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Motivation : Modeling and Analysis of Biological Systems

Specialized logistic systems (temporal logics: Computation
Tree Logic CTL*, CTL, LTL, Probabilistic CTL,...)

@ Modeling in dedicated languages (stochastic m-calculus,
biocham, kappa, brane, ...) or in differential equations
< transition systems

@ Express properties in temporal logic

@ Verify properties against Kripke models
or traces (— external simulator)

— model checking.

— Reasoning is not done directly on the models.



General Approach

An unified framework:
@ modeling systems of biochemical reactions as transition
systems: Linear Logic (LL)
@ transitions with (temporal, location, stochastic,...) constraints

@ modal extensions of LL: Hybrid Linear Logic (HyLL) or
Subexponential Linear Logic (SELL)

@ Both HyLL and SELL have a cut admitting sequent calculus,
focused rules, ... — modern logic

@ Proofs by induction and mechanized proofs: the Coq or
Isabelle proof assistant — future work: automatic proofs

@ proofs: Coq A-terms containing HyLL /SELL proof trees

< A logical framework®™) for systems biology.
(*) A logic for encoding deductive systems and reasoning about them.



Outline




Example

@ Activation:
Active(a, b) o pres(a) —o d1(pres(a) ® pres(b)).
@ Inhibition
Inhib(a, b) o pres(a) —o d1(pres(a) ® abs(b)).

Note. This is not Biocham/Kappa/...



Linear Logic

t,...:= c|x|f(f) Ex:P53, ph(MAPK), complex(PER1,CRY1)

@ Propositions

IA|Vx. Al 3x. A
Ex: C(P53,0.2), pres(x) ® abs(y)

@ Judgements are of the form: I'; A - C, where

I" is the wunrestricted context
its hypotheses can be consumed any number of times.

A (a multiset) is a linear context
every hypothesis in it must be consumed singly in the proof.
C is true assuming the hypotheses I and A are true
Ex: bio_system; pres(x), abs(y) - pres(z)

“C" is a proposition, “C is true” is a judgement [Martin-Lof 83-96]



Sequent Calculus for Linear Logic [1]

@ Judgemental rules:

[; p(£) = p(£) [init] W copy
o Multiplicatives:
r.F1[1R] W 1L
A A-B ol LAFA I';A/,BI—C[_>L]
AFA— B NAAN,A—BEC
MmMAFA T;A'FB A ABEC

® L

FAANFASB " TAA®BEC



Sequent Calculus for Linear Logic [2]

o Additives:
LGARTITR] M A0F C[0L]

NAFA TAFB MAAFC

AFA&B &R F;A,Al&Azi—C&Li
AR A &R, MAAEC T;ABEC oL
AFA @A ' NAAPBEC
e Exponentials: i.FA ! LAARC [
r.F1A MAIAEC
Proofs are proof-trees, eventually including recursion (not described

here).

Pure syntactic part of logic; no models.
Sequent calculus is ideally suited for proof-search [Gentzen 1935-1969]



Example

e Activation:
Active(a, b) o pres(a) —o J1(pres(a) ® pres(b)).

@ Inhibition

Inhib(a, b) o pres(a) —o J1(pres(a) ® abs(b)).



Hybrid Linear Logic [1]

HyLL

@ Add a new metasyntactic class of worlds, written "w":

Definition

A constraint domain YV is a monoid structure (W, ., ¢).
The elements of W are called worlds, and
the partial order < : W x W—defined as u < w if there exists
v € W such that u.v = w—is the reachability relation in V.

@ The identity world ¢, <-initial, represents the lack of any
constraints: ILL C HyLL[¢] C HyLL[W].
e Ex: Time: T = (N,+,0) or (R*,+,0)

[1 J. D. and Kaustuv Chaudhuri.
A hybrid linear logic for constrained transition systems.
In Post-Proceedings of TYPES'2013, 2014.



Hybrid Linear Logic [2]

@ Make all judgements situated at a world: A @ w
A is true at world w

@ Judgements are of the form:
MnAEFCQOw,
where [ and A are sets of judgements of the form A @ w

@ All ordinary rules continue essentially unchanged:

MMAAOwHBOw
NAFA—-BOw

[—r]

MAAQu-COw T ABOQuHCOw

L
FAAGBOuU-COw ®




Hybrid Connectives

@ Make the claim that “A is true at world w"
a mobile proposition in terms of a satisfaction connective:

@ Propositions:

tu= c|x|f(t)
AB,..:= ... |Aatw | ]u A|Vu. A|Ju. A



Satisfaction

e To introduce the satisfaction proposition (A at u) (at any
world v), the proposition A must be true in the world u:

MAFAQU

t R
NAF(Aatu)@v o

@ The proposition (A at u) itself is then true at any world, not
just in the world wu.

@ i.e. (A at u) carries with it the world at which it is true.
Therefore, suppose we know that (A at u) is true (at any
world v); then, we also know that A @ u:

MAAQu-FCOw
A (Aatu)@QvECQw

t L



Localisation

@ The other hybrid connective of localisation, | u. A, is intended
to be able to name the current world:

o If | u. Ais true at world w, then the variable u stands for w
in the body A:
AF[w/ulA@w
NMAF uAQw

IR

@ Suppose we have a proof of | u.A @ v for some world v;
Then, we also know [v/u]A @ v:

A [v/ulAGVvECOw L
A JuA@GvECOw




Properties of the Sequent Calculus System [1]

Q@ IfT;AFCQ@w, thenT,T";AF C @ w (weakening)

Q IfTTAQu,AQu;A-FCOw, thenlT,AQu;AFCQw
(contraction)

Theorem (identity - syntactic completeness)
MMAGQwkEAQwW

Theorem (cut - syntactic soundness)

Q IfT;AFAQuandl;A/,AQ ut C @ w, then
IAARCOwW,.
Q Ifl;,FAQuandT,AQ u;AFCQ@w, thenT;AF C Q@ w.




Properties of the Sequent Calculus System [2]

Lemma (invertibility)
@ On the right: &R, TR, — R, VR, | R and at R;
@ On the left: ®L, 1L, &L, OL, 3L, 'L, | L and at L

Theorem (consistency)

There is no proof of .;. =0 @ w.

Theorem (conservativity)

For “pure” contexts I and A and “pure” (in ILL) proposition A:
if T;A l_HyLL AQ@w then ;A A




Properties of the Sequent Calculus System [3]

Theorem (HyLL is -at least as powerful as- S5)
SO0AQ wDOCA O w.

Theorem (HyLL admits a - sound and complete - focused system)

Focusing reduces non-determinism during proof search.

< normal form of proofs.

< (full) adequacy (i.e. soundness and completeness) of encodings.
Theorem (adequacy)

Sm can be fully adequately encoded in (focused) HyLL




Defined Modal Connectives - Delay

@ Defined modal connectives:

0A ¥ lu. VYw. (Aat uw) OA ey lu. 3w. (A at u.w)

5, A i (Aat wy) +A Y vy (A at )

@ The connective § represents a form of delay:
Derived right rule:

MMAFAQwWwW.v
MNMAF6AQW

o R



Example

e Activation:
Active(a, b) o pres(a) —o J1(pres(a) ® pres(b)).

@ Inhibition

Inhib(a, b) o pres(a) —o J1(pres(a) ® abs(b)).



Modeling Approach

In a first experiment:

@ Boolean models
(i) a set of boolean variables,
(ii) a (partially defined) initial state, and
(iii) a set of rules of the form L; = R;

@ Rules are asynchronous (one rule can be fired at a time).
@ Encode both the model and the property in HyLL, and prove

the property in HyLL + Coq.

@ Elisabetta de Maria, J. D., and Amy Felty.
A logical framework for systems biology.

In FMMB, 2014.



Activation/Inhibition Rules [1]

@ Lack of information:
0_active(a, b) = pres(a) —o 01 pres(b).
Without consumption:

w_active(a, b) e pres(a) —o d1(pres(a) ® pres(b)).
@ More precise:

s_active(a, b) = pres( ) ® abs(b)—od1(pres(a) @ pres(b)).

Looping:

I_active(a, b) = pres( ) ® pres(b)—odi(pres(a) ® pres(b)).
o General:

active(a, b)

def (pres(a) @ (pres(a) ® pres(b)) @ (pres(a) ® abs(b)))
—0 01 (pres(a) ® pres(b)).



Activation/Inhibition Rules [2]

@ Inhibition:
inhib(V, a, b)
def pres(a) @ (pres(a) ® pres(b)) @ (pres(a) ® abs(b)))
—0 01 (pres(a) ® abs(b)).
@ Inhibition with consumption:
inhibc(V, a, b)
def (pres(a) @ (pres(a) ® pres(b)) @ (pres(a) ® abs(b)))
— 01 (abs(a) ® abs(b)).
e Strong inhibition
inhibs(V, a, b)
&f (abs(a) @ (abs(a) ® pres(b)) @ (abs(a) ® abs(b)))
—0 d1 (abs(a) @ pres(b)).



Oscillation

A A EF(B A EFA)

Definition (one oscillation)

oscillate; (A, B,u,v) L A & §,(B & 6,A) & (A& B —0).

Definition (oscillation - object)
oscillatep, (A, B, u, v)
L 4(A=6,B) & (B—6,A)] & (A& B —0).

V.

Definition (oscillation - meta)

oscillate (A, B, u, v)
L for any w, A@GwtF B Q@w.u), (BO@w.ukAQw.u.v),
and (FA& B -0 @ w).




Example - Definition

The P53/Mdm2 DNA-damage repair mechanism

P53 is a tumor suppressor protein that is activated in reply to DNA
damage. P53 is controlled by another protein: Mdm2.

DNA damage increases the degradation rate of Mdm2 so that the
control of this protein on P53 becomes weaker and (after ev.
oscillations) the concentration of p53 can increase. P53 can thus
either repair DNA damage or provoke apoptosis.

Boolean Model, in Biocham:
Initial states: P53 is absent and Mdm?2 is present.
1) Dnadam = —=Mdm2 4) Mdm2 = —P53

2) “Mdm2 = P53 5) P53 = ¢ —~Dnadam
3) P53 = Mdm?2 6) “Dnadam = Mdm?2



Specification in HyLL [1]

In HyLL[(N, +, 0)]

unchanged(x, w) e [(pres(x) at w —opres(x) at w.1) &
(abs(x) at w —o abs(x) at w.1)].

unchanged(V, w) o ®xeyunchanged(x, w).

active(V, a, b) e (pres(a) @ (pres(a) ® pres(b))
@ (pres(a) © abs(b)))
—0 01 (pres(a) ® pres(b))

® | u. unchanged(V \ {a, b}, u)).



Specification in HyLL [2]

well definedg(V) “vae v, [pres(a) ® abs(a) —o 0].
well_defined;(V) “vaev. [pres(a) @ abs(a)].
well defined(V) % well definedy(V),well defined;(V).

%
%



Specification in HyLL [3]

@ The system:

vars & {p53,Mdm2, DNAdam}.
rule(l) ﬁ inhib(vars, DNAdam, Mdm2).
rule(2) X nhib, (vars, Mdm2, p53).
rule(3) o actlve(vars p53,Mdm2).
rule(4) = 1nh1b(vars Mdm2, p53).
rule(5) o nhib c(vars, p53,DNAdam).
rule(6) S nhib s(vars, DNAdam, Mdm2).
system © vars, rule(l),rule(2),rule(3),
rule(4),rule(5),rule(6), well defined(vars).
o Initial state:

initial state % abs(p53) ® pres(Mdm2), initial_state at 0.



Informal Proofs

Linear Logic < we sometimes need, in the theorems:

dont_care(x) o pres(x) @ abs(x)
dont_care(V) e ®xecydont_care(x).
Alternative: prove (---® T).

In the proofs:
Case analysis on the possible values of variables
(using well defined; ).

Definitions:

stateg & abs(p53) ® pres(Mdm2)
state; & pres(p53) ® abs(Mdm2).



Property 1

As long as there is DNA damage, the system can oscillate (with a
short period) from statey to state; and back again.

Proposition (Property 1, Version 1)

For any world w, there exists two worlds u and v such that both u
and v are less than 3 and the following holds:
T system @ 0 ; statey ® pres(DNAdam) @ w
F oy [(statey ® dont_care(DNAdam)) &
(6y (statey ® dont_care(DNAdam)))] @ w

Proposition (Property 1, Version 2)

T system @ 0 ; statey ® pres(DNAdam) @ w
b state; ® dont_care(DNAdam) @ w.u and
T system @ 0 ; state; @ w.u F stateg @ w.u.v




Property 2

DNA damage can be quickly recovered.

Proposition (Property 2)

For any world w, there exists a world u such that u is less than 5
and the following holds:
T system @ 0; statey @ pres(DNAdam) @ w
k- statey ® abs(DNAdam) @ w.u




Induction/Case Analysis

Case analysis on the set of fireable rules:

fireable(1) 3
(pres(DNAdam) @ (pres(DNAdam) ® pres(Mdm2)) &
(pres(DNAdam) ® abs(Mdm2))) ® dont_care(p53)

not_fireable(1) o abs(DNAdam) ® dont_care({Mdm2,p53})

“for any fireable rule r, P"
for any rule r in [1..6], (fireable(r) & P) @ not_fireable(r)



Property 3

If there is no DNA damage, the system remains in the initial state.

A first attempt at formalizing this property might be:

For any world w, the following holds:
T system @ 0, abs(DNAdam) @ O |- statey ® abs(DNAdam) @ w.

We want to prove that if abs(DNAdam) @ 0 then

statey ® abs(DNAdam) @ w holds, for all worlds w, no matter
which rule is fired to get to w.

Thus our property requires a case analysis on the rules of the
biological system.



Property 3 (con't)

Proposition (Property 3)

Let P denote the formula statey ® abs(DNAdam). For any world
w, the following holds: t system @ 0, P @0 P at 0 @ w;
and for any world w, for any rule r in the interval [1..6], the
following holds:
Tsystem @ 0 - P —o (fireable(r) & 61 P) & not_fireable(r) @ w




Property 4

There is no path with two consecutive states where p53 and Mdm2
are both present or both absent.

In other words: from any state where p53 and Mdm2 are both
present or both absent, we can only go to a state where either p53
is present and Mdm2 is absent or p53 is absent and Mdm2 is present.

This requires a stronger (natural) hypothesis: we need the property
that each rule modifies at least one entity in the system.

— strong inhibition and activation rules:

s_active(V,a, b) o pres(a) ® abs(b) —o

d1(pres(a) ® pres(b))® | u. unchanged(V \ {a, b}, u)).



Property 4 (con't)

L := (pres(p53) ® pres(Mdm2)) & (abs(p53) ® abs(Mdm2))
R := ((pres(p53) ® abs(Mdm2)) &
(abs(p53) ® pres(Mdm2))) ® dont_care(DNAdam)
from L we can only go to R, no matter which rule is fired.
< case analysis on the set of fireable rules:

Proposition (Property 4)

For any world w, for any rule r in the interval [1..6], the following
holds:
1 system @ 0; .

F L —o (s_fireable(r) & 61 R) @ smot_fireable(r) @ w




Formal Proofs

Proofs fully formalized in Cogq,
using a AProlog prover to help with partial automation of the proofs.

Two-level style of reasoning, with HyLL as the specification logic
(HyLL is implemented as an inductive predicate in Coq).

< Both prove meta-/level properties of HyLL (ex: weakening)
and reason at the object-level (i.e. prove HyLL sequents).



Comparison with Model Checking

Model checking:
- encode the biological system as a finite transition system,
- specify properties in propositional temporal logic, and
- verify properties by exhaustive enumeration of all reachable S
+ efficient tools
CCind-AProlog-HyLL:
-+ HyLL has a very traditional proof theoretic pedigree: sequent
calculus, cut-elimination and focusing;
+ unified framework to encode both transition rules and (both
statements and proofs of) temporal properties;
+ all the models containing the rules satisfy a (3) property.
- theorem proving can be time consuming and needs expert.
Can however provide partial, and sometimes complete,
automation of the proofs.



Further Advantages w.r.t Model Checking

@ We do not need to blindly try all possible rules at each step
but we can guide the proof.

@ Proof of a property of the system which is not desirable:
we can look for the rules to be removed /modified among
those that have been used in the proof.

@ "“P is true at every even state of an infinite path”:
Vn=2k. P at n.

@ Couple our models with other models sharing some variables.



Subexponentials in Linear Logic

SELL [V. Danos, J.-B. Joinet and H. Schellinx, 93]

Subexponential Signature

Y = (I,=, U) where [ is a set of labels, U C [ set of unbounded
subexp and =< is a pre-order among the elements of /.
=< is upwardly closed wrt U [if a€ U and a < b, then b € U]

F o= 01| T|Lp@) | AR |AReR|ABFR|R&F|
Ix.F |Vx.F|1¥F|?7?F|Vx:aF|3x:aF
I?F means that F holds in a.
[°7°F means that F is confined to s.
Moreover if a € U then I°F is a classical formula (as ! F in LL)
Assume two independent spatial domains a and b (a A b). Then,

(1?C—o!PD),1PC t1PD



Quantification on Subexponentials

SELLY [V. Nigam and C. Olarte and E. Pimentel, 2011-2016]
F = ---|Vx:aF|3x:aF

Creating “new " locations: I',3/.(F) - G

Asserting something about all locations: I',V/.(F)F G
Proving that all locations satisfies G: I F V/.(G)
Proving that G holds in some location: T+ 3/.(G)

Theorem (Cut-elimination)

For any signature ¥, the proof system SELL" admits
cut-elimination.




HyLL and SELLY

@ Linear logic defines two kind of contexts: classical
(unbounded) and linear.

@ SELL generalizes this idea by slitting the context in as many
parts as needed.

@ Subexponentials are not canonical: 12F ¢ 1°F thus SELL as
a logical framework is more expressive than LL.

@ What about HyLL? Do the worlds in HyLL add more
expressive power?

@ J. D., Carlos Olarte, and Elaine Pimentel.
Hybrid and subexponential linear logics.
In LSFA, 2016.



Modal Connectives

@ Defined modal connectives in HyLL:

0a lu.Vw. (Aat uw) QA o Ju. Iw. (A at u.w)
5 AY Lu (A at u.v) TA v, (A at u)
e in SELL:
O,A Yviiuva 0,4 E3urA

0A  ©viicotA 04 3.

TA

[6v Alu « [Alu.v [t Al vy 0.[A]u



Bio Example

@ Inhibition in HyLL

Inhib(a, b) & pres(a) —o 1(pres(a) ® abs(b))

@ Inhibition in classical SELLY

def

Inhib(a, b) = Vt: 00. Ifa—o " (a ® bh)

Inhib(a, b,c) & Vi : oo.
[fa®@(babl)®c—o!"a ® bh)®c]&
fa@(ebl)®ct ol (a @ bl)®ct]

@ Inhibition in SELLY

Inhib(x,y, z) Lt . I“count(1, y, z)—o! " count(1,0, 2)



More Examples

@ HyLL has been used to
encode transition systems (S7 calculus) and
to specify/verify biological interacting systems.
Biological example with formal proofs in Coq.

@ SELLY has been used to
represent contexts of proof systems
to specify systems with temporal, epistemic
and spatial modalities
and soft-constraints or preferences;
to specify bigraphs and
to specify/verify biological /multimedia interacting systems.



Encodings in Linear Logic

Two meta-level predicates || and [-] for identifying objects that
appear on the left or right side of the sequents in the object logic.
Rules

AA—T A AB—T A A—T,A A—T,B
AMANB —T 'Haane—r1 'R A—T,ANB

AR

are specified in LL as
AL:3AB(AANB|F® (|A] @ |B)))

Ag:3A,B.([AA BT+ @ ([A] & [B]))
The linear logic connectives indicate how these object level

formulas are connected: contexts are copied (&) or split (®), in
different inference rules (&) or in the same sequent (%).




HyLL and Linear Logic

HyLL rules can be encoded in LL as:
®R : 3C,Cw.([(C®C)ow]t®[Cow]® [C'ow])
®L : 3C,Cw.((CeC)ew|te(|Cow| B |C'Cw]))
at R : 3C,u,w.([(C at v)0w]+ ® [COu])
at L : 3C,u,w.(|(C at v)@w|+ ® |COu])
VR 3A u,w. ([l vAOw]* @ [(A w)@w])
VLo 3A uw. (| vAOW]|t ® [(A w)0w])

Theorem (Adequacy)

Let T be the set of above clauses. The sequent I'; A+ FOQw is
provable in HyLL iff =727 2|, |A],[F@w] is provable in LL.
The adequacy of the encodings is on the level of derivations [i.e.
when focusing on a LL specification clause, the (bipole) derivation
corresponds exactly to applying the introduction rule at the object
level].




HyLL and SELL

HyLL rules into SELL":

® R : 3C,C'3w:oco.("[(C®CYOw]t e ?[Cow]|® ™ [C'ew]

at R : dJAdu:
at L : dAdu:
JR : FJAFu:
L : JAdu:

o0, W
o0, W :
o0, W
00, W :

Theorem (Adequacy)

I"T(A at u)Ow]+ ® ?Y[AQu))
| (A at u)@w|+ ®@ ?“|AQu])
[l uAGwW]t ®@ ?"[(A w)Ow))
|} uwAGwW|t @ ?[(A w)@w])

A,\,—\,\

Q.
Q.
Q.
Q.

Let T be the set of formulas resulting from the encoding in the
above definition. The sequent I'; A = F@w is provable in HylLL
iff 27, 2¢|T|, |A],?"[F@w] is provable in SELL". Moreover,
the adequacy of the encodings is on the level of derivations.




Information Confinement

@ Information confinement in SELL:
inconsistency is local: !"?"0 /0
inconsistency is not propagated: !"'7?"0 £ 1V?V0

@ In HyLL it is not possible to confine inconsistency:
even if we exchange the rule OL by

M A, 00w FOw [0/]

the rule 0L would still be admissible:

A 00vE FOv 0 ot
A, (0at v)Ow - FOv ° -
A 00wHF- FOv

I A,00wH (0 at v)Ow 0,

cut




CTL in HyLL [1]

Encoding of temporal logic operators in HyLL[T], where
T = (N, +,0), representing instants of time:

o State quantifiers
F &0, GO and XP < 6,P
PiUP, <l u dv. Pat uv®Vw <v. Py at u.w
@ Path quantifiers
E corresponds to the existence of a proof: EF & {, EG < [J
A: consider all the possible rules to be applied at each step.
Let R be the set of rules of our transition system.
o AXP is encoded as forall r in R §;P. More precisely:
AXP & forall rin R (fireable(r) & 6;P) @ not_fireable(r)
o AGP <> P A AG(P —o AX(P)).
AGP < P ® Vn. (P at n) —oforall rin R (P at n+1).
o AFP & PV AX(AFP).
for a bound k on the number of steps needed.



CTL in HyLL [2]

Let V= {ai,...,an} propositional variables and

s =py(a1) A--- Ap,(an) represent a state where p; € {pres, abs}
and r : s — s’ be a state transition.

Encoding [-] from CTL states and state transitions to HyLL:

[pres(a;)] = pres(a;) [abs(ai)] = abs(a;)

[s]= & [p;(a)] [r:s—s]=Vw.(([s] at w) — 61([s]) at

i€l..n
Let F, G be CTL formulas built from states and A, V, U, EX, EF.
Clsl = [s] CIFAG] = C[F]&C[G]
C[FVv G] = C[F]=C[G] C[E[FUG]] = CJF]U C[G]
CIEXF] = 6C[F] CIEFF] = OC[F]

Such encodings are faithful, i.e. a CTL formula F holds at state s
in R iff [R]QO; [s]@w - C[F]@w is provable in HyLL.



CTL in uMALL

MALL is the core of LL: without exponentials (! and ?).
uMALL: extension of MALL with (least and greatest) fixed points

TEASE  REBSK(SX)E IFA BB
Y+ A, vBE Y+ A, uBt

where S is the (co)inductive invariant. The y rule corresponds to
unfolding while v allows for (co)induction. X represents the
(first-order) signature.



CTL in uMALL [1]

Path quantifiers as fixpoints:

EFF
EGF

AFF
AGF

pY.FVEXY
vY.F AEXY

1Y .FVAXY
VY.F AAXY

E[FUG]

A[FUG]

pY.GV (F ANEXY)

wY.GV (FANAXY)



CTL in uMALL [2]

Definition (CTL into xuMALL)

Let R be of transition rules and a state s = py(a1) A--- Ap,(an)-

[pres(a)] = ai  [abs(a)] =27  [p] = pos(p)

[s] = [py(a)l*® -+ B [py(an)]*
pos(s) = [pi(a)]® -- @ [pn(an)]
neg(s) = ([py(a)]* @ T)& & ([ps(an)]- ® T)

p is a state formula. pos(s) (resp. neg(s)) tests if r can (resp.
cannot) be fired at the current state.
We map CTL A [resp. V] into & [resp. @].

CIAXFIr = & (neg(s) @ (pos(s) @ ([s']% )

s—s/€ER

CIEXFIr = @ (pos(s)® ([s1%¢))

s—s/€R




CTL in uMALL [3]

Definition (CTL into uMALL (con't))

CI[AFF]r =puY.dp® H%ER (neg(s) @ (pos(s) ® ([s']B Y)
CI[EFF]= =pY. ¢& H@en (pos(s) ® ([s']% Y))
CIAGFlr  =vY. $& Séléen (neg(s) @ (pos(s) ® ([s]® Y))
CIEGF]r  =vY.0& @ (pos(s)® ([s']®Y))

s—s/€R

CIAIFUG]] =uv.w@(¢& & (nog(s) @ (pos(s) ® ([s'18 ¥)

s—s’€R

CIEIFUGIIR = pYab e (¢& D (pos(s) ® ([<]% Y)))

s—s’ER




CTL in uMALL [4]

Let s =R, F denote “the CTL formula F holds at state s in R".

Theorem (Adequacy)

Let V= {ai,...,an} be a set of propositional variables, R be a set
of transition rules on V and F be a CTL formula. Then, s =8y, F
iff the sequent - [s],C[F]r is provable in pMALL.




Example in Biomedicine

[Ongoing joint work with P. Lio']
Formalizing the evolution of cancer cells - driver or passenger
mutations.

An intravasating Circulating Tumour Cell:
In HyLL: C(n, breast, f,[EPCAM]) —o &4 C(n, blood, 1, [EPCAM])
In SELLY: Vt: co.
1E1Pre(n, £, [EPCAM]) —o 1E791Pc(n, 1, [EPCAM])
where f is a fitness parameter.

Our long term goal here is the design of a Logical Framework for
disease diagnosis and therapy prognosis.



Conclusion and Future Work

@ Done: HyLL and SELLY for biology (first steps),
HyLL vs SELLY (HyLL into LL, HyLL into SELLY,
simplicity/efficiency vs expressiveness/localities),
CTL into uMALL.

@ Claim: Logical Frameworks are safe and general frameworks,
for specifying and verifying properties of a large number of
systems.

e To do: automatic proofs for HyLL/SELLY for biology,
biomedicine (diagnosis and prognosis), neuroscience, ...

@ and also: external events, stochastic constraints, formal proofs
of (meta-theoretical) properties of HyLL/SELL (in Coq), ...,
a resource-aware stochastic or probabilistic A-calculus that has
HyLL propositions as (behavioral) types. ~~ type-theory.



Thanks for your attention



