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1. Introduction and the Model 
 
Consider n  relay mobile nodes, a source and a 
destination, assumed to be static. Whenever a 
relay mobile meets the source, the source may 
forward a packet to it. A mobile that receives a 
copy of the packet from the source can forward 
the same only if it meets the destination (two hop 
routing). The source meets each relay node 
according to a Poisson process with a parameter 

.λ  Each relay node meets the destination 
according to a Poisson process with parameter 

.γ  The source maximizes the probability that a 

packet arrives successfully at a given destination 
by time ρ. A second transmitter, tries to jam the 
transmission, and hence minimizes this 
probability. The jammer is located close to the 
source.  Let , ,t t tX u w  denote, respectively, the 

fraction of mobiles with the message, the 
source's control and the jammer's control, where 
ut is the probability to transmit at time t if at that 
time the source meets a relay, wt is the 
probability of jamming at time t. If jamming and 
transmission occur simultaneously, then the 
transmitted packet is lost. Let [ ]t tx E X=  be 

the expected value of 
tX and it is generated by 

0(1 ) ( ), (1)t t t tx u w n x x xλ
•

= − − =   

       During the incremental time interval 
[ , )t t dt+ , the number of copies of the packet in 

the network is Xt. Then, the number of packets 
the destination receives during [ , ),t t dt+ is a 

Poisson random variable with tX dtγ as 

parameter. So the probability of not receiving 
any copy of the packet during [0, ],ρ  

conditioned on { }tX  is  

 ( )0
ex p .tX d t

ρ
γ− ∫  

 
Let T denote the first instant a copy reaches the 
destination. Then the failure probability is 

0

( ) exp .tP T E X dt
ρ

ρ γ
  

> = −   
   
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     Instead of minimizing ( ),P T ρ> the failure 

probability, we will minimize its upper bound, 

obtained using Jensen's inequality: 

0
ex p .tE X d t

ρ
γ  −    ∫  

Minimizing the latter is equivalent to 
maximizing: 

∫=
ρ

γ
0

:),( dtxwuJ t
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    We assume that the jammer wants to minimize 
this quantity and the source wants to maximize it. 
Let ,c jΠ Π   represent the set of policies for the 

source and the jammer, respectively. We say that 
*

cu ∈Π  and *
jw ∈Π  are saddle-point (SP) 

policies for the game ( , , )c jJ Π Π  if for every  

cu ∈Π  and ju ∈Π  we have  

),(),(),( **** wuJwuJwuJ ≤≤ . 

Quantity * *( , )J u w  is called the value of the 

game. A policy is said to be open loop if it does 
not depend on the state of the system. It is said to 
be Markov (or a feedback policy) if its action at 

time t  depends upon t  as well as the state .tx   
A pure policy is one for which the actions at all 
times are deterministic, i.e., either 0 or 1. 
Considering soft energy constraints, the source 
(jammer) maximizes 

uL  (minimizes 
wL ), where 

∫−=
ρ

µ
0

tu),(: dtwuJLu
 

t

0

: ( , ) w  dt,wand L J u w
ρ

θ= + ∫  

which thus results in a multi-criteria game. Let  

∫∫ +=
ρρ

θµ
0

t

0

t dt.w u -w)u,J(x,  w)u,L(x, dt  

Let 
zsG  be the zero-sum game (ZSG) in which 

the source maximizes ( , , )L x u w while the 

jammer minimizes it. Note that ( , , )L x u w  is the 

result of either adding an extra term to 
uL  or 

subtracting a term from 
wL  and that the addition 

or the subtraction of these additional terms have 
not changed the Nash equilibrium (NE) of the 
multi-criteria game (this argument is not valid if 
the control policies depend on the state, that is if 
they are for example feedback policies). Then 
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clearly if * *( , )u w  is an open-loop NE for 

( , )u wL L−  where both players are maximizers, it 

is also an open-loop NE for( , )L L− , and hence 

an open-loop SP of L  (i.e., the game 
zsG ). 

Likewise, any open-loop SP solution of the ZSG 

zsG  is also an open-loop NE of( , )u wL L− .  Below, 

we first consider a game with 

( )∫ +=
ρ

γ
0

ttt )w,r(u x w)u,L(x, dt , 

where ( , )r u w u wµ θ= − +  and tx is the solution 

of equation (1). 
 
 
2. Static Game 
 
We begin with  u  and w  that are constants in 
time, in which case (1) has the unique solution: 
 0 ( )exp( )tx n x n tλκ= + − −  

where : (1 ).u wκ = −  Static  NE is a SP of 
zsG  

and has the following properties: 

Theorem 1  i) If 0x n< , the game has a SP.   

ii) If 0( ) ,n xγ ρλ µ− <  the game has (0,0) 

as the  unique SP. 
iii) The game cannot have a SP with 1w = . 
iv) If the SP is in the open square (0,1) (0,1),×  

then it is unique. ◊  
 
3. NE of Open-Loop and Closed-Loop 
Dynamic Games 
 
We first consider the open-loop case. Here, every 
NE is also a SP of 

zsG .  Hence, we have a single 

Hamiltonian: 
)()1( xnwupxwuH −−+++−= λγθµ  

which we will be maximizing over [0,1]u ∈  

and minimizing over [0,1].w∈  The co-state 

variable p  satisfies the co-state equation: 

(1 )
H

p pu w
x

γ
• ∂= − = − −

∂
 

and x  satisfies the original state equation (1). 
The open-loop SP solution is captured below: 

Theorem 2 i) Let .µθ <  There exists a st  such 

that  0** == wu  for 
stt >  and for ,stt <   

)(* tmu θ= and ,)(1* tmw µ−= where

)),(()()( tntptm ξλ −=  with p  and ξ  solving 

the coupled differential equations: 

02 2
, (0) , ,

( ) ( )
x p

p n p n

θµ θµξ ξ γ
λ ξ λ ξ

• •
= = = −

− −
 

)()( ss ttp −= ργ and st solves  .)( µ=stm  

ii)When ,µθ ≥  there exists an additional 

threshold 
s

t� with 
ss tt �≤ such that the source 

policy changes to 1* =u  when [ ]., ss ttt ∈  

Policy *u for [ ]ss ttt ,∉  and *w  for all t are as 

in (i). ◊  
 
     We next consider the closed-loop (feedback) 
case. Here we have to stay with the non-
cooperative game framework, and seek for NE. 
Let uV  and wV  be the value functions. The 
associated HJB equations are: 

0.  wx x)-(nw)-(1u
x

V
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t

V
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with  0   x),(V   x),( V wu ≡≡ ρρ (boundary conditions) 

and where ),(u ** w  is a NE.  The corresponding 

NE is the argmax and argmin of these equations 
and has the following structure: 

 Theorem 3 i) For any NE, 1* <w  for all .t  

ii) If  0  (n-x )    ,γ λ ρ µ<  then  .0** ≡≡ wu   

iii) Let .)()(:)( xnxnxtc −−−= γλµργλ  If 

,  ) )(x t- (  -  0c θρλθµ > the NE exists with the 

optimal state trajectory given by: 

)  - x)-(n )t -( ( )t - (

 x)1-(n   
 (t) x

22

(x)}t{t c

θµρλγρ
θµ ≤=ɺ  

and the optimal controls are given by, 

 .1 
) x-(n   t)- (  

 - 1     (t) w

 
)(

 
  - ) t - (    )x-(n 

1  
    (t) u

)}(x  t{t  
t

*

2t

)}(x  t{t  *
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≤

≤
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






=










−

=

λργ
µ

γλ
θµργλ

θ

txn  

iv) When θ is larger, the optimal policy has two 

switch time thresholds as in Theorem 2.iii. ◊  
 
4. Conclusions 
 
We have considered a multi-criteria control 
problem that arises in DTNs with two adversarial 
controllers: source and jammer and two types of 
information structures: closed and open loop, 
and in the latter case also with restriction to static 
policies. The structure of the equilibrium is 
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similar under both open-loop and closed-loop 
structures. When the jammer has a tighter 
constraint on its energy than the source, the 
policies have two switch times. After the first 
switch time, the jammer switches off and the 
source transmits at maximum probability and 
after the second switch time, the source also 
switches off. When the source has a tighter 
energy constraint, there exists only one switch 
time after which both are switched off. 
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