
Under consideration for publication in Math. Struct. in Comp. Science

Hybrid Linear Logic, revisited

Kaustuv Chaudhuri1 Joëlle Despeyroux2 Carlos Olarte3 Elaine Pimentel4 †

1 Inria & LIX/École Polytechnique. France
2 INRIA and CNRS, I3S, Sophia-Antipolis, France
3 ECT – Universidade Federal do Rio Grande do Norte. Brazil
4 Departamento de Matemática – Universidade Federal do Rio Grande do Norte. Brazil

Received 1 June 2018

HyLL (Hybrid Linear Logic) is an extension of intuitionistic linear logic (ILL) that has been used as
a framework for specifying systems that exhibit certain modalities. In HyLL, truth judgments are
labelled by worlds (having a monoidal structure) and hybrid connectives (at and ↓) relate worlds
with formulas. We start this work by showing that HyLL’s axioms and rules can be adequately
encoded in linear logic (LL), so that one focused step in LL will correspond to a step of derivation
in HyLL. This shows that any proof in HyLL can be exactly mimicked by a LL focused derivation.
Another extension of LL that has extensively been used for specifying systems with modalities is
Subexponential Linear Logic (SELL). In SELL, the linear logic exponentials (!, ?) are decorated
with labels representing locations, and a pre-order on such labels defines the provability relation.
We propose an encoding of HyLL into SELLe (SELL plus quantification over locations) that gives
better insights about the meaning of worlds in HyLL. More precisely, we identify worlds as
locations, and show that a flat subexponential structure is sufficient for representing any world
structure in HyLL. This shows that HyLL’s monoidal structure is not reflected in LL derivations,
hence not increasing the expressiveness of LL, from a proof theoretical point of view. We conclude
by proposing the notion of fixed points in multiplicative additive HyLL (µHyMALL), which can be
encoded into multiplicative additive linear logic with fixed points (µMALL). As an application, we
propose encodings of Computational Tree Logic (CTL) into both µMALL and µHyMALL. In the
former, states are represented as atoms in the linear context, hence reflecting a more operational
view of CTL connectives. In the later, worlds represent states of the transition system, thus
exhibiting a pleasant similarity with the semantics of CTL.

1. Introduction

Logical frameworks are adequate tools for specifying proof systems, since they support levels
of abstraction that facilitate writing declarative specifications of object-level logical systems.
Thus designing suitable logical frameworks for adequately specifying different proof systems
has become one of the main tasks for many logicians working in computer science.

† This work was supported by CAPES, Colciencias, and INRIA via the STIC AmSud project “EPIC: EPistemic Interac-
tive Concurrency” (Proc. No 88881.117603/2016-01). The work of Pimentel and Olarte was also supported by CNPq
and the project FWF START Y544-N23.

Among the many frameworks that have been used for the specification of proof systems, linear
logic (Gir87) (LL) is one of the most successful ones. This is mainly because LL is resource
conscious and, at the same time, it can internalize classical and intuitionistic behaviors (see, for
example, (MP13; CP02)). However, since specifications of object-level systems into the logical
framework should be natural and direct, there are some features that often cannot be adequately
captured in LL, e.g. modalities different from the ones present in LL.

Extensions of LL, or its intuitionistic version ILL (Gir87), have been proposed in order to fill
this gap. The aim is to propose stronger logical frameworks that preserve the elegant properties
of linear logic as the underlying logic. Two of such extensions are HyLL (Hybrid Linear Logic)
(DC14), an extension of ILL, and SELL (Subexponential Linear Logic) (DJS93; NM09), an ex-
tension of LL/ILL†. These logics have been extensively used for specifying systems that exhibit
modalities such as temporal or spatial ones. The difference between HyLL and SELL relies on
the way modalities are handled.

In HyLL, truth judgments are labeled by worlds and two hybrid connectives relate worlds
with formulas: the satisfaction at which states that a proposition is true at a given world, and
the localization ↓ which binds a name for the (current) world the proposition is true at. These
constructors allow for the specification of modal connectives such as �A (A is true in all the
accessible worlds) and ♦A (there exists an accessible world where A holds). The underlying
structure on worlds allows for the modeling of transitions systems and the specification of tem-
poral formulas (DC14; dMDF14).

In SELL, the LL exponentials (!, ?) are decorated with labels: the formula ?aA can be inter-
preted as A holds in a location, modality, or world a. Such labels are organized in a pre-order,
so that if A holds in a, then it can be deduced in any location b such that b � a. Moreover, the
formula ?a!aAmeans thatA is confined into the location a, that is, the informationA is not prop-
agated to other worlds/locations related to a. While linear logic has only seven logically distinct
prefixes of bangs and question-marks (none, !, ?, !?, ?!, !?!, ?!?), SELL allows for an unbounded
number of such prefixes (e.g., !a?c?d). For this, SELL enhances the expressive power of LL as a
logical framework.

Since HyLL and SELL share LL/ILL as the base logic, it is reasonable to investigate the
relationship between worlds and locations. The first contribution of this work is then a careful
comparison study of LL, HyLL and SELL. We start by showing a direct encoding of the HyLL’s
logical rules into LL with the highest level of adequacy: on the level of derivations (NM10). This
means that there is a 1-1 relation between the set of derivations in HyLL with the set of their
interpretations in LL.

We then propose an encoding of HyLL into SELLe (SELL with quantification over locations
(NOP13; NOP17)) that gives better insights about the meaning of worlds in HyLL. More pre-
cisely, we represent HyLL worlds as locations in SELL and encode HyLL into SELLe. We show
that a flat subexponential structure is sufficient for representing any world structure in HyLL.
This explains better why the worlds in HyLL do not add any expressive power to LL: they can-
not control the logical context as the subexponentials do with the promotion rule.

It is worthy noticing that, in HyLL, using judgments that attach formulas to worlds provides

† Intuitionistic and classical SELL are equally expressive (Cha10).

2

a neat tool for specifying systems with modalities (see e.g., the models of biological systems in
(dMDF14)). An elegant property of these models is that, in the same logical framework, it is
possible to model the system and also the properties of interest. This is done by first specifying
in (a fragment of) Computational Tree Logic (CTL) the desired property and then encoding it as
a HyLL formula.

The next contribution of this paper is to show that neither the universal CTL path quantifier A
(for all paths), nor the temporal CTL formula EGF (there exists a path where F always holds)
can be encoded in HyLL. The main reason is that the definition of such formulas is recursive and
hence, one needs to use induction, at the meta-level, to accurately capture their behavior. Instead
of using meta-reasoning, as done in (dMDF14), we show that CTL formulas can be encoded
into multiplicative, additive linear logic with fixed points (µMALL) (Bae12). For that, we spec-
ify the (current) state of the transition system (Kripke structure) as atoms in the linear context
and, following the fixed point characterization of CTL (BCM+92), we encode the whole set of
CTL formulas. Such encoding gives a sort of operational view of the CTL connectives: when a
fixed point formula is unfolded, the current state s is consumed and the resulting premises in the
derivation represent some (or all) the successor states from s where the given CTL formula must
be proved again. Hence, in order to accurately represent the state transitions as µMALL deriva-
tions, the encoding is parametric in the given Kripke structure and it internalizes the accessibility
relation as conjunctions/disjunctions on all possible transitions.

In order to give a more loosely coupled encoding with respect to the transition system, we
add fixed point operators to multiplicative, additive HyLL (µHyMALL) and present an encoding
of CTL into this system. In this case, worlds in HyLL represent states of the transition system
and the encoding of CTL connectives quantifies and moves formulas on those worlds. Hence, the
resulting encoding has a pleasant duality with the semantics of CTL.

The rest of the paper is organized as follows. We briefly recall LL in Section 2.1 and HyLL
in Section 2.2. The encoding of HyLL logical rules into LL is discussed in Section 3.1. Section
3.2 presents the encoding of HyLL into SELLe. We also prove that information confinement,
a feature in SELL that is needed to specify spatial systems, cannot be captured in HyLL. Sec-
tion 4 proposes the system µHyMALL, that enhances multiplicative, additive HyLL with fixed
points. The encodings of CTL into µMALL and µHyMALL are described in Sections 5.2 and
5.3 respectively. Section 6 concludes the paper.

This paper is an extended version of (DOP17). In the present paper we not only refine several
technical details from that work but we also add the notion of fixed points to HyLL. In (DOP17)
we used the well known system µMALL for showing an encoding of CTL into linear logic
(with fixed points). Although this entails a correct specification, the encoding is itself complex.
Our new encoding of CTL into µHyMALL is not only simpler, but closer to the semantical
specification of CTL itself. Moreover, the representation of the transition system is less coupled
than the one in (DOP17), thus allowing us to prove meta-theoretical properties of CTL inside the
same logical framework.

2. Preliminaries

In this section we review some of the basic proof theory for linear logic LL (Gir87) and hybrid
linear logic HyLL (DC14).

3

2.1. Linear Logic and Focusing

By the name LL we shall mean the logic that results from merging the logical connectives and
proof rules of linear logic (Gir87) with the term and quantificational structure of Church’s Simple
Theory of Types (Chu40). More precisely, simple types are either primitive types, of which o is
a reserved primitive type denoting formulas, or functional types that are written using an infix
arrow τ → τ ′. A type is a predicate type if it is of the form τ1 → · · · → τn → o, where
n ≥ 0. Terms are simply typed λ-terms and we identify two terms up to the usual α, β, and η-
conversions. The substitution notationB[t/x] denotes the λ-normal form of the β-redex (λx.B)t.

The set of linear logic formulas is given by the following grammar:

F,G ::= p(~t) | p(~t)⊥ | 1 | 0 | > | ⊥ | F⊗G | F ..
............
..................................... G | F&G | F⊕G | ∃τx.F | ∀τx.F | ?F | !F

where atomic propositions are applied to a sequence of terms. The logical connectives for LL can
be divided into the following groups: the multiplicative version of conjunction, true, disjunction,
and false, which are written as ⊗, 1, ..

............
..................................... , ⊥, respectively; and the additive version of these con-

nectives, which are written as &, >, ⊕, 0, respectively; the exponentials ! and ?; and the (typed)
universal and existential quantifiers ∀τ and ∃τ . In the quantifiers, the syntactic variable τ can
range over all non-predicate types: ∀τ and ∃τ both have type (τ → o) → o. The expressions
∀τλx.B and ∃τλx.B are abbreviated as the more usual ∀τx.B and ∃τx.B. From this point on,
we will drop the subscript τ when it is not important or it can be determined from context. For-
mulas are taken to be in negation normal form using the standard classical linear logic dualities,
e.g., (F ⊗G)⊥ ≡ F⊥ ..

............
..................................... G⊥. Hence negation has only atomic scope.

First proposed by Andreoli (And92) for linear logic, focused proof systems provide normal
form proofs for cut-free proofs. The connectives of linear logic can be divided into two classes:
negative (.

...
............
..................................... , ⊥, &, >, ∀, ?) and positive (⊗, 1, ⊕, 0, ∃, !). Note that the dual of a negative

connective is positive and vice-versa. In general, the introduction rules for negative connectives
are all invertible, meaning that the conclusion of any of these introduction rules is equivalent to
its premises. The introduction rules for the positive connectives are not necessarily invertible.
The notions of negative and positive polarities are extended to formulas in the natural way by
considering the outermost connective. Although any bias can be assigned to atomic formulas,
this work will consider only negative atoms.

The focused system LLF for classical linear logic is presented in Fig. 1. There are two kinds of
arrows in this proof system: ⇓ and ⇑, and a pair of contexts to the left of the arrows: Γ is a set of
formulas whose main connective is a question-mark (being hence the unbounded context), while
∆ is a multi-set of linear formulas, behaving as the bounded context. Sequents with the ⇓ arrow
belong to the positive phase and introduce the logical connective of the “focused” formula (the
one to the right of the arrow). Building proofs of such sequents may require non-invertible proof
steps to be taken. Sequents with the ⇑ arrow belong to the negative phase and decompose the
multiset of formulas on the right in such a way that only inference rules over negative formulas
are applied: the others are “stored” in the linear context using the rule R ⇑. The structural rules
D1, D2 and R ⇓ make the transition between negative and positive phases. The positive phase
begins by choosing a positive formula F on which to focus (using D1, D2). Positive rules are
applied to F until either: 1 or a negated atom is encountered (and the proof must end by applying

4

the initial rules); or the promotion rule (!) is applied; or a negative subformula is encountered
when the proof switches to the negative phase (using R ⇓).

This change of phases on proof search is particularly interesting when the focused formula is
a bipole (And92).

Definition 2.1 (Bipoles). We call a monopole a linear logic formula that is built up from atoms
and occurrences of the negative connectives, with the restriction that ? has atomic scope. Bipoles,
on the other hand, are positive formulas built from monopoles and negated atoms using only
positive connectives, with the additional restriction that ! can only be applied to a monopole.

Using the linear logic distributive properties, monopoles are equivalent to formulas of the form

∀x1 . . . ∀xp[&i=1,...,n
..
............
.....................................
j=1,...,mi Fi,j],

where the Fi,j are either atoms or the result of applying ? to an atomic formula. Similarly, bipoles
can be rewritten as formulas of the form

∃x1 . . . ∃xp[⊕i=1,...,n ⊗j=1,...,mi Gi,j],

whereGi,j are either negated atoms, monopole formulas, or the result of applying ! to a monopole
formula. Notice that the units >, 0, ⊥, and 1 are 0-ary versions of &, ⊕, ..

............
..................................... , and ⊗, respectively.

Given this normal representation of bipoles and according to the focusing discipline, it turns
out that, once introduced, a bipole is completely decomposed into its atomic subformulas, a fact
illustrated by the following bipole derivation.

· · ·

· · ·
Γ′; ∆′ ⇑ ·

Γ; ∆′ ⇑..
............
.....................................
j=1,...,mi

?pi,j
[
..
............
..................................... , ?, R ⇑]

· · ·
Γ; ∆′ ⇑ ∀x1 . . . ∀xp[&i=1,...,n

..
............
.....................................
j=1,...,mi

?pi,j]
[∀,&]

Γ; ∆′ ⇓ !∀x1 . . . ∀xp[&i=1,...,n
..
............
.....................................
j=1,...,mi

?pi,j]
[!]

· · ·
Γ; ∆ ⇓ ∃x1 . . . ∃xt[⊕i=1,...,k ⊗j=1,...,qi Gi,j]

[∃,⊕,⊗]

Here pi,j is atomic for all i, j. If the connective ! is not present, then the rule ! is replaced by the
rule R ⇓. Notice that the derivation above contains a single positive and a single negative phase.
This two phase decomposition will enable us to adequately capture the application of object-level
inference rules as will be shown in Section 3.

ILL (Gir87), the intuitionistic version of LL, is obtained as usual by restricting, in the two sided
presentation of LL, the right multiset so to have exactly one formula. Hence the system ILL does
not allow the connectives ..

............
..................................... and ? and the unit ⊥, while the rules are the ones for (the 2-sided

presentation of) LL minus the rules for such connectives. The specification and verification of
systems may use intuitionistic systems (as in e.g., (NM09; dMDF14; Nig14; CPT16; CR15;
NOP17; OPR18)), or classical systems (see e.g., (NPR11; MP13; NPR16)). In this work, we will
specify object logics in LL based systems.

2.2. Hybrid Linear Logic

Hybrid Linear Logic (HyLL) is a conservative extension of ILL where the truth judgments are
labeled by worlds representing constraints on states and state transitions. Judgments of HyLL are

5

Negative rules

Γ; ∆ ⇑ L
Γ; ∆ ⇑ ⊥, L [⊥]

Γ; ∆ ⇑ F,G,L
Γ; ∆ ⇑ F ..

............
..................................... G,L

[
..
............
.....................................]

Γ, F ; ∆ ⇑ L
Γ; ∆ ⇑ ?F,L

[?]

Γ; ∆ ⇑ >, L [>]
Γ; ∆ ⇑ F,L Γ; ∆ ⇑ G,L

Γ; ∆ ⇑ F &G,L
[&]

Γ; ∆ ⇑ F [y/x], L

Γ; ∆ ⇑ ∀x.F, L [∀]

Positive rules

Γ; · ⇓ 1
[1]

Γ; ∆1 ⇓ F Γ; ∆2 ⇓ G
Γ; ∆1,∆2 ⇓ F ⊗G

[⊗]
Γ; ∆ ⇓ Fi

Γ; ∆ ⇓ F1 ⊕ F2
[⊕i]

Γ; ∆ ⇓ F [t/x]

Γ; ∆ ⇓ ∃x.F [∃] Γ; · ⇑ F
Γ; · ⇓ !F

[!]

Identity, Decide, and Release rules

Γ; p(~t) ⇓ p(~t)⊥
[I1]

Γ, p(~t); · ⇓ p(~t)⊥
[I2]

Γ; ∆ ⇓ P
Γ; ∆, P ⇑ · [D1]

Γ, P ; ∆ ⇓ P
Γ, P ; ∆ ⇑ · [D2]

In [D1] and [D2], P is not an atom.

Γ; ∆, Pa ⇑ L
Γ; ∆ ⇑ Pa, L

[R ⇑] provided that Pa is positive or an atom

Γ; ∆ ⇑ N
Γ; ∆ ⇓ N [R ⇓] provided that N is negative

Fig. 1. Focused proof linear logic system LLF. Γ is a set, ∆ is a multiset and L is a list of formulas.

of the form “A is true at world w”, abbreviated as A @ w. Particular choices of worlds produce
particular instances of HyLL, e.g., A @ t can be interpreted as “A is true at time t”. HyLL was
first proposed in (DC14) and it has been used as a logical framework for specifying modalities
as well as biological systems (dMDF14). Formally, worlds are defined as follows.

Definition 2.2 (HyLL worlds). A constraint domain W is a monoid structure 〈W, ., ι〉. The
elements of W are called worlds and its reachability relation � : W ×W is defined as u � w

iff there exists v ∈W such that u.v = w.

The identity world ι is the �-initial and it is intended to represent the lack of any constraints.
Thus, the ordinary first-order ILL can be embedded into any instance of HyLL by setting all
world labels to the identity. A typical example of constraint domain is T = 〈IN,+, 0〉, repre-
senting instants of time.

Formulas in HyLL are constructed from atomic propositions, connectives of first-order intu-
itionistic linear logic and the following two hybrid connectives: satisfaction (at), which states
that a proposition is true at a given world (w, ι, u.v, . . .), and localization (↓), which binds a name
for the current world where the proposition is true at. The following grammar summarizes the
syntax of HyLL.

A,B ::= p(~t) | A⊗B | 1 | A−◦B | A&B | > | A⊕B | 0 | !A |
∀x. A | ∃x. A | (A at w) | ↓ u. A | ∀u. A | ∃u. A

Note that world u is bounded in the propositions ↓ u. A, ∀u. A and ∃u. A. World variables cannot
be used in terms, and neither can term variables occur in worlds. This restriction is important for

6

the modular design of HyLL because it keeps purely logical truth separate from constraint truth.
We note that ↓ and at commute freely with all non-hybrid connectives (DC14).

The sequent calculus presentation of HyLL uses sequents of the form Γ; ∆ ` C @ w where Γ

(unbounded context) is a set and ∆ (linear context) is a multiset of judgments of the formA@ w.
Note that in a judgment A @ w (as in a proposition A at w), w can be any expression inW , not
only a variable.

The inference rules are depicted in Figure 2. Note that (A at u) is a mobile proposition:
it carries with it the world at which it is true. Both introduction rules for the the other hybrid
connective, ↓, bind the current world. Weakening and contraction are admissible rules for the
unbounded context.

The most important structural properties are the admissibility of the general identity and cut
theorems. While the first provides a syntactic completeness theorem for the logic, the latter guar-
antees consistency (i.e. that there is no proof of .; . ` 0 @ w).

Theorem 2.1 (Identity/Cut (DC14)).
1 Γ;A @ w ` A @ w.
2 If Γ; ∆ ` A @ u and Γ; ∆′, A @ u ` C @ w, then Γ; ∆,∆′ ` C @ w.
3 If Γ; · ` A @ u and Γ, A @ u; ∆ ` C @ w, then Γ; ∆ ` C @ w.

HyLL is conservative with respect to intuitionistic linear logic: as long as no hybrid con-
nectives are used, the proofs in HyLL are identical to those in ILL. Moreover, HyLL is more
expressive than S5, as it allows direct manipulation of the worlds using the hybrid connectives,
while HyLL’s δ connective (see Section 5) is not definable in S5.

Finally, we also note that HyLL admits a complete focused proof system. The interested reader
can find proofs and further meta-theoretical theorems about HyLL in (DC14).

3. Relative Expressiveness Power of HyLL

Different frameworks can be more or less adequate for specifying different systems. While very
specific frameworks often provide better encodings for a small range of systems, general frame-
works can handle more systems, sometimes not efficiently or in a natural way. Therefore, finding
frameworks that are general enough while still adequate and efficient is a key issue. With that in
mind, we will compare HyLL with two other LL based frameworks: LL itself and linear logic
with subexponentials (SELL).

We start by proving that HyLL’s axioms and rules can be adequately specified in LL. It turns
out that any interpretation of a system into another must be adequate, in the sense that there must
be a 1-1 relation between the sets of interpreted objects with the set of their interpretations. The
level of adequacy can then determine how tight are those systems. We show that our encoding
has the highest possible level of adequacy (on the level of derivations – see (NM10)), so that one
step derivation in HyLL corresponds to a focused step derivation in LL. This means that every
proof in HyLL can be exactly mimicked by a derivation in LLF. However, we note that HyLL
enables for more semantical driven specifications when compared to LL, as it will be discussed
in Section 5.

Since linear logic with subexponentials (SELL) is a conservative extension of LL, the specifi-
cation of HyLL into LL trivially implies that HyLL can be similarly encoded in SELL as well.

7

Judgmental rules

Γ; p(~t) @ w ` p(~t) @ w
[init]

Γ, A @ u; ∆, A @ u ` C @ w

Γ, A @ u; ∆ ` C @ w
[copy]

Multiplicative rules

Γ; ∆ ` A @ w Γ; ∆′ ` B @ w

Γ; ∆,∆′ ` A⊗B @ w
[⊗R]

Γ; ∆, A @ u,B @ u ` C @ w

Γ; ∆, A⊗B @ u ` C @ w
[⊗L]

Γ; · ` 1 @ w
[1R]

Γ; ∆ ` C @ w

Γ; ∆, 1@ u ` C @ w
[1L]

Γ; ∆, A @ w ` B @ w

Γ; ∆ ` A−◦B @ w
[−◦R]

Γ; ∆ ` A @ u Γ; ∆′, B @ u ` C @ w

Γ; ∆,∆′, A−◦B @ u ` C @ w
[−◦L]

Additive rules

Γ; ∆ ` > @ w
[>R]

Γ; ∆,0 @ u ` C @ w
[0L]

Γ; ∆ ` A @ w Γ; ∆ ` B @ w

Γ; ∆ ` A&B @ w
[&R]

Γ; ∆, Ai @ u ` C @ w

Γ; ∆, A1 &A2 @ u ` C @ w
[&Li]

Γ; ∆ ` Ai @ w

Γ; ∆ ` A1 ⊕A2 @ w
[⊕Ri]

Γ; ∆, A @ u ` C @ w Γ; ∆, B @ u ` C @ w

Γ; ∆, A⊕B @ u ` C @ w
[⊕L]

Quantifier rules

Γ; ∆ ` A @ w

Γ; ∆ ` ∀α. A @ w
[∀R]

Γ; ∆, A[τ/α] @ u ` C @ w

Γ; ∆, ∀α. A @ u ` C @ w
[∀L]

Γ; ∆ ` A[τ/α] @ w

Γ; ∆ ` ∃α. A @ w
[∃R]

Γ; ∆, A @ u ` C @ w

Γ; ∆, ∃α. A @ u ` C @ w
[∃L]

In ∀R and ∃L, α is assumed to be fresh with respect to Γ, ∆, and C.
In ∃R and ∀L, τ stands for a term or world, as appropriate.

Exponential rules
Γ; · ` A @ w

Γ; · ` !A @ w
[!R]

Γ, A @ u; ∆ ` C @ w

Γ; ∆, !A @ u ` C @ w
[!L]

Hybrid connectives

Γ; ∆ ` A @ u

Γ; ∆ ` (A at u) @ w
[at R]

Γ; ∆, A @ u ` C @ w

Γ; ∆, (A at u) @ v ` C @ w
[at L]

Γ; ∆ ` A[w/u] @ w

Γ; ∆ `↓ u.A @ w
[↓ R]

Γ; ∆, A[v/u] @ v ` C @ w

Γ; ∆, ↓ u.A @ v ` C @ w
[↓ L]

Fig. 2. The sequent calculus for HyLL.

8

−◦ L : ∃C,C′, H,w, v.(b(C −◦ C′)@wc⊥ ⊗ dH@ve⊥ ⊗ dC@we ⊗ (bC′@wc ..
............
..................................... dH@ve))

−◦ R : ∃C,C′, w.(d(C −◦ C′)@we⊥ ⊗ (bC@wc ..
............
..................................... dC′@we))

! L : ∃C,w.(b!C@wc⊥⊗?TC@wU) ! R : ∃C,w.(d!C@we⊥⊗!dC@we)
Init : ∃C,w.(bC@wc⊥ ⊗ dC@we⊥) Copy : ∃C,w.(TC@wU⊥ ⊗ bC@wc)
at R : ∃C, u,w.(d(C at u)@we⊥ ⊗ dC@ue) at L : ∃C, u,w.(b(C at u)@wc⊥ ⊗ bC@uc)
↓ R : ∃A, u,w.(d↓ u.A@we⊥ ⊗ d(A w)@we) ↓ L : ∃A, u,w.(b↓ u.A@wc⊥ ⊗ b(A w)@wc)
∀R(F) : ∃B, u.(d∀x.B@ue⊥ ⊗ ∀x.d(B x)@ue) ∀L(F) : ∃B, u.(b∀x.B@uc⊥ ⊗ ∃x.b(B x)@uc)
∀R(W) : ∃A, u.(d∀v.A@ue⊥ ⊗ ∀v.d(A v)@ue) ∀L(W) : ∃A, u.(b∀v.A@uc⊥ ⊗ ∃v.b(A v)@uc)

Fig. 3. Specification of HyLL rules into LL (see Definition 3.1).

Our approach in Section 3.2 is entirely different: we will interpret worlds as subexponentials,
hence having a better meta level understanding of the behavior of worlds in HyLL.

3.1. HyLL and LL

We briefly recapitulate the basic concepts of the specification of sequent-style calculi in LLF (see
(MP13) for a more detailed presentation). Let obj be the type of object-level formulas and let b·c,
T·U, d·e and V·W be meta-level predicates on these, i.e., predicates of type obj → o, where o is a
primitive type denoting formulas. Object-level sequents of the form B1, . . . , Bn ` C1, . . . , Cm
(where n,m ≥ 0) are specified as the multiset bB1c, . . . , bBnc, dC1e, . . . , dCme within the LLF
proof system. The b·c and d·e predicates identify which object-level formulas appear on which
side of the sequent: brackets down for left (useful mnemonic: b for “left”) and brackets up for
right. If an object-formula B is in a (object-level) unbounded context, it will be specified in LL
as ?TBU or ?VBW (depending on the side of B in the original sequent). Hence HyLL sequents of
the form Γ; ∆ ` C will be encoded in LL as ?TΓU ..

............
..................................... b∆c ..

............
..................................... dCe where, if Ψ = {F1, ..., Fn},

then bΨc = bF1c
..
............
..................................... ...

..
............
..................................... bFnc and ?TΨU = ?TF1U

..
............
..................................... ...

..
............
..................................... ?TFnU (similarly for d·e).

Inference rules are specified as a rewriting clause that replaces the active formula in the con-
clusion by the active formulas in the premises. The linear logic connectives indicate how these
object level formulas are connected: contexts are copied (&) or split (⊗), in different inference
rules (⊕) or in the same sequent (.

...
............
.....................................). As a matter of example, the additive version of the inference

rules for conjunction in classical logic

∆, A −→ Γ

∆, A ∧B −→ Γ
∧L1

∆, B −→ Γ

∆, A ∧B −→ Γ
∧L2

∆ −→ Γ, A ∆ −→ Γ, B

∆ −→ Γ, A ∧B ∧R

can be specified as the following bipoles:

∧L : ∃A,B.(bA ∧Bc⊥ ⊗ (bAc ⊕ bBc)) ∧R : ∃A,B.(dA ∧Be⊥ ⊗ (dAe& dBe))

The following definition shows how to encode HyLL inference rules into LL.

Definition 3.1 (HyLL rules into LL). Let w, d, h and o denote, respectively, the types for
worlds, (first-order) objects, HyLL formulas and LL formulas. Let d·e and b·c be predicates of
the type h→ w→ o and A, B, C have, respectively, types w→ h, d→ h and h. The encoding
of HyLL inference rules into LL is depicted in Figure 3 (we omit the encoding of most of the
linear logic connectives that can be found in (MP13)).

Observe that left and right inference rules for the hybrid connectives (at and ↓) are the same
(Figure 2). This is reflected in the duality of the encoding where we only replace d·e with b·c.

9

Observe also that the inference rules for the quantifiers (first-order and worlds) look the same.
The difference is on the type of the variables involved. Since A has type w → h, the encoding
clause ∀R(W) guarantees that the variable v has type w. Analogously, since B has type d→ h,
then x has type d in the clause ∀R(F). This neat way of controlling the behavior of objects by
using types is also inherited by the encoding of the other object level inference rules.

The following theorem shows that the encoding of HyLL into LL is adequate in the sense that
a focused step in LLF corresponds exactly to the application of one HyLL inference rule.

Theorem 3.1 (Adequacy). Let Υ be the set of clauses in Figure 3. The sequent Γ; ∆ ` F@w

is provable in HyLL iff Υ; b∆c, ?TΓU, dF@we ⇑ · is provable in LLF. Moreover, the adequacy
of the encodings is on the level of derivations meaning that, when focusing on a specification
clause, the bipole derivation corresponds exactly to applying the introduction rule at the object
level.

Proof. We will illustrate here the case for rule atL, the other cases are similar. Applying the
object level rule

Γ; ∆, A@u ` C@v

Γ; ∆, (A at u)@w ` C@v
[at L]

corresponds to deciding on the LL formula given by the encoding of the rule atL (stored in Υ).
Due to focusing, the derivation in LL has necessarily the shape

Υ,TΓU; b(A at u)@wc ⇓ b(A at u)@wc⊥
I1

Υ,TΓU; b∆c, dC@ve, bA@uc ⇑ ·
Υ,TΓU; b∆c, dC@ve ⇓ bA@uc

R ⇓, R ⇑

Υ,TΓU; b∆c, b(A at u)@wc, dC@ve ⇓ b(A at u)@wc⊥ ⊗ bA@uc
⊗

Υ,TΓU; b∆c, b(A at u)@wc, dC@ve ⇓ ∃C, u,w.(b(C at u)@wc⊥ ⊗ bC@uc)
3× ∃

Υ,TΓU; b∆c, b(A at u)@wc, dC@ve ⇑ ·
D2

Note that the LL formula corresponding to (A at u)@w is consumed and, in the end of the
focused phase, the encoding of A@u is stored into the linear context. This mimics exactly the
application of the Rule atL in HyLL.

One may wonder whether it is possible to define an encoding of formulas from HyLL to LL by
adding an extra argument on atomic predicates to represent the current world. We think that such
encoding would not be completely compositional and probably not adequate. First, note that the
HyLL judgment F@w applies to arbitrary formulas (not only to atomic propositions). Hence,
such an encoding must define an operator ∇(F@w) that adds w to all the atomic propositions
in F . However, this makes more complicated the definition of the hybrid connectives ↓ and at
since, statically, it is not possible to know the correct binding.

3.2. HyLL and SELL

Linear logic with subexponentials (SELL)‡ shares with LL all its connectives except the expo-
nentials: instead of having a single pair of exponentials ! and ?, SELL may contain as many

‡ We note that intuitionistic and classical SELL are equally expressive, as shown in (Cha10). Hence, although we will
introduce here the classical version of SELL, we could also present SELL as an extension of ILL.

10

subexponentials (DJS93; NM09), written !a and ?a, as one needs. The grammar of formulas in
SELL is as follows:

F,G ::= p(~t) | 0 | 1 | > | ⊥ | F ⊗G | F ⊕G | F ..
............
..................................... G | F &G |

∃x.F | ∀x.F | !aF | ?aF

The proof system for SELL is specified by a subexponential signature 〈I,�, U〉, where I is a
set of labels, U ⊆ I is a set specifying which subexponentials allow weakening and contraction,
and � is a pre-order among the elements of I . We shall use a, b, . . . to range over elements in I
and we will assume that � is upwardly closed with respect to U (i.e., if a ∈ U and a � b, then
b ∈ U).

The system SELL is constructed by adding all the rules for the linear logic connectives except
those for the exponentials. The rules for subexponentials are dereliction and promotion of the
subexponentials labeled with a ∈ I

` ?a1F1, . . . ?
anFn, G

` ?a1F1, . . . ?
anFn, !

aG
!a

` ∆, G

` ∆, ?aG
?a

where the rule !a has the side condition that a � ai for all i. Moreover, for all indices a ∈ U , we
add the usual rules of weakening and contraction to ?a.

We can enhance the expressiveness of SELL with the subexponential quantifiers e and d§

(NOP17) given by the rules (omitting the subexponential signature)

` ∆, G[le/lx]

` ∆,elx : a.G
e

` ∆, G[l/lx]

` ∆,dlx : a.G
d

where le is fresh. Intuitively, subexponential variables play a similar role as eigenvariables. The
generic variable lx : a represents any subexponential, constant or variable in the ideal of a. Hence
lx can be substituted by any subexponential l of type b (i.e., l : b) if b � a. We call the resulting
system SELLe.

SELLe admits a cut-free, complete focused proof system (Figure 4). The sequent notation
is close to the one for LLF and differs only on the treatment of contexts. SELLe makes use of
indexed contextsK that maps a subexponential index to multiset of formulas, e.g., if s is a subex-
ponential index, thenK[s] is a multiset of formulas, where intuitively they are all marked with ?s.
That is, K[s] = {F1, . . . , Fn} should be interpreted as the multiset of formulas ?sF1, . . . , ?

sFn.
We also make use of the operations on contexts depicted in Figure 5. Most of the operations are
straightforward. For instance, (K1 ⊗ K2)[s], used to specify the tensor introduction rule (⊗), is
defined as follows: when s is a bounded subexponential index, (K1 ⊗K2)[s] is obtained by mul-
tiset union of K1[s] and K2[s]; when s is an unbounded subexponential index, then it is K1[s].¶

On the other side, for the promotion rule, we use the operation K ≤l that restricts the indexed
context K to the formulas marked with a subexponentials greater than l. Hence, K ≤l [s] = K[s]

if l � s and K ≤l [s] = ∅ otherwise.
By using different prefixes, SELLe is an adequate framework for the specification of richer

§ e can be read as “for all locations” while d is meant to be “there exists a location”.
¶ As specified by the side-condition of the ⊗ rule in Figure 4, it must be the case that that K1[s] = K2[s] when s is

unbounded.

11

Negative rules

` K : ∆ ⇑ L
` K : ∆ ⇑ ⊥, L [⊥]

` K : ∆ ⇑ F,G,L
` K : ∆ ⇑ F ..

............
..................................... G,L

[
..
............
.....................................]

` K+l F : ∆ ⇑ L
` K : ∆ ⇑?lF,L

[?l]

` K : ∆ ⇑ >, L [>]
` K : ∆ ⇑ F,L ` K : ∆ ⇑ G,L

` K : ∆ ⇑ F &G,L
[&]

` K : ∆ ⇑ F [c/x], L

` K : ∆ ⇑ ∀x.F, L [∀]
` K : ∆ ⇑ F [le/lx], L

` K : ∆ ⇑ elx : a.F, L
[eR]

Positive rules

` K : · ⇓ 1
[1] given K[I \ U] = ∅

` K1 : ∆ ⇓ F ` K2 : ∆ ⇓ G
` K1 ⊗K2 : ∆,∆ ⇓ F ⊗G [⊗] given (K1 = K2)|U

` K : ∆ ⇓ Fi

` K : ∆ ⇓ F1 ⊕ F2
[⊕i]

` K : ∆ ⇓ F [t/x]

` K : ∆ ⇓ ∃x.F [∃]
` K : ∆ ⇓ G[l/lx]

` K : ∆ ⇓ dlx : a.G
[dL]

` K ≤l: · ⇑ F
` K : · ⇓!lF

[!l] given K[{x | l � x ∧ x /∈ U}] = ∅

Initial, Reaction and Decision Rules

` K : ∆ ⇓ p(~t)⊥
[I] given p(~t) ∈ (∆ ∪ K[I]) and (∆ ∪ K[I \ U]) ⊆ {p(~t)}

` K+l P : ∆ ⇓ P
` K+l P : ∆ ⇑ · [Dl], given l ∈ U

` K : ∆ ⇓ P
` K +l P : ∆ ⇑ · [Dl], given l /∈ U

` K : ∆ ⇓ P
` K : ∆, P ⇑ · [D1]

` K : ∆, Pa ⇑ L
` K : ∆ ⇑ L,Pa

[R ⇑]
` K : ∆ ⇑ N
` K : ∆ ⇓ N [R ⇓]

Fig. 4. Focused linear logic system with (quantified) subexponentials. Here, L is a list of formulas,
∆ is a multiset of formulas, P is not an atom, Pa is positive or an atom and N is negative.

• (K1 ⊗K2)[i] =

{
K1[i] ∪ K2[i] if i /∈ U
K1[i] if i ∈ U

• K[S] =
⋃
{K[i] | i ∈ S}

• (K+l A)[i] =

{
K[i] ∪ {A} if i = l

K[i] otherwise
• K ≤i [l] =

{
K[l] if i � l

∅ if i � l

• (K1 = K2) |S is true if and only if (K1[j] = K2[j]) for all j ∈ S.

Fig. 5. Specification of operations on contexts.

systems where subexponentials are used to mark different modalities/states. For instance, subex-
ponentials can be used to represent contexts of proof systems (NPR11); to specify systems with
temporal, epistemic and spatial modalities (NOP13; OPN15; NOP17) and soft-constraints or
preferences (PON14); to specify Bigraphs (CR15); and to specify and verify biological (OCFH16)
and multimedia interacting systems (ADOR15).

Linear logic allows for the specification of two kinds of context maintenance: both weakening
and contraction are available (unbounded context) or neither is available (linear context). That is,
when we encode (linear) judgments in HyLL belonging to different worlds, the resulting meta-

12

⊗ R : ∃C,C′. d w :∞.(!wd(C ⊗ C′)@we⊥ ⊗ ?wdC@we ⊗ ?wdC′@we)
at R : ∃A. d u :∞, w :∞.(!wd(A at u)@we⊥ ⊗ ?udA@ue)
at L : ∃A. d u :∞, w :∞.(!wb(A at u)@wc⊥ ⊗ ?ubA@uc)
↓ R : ∃A. d u :∞, w :∞.(!wd↓ u.A@we⊥ ⊗ ?wd(A w)@we)
↓ L : ∃A. d u :∞, w :∞.(!wb↓ u.A@wc⊥ ⊗ ?wb(A w)@wc)
∀R(F) : ∃A,dw :∞.(!wd∀x.B@we⊥ ⊗ ∀x.?wd(B x)@we)
∀R(W) : ∃A,dw :∞.(!wd∀v.A@we⊥ ⊗ ev :∞.?wd(A v)@we)
!L : ∃C. d w :∞.(!wb!C@wc⊥ ⊗ ?cwTC@wU)

copy : ∃C. d w :∞.(!cwTC@wU⊥ ⊗ ?wbC@wc)

Fig. 6. HyLL rules into SELLe. (Definition 3.2)

level atomic formulas will be stored in the same (linear) LL context. The same happens with
unbounded HyLL judgments and the unbounded LL context.

Encoding HyLL into SELLe allows for a better understanding of worlds in HyLL. More pre-
cisely, we use subexponentials to represent worlds, where each world has its own linear context.
Hence, a HyLL judgment of the shape F@w in the (left) linear context is encoded as the SELLe

formula ?wbF@wc. That is, HyLL judgments that hold at world w are stored at the w linear
context of SELLe. A judgment of the form G@w in the unbounded HyLL context is encoded
as the SELLe formula ?c?wbG@wc. Thus the encoding of G@w is stored in the unbounded
subexponential context c.

The next definition introduces the encoding of HyLL inference rules into SELLe. Observe
that, surprisingly, the subexponential structure needed is flat and it does not reflect the monoidal
structure of worlds. This is explained by the fact that worlds in HyLL do not control the context
on rules as the promotion rule in SELL does.

Definition 3.2 (HyLL rules into SELLe). Let w,d,h, d·e, b·c,T·U, A,B,C be as in Defini-
tion 3.1 and o be the type for SELLe formulas. Given a HyLL constraint domainW , consider a
subexponential signature Σ = 〈I,�, U〉 such that U = {c,∞} ∪ {cw | w ∈ W}, I = W ∪ U ,
w,cw � ∞ for any w ∈ W and, for any other u,w ∈ I , u 6� w. The encoding of HyLL infer-
ence rules into SELLe is depicted in Figure 6 (we omit the encodings of the other connectives,
that follow similarly).

The (unbounded) subexponential c will be used to store the clauses defining the encoding of
the rules (Theorem 3.2). Note that w :∞ represents any subexponential in the ideal of∞. This
means that, in the formula dw : ∞.F , the subexponential variable w could be substituted, in
principle, by any element of I . But note that, since world symbols are restricted to W , substi-
tuting w by c or∞ would not match any encoded formula in the context. That is, the proposed
subexponential signature correctly specifies the role of worlds in HyLL as shown below.

Theorem 3.2 (Adequacy). Let Υ be the set of formulas resulting from the encoding in Defini-
tion 3.2. The sequent Γ; ∆ ` F@w is provable in HyLL iff the sequent

c : {Υ},cwi
: TΓU, wi : b∆c, w : dF@we; · ⇑ ·

13

is provable in SELLe.‖ Moreover, the adequacy of the encodings is on the level of derivations.

Proof. Again, we will consider the rule atL, as the other cases are similar. If we decide to
focus on the SELLe formula corresponding to the encoding of atL (stored in ?cΥ), we obtain

w : b(A at u)@wc; · ⇑ b(A at u)@wc⊥
Dl, I

c : {Υ},cwi
: TΓU, w : b(A at u)@wc; · ⇓ !wb(A at u)@wc⊥ !w

c : {Υ},cwi
: TΓU, wi : b∆c, v : dC@ve, u : bA@uc; · ⇑ ·

c : {Υ},cwi
: TΓU, wi : b∆c, v : dC@ve; · ⇓ ?ubA@uc R ⇑, ?u

c : {Υ},cwi
: TΓU, wi : b∆c, w : b(A at u)@wc, v : dC@ve; · ⇓ !wb(A at u)@wc⊥ ⊗ ?ubA@uc

⊗

c : {Υ},cwi : TΓU, wi : b∆c, w : b(A at u)@wc, v : dC@ve; · ⇓ ∃C,du,w.(!wb(C at u)@wc⊥?u ⊗ bC@uc)
∃,d

c : {Υ},cwi : TΓU, wi : b∆c, w : b(A at u)@wc, v : dC@ve; · ⇑ ·
Dl

Observe that, in a (focused) derivation proving !wF , the only contexts that can be present are
w and the∞ contexts due to the promotion rule and the ordering in Σ. Since the encoding does
not store any formula into the context∞, the formula !wF must necessarily be proved from the
formulas stored in w. Thus, unlike the LL derivation in the proof of Theorem 3.1, the context
c is weakened in the left-hand side derivation since c 6� w. In the end, b(A at u)@wc stored
initially in the location w is substituted by bA@uc in the location u in one focused step.

Information Confinement. A brief final comment on the expressiveness of worlds in HyLL.
One of the features needed for specifying spatial modalities is information confinement: a space
(or world) can be inconsistent and this does not imply the inconsistency of the whole system.
It turns out that information confinement can be specified in SELL (NOP17) but not in HyLL.
More precisely, since the formulas !w?w0−◦0 and !w?w0−◦ !v?v0 are not provable in SELL, it is
possible to specify systems where inconsistency is local to a given space and does not propagate
to the other locations.

In HyLL, however, it is not possible to confine inconsistency: the HyLL rule

Γ; ∆,0@u ` F@w
0L

shows that any formula F in any world w is derivable from 0 appearing in any world u. Observe
that, even if we exchange the rule 0L for a weaker version

Γ; ∆,0@w ` F@w
0′L

the rule 0L would still be admissible

Γ;0@w ` (0 at v)@w
0′L

Γ; ∆,0@v ` F@v
0′L

Γ; ∆, (0 at v)@w ` F@v
atL

Γ; ∆,0@w ` F@v
cut

4. µMALL and µHyMALL

In the encodings of object systems that operate on inductive structures such as finite automata,
it will be necessary to enrich our representational logics with some mechanism for reasoning

‖ Clarifying some notation: if ∆ = {F1@w1, . . . , Fn@wn}, then ?wib∆c = ?w1bF1@w1c, . . . , ?wnbFn@wnc.
Observe that, in the negative phase, such formulas will be stored at their respective contexts, that will be represented
by wi : b∆c. Similarly for T·U.

14

about such structures. We will use the µMALL (Bae12) extension that enriches MALL with
least (µ) and greatest (ν) fixed points. These fixed points are written in the form µB~t and νB~t
where B, called the body, is a function of arity |~t | + 1; in effect, µB (or νB) serves the role
of a defined predicate of arity |~t |. Since these are fixed points, we further allow for a seamless
change between µB~t and B(µB)~t—and likewise from νB~t to B(νB)~t—which is usually called
unfolding the fixed point. To obtain the full expressive power of fixed points, it is also essential
for the logic to have a notion of intensional equality between terms that obeys the equational
theory of the λ-calculus; that is, two terms s and t are considered equal, written s = t, if they are
related by αβη-conversion (Bae12).

The final ingredient in µMALL is the ability to quantify over the complete set of unifiers (CSU)
of two terms s and t that contain free eigenvariables; this set, written csu(s, t), is the smallest set
of unifiers of s and t such that every other unifier of s and t is an instance of some unifier in this
set. For arbitrary λ-terms s and t, this set can be infinite; however, for well behaved fragments
such as the first-order or the Lλ fragment (Mil92), the CSU is no larger than a singleton. Since
these are all standard concepts, we refer the reader to (Bae12) for further details.

The proof system for µMALL is built using sequents of the form Σ;` ∆, where Σ is a context
of typed eigenvariables, and ∆ is a multiset of µMALL formulas. As µMALL is an extension of
the standard MALL proof system, we elide their standard rules here. The remaining rules cover
equality, its formal negation (6=), and the fixed points µ and ν. The rules for the former are as
follows.

Σ;` t = t
=

{
(Σ;` ∆)θ : θ ∈ csu(s, t)

}
Σ;` ∆, s 6= t

6=

The rule for inequality requires a bit of explanation. There is one premise for each θ ∈ csu(s, t).
The instance (Σ;` ∆)θ of the sequent Σ;` ∆ is defined as usual: its eigenvariables are the
eigenvariables in the set of terms {uθ : u ∈ Σ}, and for each formula F ∈ ∆ there is the formula
Fθ in ∆θ.

For the fixed points, there is a version of the identity rule that relates the least and greatest
fixed points, an unfold rule for least fixed points, and a coinduction rule for greatest fixed points.

Σ;` µB~t, νB̄~t
dInit

Σ;` ∆, B(µB)~t

Σ;` ∆, µB~t
µ

~x;` (S~x)⊥, BS~x Σ;` ∆, S~t

Σ;` ∆, νB~t
ν

In the defined identity rule dInit, the notation B̄ stands for λp. λ~x. (B p⊥ ~x)⊥. In the coinduction
rule (ν), the predicate S is an invariant; the first premise of the rule shows that it is indeed an
invariant of B, while the second premise replaces the greatest fixed point νB with the invariant.
Observe that if we use B(νB) itself for the invariant S, then we obtain:

...
~x;` B̄(µB̄)~x,B(B(νB))~x

~x;` (B(νB)~x)⊥, B(B(νB))~x Σ;` ∆, B(νB)~t

Σ;` ∆, νB~t
ν

The left branch is a proof of identity where eventually the defined identity rule dInit is used to
relate µB̄~x and νB~x. This branch will therefore always be derivable. Hence, we see that the
unfold rule for ν is derivable in terms of the coinduction rule, and therefore does not need to be

15

Defined identity rules

Σ;µB~t @ w ` µB~t @ w
[µInit]

Σ; νB~t @ w ` νB~t @ w
[νInit]

Equality rules

Σ; · ` t = t @ w
[=R]

{
(Σ; ∆ ` C @ w)θ : θ ∈ csu(s, t)

}
Σ; ∆, s = t @ u ` C @ w

[=L]

Least fixed point rules

Σ; ∆ ` B(µB)~t @ w

Σ; ∆ ` µB~t @ w
[µ R]

~x;BS~x @ u ` S~x @ u Σ; ∆, S~t @ u ` C @ w

Σ; ∆, µB~t @ u ` C @ w
[µ L]

Greatest fixed point rules

~x;S~x @ w ` BS~x @ w Σ; ∆ ` S~t @ w

Σ; ∆ ` νB~t @ w
[ν R]

Σ; ∆, B(νB)~t @ u ` C @ w

Σ; ∆, νB~t @ u ` C @ w
[ν L]

Fig. 7. Rules specific to µHyMALL. The rules for the HyMALL connectives can be directly
adapted from those in Figure 2

given explicitly. The meta-theory of µMALL, including the important cut-elimination theorem,
is pretty standard and exhaustively covered in (Bae12).

Along the same lines as µMALL, we can extend HyMALL (the multiplicative/additive frag-
ment of HyLL in Figure 2 – without the exponential rules) to µHyMALL by adding equality and
least and greatest fixed points. In fact, for fixed point predicates built using µ and ν, we will al-
low the arguments to contain worlds as well; likewise, we will allow for equality to hold between
worlds. However, we retain the restriction from HyMALL that all undefined predicates contain
no world arguments.†† Like with µMALL sequents, µHyMALL sequents will have an explicit
context of eigenvariables, so they will be of the form Σ; ∆ ` F @ w, where ∆ is as before. Since
we are limiting our attention to µHyMALL, we dispense with the unbounded context Γ, which
can be added to yield µHyLL. Most of the rules from Figure 2 can be directly adapted with this
additional eigenvariable context. The remaining rules are given in Figure 7.

It may be worthwhile to consider if the µHyMALL rules can be encoded in µMALL by means
of an extension of Definition 3.1. Indeed, we can simply extend the rules of Figure 3 with new
cases for equalities and fixed points. The extension is almost entirely trivial and elided here
except for the following sketch: both [µInit] and [νInit] will be captured by means of dInit; [= R]

by means of =; [= L] by means of 6=; [µ L] and [ν R] by means of ν; and [µ R] and [ν L] by
means of µ.

5. Computation Tree Logic (CTL) in Linear Logic

Hybrid linear logic is expressive enough to encode some forms of modal operators, thus allowing
for the specification of properties of transition systems. As shown in (dMDF14), it is possible

†† This restriction can be lifted from HyMALL without any difficulty.

16

to encode CTL temporal operators into HyLL considering existential (E) and bounded universal
(A) path quantifiers. We show in this section the limitation of such encodings and how to fully
capture E and A CTL quantifiers in both propositional µMALL and first order µHyMALL. In
both cases, we follow the standard interpretation of CTL quantifiers as fixed points.

The first encoding relies on the behavior of the LL connectives to control the use of transi-
tion rules during a proof of a CTL formula. More precisely, states in the transition system are
represented as atoms (in the linear context) that are consumed and produced by the encoding of
transitions. The second encoding uses HyLL’s words in order to define states and quantifiers on
words to specify path quantifiers. Hence, the encoding resembles the semantics of CTL.

Let us start by recalling the syntax of CTL.

Definition 5.1 (CTL connectives and path quantifiers). Given a set of atomic propositions P ,
formulas in CTL are given by the following grammar

F ::= p | ¬F | F ∧ F | F ∨ F | QXF | QFF | QGF | Q[FUF] p ∈ P,Q ∈ {A,E},

The temporal connectives are: X (Next) meaning “at the next state”; F (Future) meaning “in
some future”; G (Globally) meaning “in all futures”; and, FUG (F until G) meaning “from
now, F will be true in every steps until some future point (possibly including now) where G
holds”. Temporal connectives must be preceded by a path quantifier: E (Exists) meaning “for
some path” or A (All) meaning “for all paths”. The usual dualities apply (e.g., ¬EXF = AX¬F ,
¬AGF = EF¬F) and negation is involutive i.e., it can be restricted to atoms.
Transition Systems. Let P = {p1, ..., pn} be a set of atomic propositions. A Kripke structure
over P is a tuple K = 〈S, I,R, L〉 where S is a finite set of states, I ⊆ S is the set of initial
states,R ⊆ S×S is a transition relation and L : S → 2P is a labeling. We assume that given two
different states s,s′, L(s) 6= L(s′). Note that this is not a loss of generality since we can always
extend P with atomic propositions to uniquely identify each state. We shall write s −→ s′ when
(s,s′) ∈ R. Observe that, in CTL, R must be serial, i.e., every state has a successor. Finally,
we write s |=KCTL F when F holds at state s with the standard meaning (see, e.g., (CE81)). For
instance, s |=KCTL EGF iff there exists a path π = 〈s1 · s2 · s3 · . . .〉 starting at s (i.e. s = s1)
such that for all i ≥ 1, si |=KCTL F .

5.1. Transition Systems and HyLL

In order to specify reachability properties in transition systems, some modal connectives can be
defined in HyLL (DC14):

�A
def
= ↓u. ∀w. (A at u.w) ♦A

def
= ↓u. ∃w. (A at u.w)

δv A
def
= ↓u. (A at u.v)

�A (resp. ♦A) represents all (resp. some) state(s) satisfying A and reachable in some path from
now. The connective δ represents a form of delay: δv A stands for an intermediate state in a
transition to A. Informally it can be thought to be “v before A”.

We may use such modal operators in order to encode some features of transition systems as
HyLL formulas. To each p ∈ P , we associate two HyLL atomic formulas: p and p⊥ (abusing the
notation), where by p⊥ we denote the atomic HyLL proposition interpreting the CTL formula

17

¬p. Then states and transitions can be encoded as follows:

[[s]]K =
⊗
p∈P

v(s, p) [[s −→ s′]]K = ∀w. (([[s]]K at w)−◦ δ1([[s′]]K) at w)

where v(s, p) = p if p ∈ L(s) and v(s, p) = p⊥ otherwise. Given a transition relation R =

{r1, ..., rm}, we use [[R]]K@w to denote the set {[[r1]]K@w, · · · , [[rm]]K@w}.
We can encode in HyLL a restricted fragment of CTL, namely, formulas built using only the

temporal connectives EX,EF :

[[p]]K = p⊗> [[¬p]]K = p⊥ ⊗>
[[F ∧G]]K = d+([[F]]K & [[G]]K) [[F ∨G]]K = d−([[F]]K)⊕ d−([[G]]K)

[[EXF]]K = d+(δ1[[F]]K) [[EFF]]K = ♦[[F]]K

where d+(F) = F ⊗ 1 and d−(F) = 1 −◦ F are positive and negative delays respectively.
Observe that d+(F) ≡ d−(F) ≡ F . Delays are added for adequacy results.

Proposition 5.1 (Adequacy). Let K = 〈S, I,R, L〉 be a Kripke structure on a set of atomic
propositions P . Let F be a CTL formula built from the CTL fragment ∧,∨,EX,EF. Then,
s |=KCTL F iff [[R]]K@0; [[s]]K@w ` [[F]]K@w is provable in HyLL.

Proof. We will reason on the focused version of HyLL and we will assume that atoms have
positive bias. Assume that s −→ s′. If we decide to focus on the encoding of (s,s′) ∈ R, we
necessarily obtain a derivation of the shape

[[R]]K@0; [[s′]]K@w.1 ` G
[[R]]K@0; [[s]]K@w ` G (1)

where all atoms from [[s]]K@w are consumed and the formula [[s′]]K@w.1 is added into the
context. This mimics exactly the transition s −→ s′.

The (⇒) side proceeds by induction on the structure of F . For the base case, if s |=KCTL p, it
is easy to show that the sequent [[R]]K@0; [[s]]K@u ` (p⊗>)@u is provable in HyLL (similarly
for ¬p). If s |=KCTL EF F , then there exists a path 〈s1 · s2 · · · · 〉 starting at s s.t. there exists
i ≥ 1 s.t. si |=KCTL F . By repetitively applying (1), we have a derivation that consumes [[s1]]K to
produce [[si]]K and the result follows by induction. The case for EXF follows similarly. Finally,
the cases for ∧ and ∨ follow immediately by induction.

(⇐) We shall show that each focused step corresponds exactly to a “step” in the deduction
of s |=KCTL F . Consider the sequent [[R]]K@0; [[s]]K@w ` [[F]]K@w. We have two choices: (i)
focus on [[s −→ s′]]K and, from (1), we transform the state s into the state s′; or (ii) focus on
the formula on the right. In the first case, we already showed that this action mimics exactly the
transition s −→ s′. In the second case, the focused formula F must be of the form

F ::= p⊗> | p⊥ ⊗> | 1⊗ (F & F) | F ⊕ F |↓ u (F at u.1) |↓ u (∃w.F at u.w)

representing the encoding of atoms, conjunction, disjunction, EXF and EFF respectively. In a
negative phase, the only connectives we can introduce, if any, are the hybrid ones (↓ and at).
This is a bureaucratic step allowing us to fix the formulas at the “current” world as in

Γ; ∆ ` F [x/w]@y

Γ; ∆ `↓ x(F at y)@w
atR, ↓R

18

Hence, when focusing on F we fall in one of the following cases.

— F = p⊗> (or p⊥⊗>): the context must already have p (or p⊥), at the right world, to prove
p (or p⊥). This corresponds to proving that the state s satisfies (or not) p.

— F = 1⊗ (F1 &F2): 1 is proved with empty context and focus is lost in F1 &F2. Hence, after
a negative phase, we have a derivation proving F1 and another proving F2. This corresponds
exactly to the step of proving a conjunction in CTL.

— F = F1 ⊕ F2: chose one of the branches and focus is lost due to the negative delay in the
encodings. This corresponds to proving a disjunction in CTL.

— F = d+(δ1 F): focus is lost obtaining, on the right, F fixed at the world w+ 1. This mimics
the step of proving F in the next time-unit (EXF).

— F = ∃w.F at u.w: a world w is chosen and focus is lost (due to at). This corresponds in
CTL to proving EFF by showing that there exists a future world (u+ w) where F holds.

Observe that our encoding cannot be extended to consider formulas of the shape EGF . In
fact, the natural choice would be [[EGF]]K = �[[F]]K, but this encoding would not be adequate.
Consider, for instance, a system with a unique state s and a unique (looping) transition s −→ s.
Assuming that p ∈ L(s), clearly s satisfies the formula EGp. Now, consider the HyLL sequent
[[s −→ s]]K@0; [[s]]K@w ` �[[s]]K@w. Introducing the connectives on the right:

[[s −→ s]]K@0; [[s]]K@w ` [[s]]K@w.v

[[s −→ s]]K@0; [[s]]K@w ` �[[s]]K@w
↓R,∀R,atR

where v is fresh. Then focusing on the encoding of s −→ s′:

[[s −→ s]]K@0; [[s]]K@(w + 1) ` G
[[s −→ s]]K@0; [[s]]K@w ` G

copy,∀L,−◦L

Therefore the left and right worlds in the sequent will never match, and this sequent is not prov-
able. In other words: the resources in the context are enough for proving the property for a
(bounded) n but not for all natural numbers. For proving this, one necessarily needs (meta-level)
induction, i.e., fixed points.

5.2. Encoding E and A quantifiers in propositional µMALL

In order to prove (in CTL) the formula AFF at state s, we have to check if s satisfies F . If
this is not the case, we have to check whether AFF holds for all successors of s. Hence, CTL
quantifiers are usually characterized as fixed points (see e.g., (BCM+92)).

EFF = µY.F ∨ EXY EGF = νY.F ∧ EXY E[F U G] = µY.G ∨ (F ∧ EXY)

AFF = µY.F ∨ AXY AGF = νY.F ∧ AXY A[F U G] = µY.G ∨ (F ∧ AXY)

Definition 5.2 (CTL into propositional µMALL). Let K = 〈S, I,R, L〉 be a Kripke structure
on a set of atomic propositions P . We define
- [[s]]K = (

⊗
p∈P

v(s, p))⊥ where v(s, p) = p if p ∈ L(s) and v(s, p) = p⊥ otherwise.

- pos(s) = [[s]]⊥K

19

[[AXF]]K = &
(s,s′)∈R

(
neg(s)⊕ (pos(s)⊗

(
[[s′]]K

..
............
..................................... [[F]]K

))
[[EXF]]K =

⊕
(s,s′)∈R

(
pos(s)⊗

(
[[s′]]K

..
............
..................................... [[F]]K

))
[[AFF]]K = µY. [[F]]K ⊕ &

(s,s′)∈R

(
neg(s)⊕ (pos(s)⊗

(
[[s′]]K

..
............
..................................... Y
))

[[EFF]]K = µY. [[F]]K ⊕
⊕

(s,s′)∈R

(
pos(s)⊗

(
[[s′]]K

..
............
..................................... Y
))

[[AGF]]K = νY. [[F]]K & &
(s,s′)∈R

(
neg(s)⊕ (pos(s)⊗

(
[[s′]]K

..
............
..................................... Y
))

[[EGF]]K = νY. [[F]]K &
⊕

(s,s′)∈R

(
pos(s)⊗

(
[[s′]]K

..
............
..................................... Y
))

[[A[F U G]]]K = µY.[[G]]K ⊕

(
[[F]]K & &

(s,s′)∈R

(
neg(s)⊕ (pos(s)⊗

(
[[s′]]K

..
............
..................................... Y
)
)
))

[[E[F U G]]]K = µY.[[G]]K ⊕

(
[[F]]K &

⊕
(s,s′)∈R

(
pos(s)⊗

(
[[s′]]K

..
............
..................................... Y
)))

Fig. 8. Encoding of CTL into propositional µMALL (see Definition 5.2).

- neg(s) =
⊕
p∈P

(v(s, p)⊥ ⊗>).

The encodings of QX, QF, Q G and QU, for Q ∈ {A,E} are in Figure 8. The encoding of
the rest of the formulas is as in the case for HyLL.

The encoding relies on the following principles. Let r = (s,s′) ∈ R. The formula pos(s)

(resp. neg(s)) tests if r can (resp. cannot) be fired at the current state. If it can be fired, then the
current state is transformed into the new state. Hence, the encoding of A (resp. E) test all (resp.
at least one) of the fireable rules. This explains the use of & (resp.

⊕
). Finally, the use of least

or greatest fixed points reflects the fixed point characterization of CTL connectives given above.

Remark 5.1. Observe that, in all the clauses in Figure 8, the formula pos(s) ⊗ ([[s′]]K
..
............
..................................... B),

is present. We could have written instead [[r]]K −◦ B, which reads closer to what we expect:
“assuming that r is fired, B holds”. The formulas (L −◦ R) −◦ B and L ⊗ (R −◦ B) are not
logically equivalent. In fact, the first formula is equivalent to (L ⊗ R⊥)

..
............
..................................... B while the second is

equivalent to L ⊗ (R⊥
..
............
..................................... B). The first is stronger, in the sense that B can choose the branch to

move up with (L or R), while the second forces B to stick with R. We chose the second since it
describes better the desired behavior, thus easing the proof of the following adequacy result.

Theorem 5.1 (Adequacy). Let K = 〈S, I,R, L〉 be a Kripke structure on a set of atomic
propositions P , s ∈ S be a state and F be a CTL formula. Then, s |=KCTL F iff the sequent
·;` [[s]]K, [[F]]K is provable in µMALL.

Proof. As done for HyLL, we will consider the focused version of µMALL and we will as-
sume that atoms have positive bias.
(⇒) We proceed by induction on the structure of the formula. The base cases for atomic formu-
las (p and ¬p) are trivial and the cases for ∧ and ∨ are easy consequences from the inductive
hypothesis.
Cases AX and EX. Note that given two different states s and s′ (thus L(s) 6= L(s′)):

— the sequents ` [[s]]K,pos(s) and ` [[s]]K,neg(s′) are both provable.
— the sequents ` [[s]]K,neg(s) and ` [[s]]K,pos(s′) are both not provable.

20

This means that, in a context containing the formula [[s]]K, we can always prove if a given
transition rule r ∈ R is fireable or not.

Consider the case AXF . The derivation necessarily starts with the negative phase

Σ;` [[s]]K,neg(s1)⊕ (pos(s1)⊗ ([[s′1]]K
..
............
..................................... [[F]]K) ... Σ;` [[s]]K,neg(sm)⊕ (pos(sm)⊗ ([[s′m]]K

..
............
..................................... [[F]]K)

Σ;` [[s]]K, &
(s,s′)∈R

(neg(s)⊕ (pos(s)⊗ ([[s′]]K
..
............
..................................... [[F]]K))

&

Then, for every premise, a positive phase starts, choosing between neg(si) and pos(si). In the
first case, if the rule is not fireable, the proof ends. In the second case, we have

Σ;` [[s′i]]K, [[F]]K

Σ;` [[s]]K,pos(si)⊗ ([[s′i]]K
..
............
..................................... [[F]]K)

⊗, ..
...............................

and the positive phase ends. By inductive hypothesis, the sequent Σ;` [[s′i]]K, [[F]]K is provable.
The case EXF is similar.
Cases for the least fixed point operators. If AFF holds in CTL at state s, then, in all paths start-
ing at s, there is a reachable state s′ such that F holds at s′. Let s = s1 −→ · · · −→ sn = s′

be one of such paths and consider the following derivation:

Σ;` [[s]]K,neg(s1)⊕ (pos(s1)⊗ ([[s′1]]K
..
............
..................................... µB) ... Σ;` [[s]]K,neg(sm)⊕ (pos(sm)⊗ ([[s′m]]K

..
............
..................................... µB)

Σ;` [[s]]K, µB
µ,⊕,&

The premises correspond to proving whether a transition r ∈ R is fireable or not. If r is fire-
able, we observe a derivation of the shape

Σ;` [[s′i]]K, µB

Σ;` [[s]]K,pos(si)⊗ ([[s′i]]K
..
............
..................................... µB)

⊗, ..
...............................

Σ;` [[s]]K,neg(si)⊕ (pos(si)⊗ ([[s′i]]K
..
............
..................................... µB))

⊕

where s becomes s′i and, from that state, µB must be proved. Hence, we can show that [[sn]]K
will be eventually added to the context. By inductive hypothesis, the sequent Σ;` [[sn]]K, [[F]]K
is provable and hence Σ;` [[sn]]K, µB is provable (by unfolding and then choosing [[F]]K in the
disjunction [[AFF]]K = µY.[[F]]K ⊕Ψ).

The other cases for least fixed point operators follow similarly.
Cases for the greatest fixed point operators. Consider now the formula AGF . If this formula
holds at s, then s must satisfy F and all reachable states from s must also satisfy AGF . Let

S = {s ∈ S | s |=KCTL F and, for all s′, if s −→ s′, then s′ ∈ S}

be the greatest set of states containing s. Note that the greatest fixed point in the (CTL) definition
of AG computes exactly that set.

Let S above be the set {s1, ..., sn} and I = [[s1]]⊥K ⊕ · · · ⊕ [[sn]]⊥K. We shall show that, for any
s ∈ S, the sequent Σ;` [[s]]K, [[AGF]]K is provable using I as inductive invariant.

Once the rule ν is applied, we have to prove two premises:

1 Premise Σ;` [[s]]K, I . This sequent is easy by choosing [[s]]⊥K from I .
2 Premise Σ;` B I, I⊥. The &

s∈S
[[s]]K formula in I⊥ forces us to prove several cases. More

21

precisely, for each s ∈ S, we have to prove Σ;` BI, [[s]]K. Consider the following derivation

Σ;` [[F]]K, [[s]]K Σ;` R1, [[s]]K · · · Σ;` Rn, [[s]]K
Σ;` [[F]]K &R1 & · · ·&Rn, [[s]]K

&

where Ri = neg(si)⊕ (pos(si)⊗ ([[s′i]]K
..
............
..................................... I). Again we have several cases to prove.

The first sequent Σ;` F, [[s]]K follows from inductive hypothesis.
If the rule ri is not fireable at state s, then the sequent Σ;` [[s]]K, Ri is provable (by choosing
neg(si)). On the other hand, if ri is fireable at state s, we then have

Σ;` [[s′]]K, I

Σ;` Ri, [[s]]K
⊕,⊗,&

Since S is closed under −→, it must be the case that s′ ∈ S and hence the sequent Σ;`
[[s′]]K, I is provable (as in Premise 1 above).

The case EG is similar.
(⇐) Due to focusing, we can show that the derivations in the⇒ part are the only way to proceed
during a proof in (focused) µMALL. Hence, we match exactly a “step” in the deduction of
s |=KCTL F . Hence, the only interesting case is the one of the greatest fixed point operator.
Consider the CTL formula AGF and assume that we have a proof of the sequent Σ;` [[s]]K, νB

with invariant Ix. This means that we have a proof of the sequent Σ;` [[s]]K, Ix. Moreover, due
to the shape of B, we must also have a proof of Σ;` [[s′]]K, Ix for any reachable state s′. Then,
we can show that there is a proof of Σ;` Ix, &

s∈S
[[s]]K. Let I be the invariant in the proof of the

⇒ part. Note that I⊥ = &
s∈S

[[s]]K and hence Σ;` Ix, I⊥ (i.e., Σ;` I −◦ Ix) is provable. This

shows that I is greater than Ix, thus we also have a proof of Σ;` [[s]]K, νB using I . The result
follows from a derivation similar to the one used in the proof of the⇒ part.

Finally, it is worth noticing that, in Definition 5.2, we do not encode the transition rules as a
theory (as we did in Section 5.1). In fact, consider the following: (1) the presence of a formula
of the shape [[s −→ s′]]K in the context may allow moving from the current state to a successor
one; (2) fixed points operators must be applied in order to go through paths, checking properties
on them. Now, actions (1) and (2) should be coordinated, otherwise one would lose adequacy
in the encodings. More precisely, by focusing on [[s −→ s′]]K, we may “jump” a state without
checking the needed property in that state. For avoiding these problems, we internalized the
transition rules directly into the encoding.

5.3. CTL in µHyMALL

The encoding on µMALL in the previous section is heavy in two specific ways: (1) the current
state of the automaton is managed by means of the neg and pos predicates, and (2) the encoding
of formulas is not compositional as it is sensitive to the transition system R. These aspects limit
us from even stating and proving properties of the encoding that are independent of the transition
system. For instance, it is obvious from the semantics that AGF implies EGF regardless of what
F or R are, and this can even be seen as a direct consequence of (A&B)((A⊕B) being true

22

[[AXF]] = ↓u.∀w.trans u w ⊗ ([[F]] at w)

[[EXF]] = ↓u.∃w.trans u w ⊗ ([[F]] at w)

[[AFF]] = µ(λR. [[F]]⊕ ↓u. ∀w.trans u w ⊗ (R at w))

[[EFF]] = µ(λR. [[F]]⊕ ↓u. ∃w.trans u w ⊗ (R at w))

[[AGF]] = ν(λR. [[F]] & ↓u. ∀w.trans u w ⊗ (R at w))

[[EGF]] = ν(λR. [[F]] & ↓u.∃w.trans u w ⊗ (R at w))

[[A[F U G]]] = µ(λR. [[G]]⊕ ([[F]] & ↓u. ∀w.trans u w ⊗ (R at w)))

[[E[F U G]]] = µ(λR. [[G]]⊕ ([[F]] & ↓u. ∃w.trans u w ⊗ (R at w)))

Fig. 9. Encoding of CTL into µHyMALL (See Definition 5.3)

in linear logic, but we are prevented from writing that implication generically for any R. These
issues can be addressed by means of an encoding using µHyMALL instead of µMALL.

The key difference in the encoding in µHyMALL is that we can encode the transition system
directly by means of a non-recursive least fixed point expression, i.e., a table. We write this as
the predicate trans that can be derived from a set of transition rules R as follows:

trans
4
= µ

(
λT. λu. λv.

⊕
(s,s′)∈R

(s = u⊗ s′ = v)
)
.

From the definition of trans, we have that, for any given s, s′:
- trans s s′(trans s s′ ⊗ trans s s′ and
- trans s s′(1.

These statements are easy to prove, starting with [−◦R] and then using [µL] (with any invariant
since trans is not recursive). Note that for any t, t = t is logically equivalent to 1. Moreover, if
t and t′ are different terms, then csu(t, t′) is empty and a formula t = t′ on the left of the sequent
finishes any derivation (using [= L]).

Definition 5.3. (CTL into µHyMALL) Let K = 〈S, I,R, L〉 be a Kripke structure on a set of
atomic propositions P . Let trans be the predicated defined as above on R. The encoding [[·]] of
CTL temporal formulas, i.e., of QX, QF, QG and QU, for Q ∈ {A,E} into µHyMALL is in
Figure 9.

Theorem 5.2 (Adequacy). Let K = 〈S, I,R, L〉 be a Kripke structure on a set of atomic propo-
sitionsP , s ∈ S be a state and F be a CTL formula. Then, the µHyMALL sequent: ·; · ` [[F]] @ s

is derivable if and only if s |=KCTL F .

Proof. The proof follows the same argument in the proof of Theorem 5.1.

Observe that in this encoding, the task of establishing the successor state is delegated to the
multiplicative subformula trans u v in each case. The multiplicative split guarantees that it
cannot consume any other linear assumptions. However, since trans unfolds into a disjunction
of equations, there is no possible way for it to consume any linear resources in the first place.
Note also that this predicate is the only one in the encoding that needs to quantify over worlds.
This is typical of encodings in µHyMALL (or µHyLL): any inductive reachability relation that
needs to be encoded on worlds can be represented as a least fixed point predicate.

As mentioned at the start of this subsection, the encoding in µHyMALL allows us to prove

23

meta-theoretic properties of CTL such as, for any F , ·; [[AGF]] @ s ` [[AFF]] @ s. Its proof does
not require examining the trans definition at all. In fact, all the characteristic properties of CTL
given at the start of Section 5.2 can be proved as theorems in µHyMALL of the encoding.

6. Concluding Remarks and Future Work

We compared the expressiveness, as logical frameworks, of two extensions of linear logic (LL).
We showed that it is possible to adequately encode HyLL’s logical rules into LL. In order to better
analyze the meaning of worlds in HyLL, we showed that a flat subexponential structure suffices
to encode HyLL into SELLe. We also showed that information confinement cannot be specified
in HyLL. Finally, with better insights about the meaning of HyLL’s words, we pushed forward
previous attempts of using HyLL to encode Computational Tree Logic (CTL). We showed that
only by using meta-level induction (or fixed points inside the logic) it is possible to faithfully
encode CTL path quantifiers.

There are some other logical frameworks that are extensions of LL, for example, HLF (Ree06).
Being a logic in the LF family, HLF is based on natural deduction, hence having a complex
notion of (βη) normal forms as well as lacking a focused system. Thus adequacy (of encodings
of systems in HLF) results are often much harder to prove in HLF than in HyLL or in SELL.

While logical frameworks should be general enough for specifying and verifying properties
of a large number of systems, some logical frameworks may be more suitable for dealing with
specific applications than others. Hence, it makes little sense to search for “the universal logical
framework”. However, it is often salutary to establish connections between frameworks, specially
when they are meant to reason about the same set of systems.

In this context, both HyLL and SELL have been used for formalizing and analyzing several
systems. This work indicates that SELL is a broader framework for handling such systems, since
it can encode HyLL’s rules and worlds naturally and directly. However, the simplicity of HyLL
may be of interest for specific purposes, such as building tools for diagnosis in biomedicine.
Moreover, as shown in Section 5.3, HyLL offers an elegant way of specifying transitions systems
and their properties (written in CTL).

Formal proofs in HyLL were implemented in (dMDF14), in the Coq proof assistant. It would
be interesting to extend the implementations of HyLL given there to µHyMALL. Such an inter-
active proof environment would enable both formal studies of encoded systems in µHyMALL
and formal meta-theoretical study of µHyMALL itself.

References

Jaime Arias, Myriam Desainte-Catherine, Carlos Olarte, and Camilo Rueda. Foundations for reliable and
flexible interactive multimedia scores. In Tom Collins, David Meredith, and Anja Volk, editors, MCM
2015, volume 9110 of LNCS, pages 29–41. Springer, 2015.

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput., 2(3):297–
347, 1992.

David Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput. Log., 13(1):2, 2012.
Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang. Symbolic model

checking: 10ˆ20 states and beyond. Inf. Comput., 98(2):142–170, 1992.

24

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs, Workshop, Yorktown
Heights, New York, May 1981, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer,
1981.

Kaustuv Chaudhuri. Classical and intuitionistic subexponential logics are equally expressive. In Anuj
Dawar and Helmut Veith, editors, CSL 2010, volume 6247 of LNCS, pages 185–199. Springer, 2010.

Alonzo Church. A formulation of the simple theory of types. The Jornal of Symbolic Logic, 5:56–68, 1940.
Iliano Cervesato and Frank Pfenning. A Linear Logical Framework. Information & Computation,

179(1):19–75, November 2002.
Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types. Mathemat-

ical Structures in Computer Science, 26(3):367–423, 2016.
Kaustuv Chaudhuri and Giselle Reis. An adequate compositional encoding of bigraph structure in linear

logic with subexponentials. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov,
editors, LPAR-20 2015, volume 9450 of LNCS, pages 146–161. Springer, 2015.

Joëlle Despeyroux and Kaustuv Chaudhuri. A hybrid linear logic for constrained transition systems. In Post-
Proceedings of the 9th Intl. Conference on Types for Proofs and Programs (TYPES 2013), volume 26
of Leibniz Intl. Proceedings in Informatics, pages 150–168. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014.

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of exponentials: Uncovering the
dynamics of linear logic proofs. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors,
Kurt Gödel Colloquium, volume 713 of LNCS, pages 159–171. Springer, 1993.

Elisabetta de Maria, Joëlle Despeyroux, and Amy Felty. A logical framework for systems biology. In
Proceedings of the 1st Intl. Conference on Formal Methods in Macro-Biology (FMMB), volume 8738 of
LNCS, pages 136–155. Springer, 2014.

Joëlle Despeyroux, Carlos Olarte, and Elaine Pimentel. Hybrid and subexponential linear logics. Electr.
Notes Theor. Comput. Sci., 332:95–111, 2017.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14(4):321–358, 1992.
Dale Miller and Elaine Pimentel. A formal framework for specifying sequent calculus proof systems. Theor.

Comput. Sci., 474:98–116, 2013.
Vivek Nigam. A framework for linear authorization logics. Theor. Comput. Sci., 536:21–41, 2014.
Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials. In António

Porto and Francisco Javier López-Fraguas, editors, PPDP, pages 129–140. ACM, 2009.
Vivek Nigam and Dale Miller. A framework for proof systems. J. Autom. Reasoning, 45(2):157–188, 2010.
Vivek Nigam, Carlos Olarte, and Elaine Pimentel. A general proof system for modalities in concurrent

constraint programing. In CONCUR, volume 8052 of LNCS, pages 410–424. Springer Verlag, 2013.
Vivek Nigam, Carlos Olarte, and Elaine Pimentel. On subexponentials, focusing and modalities in concur-

rent systems. Theor. Comput. Sci., 693:35–58, 2017.
Vivek Nigam, Elaine Pimentel, and Giselle Reis. Specifying proof systems in linear logic with subexpo-

nentials. Electr. Notes Theor. Comput. Sci., 269:109–123, 2011.
Vivek Nigam, Elaine Pimentel, and Giselle Reis. An extended framework for specifying and reasoning

about proof systems. J. Log. Comput., 26(2):539–576, 2016.
Carlos Olarte, Davide Chiarugi, Moreno Falaschi, and Diana Hermith. A proof theoretic view of spatial

and temporal dependencies in biochemical systems. Theoretical Computer Science, 641:25–42, 2016.
Carlos Olarte, Elaine Pimentel, and Vivek Nigam. Subexponential concurrent constraint programming.

Theoretical Computer Science, 606:98–120, 2015.
Carlos Olarte, Elaine Pimentel, and Camilo Rueda. A concurrent constraint programming interpretation of

access permissions. TPLP, 18(2):252–295, 2018.

25

Elaine Pimentel, Carlos Olarte, and Vivek Nigam. A proof theoretic study of soft concurrent constraint
programming. Theory and Practice of Logic Programming, 14:475–308, 2014.

Jason Reed. Hybridizing a logical framework. In International Workshop on Hybrid Logic (HyLo), Elec-
tronic Notes in Theoretical Computer Science, pages 135–148, Seattle, USA, August 2006. Elsevier.

26

