + (x− z1)
2
)1−α

λ(x)dx

(σ2 + Ptot(z1))
1−α

+

∫

C(z1,z2)c

(

1 + (x− z2)
2
)1−α

λ(x)dx

(σ2 + Ptot(z2))
1−α

Numerical example: We evaluate equation (13) for some
typical cases: for global (α = 0), proportional (α = 0.99) and
harmonic (α = 2) fairness with path-loss exponentβ = 2 and
noise varianceσ2 = 1.

For the numerical analysis we have assumed that the BS
are located symmetrically about the origin to ease the SINR
based user association criteria (See Appendix A).

The results are presented in Fig 14 - 17. Note that the case
of global fairness (α = 0) is also the case of sum global
throughput (Refer Figure 14). From the plots, we observe that
the BS locations for global fairness is(−6.5, 6.5).

In Figure 17, we plot theα-fair BS2 location as a function
of α. We observe that the BS location shifts rapidly going
from globally fair to proportionally fair and finally settles at
L/2 for being max-min fair. In a similar way, theBS1 tends
to −L/2 as α increases to infinity. In fact, we observe that
the BS location exhibits max-min fair placement for values of
α = 8 and beyond.

Table VII tabulates the normalized throughput achievable
for various α-fairness criterion along with theα-fair BS
locations, while, Table VIII tabulates the BS placement for
globally-fair throughput for various path-loss factorsβ.

TABLE VII
THE α-FAIR BS LOCATION(S) AND NORMALIZED THROUGHPUT FOR

OUTDOOR CELL WITH TWOBS, USER DENSITYλ(x) = 1/2L, L = 10,
PATH-LOSSβ = 2

α-fairness BS1 lox BS2 lox Normalized
global (α = 0) -6.45 6.45 1.0000
proportional (α = 0.99) -5.15 5.15 0.9970
harmonic (α = 2) -5.10 5.10 0.9950
max-min (α = 128) -5.05 5.05 0.9940

Observations:
a. We observe that the BS locations shift rapidly going

from globally fair to proportionally fair and finally settles at
(−L/2, L/2) for being max-min fair. In fact, the BS location
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Fig. 14. Outdoor cell, two BS:
Global throughput (objective func-
tion fα(z1, z2) with α = 0) as
a function ofBS1 location (z2 =

−z1)).
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Fig. 15. Outdoor cell, two BS:
Global throughput (objective func-
tion fα(z1, z2) with α = 0) as
a function ofBS2 location(z1 =

−z2)).
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Fig. 16. Outdoor cell, two BS: 3-
D contour plot of global through-
put (objective functionfα(z1, z2)

with α = 0) as a function of BS
locations(z1, z2)
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Fig. 17. Outdoor cell, two BS:
α-fair BS location z∗

2
(α) as a

function of α (Placement ofBS2

shown here).

TABLE VIII
OUTDOOR CELL WITH TWO BS: BSPLACEMENT FOR GLOBALLY-FAIR

THROUGHPUT FOR VARIOUS PATH-LOSSβ. USER DENSITYλ(x) = 1/2L

AND L = 10

Path-lossβ BS1 lox Throughput ratio
f(z∗(0); β, 1)/f(z∗(0); 2, 1)

(w.r.t β = 2)
2 -6.45 1.00
4 -5.55 0.85
6 -5.35 0.76

exhibits max-min fair placement for values ofα = 8 onwards
(Refer Figure 17).

b. Further, we observe that the placement of BS does not
seem to affect the throughput achievable in case of an outdoor
cell with two BS.

c. The price in throughput is negligible and the deployment
can satisfy various fairness criterion.

d. The globally-fair throughput reduces by25% with an
increase in path-loss exponentβ from 2 to 6 (Refer Table
VIII).

e. We observe that for a uniform distribution of users, when
placing fairly two base stations on the segment[−L,L], the
distance between the stations decrease asα increases (Refer
Table VII). In particular, we note that a model similar to
this has been already studied in [2] where the equilibrium
location was computed in a non-cooperative context (each
base station tries to maximize its own throughput) instead

of the fair location. As in the fair placement case that we
study here, it was shown there that the equilibrium distanceis
also closer than the distance corresponding to the globallyfair
location. As an example, the equilibrium location of the BS
that corresponds to the data of Fig 17 here is 5.5 in Table 1 of
[2] (the globally fair being around 6.4). This means that the
non-cooperative equilibrium location is fairer than the globally
fair one - it corresponds to theα fair placement whereα is
seen from Fig 17 to be around 0.5.

Further, our work can be extended to find theα-fair BS
locations when multiple BS are to be located on a line
segment or on a 2D grid. This is a step towards optimal BS
placement to satisfy various fairness criteria when a macro-
cell is divided into a number of small cells. For example, the
optimal placement of BS in pico-cell networks.

VII. C ONCLUSIONS

We studied the problem of optimal BS placement, optimal
for variousα-fair criterion in cellular networks. We considered
simple 1D models which characterize both indoor and out-
door cellular environments with mixed partitions. We derived
explicit expressions forα-fair criterion under large population
limits. These limits were used to obtain the theoretical asymp-
totic analysis of theα-fair locations. We show that theα-fair
locations converge close to center of the cell asα increases to
infinity (which basically represents the max-min fair location).

The large population limits were also used to numerically
compute BS locations which satisfy global, proportional, har-
monic and max-min fairness. For the models considered, we
presented results via plots and tables to show the variations
in achievable throughput for the different fairness criterion.
We also confirmed, via numerical examples, that theα-fair
locations converge to the center of the cell asα tends to
infinity.

We next considered a two base station optimal placement
problem again for variousα-fair criterion. We obtained large
population limits under cooperative setting and using thiswe
showed, via numerical examples, that theα-fair BS locations
converge to a pair of locations which divide the cell once again
into equal regions.

VIII. A PPENDIX A : L ARGE POPULATION LIMITS - POWER,
THROUGHPUT ANDα-FAIR PLACEMENT OF TWO BASE

STATIONS:

In Section III, we derived power, throughput andα-fair
placement expressions for a single BS located in the cell. In
this appendix section, we derive the same for two BS. For
simplicity, we consider the cell of interest to span[−L,L].
Also, in this case, we assume that neighboring cells use
different frequencies (i.e, there is no frequency reuse)

As before, the power from a user located atXi received at
BS1 located atz1 is

P (Xi, z1) =
1

N
(1 + (z1 −Xi)

2)
−β

2 .



9

The total power received atBS1 under large population
limits is

Ptot(z1) =

∫ L

−L

(1 + (z1 − x)2)
−β

2 λ(x)dx,

assuming no frequency re-use.
The throughput (which is approximately equal to the SINR

in case of an adaptive filter) atBS1 is

θ(Xi, z1) ≈ SINR(Xi, z1) =
P (Xi, z1)

σ2 + Ptot(z1)
.

Similarly throughput atBS2 is,

θ(Xi, z2) ≈ SINR(Xi, z2) =
P (Xi, z2)

σ2 + Ptot(z2)
.

The user atXi will associate itself withBS1 if

SINR(Xi, z1) > SINR(Xi, z2). (8)

Let

C(z1, z2) := {x : SINR(x, z1) ≥ SINR(x, z2)} (9)

represent the set of users which associate themselves with
BS1.

Under cooperative setting, the total sum throughput received
at both the base stations is,

f(z1, z2) :=
1

(1 − α)

N
∑

i=1

[

θ(Xi, z1)1{Xi∈C(z1,z2)}

+θ(Xi, z2)1{Xi∈C(z1,z2)c}

]

(10)

Theα-fair solution in this case is given by the BS location
pair (z∗1 , z

∗
2) which maximizesfα where,

f̃α(z1, z2) :=
1

(1 − α)

N
∑

i=1

[

θ(Xi, z1)1{∈C(z1,z2)}

+θ(Xi, z2)1{Xi∈C(z1,z2)c}

]1−α

=
1

(1 − α)

N
∑

i=1

[

θ(Xi, z1)
1−α1{Xi∈C(z1,z2)}

+θ(Xi, z2)
1−α1{Xi∈C(z1,z2)c}

]

which under large population limits is approximated by,

f̃α(z1, z2) (11)

≈
Nα

(1 − α)





∫

C(z1,z2)

(

1 + (x− z1)
2
)1−α

λ(x)dx

(σ2 + Ptot(z1))
1−α

+

∫

C(z1,z2)c

(

1 + (x− z2)
2
)1−α

λ(x)dx

(σ2 + Ptot(z2))
1−α





(12)

Thusα fair placement of the two BS is given by,

(z∗1α, z
∗
2α) = arg max

z1,z2

fα(z1, z2) where

fα(z1, z2) =

(−1)1{α>1}





∫

C(z1,z2)

(

1 + (x− z1)
2
)1−α

λ(x)dx

(σ2 + Ptot(z1))
1−α

+

∫

C(z1,z2)c

(

1 + (x− z2)
2
)1−α

λ(x)dx

(σ2 + Ptot(z2))
1−α





(13)
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