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ABSTRACT
We consider finite number of users, with infinite buffer stor-
age, sharing a single channel using the aloha medium access
protocol. This is an interesting example of a non saturated
collision channel. We investigate the uplink case of a cel-
lular system where each user will select a desired through-
put. The users then participate in a non cooperative game
wherein they adjust their transmit rate to attain their de-
sired throughput. We show that this game, in contrast to
the saturated case, either has no Nash Equilibrium or has
infinitely many Nash Equilibria. Further, we show that
the region of NE coincides with an appropriate ’stability
region’. We also discuss the efficiency of the equilibria in
term of energy consumption and congestion rate. Next, we
propose two learning algorithms using a stochastic iterative
procedure that converges to the best Nash equilibrium. For
instance, the first one needs partial information (transmit
rates of other users during the last slot) whereas the second
is an information less and fully distributed scheme. We ap-
proximate the control iterations by an equivalent ordinary
differential equation in order to prove that the proposed
stochastic learning algorithm converges to a Nash equilib-
rium even in the absence of any coordination or extra infor-
mation. Extensive numerical examples and simulations are
provided to validate our results.

Keywords
QoS, Collision channel, Constrained Nash equilibrium, Sta-
bility, Throughput.

1. INTRODUCTION
Aloha [4] and slotted Aloha [5] have long been used as ran-
dom distributed medium access protocols for radio channels.
They are used in satellite networks and cellular telephone
systems for the sporadic transfer of data packets. Modern
wireless networks protocols are often based on Aloha-related
concept. For our analysis, we use the standard slotted Aloha
model. Slotted Aloha and its unslotted version (pure Aloha)
has been central to the understanding of random access net-
works. These two protocols have over the years evolved into
a rich family of medium access control schemes, most no-
tably CSMA/CD, the Ethernet standard, and CSMA/CA
which is the basis of the IEEE 802.11 protocol. All results
presented in this paper are easily extended to CSMA and
CSMA/CD.

A major challenge in designing such protocol is how to pro-
vide quality of service (QoS) guarantees to various multime-
dia applications. Quality of Service (QoS) is defined as the
ability to provide a level of assurance for data delivery over
the network. Hence the required throughput of a node may
be dictated by its application (such as video or voice).

In this paper we reconsider the model suggested in [9]. We
consider a shared uplink in the form of a collision chan-
nel, where a users’s transmission can be successful only if
no other user attempts transmission simultaneously. Pack-
ets those are involved in a collision are backlogged and are
scheduled for retransmission after a random time. The de-
termination of the above random time can be considered as
a stochastic control problem. We study this control prob-
lem in a noncooperative framework: each user has a fixed
throughput demand and it dynamically adapts its transmis-
sion probability in order to obtain its required demand. For
such game, we need to use an important concept, namely,
a Nash equilibrium1. The paper [9] studied the propriety

1A Nash equilibrium is a strategies profile where no player
can improve its reward by deviating unilaterally from its



of Nash equilibrium (NE) under saturated case, i.e., each
node has always packets ready to send. Unfortunately, the
saturation assumption is unlikely to be valid in most real
networks. Data traffic such as web browsing and email are
typically bursty in nature while streaming traffic such as
voice operates at relatively low rates and often in an on-off
manner. Hence, for most real traffic the demanded trans-
mission rate is variable with significant idle periods. In [22],
authors assumed that users are independently active with
some given probability. Our first main result is then to show
the inaccuracy of the independence assumption used those
latter works. Our second aim is to derive a mathematical
model that allows us to study an important example of non
saturated case, the slotted aloha system with infinite buffer
queues. More precisely, a user has in general a limited infor-
mation to transmit, hence it will stop using network when
it succeeds all its transmissions. In this paper, we analyze
the system equilibria without this assumption. We consider
a more realistic model in which users transmit only during
their activity period. Yet the activity duration depends on
the volume of information the user needs to send and the
required transmit rate. We show that this new approach
enlarges the existence condition of the Nash equilibrium. In
contrast to [9] for this non saturated case we establish the
possible existence of infinitely many NE.

In addition to discussing some properties of the Nash equi-
librium, we also propose two discrete stochastic learning
transmission control algorithms which converge to a Nash
equilibrium. The first one is based on the Best Response al-
gorithm in which all users iteratively updates their transmis-
sion probability through a given rule. But in this algorithm,
all users should be able to obtain good estimates of the idle
probability . We finally propose another learning algorithm
using a stochastic iterative procedure. We approximate the
control iterations by an equivalent ordinary differential equa-
tion (ODE) to prove that the proposed stochastic learning
algorithm converges to a Nash equilibrium even in the ab-
sence of any extra information.

Related works-Interest has been growing in recent years
in studying competition of networking in general, access to
a common medium in particular, within the frame of non-
cooperative game theory, see e.g. the survey paper [8]. Var-
ious game formulations of the standard Slotted Aloha (with
a single power) have been derived and studied in [7, 6, 12,
13, 17] for the non-cooperative choice of transmission prob-
abilities. In [7, 6, 2] consider slotted Aloha system as both
cooperative (where a common objective is jointly optimized)
and non cooperative game, where each users fine-tunes its
transmit probability to maximize its payoff, with partial in-
formation and power diversity. In [17], the authors discuss
the equilibrium of a non-cooperative game for Aloha pro-
tocols. In their game formulation, Users are heterogeneous
and each one fine-tunes its transmit probability in order to
guarantee its demand. The work in [13] discusses the stabil-
ity of slotted Aloha with selfish users behavior and perfect
information. Authors showed the existence of an equilibrium
and characterized it.

A stochastic learning technique has been successfully used
in wireless network [19, 14, 3]. In [14], the authors propose a

current strategy.

stochastic learning algorithms for distributed discrete power
control game in wireless network. At each iteration, the
only information needed to update the power strategies for
individual terminal users is the feedback (payoff) from the
base station. The convergence and stability of the learning
algorithm are theoretically studied in detail for a two-user
two-power-level case.

Paper organization- We start by formulating the problem
in Section 2. We analyze the stability region and throughput
equilibrium in Sections 3 and 4. Then, we propose some
mechanisms to converge to the best NE in Section 5. Next,
we provide extensive numerical illustrations and simulation
examples to valid our analytical results. And finally finish
our paper by some concluding remarks. More details and
some proofs are omitted but are included in the full paper
version [1].

2. MODEL DESCRIPTION AND PROBLEM
FORMULATION

We consider a finite user population m users those transmit
to a common base station over a shared channel. We iden-
tify each one by a unique i.d. number between 1 and m. We
assume that time is slotted and all packets have the same
length. Since we are interested in collision channels (such
Aloha-like systems), a successful transmission occurs when
only one user transmits in the current slot. We note that
packets those are involved in a collision are backlogged and
are scheduled for retransmission after a random time. Each
user i handles a buffer Qi (see Fig. 1) that carries packets
arriving from high layers. Assume that packets arrive to
the buffer Qi according to a Bernoulli process with fixed pa-
rameter λi. Hence λi represents the normalized throughput
demand (in number of packet per slot) for the user i needed
to hold the service reliability. Until we contraindicate, we
assume that the buffers Qi have infinite capacity of storage,
hence the loss probability due to buffer overflow is null. In
the rest of the paper we refer to the vector of throughput
demands by λ = (λ1, λ2, ..., λm).
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Figure 1: One central receiver and multiple trans-
mitters. Each transmitter i handles an infinite-
capacity buffer and requires some minimum QoS λi.

Remark 1. As mentioned already, this kind of systems
are not analyzed in game theoretic framework before and we
are trying to consider one important example of a non sat-
urated system here. Indeed, a slotted aloha system with infi-



nite buffer is non saturated as the users may not be busy in
the beginning of each slot.

The underlying assumption of our user model is that users
are selfish and do not cooperate in any manner in order
to obtain their required throughput demands. We note
clearly that the transmission rate of each users affects the
throughput of other users. Each user i fine-tunes its trans-
mit probability so as to maximize its throughput (cannot
exceed λi); A non cooperative game is then established. A
user is said to be active if it has, in its buffer, at least one
packet ready to be transmitted. Let qi denotes the proba-
bility that a user i transmits on a given time slot and denote
by q = (q1, q2, ..., qm) the transmit probabilities vector. We
characterize the state of the system by an m-dimensional
vector. Let M = {0, 1}m represents the set of all 2m sub-
sets of 1, 2...,m. At each time slot, a subset Z of users is
assumed to be active. The instantaneous number of active
users is given by |Z(t)| =

∑m
i=1 Zi(t) which is the Hamming

weight of Z [11]. The average throughput of user i is then
given by:

ρi(q) = qiζ(ei)
∑

Z∈N\{i}

ζ(Z)
∏
j∈Z

(1− qj), (1)

ei is the vector whose all entries equal zero but the ith which
equals one and ζ(ei) = πi is the probability that user i
will be active. The equation (1) generalizes the throughput
formula of collision channels where at most one successful
transmission can occur per slot. Indeed, the activity prob-
abilities of users present in the system are correlated, inter-
dependent and still depend on time. Hence we shall write
πi(q) instead of πi.

The analysis of this system is quite complicated because of
the complex nature of the formula (1). Even in symmetric
user case this formula does not simplify to a good extent. In
some papers, authors try to approximate this success proba-
bility under independence assumption. Under this assump-
tion, the equation (1) would have simplified to [22]

qiπi(q)Πj 6=i(1− qjπj(q)). (2)

However unfortunately, this approximation is not good even
for symmetric cases (please see figure 2). Hence the analysis
of this system can not be simplified. This makes this study
interesting and we carry out the analysis without indepen-
dence assumption to obtain the required accurate analysis.
We will start this job with first understanding the stability
behavior of the system.

3. STABILITY REGION AND RATE BAL-
ANCE EQUATION

Let Aloha(λ, q) represent the slotted aloha system with ar-
rival rates λ and transmitting probabilities q. An Aloha(λ,
q) system is an example of finite number of interacting queues.
An Aloha system is stable whenever parameters related to
it like, Buffer sizes etc., does not grow with probability one
(please see [25] for exact definition). The stability analysis
of such a system has been carried out in literature to a good
extent.
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Figure 2: Figure illustrating the error while for-
mula (2) based on the independence assumption
is approximating the average throughput (success
probability) of a symmetric Aloha system. Here,
each user is assumed to have a fixed demand λ = 0.05
(packets per slot). Transmit rate of 3 users is fixed
to 0.5 whereas it is varying for the 4th user.

Previously some studies have obtained explicit conditions
for stability of Aloha (λ, q) for given values of (λ, q). Some
of the interesting results in this direction are : the system is
stable if it satisfies the condition (5) mentioned in the next
section. In most of the other cases ([23], [25]), authors study
the stability region, defined for a given transmit probability
vector q, as the set of arrival rate vectors λ for which Aloha
(λ, q) system is stable. While in some cases (for example
[24]), they define the stability region as the set of those ar-
rival rates λ for which there exists a transmit vector q with
Aloha (λ, q) system being stable.

In this paper, we are interested in a different concept of
stability region defined for a given arrival rates λ to be :

Q(λ) :=
{
q ∈ [0, 1]m : Aloha (λ, q) is stable

}
.

The reason for this kind of stability region becomes evident
in the next section. In the following we obtain an alternative
characterization of this stability region.

If an infinite buffer queue is stable it satisfies flow balance
equations (as there can be no loss of packets): The input flow
rate must be equal to the output flow rate. Here the arrival
rate is the rate at which packets from higher layers arrives,
i.e., λi whereas the departure rate is exactly the success
probability of user i denoted by P succi . Success probability
P succi is same as ρi(q) of equation (1) and these two terms
are used to refer the same quantity. Hence our infinite buffer
slotted aloha system is stable whenever

λi = P succi (q) for all i. (3)

and hence we have:

Proposition 2. The stability region is then given by:

Q(λ) =
{
q ∈ [0, 1]m : λi = P succi (q) for all i

}
.

4. NASH EQUILIBRIUM ANALYSIS
As mentioned before, we study this problem using game the-
oretic frame work. It is interesting to note here that we will



actually have a constrained game (will be more clear in the
following paras). As a first step, we define the strategies of
the underlying non cooperative game.

4.1 Feasible strategy
Each user i has a demand in the form of throughput λi.
Then, it fine-tunes its instantaneous transmit rate qi in order
to fulfill this demand. Let q−i be the strategies vector of
other users. To illustrate the meaning of feasible strategy
we consider Fig. 3, which plots the payoff obtained by user i
as its transmit rate qi varies, when the other users fix their
transmit strategies at q−i. By payoff of user i (with all the
users attempting transmission at rates given by q), we mean
the maximum demand of the user that can be met. Please
note that this figure is not generated from any real example,
but is only plotted to explain the concept of feasible strategy.
From illustrative example in Fig. 3, one can see that user i
has, in general, several strategies that can guarantee the
demand λi. Let Γi(q−i) be the set of all feasible strategies
of user i, i.e., all strategies that can provide a throughput
greater than or equal the demand λi. This requirement of
the constraint on the strategies results then in a constrained
game. We recall however that the obtained throughput of
some given user i cannot exceed its arrival rate λi.

Definition 3 (Definition 1). � A Nash equilibrium is
a profile q∗ of feasible strategies such that no user can im-
prove its utility by deviating unilaterally from its strategy
to another chosen from the set of feasible actions Γi(q

∗
−i).

Namely, (q∗i , q
∗
−i) is a NE if and only if

ρi(q
∗
i , q
∗
−i) ≥ ρi(qi, q∗−i), ∀qi ∈ Γi(q

∗
−i) and for all i. (4)
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Figure 3: Feasible strategies of user i under through-
put demand λi and average throughput ρi.

4.2 Constrained Nash Equilibrium (CNE)
We have a m-player constrained noncooperative game with
throughputs as the utilities. Let N (λ) represent the region
of all Constrained Nash equilibria.

The constrained game has a NE q∗ if and only if satisfies
(3). Hence for the infinite buffer Slotted Aloha system, the
region of CNE coincides with stability region, i.e.,

Q(λ) = N (λ)

.

4.3 Existence of CNE
As mentioned in the previous section, for a given arrival
rates λ, the transmit rate vector q is a CNE if and only if
Aloha (λ, q) is stable. There are many results ([26], [23], [25]
etc.) which establish the stability conditions, which thereby
give the conditions for existence of NE. One such condition
is (Theorem 1, [23]) : An Aloha (λ, q) system is stable if for
all i,

λi < qiΠj 6=i(1− qj). (5)

This establishes the existence of infinitely many NE:

N (λ) ⊃
{
q ∈ [0, 1]m : λi < qiΠj 6=i(1− qj) for all i

}
, (6)

when the set on the right hand side is non empty.

For symmetric systems i.e., when all the users have equal
demand, from [25, Corollary 4],

N ([λ, · · · , λ]) ∩ {[q, · · · , q] ∈ [0, 1]m} ={
[q, · · · , q] ∈ [0, 1]m : λ < q(1− q)m−1} .

4.4 Energy Efficient Nash Equilibrium
As seen in the previous section, there can in fact exist in-
finitely many of NE. From (6) the set of CNE, N , contains
an open set. In this section, we are interested in choosing a
vector from N which will be (nearly) energy efficient for all
the users.

Assume that E is the energy consumed for one single trans-
mission. The expected energy consumption of user i at any
given slot is

Ei = qiπiE . (7)

Empirically, the quantity πiqi, representing the apparent
transmit rate, is increasing with qi (we notice this in al-
most all examples, see for example Fig. 4). Further, we note
that when the demand is high the apparent transmit rate
qiπi tends towards the effective transmit rate qi since users
become saturated. Hence the energy spent by user q is ap-
proximately proportional to qi, i.e.,

Ei ∝ qi.

One can also support the above argument, by observing that,
whenever the transmit probability of one of the users be-
comes less (by still remaining in stability region), the amount
of collisions will be less and hence the overall energy spent
by each and every user will be less.

Thus for obtaining an Energy Efficient NE (EEE), ideally
we are interested in a point in N , for which the transmit
rate of all the users is the smallest possible. There can be
many ways in obtaining such a Energy Efficient NE. In the
following we define EEE as the the point where the product



of all the transmit probabilities is minimized2 :

EEE := arg min
q∈N

N∏
i=1

qi. (8)

The set N is obviously bounded, by continuity arguments
one can obtain an optimal point in the closure of the set N .
Even if the optimal point lies in the boundary of N , one can
chose a vector in N close to the optimal point so that its
energy efficiency is arbitrarily close to that of the optimal
point. Hence, there exists a q∗ ∈ N which will be (nearly)
energy efficient.

For symmetric users, let q∗ represent the smallest q that sat-
isfies q(1 − q)m−1 = λ. Then note that q∗ := [q∗, · · · , q∗]T
achieves minimum in the definition of EEE, but q∗ /∈ N .
Hence, any vector close to but not equal to q∗, will be
(nearly) energy efficient.

5. STOCHASTIC ’CNE’ LEARNING ALGO-
RITHMS

In this section we will describe two stochastic iterative al-
gorithms which converge to the efficient equilibrium point.
Mobiles learn what strategy to adopt in order to obtain their
required throughput. The first one is a semi distributed al-
gorithm while the second one is a completely distributed and
information less type.

5.1 Best-response-based Distributed Algorithm
(BRA)

In [17] and [9], the authors proposed a best response-based
algorithm that learn users the efficient equilibrium point for
saturated case. One can extend the same iterative algorithm
for non saturated (infinite buffer) case as follows.

Let qti , π
t
i respectively represent the transmit probability

and activity probability of user i at time slot i. Let

xti(q, π) :=
∑

Z∈N\{i}

ζ(Z)
∏
j∈Z

(1− qtj)

≈
∏
j 6=i

(1− πtjqtj)

be the idle probability of all users but the ith one at time slot
t, which is approximated using independence assumption.
Also, let εti be the update (learning) step at iteration t. At
the beginning of each slot, we assume that the base station
broadcasts the information {xti, i ≤ m}. The BRA version
for the non saturated users is as below.

However the above extension of BRA algorithm has two im-
portant problems. It uses independence assumption in cal-
culating idle probability (at BS), which as shown in Figure

2This can be understood well using the case of symmetric
users. Say q ∈ N ([λ, · · · , λ]). Let j be user with smallest
transmit attempt probability, i.e., such that qj ≤ qi for all
i. Then [qj , · · · , qj ] ∈ N , (qj)

m < Πi≤mqi and all the users
will use lesser energy (when all users attempt transmission
at rate qj on having a packet), than their corresponding
energies associated with q.
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Figure 4: Fig. (a) and (b) show the apparent trans-
mit rate as a function of the effective transmit rate
for 3 symmetric users under different throughput
demands. Fig. (c) shows the apparent transmit rate
for 3 users with different throughput demands.

Algorithm 1 : BRA

1: for i = 1, 2, ...,m. do

2: πt+1
i := πti + εt+1

i

(
1t+1
{i active} − π

t
i

)
3: qt+1

i := qti + εt+1
i

(
λi

xt
i
− πt+1

i qti

)
4: 1t{i active} is indicator of the event that at tth time

slot, user i has a packet to transmit.
5: end for



5 may not be a good approximation. If one were to esti-
mate this quantity accurately, one needs to estimate ζ(Z),
for each possible subset Z, also iteratively as in the case
of πi. But this will complicate the algorithm considerably.
Further, BRA is not a completely distributed algorithm and
it requires the transmit rate information of all the users at
every time step. This consumes valuable bandwidth and
is also hard to implement. Further, this calls in for coop-
eration among users to share their private (transmit rate)
information.

5.2 Fully Distributed Throughput Predicting
Algorithm (FDTPA)

We now turn to develop a new algorithm that is completely
distributed. We design an algorithm in which the users does
not need any extra information except their own demand.

The key idea of the algorithm (2) is the following :

• The users can observe the sucess/failure of their own
attempt to grab the collision channel.

• They can learn the effective throughput achieved by
themselves by using the above observations.

• The users can estimate the deviation of their (current)
throughput from their own demand (λi) and adjusts
their attempt/transmit rate to decrease this error to
zero.

• On convergence, each user’s effective throughput equals
their respective demand. Thus the limit point achieves
the demand (which is an important property of the
CNE).

Algorithm 2 : FDTPA

1: for each node i = 1, 2, ...,m. do
2: ρt+1

i := ρti + εt+1
i (1t{success i} − ρti)

3: qt+1
i := qti + εt+1

i (λi − ρt+1
i )

4: 1t{i success} is indicator of the event that at tth time
slot, user i has transmitted the packet successfully.

5: end for

5.2.1 Analysis
We use ODE analysis to study the proposed FDTP algo-
rithm. As a first step, we note that one can probably ap-
proximate the trajectory of the algorithm with the solution
of following ODE3 system :

�
ρi (t) = P succi (q(t))− ρi(t) (9)

�
qi (t) = λi − ρi(t) for all i.

We recall that P succi (q) represents the stationary probability
of successful transmission at queue i in a slotted Aloha (λ,
q).

3We are currently working towards obtaining the ODE ap-
proximation theorem.

Attractors . Since the ODE is approximating the trajec-
tory of the FDTPA algorithm, its attractors give the limit
points of the algorithm. From (9), any attractor (q∗, ρ∗) of
the ODE satisfies:

P succi (q∗) = ρ∗i = λi, for all i.

Hence any attractor of the ODE (9) is a CNE and hence the
limit point of FDTPA is a CNE.

5.2.2 Initialization
The ODE can have multiple attractors. It is already shown
in the paper that there exists infinitely many CNEs (equa-
tion (6)). Hence the limit point of the algorithm depends
mainly on the initial point. The algorithm converges to an
attractor whenever it is initialized with a point close to it (a
point in the region of attraction of the corresponding attrac-
tor). We are actually interested in converging to an EEE.
The desirable EEE has lower value of q∗i for all users i in
comparison with the other attractors. Thus we will con-
verge (with high probability) to the desired EEE if we ini-
tialize each q0i with smallest possible value. Further from (1)
at every NE, q∗i ≥ λi. Hence the appropriate initialization
values for the FDTPA algorithm are q0i = λi and ρ0

i = λi
for all i.

5.2.3 Projected FDTPA
Sometimes FDTPA can diverge because of the second iter-
ation in the algorithm involving the updating of qi’s. The
updated value of qt+1

i can go out of the window [0, 1] and
this will cause the FDTPA to diverge. This can be taken
care by the following projected FDTPA (with initializations
qi = ρi = λi for all i):

Algorithm 3 : Projected FDTPA

1: for each node i = 1, 2, ...,m. do
2: ρt+1

i := ρti + εt+1
i (1t{i success} − ρti)

3: qt+1
i := max

{
min

{
1,
(
qti + εt+1

i (λi − ρt+1
i )

)}
, 0
}

4: end for

6. NUMERICAL INVESTIGATION
In the previous sections, we analyzed the Nash throughput
for non saturated buffers and characterized the stability re-
gion. In the following, we present some analytical as well as
some simulation results. We use among this section a dis-
crete time simulator with Bernoulli process for packet gen-
erating.

6.1 Stability and Nash Equilibrium Region
We depict in Fig. 5 the individual throughput for 3 sym-
metric users when each one has a strict demand λ = 0.1
(in packet per slot) and infinite buffer. The first main re-
sult is the validation, through simulation, of the existence
of infinite number of Nash equilibria for this non saturated
case. In this example, we restrict all three users to use same
transmit probability q. In Fig. 5 we plot the simulated value
of P succ1 and the approximating formula (2) versus the com-
mon transmit probability q. Indeed, we note (curve with
triangle marks) that the throughput is increasing with the



transmit rate. When the average throughput achieves the
demand λ, we note that it becomes constant even if users
continue to transmit more aggressively; This shows the exis-
tence of several Nash equilibria, potentially a continuum of
NE. Over q = 0.6, the throughput turns to decrease and van-
ishes when users become very aggressive (transmit at proba-
bility 1). This situation is similar to the prisoners dilemma,
it shows in fact that Nash equilibrium is not efficient in
some situations. Curve corresponding to the plot of average
throughput using equation (2) seems to provide an accurate
approximation only when users are transmitting at low or at
high rate. This can be explained as it follows: On one hand,
at low load the wireless network is not congested and then
the collision probability is negligible. Therefore, the average
throughput is only function of transmit rate and the approx-
imation becomes accurate. On the other hand, when users
become very aggressive, the collisions increase, the activity
probability increases towards 1, the system moves towards
saturated case and henceforth the accuracy of the formula
improves. In contrast to simulation, the approximation does
not show existence of infinity NE points. To summarize, this
kind of approximation is doubtful and has no interest since
it seems to be so inaccurate that it can give wrong char-
acterization of Nash equilibria points (equivalently stability
region).
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Figure 5: In this figure, we show the individual
throughput for 3 symmetric users whose demand
is fixed to λ = 0.1, from both simulation and the
approximation (using eq. 2).

Later we plot in Fig. 6 the variation of the activity proba-
bility (busy probability) of some tagged user for the exam-
ple of Fig. 5. When user does not transmit at a rate that
can guarantee its nominal demand, we note that π = 1;
This is due to the fact that the arrival rate is still greater
than the departure rate. When the tagged user is trans-
mitting at any rate in [0.15, 0.6], the activity probability
is less than one; This interval corresponds well to the sta-
bility region. Through Fig. 5 and Fig. 6, we check easily
that the region of Nash equilibria corresponds well to the
stability region of the buffers. Further from the NE region
characterization of Section 4, one can easily calculate that
N ∩ {q ∈ [0, 1]3 : q1 = q2 = q3} = [0.135, 0.59], which is
very close to the stability interval [0.15, 0.6] obtained from
the simulations.
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Figure 6: The activity probability versus transmit
rate for 3 symmetric users whose demand is λ = 0.1.

6.2 Convergence of FDTPA and BRA algorithms
We now turn to check and compare the efficiency of our
two algorithms. We simulate in (Fig 7) the collision channel
where users use respectively BRA (dashed line)and FDTPA
(solid line). We consider a learning step ε = 10−5. It is clear
that information less stochastic scheme (FDTPA) tracks the
desired Nash equilibrium as well as the version with partial
information (BRA). We note similar trends when consider-
ing a variable learning step such as 1

t+1
in Fig 8.
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Figure 7: Simulation: In the case of small learning
step (ε = 10−5), our stochastic algorithm performs
as well as the BRA, either in term of accuracy and
speed of convergence.

Fig 9-a and Fig 9-b show the crucial importance played by
the initial conditions, in particular the initial transmit rate.
Indeed if q0i is not initialized judiciously the system can be
absorbed by some non efficient equilibrium point. To avoid
this problem, noting as said above that relation λi ≤ qi
always holds, initializing the transmit rate vector by the de-
mand vector seems to provide a good start point. Another
important factor that controls the speed of convergence, is
the learning step, that should be chosen appropriately.
Next we simulate the behavior of the information less al-
gorithm FDTPA in cases where no Nash equilibrium could
exist. We depict in Fig. 10-a and Fig. 10-b the transmit rate
and the average throughput respectively. The well known re-
sult of decentralized slotted aloha with selfish users ( [7], [6],
[2]) is then obtained: Users transmit w.p. 1 which explain



the throughput collapse and the congested situation of the
whole system. A remark that might be interesting is that
users are more aggressive as their demand is higher.
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Figure 8: Here, the static learning step is taken to
equal ε = 10−5, λi the throughput demand of user
i. Fig a and b show the iterative evolution of the
transmit rate and the average throughput until con-
vergence to the EEE.

6.3 Discussion
The design of new protocols has face to several challenges
and hard issues. For instance environment, bandwidth under-
utilization, energy constraint, evolution of hardware, resources
allocation etc. Here we addressed an interesting problem
that will drive progress in MAC layer protocols design. For
saturated aloha system, authors in [9] presented a nice study
for a saturated slotted aloha system. The main result is that
when the throughput demands are within the demand fea-
sible region, there exist exactly two Nash equilibria, with
one strictly better (in terms of energy consumption) than
the other for all users. However this seems not to be true
for the same system with non saturated users. This can be
simply explained as following: consider a NE q1, a tagged

user i transmits at q1i and is active w.p. π(q1i ), hence the
transmit rate of user i perceived by other users is q1i π(q1i ).
Operating in the stability region, even if tagged user changes
its transmit rate, its activity probability varies so as to keep
the perceived transmit rate almost constant. Hence there
exist many infinite NE. The real issue we should be careful
with is the initialization point of transmit rates vector to

converge to the EEE. Yet, the fluctuations might bring the
system to some non efficient equilibrium. Setting the vector
q0 to λ is a judicious starting point that resolves the prob-
lem to a good extent.

Considering a fixed rate for every user can be of help to
optimize the bandwidth utilization. On one hand, the min-
imum demand can be seen as the minimum QoS needed to
keep the service reliability. On the other hand, this scheme
can be seen as an alternative call admission control where
the base station may be ensured that the system capacity is
never exceeded.
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Figure 9: Importance of initializing the transmit
rate is illustrated in Fig a and b where users con-
verge to some non efficient CNE.

7. CONCLUDING REMARKS
We studied the throughput of collision channels, without
saturation condition (usually assumed in the literature), where
users have some strict QoS to fulfill. We noted that the
achievable throughput is not affected by the users asymme-
try and the region of equilibrium is larger than the satu-
rated case. Indeed, we showed existence of infinite number
of Nash equilibria. In addition to providing an energy ef-
ficiency analysis, characterizing the efficient CNE (EEE),
we adapted the algorithm proposed in [17] and [9] taking
into account the instantaneous saturation level of users in
order to converge to EEE. However this algorithm suffers
from many problems and implementation difficulties such
as bandwidth consumption, doubtful estimation of previous



transmit rate vectors and processing time. This motivated
us to propose an information less stochastic distributed al-
gorithm. We showed theoretically and through extensive
simulations, the accuracy of the new algorithm as well as its
speed of convergence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

ns
m

it 
ra

te

Time (in slots)

 

 

λ
1
=0.1

λ
2
=0.6

λ
3
=0.8 

λ
4
=0.27  

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.05

0.1

0.15

0.2

N
or

m
al

iz
ed

 C
N

E
 th

ro
ug

hp
ut

Time (in slots)

 

 

λ
1
=0.1

λ
2
=0.4

λ
3
=0.8

λ
4
=0.27 

(b)

Figure 10: When a CNE does not exist users as-
sist to a typical Prisoner’s Dilemma phenomenon;
Mobiles become very aggressive and transmit w.p.
1 (Fig a) which explain the throughput collapse
(Fig b).
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