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Abstract. Data streams for a personalised breast cancer programme
could include collections of image data, tumour genome sequencing, likely
at the single cell level, and liquid biopsies (DNA and Circulating Tumour
Cells (CTCs)). Although they are rich in information, the full power of
these datasets will not be realised until we develop methods to model the
cancer systems and conduct analyses that transect these streams. In ad-
dition to machine learning approaches, we believe that logical reasoning
has the potential to provide help in clinical decision support systems for
doctors. We develop a logical approach to modelling cancer progression,
focusing on mutation analysis and CTCs, which include the appearance
of driver mutations, the transformation of normal cells to cancer cells in
the breast, their circulation in the blood, and their path to the bone.
Our long term goal is to improve the prediction of survival of metastatic
breast cancer patients. We model the behaviour of the CTCs as a tran-
sition system, and we use Linear Logic (LL) to reason about our model.
We consider several important properties about CTCs and prove them
in LL. In addition, we formalise our results in the Coq Proof Assistant,
thus providing formal proofs of our model. We believe that our results
provide a promising proof-of-principle and can be generalised to other
cancer types and groups of driver mutations.

1 Introduction

Cancer is a complex evolutionary phenomenon, characterised by multiple lev-
els of heterogeneity (inter-patient, intra-patient and intra-tumour), multiscale
events (i.e. changes at intracellular, intercellular, tissue levels), multiomics vari-
ability (i.e. changes to chromatine, epigenetic and transcriptomic levels) that
affect all aspects of clinical decisions and practice. The most remarkable phe-
nomenon is the occurrence of numerous somatic mutations, of which only a
subset contributes to cancer progression. The dynamic genetic diversity, coupled
with epigenetic plasticity, within each individual cancer induces new genetic ar-
chitectures and clonal evolutionary trajectories.

A striking feature of cancer is the subclonal genetic diversity, i.e., the pres-
ence of clonal succession and spatial segregation of subclones in primary sites



and metastases. At the root of the subclonal expansion there are developmen-
tally regulated potentially self-renewing cells. After initiation, multiple subclones
often coexist, signalling parallel evolution with no selective sweep or clear fitness
advantage that becomes evident with therapies. Fitness calculation for each sub-
clonal is difficult as subclones can form ecosystems and can cooperate through
paracrine loops or interact through stromal, endothelial and inflammatory cells.

Tumour stages describe the progress of the tumour cells. One widely adopted
approach is the American Joint Committee on Cancer (AJCC) tumour node
metastasis (TNM) staging system. It classifies tumours with a combined stage
between I-IV using three values: T gives the size of the primary tumour and
extent of invasion, N describes if the tumour has spread to regional lymph nodes
and M is indicative of distant metastasis. In terms of prognosis, Stage I patients
have the best prognosis with 5 year survival rates (80-95%). The survival rates
progressively worsen with each stage. Even with advances in targeted therapies,
Stage IV patients have survival rates of just over two years. The integration
of blood tests, biopsies, medical imaging, with genomic data have allowed the
classification of many subtypes of cancers with striking differences of driver mu-
tations and survival patterns. Therefore, the current data stream goals for a per-
sonalised breast cancer program should include the generation of tumour whole
genome sequencing (DNA and RNA) for patients with breast cancer. Another
data stream goal could focus on liquid biopsies. This will consist of data ob-
tained from circulating tumour DNA (ctDNA) and single cell analysis. However,
the full power of these datasets will not be realised until we leverage advanced
statistical, mathematical and computational approaches to devise the needed
procedures to conduct analyses that transect these streams.

There is a very rich body of biomedical statistics, machine learning and epi-
demiological literature for cancer data analysis which includes methods ranging
from survival analysis, i.e., the effect of a risk factor or treatment with respect
to cancer progression, analyses of co-alteration and mutual exclusivity patterns
for genetic alterations, gene expression analyses, to network science algorithms
(see e.g., [4, 5, 8, 17, 19, 26, 33]). For example, in survival modelling, the data is
referred to as the time to event date and the objective is to analyse the time
that passes before an event occurs due to one or more covariates [22,23]. We be-
lieve that together with machine learning and biostatistics, there is a role for a
logical approach in guiding optimal treatment decisions and in developing a risk
stratification and monitoring tool to manage cancer. In this work, we focus on
the use of a formal logical framework (as described below) to provide a reliable
hypothesis-driven decision making system based on molecular data.

1.1 Formal Methods for Systems Biology

Computational systems biology provides a variety of methods for understanding
the structure of biological systems and for studying their dynamics. In order to
capture the qualitative nature of dynamics, approaches include Petri nets [9],
π-calculus [31], bio-ambients [30], and rule-based modelling languages such as
Biocham [18] and Kappa [11]. Molecular Logic [37] uses boolean logic gates to
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define regulations in networks. One of the most successful approaches to model
and analyse signal transduction networks, inside the cells, is Pathway Logic [35]
(a system based on rewriting rules). Our approach, based on logical frameworks,
can be used to model biological networks both inside and outside the cell.

The dynamics from a quantitative point of view can be captured by means
of ordinary or stochastic differential equations. More recent approaches include
hybrid Petri nets [21] and hybrid automata [1], piecewise linear equations [24],
stochastic π-calculus [29], and rule-based languages with continuous/stochastic
dynamics such as Kappa [11], Biocham [18], or BioNetGen [7].

One of the most common approaches to the formal verification of biological
systems is model checking [10] that exhaustively enumerates all the states reach-
able by the system. In order to apply such a technique, the biological system
should be encoded as a finite transition system and relevant system properties
should be specified using temporal logic.

1.2 Logical Frameworks

In contrast to the aforementioned approaches, we encode both biological systems
and temporal properties in logic, and prove that the properties can be derived
from the system. This approach is new, only proposed in two previous works up
to now [12,28]. In the present work, we choose discrete modelling, with temporal
transition constraints. We believe that discrete modelling is crucial in systems
biology since it allows taking into account some phenomena that have a very low
chance of happening (and could thus be neglected by differential approaches),
but which may have a strong impact on system behaviour.

We advocate the use of logical frameworks as an unified and safe approach
to both specifying and analysing biological systems. Logical Frameworks are log-
ics designed to formally study a variety of systems. The formal study of such
systems means providing both formal models and proofs of properties of the
systems. In the case where the logical systems are themselves logics, the logical
framework enables the proofs of both meta-theoretical theorems (about the logic
being formalised) and object level theorems (about the systems being encoded
in the formalised logic). We shall use Linear Logic (LL) [20] as the intermediate
logic, formalised in the Calculus of Constructions, which is a type theory imple-
mented in the Coq Proof Assistant [6]. We note that the Coq system has been
(partially) proven correct in itself, extensive meta-theoretical studies of LL are
available in the Coq system (see e.g., [38]), and our encoding of biological sys-
tems is adequate (Section 3.1). This means that we prove that the formal model
of the system correctly encodes the intended biological system. The approach is
thus an unified approach, fully based on logic, and a safe approach, as each step
is proved correct, as far as it can be.

We leverage our formalisation of LL in Coq to give a natural and direct char-
acterisation of the state transformations of Circulating Tumour Cells (CTCs).
For instance, a rule describing the evolution of a cell n, in a region r, from a
healthy cell (with no mutations) to a cell that has acquired a mutation TGFβ can
be modelled by the linear implication C(n, r, []) −◦ C(n, r, [TGFβ]). This formula
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describes the fact that a state where a cell C(n, r, []) is present can evolve into a
state where C(n, r, [TGFβ]) holds. More interestingly, the LL specification can be
used to prove some desired properties of the system. For instance, it is possible
to prove reachability properties, i.e., whether the system can reach a given state
(Sect. 4.1) or even more abstract (meta-level) properties such as checking all
the possible evolution paths the system can take under certain conditions (Sect.
4.2). Finally, we attain a certain degree of automatisation in our proofs which
opens the possibility of testing recent proposed hypotheses in the literature.

Organisation. The rest of the paper is organised as follows. Section 2 describes
the most relevant properties related to cancer mutations and CTCs which we
believe are key factors driving the model dynamics. In Section 3 we recall the
theory of LL and we specify in it the dynamics of CTCs. We prove correct our
model in Theorem 1 by showing that transitions in the system are in one-to-
one correspondence with logical steps. Reachability and meta-level properties of
the system are proved in Section 4. Finally we conclude with a discussion on
challenges and opportunities of logical frameworks in cancer studies. There is a
companion appendix with the proofs of the results presented here. Moreover, all
the proofs of the properties of our model were certified in Coq and are available
at http://subsell.logic.at/bio-CTC/.

2 Tumour Cells in Metastatic Breast Cancer

In this section we first describe the mutations involved in cancer in general and
then, we focus on the evolution of circulating tumour cells described in this work.

Cancer Mutations. Cancer mutations can be divided into drivers and non-
drivers (or passengers). The accumulation of evidence of clonal heterogeneity
and the observation of the arrival of drug resistance in clonal sub-populations
suggest that mutations usually classified as non-drivers may have an important
role in the fitness of the cancer cell and in the evolution and physiopathology of
cancer. Similarly, mutations that alter the metabolism and the epigenetics may
modify the fitness of the cancer cells. A meaningful way to identify drivers and
passenger mutations is to use a statistical estimator of the impact of mutations
such as FATHMM-MKL and a very large mutation database such as Cosmic
(http://cancer.sanger.ac.uk/) [34].

The mutation process (causing tumour evolution) generates intra-tumour
heterogeneity. The subsequent selection and Darwinian evolution (including im-
mune escape) on intra-tumour heterogeneity is the key challenge in cancer medi-
cine. Those clones that have progressed more than the others will have larger
influence on patient survival. The amount of heterogeneity can vary between zero
and up to over several thousand mutations, found to be heterogeneous within
primary tumours or between primary and metastatic. The heterogeneity could be
investigated through molecular biology techniques such as single cell sequencing,
in situ PCR and could also be phenotypically classified using microscope image
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analysis. In case of large heterogeneity we could assume that the survival of the
patient strongly depends on the mutations of the most aggressive clones/cells.

Circulating Tumour Cells. We follow the study of the evolution of Circu-
lating Tumour Cells in metastatic breast cancer in [4], where the authors use
differential equations. This reference has an extensive discussion on the mod-
elling choices, in particular concerning the driver mutations.

In [4] the probability for a cell in a duct in the breast to metastasise in the
bone depends on the following mutational events:

1. A mutation in the TGFβ pathways frees the cell from the surrounding cells.
2. A mutation in the EPCAM gene makes the cell rounded and free to divide.

Then the cell enters the blood stream and becomes a circulating cancer cell.
3. In order to survive, this cell needs to over express the gene CD47 that prevents

attacks from the immune system.
4. Finally, there are two mutations that allow the circulating cancer cell to

attach to the bone tissue and start the deadly cancer there: CD44 and MET.

Hence, a cancer cell has four possible futures: (a) acquiring a driver muta-
tion; (b) acquiring a passenger mutation which does not cause too much of a
viability problem: it simply increases a sort of “counter to apoptosis”; (c), the
new (i.e., last) mutation brings the cell to apoptosis; and (d), moving to the next
compartement, or seeding in the bone.

The behaviour of the cells depends on the compartments the cells live in (here
the breast, the blood and the bone), the other cells (i.e., the environment : the
availability of food/oxygen or the pressure by the other cells), and the behaviour
of the surface proteins (the mutations). In this work, we shall formalise the
compartments and the mutations, and leave the formalisation of the environment
to future work. Note that this environment plays a role only in the breast.

The phenotype of a cell is characterised by both the number of its muta-
tions and its fitness. In biology the fitness is the capability of the cell to sur-
vive and produce offsprings. The cell’s viability is particularly dependent on
metabolic health and energy level. Most of the cell metabolic health depends on
the accumulation of mutations that affect the production of enzymes involved
in catalysing energetic expensive reactions and cell homeostasis. The fitness is
particularly altered by the occurrence of driver mutations: each driver muta-
tion provides the cell with additional fitness. Non-driver mutations, on the other
hand, may accumulate in large numbers, and may affect cell stress response due
to the altered metabolism and the competition with other neighboring cells [15].
Wet-lab tests for cell fitness and stress responsiveness have been recently de-
veloped, see for instance [3, 32, 36]. In our formalisation, the fitness will be a
parameter of the cells. Physicians see the appearance of the cell (round, free,
etc.), while biologists see the mutations. Our model can take both into account.

We extend the model in [4] with a few rules modelling DNA repair - of
passenger mutations. These rules, only available for cells with TGFβ or EPCAM

mutations, (i.e. before CD47 mutation), represent DNA repair by increasing the
fitness by one. Note that this addition introduces cycles in our model. (i.e., it is
possible for a cell to go back to a previous state).
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3 Specification in Linear Logic

Linear Logic (LL) [20] is a resource conscious logic particularly well suited for
describing state transition systems. LL has been successfully used to model such
diverse systems as planning, Petri nets, process calculi, security protocols, mul-
tiset rewriting, graph traversal algorithms, and games. In this section we for-
malise in LL the behaviours of the Circulating Tumour Cells and we prove this
formalisation correct. In each step of the formalisation, we shall give an intuitive
description of the LL connectives and their proof rules that should suffice to un-
derstand our developments. The reader may find in [20] a more detailed account
on the proof theory of LL.

LL is a substructural logic where there is an explicit control over the number
of times a formula can be used in a proof. Formulas can be split into two sets:
classical (those that can be used as many times as needed) or linear (those that
are consumed after being used). Using a dyadic system for LL [2], sequents take
the form Γ ; ∆ ` G where G is the formula (goal) to be proved (examples
in Section 4), Γ is the set of classical formulas and ∆ is the multiset of linear
formulas. We store in Γ the formulas representing the rules of the system and
in ∆ the atomic predicates representing the state of the system, namely:
- C(n, c, f , lm), denoting a cell n (a natural number used as an id), in a com-

partment c (breast, blood, or bone), with a phenotype given by a fitness degree
f ∈ 0 .. 12 and a list of driver mutations lm. The list of driver mutations lm is
built up from mutations TGFβ, EPCAM, CD47, CD44, and/or MET, to which we add
seeded, for the cells seeded in the bone. As TGFβ is required before any further mu-
tations, a list of mutations [EPCAM, . . .] will by convention mean [TGFβ, EPCAM, . . .];
- A(n), representing the fact that the cell n has gone to apoptosis;
- and T(t), stating that the current time-unit is t.

The linear implication F1 −◦ F2 models a state transformation where F1 is
consumed to later produce F2. The proof rules are:

Γ ;∆,F1 ` F2

Γ ;∆ ` F1 −◦ F2

−◦R
Γ ;∆1 `⇓ F1 Γ ;∆2,⇓ F2 ` G
Γ ;∆1, ∆2,⇓ F1 −◦ F2 ` G

−◦L

In−◦R, the proof of F1−◦F2 requires the use of the resource F1 to conclude F2.
This rule is invertible (i.e., the premise is provable if and only if the conclusion
is provable). Hence, this rule belongs to the negative phase of the construction
of a proof, where, without losing provability, we can apply all the invertible rules
in any order. The rule −◦L shows the resource awareness of the logic: part of the
context (∆1) is used to prove F1 and the remaining resources (∆2) must be used
to prove G. The classical context Γ is not divided but copied in the premises.
The rule −◦L is non-invertible and then, it belongs to the positive phase. The
notation ⇓ F1−◦F2 means that we decide to focus on that formula and then, we
have to keep working on the subformulas F1 and F2 (notation ⇓ F1 and ⇓ F2).

Each rule of the biological system is associated with a delay (see the terms
of the form di in Fig. 1), which depends on the fitness parameter. Such parame-
ters decrease marginally with passenger mutations and increase drastically with
driver mutations. A typical rule in our model is then as follows:

rl(bre0.1)
def
= ∀t, n.T(t)⊗ C(n, breast, 1, [EPCAM])−◦ T(t+ d20(1))⊗ C(n, breast, 0, [EPCAM])
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This rule describes a cell acquiring passenger mutations. Its fitness is decreased
by one in a time-delay d20(1) and its driver mutations remain unchanged. In
this formula, we have introduced two new connectives: the universal quantifier
allowing us to instantiate the same rule for any cell n and any time-unit t and
the multiplicative conjunction ⊗ whose rules are:

Γ ;∆1 `⇓ F1 Γ ;∆2 `⇓ F2

Γ ;∆1, ∆2 `⇓ F1 ⊗ F2
⊗R

Γ ;∆,F1, F2 ` G
Γ ;∆,F1 ⊗ F2 ` G

⊗L

The rule ⊗R belongs to the positive phase and it says that the proof of
F1 ⊗ F2 requires to split the linear context in order to prove both F1 and F2.
The left rule belongs to the negative phase and the resource F1 ⊗ F2 is simply
transformed into two resources (F1 and F2).

Most of the rules in our model are parametric on the fitness degree. Hence,
a rule of the form:

rl(brt1)
def
= ∀t, n. T(t)⊗ C(n, breast, f, [TGFβ])−◦ T(t+ d11(f))⊗ A(n), f ∈ 0..2

represents, in fact, three rules (one for each value of f ∈ 0..2). This family of rules
describes three cases of apoptosis. In this particular example, any cell located in
the breast, with fitness degree 0, 1, or 2 and list of mutations [TGFβ] may go to
apoptosis and the time needed for such a transition is d11(f). Note that d(·) is a
function that depends on f . If such d(·) does not depend on f , we shall simply
write d instead of d().

A typical rule describing a cell acquiring a driver mutation is:

rl(brt2.1)
def
= ∀t, n. T(t)⊗ C(n, breast, 1, [TGFβ])−◦ T(t+ d12)⊗ C(n, breast, 2, [EPCAM])

This rule says that a cell in the breast with a fitness degree f = 1 may acquire
a new mutation (EPCAM), which increases its fitness by 1.

Another kind of rule describes a cell moving from one compartment to the
next. The following rule describes an intravasating CTC:

rl(bre2)
def
= ∀t, n. T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d22(f))⊗ C(n, blood, 2, [EPCAM]), f ∈ 1..3

Finally, a last kind of rule describes a DNA repair of passenger mutations:

rl(bre0r)
def
= ∀t, n.T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d20r(f))⊗ C(n, breast, f + 1, [EPCAM]), f ∈ 1..2

The complete set of rules is in Fig. 1. For the sake of readability, we omit
the universal quantification on t and n in the formulas. We shall use system to
denote the set of rules and then, sequents take the form:

system ; T(t), C(·), · · · , C(·) ` G
where G is a property to be proved (Sect. 4). Let s be a multiset of the form
{C1(n1, c1, f1, lm1), ..., Cn(nn, cn, fn, lmn), A(n′1), ..., A(n′k)} representing the state
of different cells. The multiset {T(t), C1(n1, c1, f1, lm1), ..., Cn(nn, cn, fn, lmn),
A(n′1), ..., A(n′k)} of atomic formulas, formalising the state of the system at time-
unit t, is denoted as [[s]]t. Observe that a cell that has gone to apoptosis cannot
evolve any further (as no rule has a A(n) on the left hand side).

We note that our rules are asynchronous: only one rule can be fired at a
time. As in Biocham, we choose an asynchronous semantics in order to elimi-
nate the risk of affecting fundamental biological phenomena such as the masking
of a relation by another one and the consequent inhibition/activation of biolog-
ical processes. Finally, we note that the delays depend on the fitness and more
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In the breast

rl(br0)
def
= T(t)⊗ C(n, breast, 1, [])−◦ T(t+ d00)⊗ C(n, breast, 0, [])

rl(br1)
def
= T(t)⊗ C(n, breast, f, [])−◦ T(t+ d01(f))⊗ A(n) f ∈ 0 .. 1

rl(br2)
def
= T(t)⊗ C(n, breast, 1, [])−◦ T(t+ d02)⊗ C(n, breast, 1, [TGFβ])

rl(brt0)
def
= T(t)⊗ C(n, breast, 1, [TGFβ])−◦ T(t+ d10)⊗ C(n, breast, 0, [TGFβ])

rl(brt0r)
def
= T(t)⊗ C(n, breast, 1, [TGFβ])−◦ T(t+ d10r)⊗ C(n, breast, 2, [TGFβ])

rl(brt1)
def
= T(t)⊗ C(n, breast, f, [TGFβ])−◦ T(t+ d11(f))⊗ A(n), f ∈ 0 .. 2

rl(brt2)
def
= T(t)⊗ C(n, breast, f, [TGFβ])−◦ T(t+ d12)⊗ C(n, breast, f + 1, [EPCAM]) f ∈ 1 .. 2

rl(bre0)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d20(f))⊗ C(n, breast, f − 1, [EPCAM]), f ∈ 1 .. 3

rl(bre0r)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d20r(f))⊗ C(n, breast, f + 1, [EPCAM]), f ∈ 1 .. 2

rl(bre1)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d21(f))⊗ A(n), f ∈ 0 .. 3

rl(bre2)
def
= T(t)⊗ C(n, breast, f, [EPCAM])−◦ T(t+ d22(f))⊗ C(n, blood, f + 1, [EPCAM]), f ∈ 1 .. 3

In the blood

rl(ble0)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d30(f))⊗ C(n, blood, f − 1, [EPCAM]), f ∈ 1 .. 4

rl(ble0r)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d30r(f))⊗ C(n, blood, f + 1, [EPCAM]), f ∈ 1 .. 3

rl(ble1)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d31(f))⊗ A(n), f ∈ 0 .. 4

rl(ble2)
def
= T(t)⊗ C(n, blood, f, [EPCAM])−◦ T(t+ d32(f))⊗ C(n, blood, f + 2, [EPCAM, CD47]), f ∈ 1 .. 4

rl(blec0)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d40(f))⊗ C(n, blood, f − 1, [EPCAM, CD47]), f ∈ 1 .. 6

rl(blec1)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d41(f))⊗ A(n), f ∈ 0 .. 6

rl(blec2)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d42(f))⊗ C(n, blood, f + 2, [EPCDCD]), f ∈ 1 .. 6

rl(blec3)
def
= T(t)⊗ C(n, blood, f, [EPCAM, CD47])−◦ T(t+ d43(f))⊗ C(n, blood, f + 2, [EPCDME]), f ∈ 1 .. 6

rl(blecc0)
def
= T(t)⊗ C(n, blood, f, [EPCDCD])−◦ T(t+ d50(f))⊗ C(n, blood, f − 1, [EPCDCD]), f ∈ 1 .. 6

rl(blecc1)
def
= T(t)⊗ C(n, blood, f, [EPCDCD])−◦ T(t+ d51(f))⊗ A(n), f ∈ 0 .. 8

rl(blecc2)
def
= T(t)⊗ C(n, blood, f, [EPCDCD])−◦ T(t+ d52(f))⊗ C(n, blood, f + 2, [EPCDCDME]), f ∈ 1 .. 8

rl(blecm0)
def
= T(t)⊗ C(n, blood, f, [EPCDME])−◦ T(t+ d60(f))⊗ C(n, blood, f − 1, [EPCDME]), f ∈ 1 .. 8

rl(blecm1)
def
= T(t)⊗ C(n, blood, f, [EPCDME])−◦ T(t+ d61(f))⊗ A(n), f ∈ 0 .. 8

rl(blecm2)
def
= T(t)⊗ C(n, blood, f, [EPCDME])−◦ T(t+ d62(f))⊗ C(n, blood, f + 2, [EPCDCDME]), f ∈ 1 .. 8

rl(bleccm0)
def
= T(t)⊗ C(n, blood, f, [EPCDCDME])−◦ T(t+ d70(f))⊗ C(n, blood, f − 1, [EPCDCDME]), f ∈ 1 .. 10

rl(bleccm1)
def
= T(t)⊗ C(n, blood, f, [EPCDCDME])−◦ T(t+ d71(f))⊗ A(n), f ∈ 0 .. 10

rl(bleccm2)
def
= T(t)⊗ C(n, blood, f, [EPCDCDME])−◦ T(t+ d72)⊗ C(n, bone, f + 1, [EPCDCDME]), f ∈ 1 .. 10

In the bone

rl(bo0)
def
= T(t)⊗ C(n, bone, f, [EPCDCDME])−◦ T(t+ d80(f))⊗ C(n, bone, f − 1, [EPCDCDME]), f ∈ 1 .. 11

rl(bo1)
def
= T(t)⊗ C(n, bone, f, [EPCDCDME])−◦ T(t+ d81(f))⊗ A(n), f ∈ 0 .. 11

rl(bo2)
def
= T(t)⊗ C(n, bone, f, [EPCDCDME])−◦ T(t+ d82(f))⊗ C(n, bone, f + 1, [EPCDCDME, seeded]), f ∈ 1 .. 11

Fig. 1. Complete set of rules. Variables t and n are universally quantified.
EPCDCDME, EPCDCD and EPCDME are shorthand, respectively, for the list of mutations
[EPCAM, CD47, CD44, MET], [EPCAM, CD47, CD44] and [EPCAM, CD47, MET].

accurate values can be found using data. DNA mutational processes have been
succesfully modeled as compound poisson processes (see for instance [16]). De-
lays could be seen as events waiting times which are well-known measures for
Poisson processes (see for instance [25]). In our model, delays are (uninterpreted)
logical constants that can be later tuned when experimental results are available.
The proofs presented here remain the same regardless such values.

3.1 Adequacy

In this section, we prove the adequacy of our encoding: a single transition in the
state of the system corresponds, exactly, to a complete focused phase (a positive
phase followed by a negative phase) in focused LL [2]. Focusing organises proofs
in phases where a negative phase introduces all the invertible rules. In a positive
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phase, we choose one of the formulas (notation ⇓ F ) whose principal connective
has a non-invertible rule. Introducing such a connective is a decision in the proof
search procedure and then, the order in which we apply them may lead to a proof
or not. Proofs must finish in the positive phase with an initial rule:

Γ ; p `⇓ p I
Γ, p; · `⇓ p I

where p is an atomic formula (e.g, C1(n, c, f, lm)). Note that the proof ends when
p is the only atom in the linear context or when the linear context is empty and
p is in the classical context.

Our results are based on the following observations:

1. It is not possible to focus on the formulas resulting from [[s]]t since those are
atoms. Hence, no focus step can start by focusing on those formulas.

2. Once we focus on one of the formulas in the classical context system (mod-
elling the rules of the system), what we observe is that one of the C(n, c, f, lm)
formulas is consumed as well as the predicate T(t). The focus phase ends by
producing the needed C(n, c′, f ′, lm′) and T(t′) atoms (or A(n) in the case
of apoptosis rules). This means that focused derivations are in one-to-one
correspondence with steps in the system.

In the following theorem, we shall use the notation s
(r,d)−→ s′ to denote that

the system may evolve from state s to state s′ by applying the rule r that takes

d time-units. Hence, Ss = {(s′, r, d) | s (r,d)−→ s′} represents the set of possible
transitions starting from s. We shall show that all transitions in Ss match exactly
one focused derivation of the encoded system. More precisely (proof in Appendix)

Theorem 1 (Adequacy). Let s be a state and Ss = {(s′, r, d) | s (r,d)−→ s′}.
Then, (s′, r, d) ∈ Ss iff focusing on the encoding of r leads to the following
derivation.

system ; [[s′]]t+d ` G
system ; [[s]]t ` G

The following corollaries are immediate consequences of Theorem 1.

Corollary 1 (Adequacy). Let s and s′ be two states. Then s
(r,d)−→ s′ iff the

sequent system; · ` [[s]]t −◦ [[s]]t+d is provable.

The above results allow us to use the whole positive-negative phase as macro
rules in the logical system. Hence, during proofs, we shall abuse notation and
we shall use, e.g., rl(bo2) as a logical inference rule. Formally, we can show that
the corresponding logical rule is admissible in the system, i.e., if the premise is
provable then the conclusion is also provable.

Corollary 2 (Macro rules). Assume that s
(r,d)−→ s′. Then, the following macro

rule is admissible:
system ;∆, [[s′]]t+d ` G
system ;∆, [[s]]t ` G

r
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4 Verifying Properties of the Model

The goal of this section is twofold: testing our rules, but also testing some hypoth-
esis of our model—as these are recent proposals in the literature. We shall detail
some of the proofs here. The others can be found in the proof scripts and the doc-
umentation of our Coq formalisation (http://subsell.logic.at/bio-CTC/).

4.1 Reachability and Existence of Cycle Properties

Recall that a Circulating Tumour Cell (CTC) is a cancer cell in the blood, i.e., a
cell C(n, blood, f,m). An extravasating CTC is a CTC that has reached the bone,
i.e., a cell of the shape C(n, bone, f, [EPCAM, CD47, CD44, MET]). A first property of
interest might be the following one: “is it possible for a CTC, with mutations
[EPCAM, CD47] and fitness 3, to become an extravasating CTC with fitness 8? What
is the time delay for such a transition?” This is formalised as follows:

Property 1. The following sequent is provable:
system ; . ` ∀n, t. T(t)⊗ C(n, blood, 3, [EPCAM, CD47])

−◦∃d. T(t+ d)⊗ C(n, bone, 8, [EPCAM, CD47, CD44, MET])

In our Coq formalisation, we have implemented several tactics (e.g., solveF
and applyRule used below) to automate the process of proving properties and
make the resulting scripts compact and clear. This should ease the testing/prov-
ing of new hypotheses in our model. For instance, the proof of the previous
property is as follows (F below is the formula in Property 1):

Lemma Property1: forall n t, |− System ; F
Proof with solveF . (* solves the "trivial" goals in a focused proof *)
intros. (* introducing the quantified variables n and t *)
applyRule (blec2 3). (* application of macro rules -- corollary 2-- *)
applyRule (blecc2 5).
applyRule (bleccm2 7).
eapply tri_dec1 ... (* decision rule, focusing on the goal *)
eapply tri_tensor ... (* tensor *)
eapply tri_ex with (t:= (d72 7) s+ (d52 5) s+ (d42 3) s+ (Cte t)) ... (* existential quantif. *)
eapply Init1... (* initial rule *)
eapply Init1... (* initial rule *)

Qed.

The reader may compare the steps in the script above with the proof (by
hand) of Property 1 in Appendix B.

Our next property is the following: “what is the time delay for a CTC with
mutations [EPCAM, CD47] and fitness 3 or 4 to become an extravasating CTC with
fitness between 6 and 9?”

Property 2. The following sequent is provable:
system ; ` ∀n, t. T(t)⊗ (C(n, blood, 3, [EPCAM, CD47])⊕ C(n, blood, 4, [EPCAM, CD47]))−◦

∃td. T(t+ td)⊗
(C(n, bone, 6, [EPCAM, CD47, CD44, MET])⊕ C(n, bone, 7, [EPCAM, CD47, CD44, MET])⊕
C(n, bone, 8, [EPCAM, CD47, CD44, MET])⊕ C(n, bone, 9, [EPCAM, CD47, CD44, MET]))

Due to the ⊕ connective (additive conjunction), the proof of this prop-
erty entails two proof obligations (see the details in Appendix B): the case
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when the fitness is 3 and the case when the fitness is 4. The proof of the
first case reveals that the rules rl(blec0) and rl(blecc0) could be used zero or
more times—as long as the fitness remains positive. In the end, when the state
C(n, bone, 6, [EPCAM, CD47, CD44, MET]) is reached, we also obtain in our proof the
delay needed (td = d40(3)+d42(2)+d50(4)+d52(3)+d72(5)) to reach that state.
The second proof obligation can be discharged by considering several paths,
depending on the order of mutations CD44 and MET and the eventually many
passenger mutations (rules blec0, blecc0, blecc0, and blecm0). We illustrate some of
those paths in Appendix B. Finally, we note that along with the time delay td
we are looking for, the proof provides also the fitness of the extravasating CTC.

Existence of Cycle. Rules for passenger mutations decrease the fitness of
the cell by one, while rules for DNA repair increase the fitness. Hence, we may
observe loops and oscillations in our model. This can be exemplified in the fol-
lowing property: “a cell in the breast, with mutation [EPCAM], might have its
fitness oscillating from 1 to 2 and back.”

Property 3. The following sequents are provable:
system ; . ` ∀n, t. T(t)⊗ C(n, breast, 1, [EPCAM])−◦ ∃d. T(t+ d)⊗ C(n, breast, 2, [EPCAM]) and
system ; . ` ∀n, t. T(t)⊗ C(n, breast, 2, [EPCAM])−◦ ∃d. T(t+ d)⊗ C(n, breast, 1, [EPCAM])

4.2 Meta-level Properties

In a first experiment on using LL for biology on the computer [12], we defined
the set of biological rules as an inductive type in Coq, and proved some of their
properties by induction on the set of fireable rules. Here, we choose a different
approach. We have defined the biological rules by formulas in LL, and we use
focusing, along with adequacy, to look for the fireable rules at a given state.
Properties whose proofs need meta-reasoning will be formalised at the level of
derivations. In this section, we give two examples of these.

Let us first give a simple property concerning apoptosis, namely: “any cell
having a null fitness must go to apoptosis”.

Property 4. Let∆ be a multiset of atoms of the form C(·). Then, in any derivation
of the form

system;∆, T(t+ d), St ` G
system;∆, T(t), C(n, c, 0,m) ` G

rl(·)

we have St = A(n).

In our Coq formalisation, the above property can be discharged with few
lines of code:

Lemma Property4: forall n t c lm , F.
Proof by solveF .
intros H. (* the first sequent is assumed to be provable *)
apply FocusOnlyTheory in H;auto. (* The proof H must start by focusing on one of the rules *)
destruct H as [ R] ; destruct H.
repeat first [ CaseRule | DecomposeRule; FindUnification | eauto ].
Qed.
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The FocusOnlyTheory lemma says that the proof of the sequent must start by
focusing on one of the formulas in System. The destruct tactic simplifies the
hypotheses after the use of lemma FocusOnlyTheory. The interesting part is the
last line of the script. The CaseRule tactic tests each of the rules of the sys-
tem. Then, DecomposeRule; FindUnification decomposes (positive-negative
phase) the application of the rule. Finally, eauto proves the desired goal after
the application of the rule. This is a very general scheme, where we do case
analysis on all possible rules. Some of them cannot be fired in the current state
and then, the proof follows by contradiction. In the rest of the cases, the eauto

tactic is able to conclude the goal.

The following property states one of the key properties of our model: “any cell
in the blood, with mutations including CD47, has four possible evolutions:

1. acquiring passenger mutations: its fitness decreases by one and the driver
mutations remain unchanged;

2. going to apoptosis;
3. acquiring a driver mutation: its fitness increases by two;
4. moving to the bone: its fitness increases by one and the driver mutations

([EPCAM, CD47, CD44, MET]) remain unchanged.”

Property 5. Let∆ be a multiset of atoms of the form C(·). Then, in any derivation
of the form

system;∆, T(t+ td), St ` G
system;∆, T(t), C(n, blood, f,m) ` G

rl(·)

with m containing CD47, it must be the case that

1. either St = C(n, blood, f − 1,m),
2. or St = A(n),
3. or St = C(n, blood, f+2,m′) with m′ being as m plus an additional mutation,
4. or St = C(n, bone, f + 1,m) with m = [EPCAM, CD47, CD44, MET].

The proof follows the same rationale as in Property 4. In fact, the proof in
Coq is exactly the same but, in the last line, we have

repeat (first [ CaseRule | DecomposeRule; FindUnification | SolveGoal]) .

where SolveGoal (instead of eauto) is able to finish the resulting cases.

5 Concluding Remarks

Our goal is to study cancer progression, aiming at a better understanding of
it, and, in the long term, help in finding, and testing, new targeted drugs, a
priori much more efficient than most of the drugs used so far. This paper de-
scribes the use of linear logic in modelling the multi compartment role of driver
mutations in breast cancer. This work is innovative but also proof-of-principle.
It can clearly be generalised to other cancer types where driver mutations are
known. It also makes evident the capability of this logical approach to integrate
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different types of data and output a diagnosis with higher interpretability than
many currently fashionable machine learning methods such as deep learning.
Note however that building a system for cancer/disease diagnosis and therapy
prognosis would require both automatic proof search and taking the size of the
tumour into account. Also note that, although all the properties considered so
far only deal with the evolution of one single cell, our approach allows us to
consider a state with many cells. We believe that the paper and the rich sections
in the online supplementary material would become an important resource for
other similar studies.

For example we can believe there is a complementary of our work with respect
to mathematical models such as [4] that include survival data and quantitative
results. Logic allows to model the evolution of cells across scales and compart-
ments, while ODEs require parameter estimation (qualitative vs quantitative).

While temporal logics have been very successful in practice with efficient
model checking tools, these logics do not enjoy standard proof theory. In contrast,
LL has a very traditional proof theoretic pedigree: it is naturally presented as a
sequent calculus that enjoys cut-elimination and focusing. A further advantage
of our approach wrt model checking is that it provides a unified framework
to encode both transition rules and (both statements and proofs of) temporal
properties. Observe also that we do not need to build the set of states of the
transition system. We view model checking as a useful first step before proofs:
testing the model before trying to prove properties of it. The interested reader
can find a detailed comparison of the approaches in [12]. See also [14] for an
adequate encoding of Temporal Logic in LL.

In order to describe constrained transitions systems (by timed or spatial
restrictions for example), previous work have proposed different extensions of
Linear Logic, e.g., HyLL (a modal extension of ILL) [13] and SELLe (LL with
with quantifiers on subexponentials). See [14] for a formal comparison of the
two logics, and an adequate encoding of Temporal Logic in LL extended with
fixpoints. These Logical Frameworks were then used to specify and analyse small
biology systems in two initial experiments: [12] in HyLL and [28] in SELLe. In
the present work, we chose to use pure LL, and define a predicate to encode time.
This approach avoids the extra complication of copying the “unused” information
to the next time-unit (HyLL world or SELL subexponential), thus benefiting
from the usual compositional nature of the logic.

Future perspectives. The ongoing revolution in AI is accelerating the develop-
ment of software that enables computers to perform intelligent clinical and med-
ical tasks. Machine learning algorithms find hidden patterns in data, classify
and associate similar patients/diseases/drugs based on common features (e.g.,
the IBM Watson system which is used to analyse genomic and cancer data).
Future challenges in medicine include understanding bias in data collection (and
also in doctor’s experience) and fostering the ability to integrate evidence from
heterogeneous datasets, from different omics and clinical data, from several lines
of independent data. We believe that machine learning could satisfy well these
needs and that there is also a need to develop methods that offer a hypothesis-
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driven approach, so that doctors do not feel that they are going to be replaced.
Such methods could provide them with a personalised and easily interpretable
clinical support decision-making tool that could perform a synthesis of quali-
tative and quantitative multi-modal evidence. Examples of decision trees used
in current practice for breast cancer diagnosis can be found at pages 598–603
of [27]. Our logical approach, although focused on driver mutations, goes in such
a direction and could be used with continuous and discrete mixed variables.
This information could be obtainable through single cell experiments on cancer
biopsies (although with large variance), which is now at the stage of passing
from basic science to clinical protocols. Machine learning could analyse cancer
mutation patterns and feed our logic approach with this information that could
be integrated with other rules such as changes on the metabolic networks or
on epigenetics. Other rules could be derived from other levels of cancer clini-
cal investigation such as from image data (changes in fMRI, CT-scans and mi-
croscopy samples), blood analyses (identification and counts of circulating cancer
cells) and other types of medical observations. The long term plan is to build
a portable resource that facilitates diagnostic and therapeutic decision making
and promotes a cost-effective personalised patient workup. This would represent
a new paradigm in personalised and precision cancer treatment which integrates
multi-modality analyses and clinical characteristics in a near-real time manner,
improving clinical management of cancer. Finally we believe that logical ap-
proaches could improve the harmonisation and standardisation of the reporting
and interpretation of clinically relevant data.
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Appendix

A Proof of the adequacy results

Theorem 1: Adequacy. Let s be a state and Ss = {(s′, r, d) | s (r,d)−→ s′}. Then,
(s′, r, d) ∈ Ss iff focusing on the encoding of r leads to the following derivation.

system ; [[s′]]t+d ` G
system ; [[s]]t ` G

Proof. The encoding of the rule r is a bipole [2] (i.e., a formula that, being
focused, will produce a single positive and a single negative phases) of the form

∀t, n. T(t)⊗ C−◦ T(t+ d)⊗ C′
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Focusing on this formula (stored in system) necessarily produces the following
derivation, starting with rule DC (decision on the classical context):

π
system ;∆ `⇓ T(t)⊗ C

ψ
system ;∆′,⇓ T(t+ d)⊗ C′ ` G

system ; [[s]]t,⇓ T(t)⊗ C−◦ T(t+ d)⊗ C′ ` G
−◦L

system ; [[s]]t,⇓ ∀t, n. T(t)⊗ C−◦ T(t+ d)⊗ C′ ` G ∀L × 2

system ; [[s]]t ` G
DC

Here (∆,∆′) is a partition of the atoms in [[s]]t. Since r is fireable in the state
s, then ∆ must contain all the atoms needed to prove T(t) and C. Moreover, ∆′

must correspond to the components not affected by the application of r, i.e.,
∆′ = [[s]]t \∆. Hence, derivation π takes the form:

system ; T(t) `⇓ T(t)
I

system ; C `⇓ C I

system ;∆ `⇓ T(t)⊗ C
⊗R

This means that ∆ = {T(t), C}. On the other hand, derivation ψ starts with the
release rule R (since ⊗L must be introduced in the negative phase and then,
focusing is lost) and we have

system ;∆′, T(t+ d), C′ ` G
system ;∆′,⇓ T(t+ d)⊗ C′ ` G

R,⊗L

In the last sequent, the negative phase ends. Note that the set {T(t + d), C′}
corresponds to [[s′]]t+d.

Corollary 1: Adequacy. Let s and s′ be two states. Then s
(r,d)−→ s′ iff the

sequent system; · ` [[s]]t −◦ [[s]]t+d is provable.

Proof. Note that after the negative phase, we have:

system;∆ ` [[s]]t+d

system; · ` [[s]]t −◦ [[s]]t+d

where ∆ is the multiset of atoms in [[s]]t. We cannot focus on those atoms (since
they are positive). Moreover, we cannot focus on [[s]]t+d (since the atom T(t+ d)
is not in ∆ nor in system). Hence, we can only focus on the formulas in system.
We conclude by focusing on the encoding of r and using Theorem 1.

The proof of Corollary 2 follows easily from Theorem 1.

B Proof of the properties of the model

Property 1. The following sequent is provable:
system ; . ` ∀n, t. T(t)⊗ C(n, blood, 3, [EPCAM,CD47])

−◦∃d. T(t+ d)⊗ C(n, bone, 8, [EPCAM,CD47,CD44,MET])

17



Proof. After the negative phase (using the rules ∀R, ⊗L, −◦R), we have only one
proof obligation: system ; C(n, blood, 3, [EPCAM, CD47]), T(t) ` G, where G is

∃td.T(t+ td)⊗ C(n, bone, 8, [EPCAM, CD47, CD44, MET])

Note that the only non-atomic formulas are G and those formulas in system.
The proof proceeds by focusing, several times, on the formulas in system thus
transforming the state C(n, blood, 3, [EPCAM, CD47]). In the end, we focus on G and
the proof ends. Using the rules of the system as macro logical rules (see Corollary
2), we have the following:

π
system ; C(n, bone, 8, [EPCDCDME]), T(t+ d42(3) + d52(5) + d72(7)) ` G

system ; C(n, blood, 7, [EPCDCDME]), T(t+ d42(3) + d52(5)) ` G
rl(bleccm2.7)

system ; C(n, blood, 5, [EPCAM, CD47, CD44]), T(t+ d42(3)) ` G
rl(blecc2.5)

system ; C(n, blood, 3, [EPCAM, CD47]), T(t) ` G
rl(blec2.3)

In the above derivation, we note that, in the last sequent (bottom-up) we
already reach the state C(n, bone, 8, [EPCAM, CD47, CD44, MET]), with delay td =
d42(3) + d52(5) + d72(7). Hence, the derivation π corresponds to focusing and
decomposing entirely the formula G:

system ; T(t+ td) `⇓ T(t+ td)
I

system ; C(n, bone, 8, [EPCDCDME]) `⇓ C(n, bone, 8, [EPCDCDME])
I

system ; · · · `⇓ T(t+ td)⊗ C(n, bone, 8, [EPCDCDME])
⊗R

system ; C(n, bone, 8, [EPCDCDME]), T(t+ td) `⇓ G
∃R

Property 2. The following sequent is provable:
system ; ` ∀n, t. T(t)⊗ (C(n, blood, 3, [EPCAM, CD47])⊕ C(n, blood, 4, [EPCAM, CD47]))−◦

∃td. T(t+ td)⊗
(C(n, bone, 6, [EPCAM, CD47, CD44, MET])⊕ C(n, bone, 7, [EPCAM, CD47, CD44, MET])⊕
C(n, bone, 8, [EPCAM, CD47, CD44, MET])⊕ C(n, bone, 9, [EPCAM, CD47, CD44, MET]))

Proof. After the negative phase (using the rules ∀R, ⊗L, ⊕L, −◦R), we have two
proof obligations (due to ⊕L)

(PO1) system ; C(n, blood, 3, [EPCAM, CD47]), T(t) ` G
(PO2) system ; C(n, blood, 4, [EPCAM, CD47]), T(t) ` G

where G is the goal
∃td.T(t+ td)⊗ ( C(n, bone, 6, [EPCAM, CD47, CD44, MET])⊕ first choice

C(n, bone, 7, [EPCAM, CD47, CD44, MET])⊕ second choice

C(n, bone, 8, [EPCAM, CD47, CD44, MET])⊕ third choice

C(n, bone, 9, [EPCAM, CD47, CD44, MET])) last choice

Let us start with the proof obligation (PO1). Similar to the proof of Property
1, we start by focusing on the formulas in system so that we may later focus on
G. One of the possible paths/proofs leading to the conclusion of the goal G is
the following:

π
system ; C(n, bone, 6, [EPCDCDME]), T(t+ d40(3) + d42(2) + d50(4) + d52(3) + d72(5)) ` G

system ; C(n, blood, 5, [EPCDCDME]), T(t+ d40(3) + d42(2) + d50(4) + d52(3)) ` G
rl(bleccm2.5)

system ; C(n, blood, 3, [EPCDCD]), T(t+ d40(3) + d42(2) + d50(4)) ` G
rl(blecc2.3)

system ; C(n, blood, 4, [EPCDCD]), T(t+ d40(3) + d42(2)) ` G
rl(blecc0.4)

system ; C(n, blood, 2, [EPCAM, CD47]), T(t+ d40(3)) ` G
rl(blec2.2)

system ; C(n, blood, 3, [EPCAM, CD47]), T(t) ` G
rl(blec0.3)
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In such a derivation, the rules rl(blec0) and rl(blecc0) could be used zero or
more times - as long as the fitness remains positive. Moreover, in the last sequent
(bottom-up) we have already reached the state C(n, bone, 6, [EPCAM, CD47, CD44, MET]),
with delay td = d40(3)+d42(2)+d50(4)+d52(3)+d72(5) and derivation π proceeds
as in the proof of Property 1.

The proof obligation (PO2) can be discharged similarly by several paths,
depending (as in PO1) on the order of mutations CD44 and MET and the eventually
many passenger mutations (rules blec0, blecc0, blecc0, and blecm0). We give here the
shortest path and one of the longest paths, as an illustration.

C(n, blood, 4, [EPCAM, CD47])⊗ T(t)
−◦T(t+ d42(4))⊗ C(n, blood, 6, [EPCAM, CD47, CD44])− rl(blec2.4)
−◦T(t+ d42(4) + d52(6))⊗ C(n, blood, 8, [EPCAM, CD47, CD44, MET])− rl(blecc2.6)
−◦T(t+ d42(4) + d52(6) + d72(8))⊗ C(n, bone, 9, [EPCAM, CD47, CD44, MET])− rl(bleccm2.8)

C(n, blood, 4, [EPCAM, CD47])⊗ T(t)
−◦T(t+ d40(4))⊗ C(n, blood, 3, [EPCAM, CD47])− rl(blec0.4)
−◦T(t+ d40(4) + d43(3))⊗ C(n, blood, 4, [EPCAM, CD47, MET])− rl(blec3.3)
−◦T(t+ d40(4) + d43(3) + d60(4)⊗ C(n, blood, 3, [EPCAM, CD47, MET])− rl(blecm0.4)
−◦T(t+ d40(4) + d43(3) + d60(4) + d62(3))⊗ C(n, blood, 5, [EPCAM, CD47, CD44, MET])− rl(blecm2.3)
−◦T(t+ d40(4) + d43(3) + d60(4) + d62(3) + d72(5))⊗ C(n, bone, 6, [EPCAM, CD47, CD44, MET])− rl(blecm2.5)

Note that along with the time delay td we are looking for, the proof provides
also the fitness of the extravasating CTC.

Property 3. The following sequents are provable:
system ; . ` ∀n, t. T(t)⊗ C(n, breast, 1, [EPCAM])−◦ ∃d. T(t+ d)⊗ C(n, breast, 2, [EPCAM]) and
system ; . ` ∀n, t. T(t)⊗ C(n, breast, 2, [EPCAM])−◦ ∃d. T(t+ d)⊗ C(n, breast, 1, [EPCAM])

Proof. In this case we present the Coq script needed to discard this proof. We
prove separately the two sequents above:

Lemma Property3_Seq1: forall n t,
exists d,

|−F− Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ∗∗ (C{ n; breast; 2; EP} ) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 1 ; EP}] ; UP [] .
Proof with solveF .
idtac "Property3: Proving Cycle 1" .
intros.
eexists.
applyRule (bre0r 1).
(* Proving the goal *)
eapply tri_dec1
with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ∗∗ C{ n; breast; 2; EP} ) ...

eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...

Qed.

Lemma Property3_Seq2: forall n t,
exists d,

|−F− Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ∗∗ (C{ n; breast; 1; EP} ) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 2 ; EP}] ; UP [] .
Proof with solveF .
idtac "Property3: Proving Cycle 2" .
intros.
eexists.
applyRule (bre0 2).
(* Proving the goal *)
eapply tri_dec1 with
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(F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ∗∗ C{ n; breast; 1; EP} ) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...

Qed.

Property 4. Let ∆ be a multiset of atoms of the form C(·). Then, in any
derivation of the form

system;∆, T(t+ d), St ` G
system;∆, T(t), C(n, c, 0,m) ` G

rl(·)

we have St = A(n).

Proof. We know that the above derivation must start by focusing on one of
the formulas in system (Theorem FocusOnlyTheory in our formalisation). Then, we
proceed by case analysis on all of the rules. If the rule is not fireable, then we
cannot focus on that rule since the initial rule cannot be applied (and the above
derivation is not valid). If the rule can be fired, due to Corollary 2, we know that
the resulting St is necessarily the one-step transformation of C(n, c, 0,m), that,
in this case, satisfies St = A(n).

Property 5. Let ∆ be a multiset of atoms of the form C(·). Then, in any
derivation of the form

system;∆, T(t+ td), St ` G
system;∆, T(t), C(n, blood, f,m) ` G

rl(·)

with m containing CD47, it must be the case that

1. either St = C(n, blood, f − 1,m),
2. or St = A(n),
3. or St = C(n, blood, f+2,m′) with m′ being as m plus an additional mutation,
4. or St = C(n, bone, f + 1,m) with m = [EPCAM, CD47, CD44, MET].

Proof. In this case we present the Coq script needed to discard this proof. Def-
inition GoalP5 is just a shorthand to denote the goal we need to prove.

Definition GoalP5 (f n t m: nat) :=
|−F− Theory ; [ Atom T{ Cte t} ; Atom C{ n ; blood; f ; m} ] ; UP [] →

In m [ EPCDCD ; EPCDCDME;EPCDCDMEse] →
exists (d m’ : nat),
|−F− Theory ; [ Atom T{ d s+ Cte t} ; Atom C{ n ; blood; f −1; m } ] ; UP [] ∨
|−F− Theory ; [ Atom T{ d s+ Cte t} ; Atom A{ n} ] ; UP [] ∨
(|−F− Theory ; [ Atom T{ d s+ Cte t} ; Atom C{ n ; blood; f +2; m’ } ] ; UP [] ∧ (plusOne m m’) ) ∨
(m = EPCDCDME ∧ |−F− Theory ; [ Atom T{ d s+ Cte t} ; Atom C{ n ; bone; f + 1; EPCDCDME } ] ; UP []) .

Proposition Property5 : forall (f n t m: nat) ,
GoalP5 f n t m.

idtac "Proving Property 5".
intros f n t m HProof HCaseM.
apply FocusOnlyTheory in HProof;auto;
destruct HProof as [ R HProof]; destruct HProof as [ HIn HProof];
time "Solve:" repeat (first [ CaseRule | DecomposeRule; FindUnification | SolveGoal]) .

Qed.
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