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Abstract

This paper presents an algorithm to statically schedule live and strongly con-
nected Marked Graphs (MG). The proposed algorithm computes the best exe-
cution where the execution rate is maximal and place sizes are minimal. The
proposed algorithm provides transition schedules represented as binary words.
These words are chosen to be balanced. The contributions of this paper is the
proposed algorithm itself along with the characterization of the best execution
of any MG.
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1. Introduction

In the System-on-Chip design domain, the trend is component based de-
sign. A new design is assembled from IP components which are interconnected
through a network of point-to-point communication channels. In this area, the
problem of long wire communication latency has emerged as a limitation [1]. A
channel is not able to forward a datum in a single step but requires many.

To solve this problem, a component based design has to be provided with its
scheduling to take care of the latency issues. Luca Carloni et al. have proposed
the theory of Latency Insensitive Design (LID) [2] as a dynamic scheduling
solution but LID is greedy in buffering element. From our initial tentative to
improve the LID [3], we have established that a component based design along
with its latency issues can be modeled using Marked/Event graph (MG) [4].
Consequently, from the challenge of scheduling a System-on-Chip design, we
arrive to the more general and abstract challenge of scheduling an MG with
respect to communication and computation latencies.

To enter this challenge, we have developed the proposed algorithm which
provide a statically computed execution to any live and strongly connected MG.
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The proposed algorithm can eventually be applied to any system (software,
hardware, production chain) which can be abstracted as an MG with fixed
communication and computation latencies.

It is clear from historical results [5, 6, 7] that a live MG always admits an
execution irrespectively of the communication or computation latencies. The
proposed algorithm consists in computing the best ASAP execution where ex-
ecution rate is maximal and place sizes are minimal. These properties match
with the requirements encountered in the domain of System-on-Chip design [2].
Lastly, the proposed algorithm is extended to simply connected MGs. However,
the validity of the computed execution relies on the on-demand availability of
tokens on global inputs.

Except the proposed algorithm itself, the main contribution of the paper is
the characterization of this best ASAP execution. From the initial marking, an
guided execution shall lead to different markings. From each of these markings,
the ASAP execution will be different and token accumulation in the places may
vary. For example, in a given ASAP execution, a transition may fire all its tokens
in sequence and then stall for the rest of the period, while in another ASAP
execution, the same transition is fired every two instants. The first example
promotes tokens accumulation. Within this set of ASAP executions, the one
with the smallest tokens accumulation is called the balanced ASAP execution.
This execution always exists and can be analytically computed for any MG. In
a balanced ASAP execution, the binary words that represent the activities of
the transitions through time (1 for activity, 0 for inactivity) are all balanced.

Related works. Marked graphs is a well studied domain for more than forty
years and many works are closely related to ours. [8] state the notions but
also some results used in this paper. [6] and [5] are the bases of our scheduling
theory.

Historically, some works related to the notion of balancedness can be found
in a publication of Jean Bernoulli in the 18th century [9]. Then they appeared
as Christoffel words in the 19th century [10]. More recently Christoffel words
appear again in [11], and as Sturm words in [12, 13], or as mechanical words in
[14]. [15] records the history of balanced binary words.

In [16, 17], balanced binary words are used to balance load of Erlang net-
work. In [18], the authors try to minimize the data lose in a graph with fixed
storage capacities by optimally routing data trough communication channels
using balanced binary words.

Outline. Section 2 runs the proposed algorithm on an example.Section 3 presents
the MG definition followed by all the required results about static analysis of
MG. Balanced binary words are presented and studied in Section 4. The pro-
posed algorithm is presented in Section 5, followed by the proofs of correctness
and then Section 6 discusses our results.
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2. Algorithm overview

This section gives an informal overview of the major steps of the proposed
algorithm. The vocabulary used is formally defined below. However it mostly
refers to the usual and accepted definitions of the same in literature.

Algorithm inputs and outputs. The proposed algorithm inputs are the live and
strongly connected MG and its initial marking (initial token positions). The
proposed algorithm outputs are the computed execution and the size of the
places for this execution.

Latency expansion and N-equalization. In the MG presented in Figure 1-a, the
transition (rectangle) on the top has a computation latency of 1. The right-
most place (oval) has a communication latency of 3. Usually, a token goes
through a transition instantaneously and through a place in one step. When
the computation latency is different from 0, the tokens are kept for some time
in the transition. Similarly, the tokens are kept longer in a place when its
communication latency is more than 1.

a) b) c)

Figure 1: a) an MG with a computation latency on the top-most transition and a communi-
cation latency on the right-most place. Its expansion gives the plain MG in b). The MG in
c) is the N-equalized version of b).

In this representation, tokens evolution during the MG execution is not
obvious. For example, in a place with a communication latency of 3, some
tokens could have been there for 1 instant while others have been there for
more than 3 instants. The duration of their stay is not explicit.

To avoid this problem, the vertices with latencies are expanded in sequences
of plain vertices such that the “semantics of the latency” remains. A place with
a communication latency n is replaced by n successive places while a transition
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with a computation latency m is replaced by m+1 transitions interleaved with
m places. Thanks to this transformation, the exact location of tokens is known.
Figure 1-b is the expansion of Figure 1-a.

In every ASAP executions reachable from the initial marking (after guided
initialization), token accumulation mostly occurs in the same places. In the
MG in Figure 1-b, token accumulation occurs in the left-most place. When the
accumulation is such that every token is kept at least 2 instants in the place, the
behavior of the place is similar to one with a communication latency of 2. Thus
it can be expanded. The N-equalization [3] detects these places analytically and
increases their latencies accordingly. In Figure 1-c, the MG is the N-equalized
version of the one presented in Figure 1-b.

Running the proposed algorithm on an example. The proposed algorithm is de-
fined for an N-equalized MG where the latencies has been expanded. These
steps are considered to be the preliminary steps of the proposed algorithm.

Figure 2: The binary words associated to the transitions express the balanced ASAP execution
of the MG introduced in Figure 1-c.

Even in aN-equalized MG, token accumulation occurs. In some of the ASAP
executions (reached after guided initialization), the accumulation is very limited
while in others, many tokens can be regrouped in the same place. The balanced
ASAP execution (Execperiodic) has the lowest accumulation. Figure 2 presents
the schedule of every transitions according to Execperiodic (0 means inactivity,
1 means activity). The first main step of the proposed algorithm computes
Execperiodic analytically.

In Figure 2, the marking from which Execperiodic occurs is called Mperiodic.
It is different from the initial marking (M0) (Figure 1-c). The second main step
of the proposed algorithm computes Mperiodic.

The third main step of the proposed algorithm consists in finding the guided
initialization (Execinitial) leading to Mperiodic from M0. In Figure 3, The 2-
bits-length schedules attached to each transition is Execinitial.
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Figure 3: From M0 on the left to Mperiodic on the right following the initial guided execution.

As one can see in Figure 4, the computed execution is Execinitial followed
by the infinite repetition (ω) of Execperiodic. It guarantees a maximal execution
rate and a minimal accumulation of tokens. The proposed algorithm guarantees
that place sizes are either 1 or 2. In the running example, every place size is 1.

Figure 4: The MG in M0 and the execution computed by the proposed algorithm.

3. Marked graph

This section presents the Marked Graph (MG) model also known as Event
Graph along with classical definitions and results that will be used in the sequel.
Our contributions in this section are the notion of delay presented in Section
3.5 and Theorem 24.
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An MG is a graph where vertices can have two types: transitions and places.
A place can stock tokens. The edges of a MG are called arcs. They cannot
connect two vertices of the same type. A source is a transition without incoming
arc. A sink is a transition without outgoing arc.

Definition 1 (Marked Graph). A marked graph is a structureG = 〈T, P, F,M0〉
where

• T is a set of transitions.

• P is a set of places.

• F ⊆ (T × P ) ∪ (P × T ) is a set of arcs. If t ∈ T and p ∈ P , (t, p) and
(p, t) are two arcs resp. from t to p and from p to t.

• M : P → N is a marking. M0 is its initial marking.

• Each place has exactly one incoming and one outgoing arcs: ∀p ∈ P ,
|{(t, p) | ∀t ∈ T }| = |{(p, t) | ∀t ∈ T }| = 1.

The constraint on the number of place inputs and outputs guarantees that a
token can be used by only one transition. Consequently, the MG is said conflict
free or deterministic. Figure 1-b presents an MG with 7 transitions (rectangles)
and 8 places (ovals). 5 of these places contain one token (black dots).

Notation 2 (Predecessor, successor). Let G be an MG, t ∈ T and p ∈ P .
We note :

• •t is the preset of t, •t = {p | (p, t) ∈ F}.

• t• is the postset t, t• = {p | (t, p) ∈ F}.

• •p is the transition which precedes p, •p = t such that (t, p) ∈ F .

• p• is the transition which succeeds p, p• = t such that (p, t) ∈ F .

Definition 3 (Throughput of an MG, critical element). Let G be an MG
and p be a place of G. A cycle c is a path from p to p. It is called elementary if all
the transitions of the cycle are different. The marking of c is M(c) = Σp∈cM(p)
and the latency of c, denoted L(c), is the number of place on c. The value
M(c)/L(c) is the throughput of c. The cycle(s) with the lowest throughput is
(are) said critical and the throughput of the MG is the one of the critical cy-
cle(s). The transitions, arcs and places are said critical if they belong to a
critical cycle.

An MG is closed if it has neither source nor sink and it is connected if there
exists a path, in the underlying undirected graph, relating any pair of vertices.
It is strongly connected if there exists a path, in the MG itself, relating any pair
of vertices. A strongly connected component (SCC) of an MG is a subgraph that
is strongly connected (a subgraph of an MG is an MG composed of a subset of
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T, a subset of P, and a subset of F); it is said critical (CSCC) if all its elements
are critical. A direct acyclic component (DAC) is a subgraph that does not
contain any cycle. In general, a connected MG is composed of DACs relating
SCCs together. A strongly connected MG is ever closed.

3.1. Semantics of execution of an MG

We define an execution semantics of an MG based on a logical time with a
synchronous semantics. At the instant 0, the MG is in its initial marking. Then,
an execution step leads to another marking at instant 1 and so on. During
a single execution step, many firable transitions can be fired simultaneously
(synchronously) but a single transition can be fired only once.

Definition 4 (Firable transition at a marking M in an MG). In an MG
G, a transition t ∈ T is firable at a marking M if ∀p ∈ •t, M(p) > 0. A source
is always firable. FM is the set of firable transitions at a marking M .

Definition 5 (MG execution model). Let G be an MG and M its current
marking. An execution step is a transition relation from M to M ′ denoted

M
FT
−→ M ′ with FT ⊆ FM , ∀p ∈ P , M ′(p) = M(p) + FT (•p) − FT (p•).

(FT (t) = 1 if and only if t ∈ FT . FT (t) = 0 otherwise).
An execution (Exec) of an MG is a finite or infinite sequence of execution

steps: Exec = M0
FT1−→M1

FT2−→M2
FT3−→ ...

FTi−→Mi
FTi+1
−→ ... where FTi ⊆ FMi−1 .

Notation 6 (Concatenation of execution). Let G be an MG. Let Exec0 be
a finite execution of G from the marking M0 to the marking M1 and Exec1 be
a finite or infinite execution of G from the marking M1.

Exec0.Exec1 is the execution of G formed by Exec0 followed by Exec1.

Notation 7 (ASAP and guided executions). Let G be an MG. An execu-
tion of G is said As Soon As Possible (ASAP) if and only if ∀i, FTi = FMi−1

(all firable transitions are ever fired). An execution of G is said guided if and
only if FTi ⊆ FMi−1 . In a guided execution, one has to decide which firable
transitions are fired at every step.

Definition 8 (Scheduling and schedule). Let G be an MG with an execu-
tion Exec. Let t ∈ T be a transition of G. The schedule of t is the binary
word relating the activity of t: Sched(t) = FT1(t).FT2(t) · · ·FTi(t) · · · . The
scheduling of G for an execution Exec is the mapping t→ Sched(t) | ∀t ∈ T .

Remark 9 (Scheduling and execution). The successive steps of an execu-
tion can be deducted from its scheduling. Consequently, a scheduling defines an
execution and vice versa.

As we have seen in Section 2, the proposed algorithm computes an ASAP
execution by computing the schedule of every transition.
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3.2. Classical results

Definition 10 (Liveness). An MG is live if there exists an execution where
every transition is fired infinitely often.

In [4], the authors show that the number of tokens on a cycle remains con-
stant through execution. They deduce an MG is live iff all its cycles contain at
least one token.

Definition 11 (Mutually reachable marking). Let G be a strongly connected
MG, M and M ′ two markings of G. M and M ′ are mutually reachable if there
exists an execution sequence from M to M ′ and another from M ′ to M .

In [8], the authors prove that two live markings, M and M ′, of the same
strongly connected MG, G, are mutually reachable (through a guided execution)
if for every cycle c of G, M(c) = M ′(c).

As we have seen in Section 2, the proposed algorithm computes an execution
formed by an initial part followed by a steady part. The steady part is not
reachable from the initial marking through an ASAP execution. Thus the initial
part is a finite guided execution from the initial marking to the first marking
of the steady part. This operation is possible because the two markings are
mutually reachable.

3.3. Execution rate

In [6], the authors prove that the ASAP execution of a live and strongly
connected MG is ultimately repetitive following an execution pattern. Equation
1 shows the evolution of the marking of a live and strongly connected MG. M0

is the initial marking and the arrows are ASAP execution steps.

(1)

The period of the pattern is p and the number of firings of every transition
within a period is k (the periodicity). We say that, the execution of the MG is
k-periodic with a period p. In other words, the execution rate is k/p. In [5], the
authors give a formula to calculate the exact value of the periodicity (k) and the
period (p) of the ASAP execution of a closed MG. According to this formula,
the execution rate (k/p) equals the value of the throughput given in Definition
3. Thus the throughput is the maximal execution rate of the MG since it is
the one of the ASAP executions. This is the one guarantied by the proposed
algorithm.

Proposition 12 (Maximal execution rate of an MG). The maximal reach-
able execution rate is achieved by the ASAP execution of the MG.
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Remark 13 (Execution rate in an open MG). The result on the maximal
execution rate is valid for strongly connected MGs (and thus closed). In a sim-
ply connected open MG, the execution rate depends upon the execution rate of
the source(s) but the maximal execution rate is bounded by the worst throughput
of its SCCs and can be calculated using the same formula given in [5]. Conse-
quently, if the source(s) fire(s) on demand, the MG can be considered closed.

In Section 5.3, the proposed algorithm is extended to simply connected MG.
In such a case, the proposed algorithm returns the schedules of the sources and
sinks. The schedule of a source says when a token has to be generated by the
source in order to feed the next transition and ensure the overall consistency of
the execution.

3.4. Size of places and boundedness

As we have seen in Section 2, the proposed algorithm computes an execution
which implies a minimal size of places. Let us now define this notion.

Definition 14 (Size of places). Let G be an MG, Exec an execution and p
a place of G. The size of p on Exec denoted CExec(p) is the highest marking of
p during the entire execution.

From the initial marking of a strongly connected MG, a guided execution can
lead to any of the reachable markings. From each of these markings, there exists
a bounded ASAP execution. The size of the places for these executions may
vary. An execution has a minimal size of places if every places has a minimal
size compared to the other ASAP executions.

Definition 15 (Minimal size of places). Let G be an MG and M0 its initial
marking. Let M be the set of markings reachable from M0. Let E be the set of
ASAP executions from the markings of M.

Exec ∈ E has a minimal size of places iff ∀Exec′ ∈ E, ∀p ∈ G, we have
CExec(p) ≤ CExec′(p).

As we have seen in Section 2, the proposed algorithm computes an ASAP
execution where place sizes are minimal. The extension of the proposed algo-
rithm to simply connected MGs is discussed in Section 5.3 but it suffers from
limitations since the execution of a simply connected MG may not be bounded.

Definition 16 (Boundedness). An execution is bounded if the size of every
place is bounded. An MG is bounded if every execution is bounded.

Whereas any SCC is bounded, the sizes of the places of a DAC are not.
Let us assume an MG composed of two SCCs connected through a DAC. If the
throughput of the upper SCC is superior to the throughput of the underneath
SCC, the ASAP execution of the MG will lead to an infinite accumulation
of tokens in the DAC. On contrary, If the throughput of the upper SCC is
inferior to the throughput of the underneath SCC, the upper SCC will limit the
execution rate of the underneath SCC and the behavior of the MG during an
ASAP execution will be ultimately repetitive.
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Proposition 17 (ASAP execution of a connected MG). The ASAP ex-
ecution of a connected MG may be unbounded.

In every bounded execution of a connected MG, all SCCs have the same
execution rate. Consequently, the highest reachable execution rate is equals to
the worst throughput among the SCCs. An execution at this rate will be ASAP
for the SCCs with the worst throughput. The execution will also be ASAP for
the underneath SCCs. However, the upper SCCs will be slow down to avoid
accumulation and thus will not have an ASAP behavior.

Proposition 18 (Bounded execution of a connected MG). The bounded
execution of a connected MG may not be ASAP.

The propositions 17 and 18 explain why the proposed algorithm is restricted
to strongly connected MG. However, this restriction can be abolished as dis-
cussed in section 5.3. A simply connected MG can be transformed in a strongly
connected one (by relating SCCs together) so that the proposed algorithm is
applicable.

3.5. Delay

During the execution of an MG, at a given instant, if a token reaches a place
p and is not consumed by p• at the next instant, then the token is said delayed.
This can happen in two cases: 1) when p• is not fired; all the tokens in p are
delayed. 2) When p• is fired and p contains many tokens; all tokens in p excepted
the used one are delayed. Globally, delays can be seen as a way for the MG to
synchronize its branches together. A non critical cycle leans to take advance
over critical cycles (it is faster) but eventually, the execution rate is the same for
every one. So the delays reduce the execution rate of fast cycles to the execution
rate of the slowest dynamically. The value Mc2 ∗ Lc1 −Mc1 ∗ Lc2 represents
the number of delay required during a period of execution to synchronize the
cycle c1 with the cycle c2.

Definition 19 (Delay). Let G be an MG and p ∈ P be a place of G. Let
Exec be an execution of G. Following the notation of Definition 5, Delay(p, i)
is the number of delays occurring in p at the ith step of Exec. Delay(p, i) =
Mi−1(p)− FTi(p

•).

After the initial part, the sum of delays in the places of a cycle during a
period of execution reflects the difference of rate between a critical cycle and
the current cycle.

Theorem 20 (Delay in a cycle during a period of execution). Let G be
an MG and c a cycle of G. Let Exec be an [ultimately] k-periodic execution of
G with a period p. Let j0 be an upper bound of the length of the initialization.

Σp∈cΣ
p
i=1Delay(p, j0 + i) = M(c) ∗ p− L(c) ∗ k
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Proof. In c, at each instant, M(c) tokens are present. This means M(c) ∗ p
transitions could be fired over a period of execution. However, in a period of
execution, every transition of G are fired k times. This means L(c)∗k transitions
are effectively fired on c during a period of execution. The difference between the
amount of possible fired transition and the amount of effective fired transition
is the number of delays in c over a period.

The spatial distribution of delays is the exact location where the delays occur
during a period of execution.

Definition 21 (Spatial distribution of delays). Let G be an MG. Let Exec
be an [ultimately] k-periodic execution of G with a period p. D : P → N

is called a spatial distribution of delays if ∀c, the cycles of G, Σp∈cD(p) =
M(c) ∗ p− L(c) ∗ k.

Exec is said to be based on D if after the initial part, the delays in exec
during a period of execution occur as expressed in D.

In the specific case of an ASAP execution, the delays occur as late as possible
in the MG. This makes the corresponding spatial distribution of the delays
unique for a given strongly connected MG. This spatial distribution is called
the “latest delays position”. The theorems 23 and 24 prove these claims.

Definition 22 (Latest delays position). Let G be a strongly connected MG.
Let D be a spatial distribution of the delays in G. D is the latest delays position
if for all transition t of G, there exists at least one place p in •t such that
D(p) = 0.

Theorem 23 (Existence of the latest delay position). Let G be a strongly
connected MG with a throughput inferior or equal to 1. The latest delay position
ever exists for G.

Proof. . A spatial distribution of delays D can be deducted from a period of
the ASAP execution of G. ∀p ∈ P , D(p) = Σp

i=1Delay(p, j0 + i) where j0 is the
length of the initial part.

Either D is the latest delay position or there exists at least a transition t
for which every places in the preset of t has at least n delays (with n ≥ 1).
In the second case, n delays can be removed to every place in the preset of t
and added to every place in the postset of t. This transformation gives another
(valid) spatial distribution of delays for which t has at least one place in its
preset without delay.

The iteration of this transformation reaches a fix point because no delay
appends on the critical cycle. The fix point is the latest delay position. One
should note the similarity of this argument to the liveness condition.

Theorem 24 (Latest delay position and ASAP execution). Let G be a
strongly connected MG with an execution Exec. Exec is based on the spatial
distribution of delays D. i) If D is the latest delays position, then Exec is
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ASAP. ii) Let Exec′ be another ASAP execution of G from another initial
marking M ′

0. Exec′ is based on the spatial distribution of delays D′. If M0 and
M ′

0 are mutually reachable, then D = D′.

Proof. i) If ∀t ∈ T , ∃p ∈ {•t} such that D(p) = 0, as soon as M(p) > 0, t
fires. This is a ASAP execution.
ii) If M0 and M ′

0 are mutually reachable, the number of tokens per cycle is the
same in M0 and M ′

0 for every cycle of G [8]. Consequently, the number of delays
per cycle is the same in D and D′.

Now let us assume there exists a place p such that D(p) 6= D′(p). Let
path1 and path2 be two paths in the graphs. path1 goes from a transition of
a critical cycle to •p and path2 goes from p• to a transition of a critical cycle.
We assume without lost of generality that the number of delays on path1 is the
same according to D and D′. path1 followed by p followed by path2 followed
by a section of a critical cycle forms a cycle for which the number of delays is
the same according to D and D′. Since D(p) 6= D′(p), the number of delays on
path2 is different on D and D′.

Since D and D′ are the latest delays position, there exists a path path0

from a transition of a critical cycle to p• which do not contains any delay (the
construction of this path can be done by backtracking from p: while reach-
ing a transition, the input place without delay is selected, a critical cycle will
ultimately be reached). But path0 followed by path2 followed by a section of
the same critical cycle forms a cycle where the number of delays is different
according to D and D′. M0 and M ′

0 are not mutually reachable.

As we have seen in Section 2, the proposed algorithm computes an ASAP
execution. This ASAP execution is based on the latest delays position of G.
In some sense, the proposed algorithm proves that there ever exists an ASAP
execution based on the latest delay position.

3.6. Latencies

The preliminary step of the proposed algorithm is the expansion of the ver-
tices with latency in plain vertices.

Definition 25 (MG with communication/ computation latencies).
Let G be an MG. A marked graph with latency G′ is a tuple 〈G,Lcom, Lcal〉:

• The mapping Lcom:P → N\{0} gives the communication latencies of
places.

• The mapping Lcal:T → N gives the computation latency of transitions
(cal stands for calculation).

A place with a communication latency of n keeps every token at least n
instants. A transition with a computation latency ofm keeps every token exactly
m instants. According to Definition 5, the latency of a transition in a plain
MG is 0 and the latency of a place is 1. The tokens go through transitions
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instantaneously but stay at least one instant in a place. The transformation
from an MG with latencies to an MG without latency has been introduced by
Chander Ramchandani in [7]. This transformation preserves the semantics of a
latency.

Figure 1-a presents an MG with computation latencies on the top transition
and communication latencies on the right-most place. Figure 1-b is the expan-
sion of Figure 1-a. The top-most transition is replaced by two transitions with
a place in between which represents the computation latency. The right-most
place is replaced by three places interlaced by two transitions. Each of the three
places represents a communication latency.

Liveness, closedness, (strongly) connection, throughput, execution rate, num-
ber of cycles, and number of tokens per cycle remain constant through the
latency expansion process.

3.7. N-equalization

In an MG where a cycle c is largly faster that the critical cycle, any ASAP
execution will lead to a situation where a place of c will keep every token at least
two instants. In consequence, the behavior of this place is exactly the same as
two places in sequence with a dummy transition in-between. TheN-equalization
performs this transformation wherever it is required. The MG in Figure 1-c is
the N-equalized version of the MG in Figure 1-b.

The resulting N-equalized MG has the same behavior as the original one but
the throughput of c has changed. It has been reduced to approach the critical
one but cannot become less. It may append that some non-critical cycles can
become critical and the value of k and p can change but the ratio k/p remains
constant. The major expected change is that for every places in the resulting
MG, the number of delays over a period becomes bounded by k. More details
about N-equalization is available in [19, 3].

Definition 26 (N-equalized MG). An MG G is said N-equalized if and only
if every transition belonging to a strongly connected component of G belongs to
a cycle c such that:

M(c)/(L(c) + 1) < throughput(G) ≤ throughput(c)

Lemma 27 (Delay in a N-equalized MG). Let G be a N-equalized MG. Let
p be a place of G. Let D be a spatial repartition of delays. 0 ≤ D(p) < k holds
(where k is the periodicity of G).

Proof. For all places p in G, there is a cycle c such that Σp∈cD(p) = M(c) ∗
p− L(c) ∗ k.

Moreover, if G is N-equalized,
M(c)/(L(c) + 1) < throughput(G) ≤ throughput(c)
⇔M(c)/(L(c) + 1) < k/p ≤M(c)/L(c). The two inequations hold:

• M(c)/(L(c)+1) < k/p⇔M(c)∗p < (L(c)+1)∗k⇔M(c)∗p−L(c)∗k < k.
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• k/p ≤M(c)/L(c)⇔M(c) ∗ p− k ∗ L(c) ≥ 0.

The two inequations can be merged in 0 ≤ M(c) ∗ p − L(c) ∗ k < k ⇔ 0 ≤
Σp∈cD(p) < k. Even if all the delays of the cycle are merged in one place,
D(p) < k.

The major complexity of the N-equalization comes from the interleaving of
cycles in the MG. The addition of an extra place on a path may increase the
latency of many cycles and some of them can become slower that a critical cycle
while some others still require extra places. Consequently, all the cycles have to
be considered simultaneously to find the correct location of the additional places.
In [19, 3], integer linear programming is used to specify all the N-equalization
constraints. A more elegant solution can be built based on (max,plus) algebra [5]
by considering the incidence matrix of the MG and its evolution over a period.

In Figure 1, the N-equalization may appear trivial because many places
belong to only one cycle. The left cycle in Figure 1-b is faster than the right
cycle, so an extra place can be added after the leftmost place. The critical
(right) cycle has a throughput of 4/7. The left cycle has a throughput 2/3. The
inequation 2/(3 + 1) < 4/7 ≤ 2/3 holds.

Figure 5: This MG is already N-equalized.

Figure 5 presents a non-trivial example of N-equalization. The outer cycle
is critical with a throughput 2/9. There is three cycles with a throughput 1/4.
Since 1/(4 + 1) < 2/9 ≤ 1/4, the N-equalization condition of Definition 26
hold. The inner cycle has a throughput 1/3 so it seems that an extra place
could be added to equalize it (1/(3 + 1) > 2/9) but every place of this cycle
also belongs to another cycle with a throughput 1/4. Consequently, the MG is
already N-equalizated.

As we have seen in Section 2, the N-equalization of an MG is the preliminary
step of the proposed algorithm.
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4. Balanced binary words

This section presents the basic definitions and well-known results on bal-
anced binary words ([15]). Up to our knowledge, Theorem 44, that presents
the relation between the operation of rotation and transposition, is original.
The goal of this section is to present all these results in a way that eases the
comprehension of the proposed algorithm.

4.1. Finite and infinite binary words

As usual the set of binary values is noted B = {0,1}, B∗ the set of finite
binary words, Bn the set of binary words of length n, B+ the set of non-empty
finite binary words, Bω the set of infinite binary words, and ε the empty word.
We note B∞ = B∗ ∪Bω , the set of finite or infinite binary words.

For u ∈ B∞, we note |u| the length of u (with |u| = ∞ whenever u ∈ Bω).
Similarly we note |u|1 and |u|0 the number of occurrences of letters 1 and 0 in
u respectively. Also, for u ∈ B+ we note slope(u) the ratio |u|1/|u|. B

p
k = {u |

u ∈ Bp and |u|1 = k}. For i ≤ |u| we note u(i) the ith letter of u.
The lexicographic ordering on words is defined as: for u, v ∈ B∞, u < v iff

∃i ∈ N, ∀j < i, u(j) = v(j) and either u(i) = 0 and v(i) = 1 or |u| = i− 1 and
|v| ≥ i. This order is total. For any finite subset V of B∞, inf(V ) and sup(V )
are respectively its lowest and highest elements for this ordering. Finally, for
u ∈ B∗ and v ∈ B∞, u is a factor of v if ∃u1 ∈ B∗, u2 ∈ B∞ such that
v = u1.u.u2.

Definition 28 (Ultimately k-periodic binary word). An infinite binary word
is called ultimately k-periodic if it is of the form u.vω, with u ∈ B∗ and v ∈ B+

with |v|1 = k > 0.

It is called simply k-periodic if in addition u = ε. It is called ultimately periodic
if k = 1. It is called only periodic if both conditions occur. For an ultimately
k-periodic word, u is called the initial part, v, the steady part, k = |v|1 is the
periodicity, and p = |v| is the period. By definition slope(u.vω) = slope(v). P

is the set of ultimately periodic infinite binary words and P
p

k is the set of such
word of periodicity k and period p.

Example 29. 11.(0110101)ω is 4-periodic with period 7, and so is in P7
4.

Because the ASAP execution of an MG is ultimately periodic, the proposed
algorithm mainly focus on a single period of execution that aim to be indefi-
nitely repeated. Thus, the following results concern finite binary words. In the
proposed algorithm, for each transition t of an MG, the appropriate words vt
and ut are found and the ultimately k-periodic word ut.(vt)

ω is built to represent
the schedule of t.
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4.2. Rotation and transposition

As we have seen in Section 2, the proposed algorithm computes the schedule
of every transition of the MG. To do so, the schedule of a transition is deducted
from the schedule of one of its predecessors ({•p | p ∈ •t}) using the transposi-
tion and rotation. In Section 4.6, we illustrate the link between the rotation and
the effect of a latency on a schedule as well as the link between the transposition
and the effect of a delay on a schedule.

Definition 30 (Unitary forward rotation). The unitary forward rotation is
defined as ρ: B∗ → B∗, ρ(ε) = ε, and ∀u ∈ B∗, ∀b ∈ B, ρ(u.b) = b.u.

Definition 31 (Rotation). Let u ∈ B
p

k. we note ρn(u) the n successive uni-
tary forward rotation of u. ρ0(u) = u, ρ1(u) = ρ(u), ρn(u) = ρn−1 ◦ ρ(u) and,
ρ−n(u) = v when u = ρn(v). The parameter n is called the spin of the rotation.

Example 32. ρ3(1101010) = 0101101, ρ−3(1101010) = 1010110 and, ρp(u) =
ρ0(u) = u

Definition 33 (Orbit). Let u ∈ B∗, the set of all rotations of u is called the
orbit of u and is noted O(u).

Example 34. For u = 0110101, O(u) = {u, ρ1(u), ..., ρ6(u)} = {0110101, 1011010,
0101101, 1010110, 0101011, 1010101, 1101010}

Definition 35 (Transposition). Let u, v ∈ B∞. v is called the unitary for-
ward transpose of u (or simply transpose for short) and noted v = τ(u,∆), iff
∃u1 ∈ B∗ and ∃u2 ∈ B∞, u = u1.1.0.u2, v = u1.0.1.u2, and ∆ = |u1| + 1.
∆ is called the location of the transposition. By definition, if u = 0.u1.1,
τ(u, |u|) = 1.u1.0 where u is finite.

Example 36. τ(1010101, 3) = 1001101, τ(1101010, 3) is not defined, τ(011, 3) =
110, τ((10101)ω, 3) = 10011.(10101)ω and, (τ(10101, 3))ω = (10011)ω.

4.3. Balanced binary words

The proposed algorithm computes an execution where all schedules are ul-
timately k-periodic balanced binary words with a period p.

Definition 37 (Balanced binary word). A finite binary word u ∈ B+ is
said balanced if ∀v, t, two factors of uω such that |v| = |t|, the following property
holds: −1 ≤ |v|1 − |t|1 ≤ 1.

The set of finite balanced binary words with length p and containing k oc-
currences of 1 is denoted by S

p

k. Also, u ∈ S
p

k is said primitive when k and p are
mutually prime. By extension an ultimately periodic word is called balanced if
its steady part is. We have chosen the letter S for Smooth.

In [15], the authors prove that i) in a balanced binary word u, the number
of 1 in every factor of uω with a length l is either ⌊l ∗ |u|1/|u|⌋ or ⌈l ∗ |u|1/|u|⌉,
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ii) all the balanced binary words with the same slope are equivalent by rotation
(let u, v ∈ S

p

k, O(u) = O(v) = S
p

k), iii) inf(Spk) = 0.u.1 and sup(Spk) = 1.u.0
(u ∈ Bp−2), and lastly iv) whenever k and p are not mutually prime, every
balanced binary word in S

p

k (called in this case non-primitive) is the repetition
of a smaller primitive balanced binary word: let 0 < k ≤ p and GCD(k, p) = x,

∀u ∈ S
p

k, ∃v ∈ S
p/x
k/x such that u = vx.

When the proposed algorithm meets none-primitive balanced binary word,
it considers the primitive balanced binary word imprinted into it. The execution
is correct because when u = vx, we have uω = vx

ω

= vω .

4.4. Transposition on balanced binary words

Definition 40 defines a bijective function of transposition from S
p

k to S
p

k. It
requires some intermediate results.

Lemma 38 (Transposition in S
p

k). ∀u ∈ S
p

k with k and p relatively prime,
There exists a unique ∆ such that τ(u,∆) ∈ S

p

k.

Proof. If the transposition is applied to any 1 of inf(Spk), the transpose is a
lower word which is consequently not balanced except for the last bit of inf(Spk),
in this case, the transpose is sup(Spk). This result is consistent modulo rotation.

If k and p are not relatively prime, GCD(k, p) = x. ∀u ∈ S
p

k, u = vx. We

define ∆ = ∆′ such that ∆′ is the unique location where τ(v,∆′) ∈ S
p/x
k/x.

Lemma 38 shows that ∆ is the last position of inf(Spk). Starting from this
location, ∆ can be found in every word of Spk .

Corollary 39. In ρn(inf(Spk)), ∆ = p+ n ≡ n mod p.

We define the transposition function as the transposition applied on the bit
∆ of a balanced binary word.

Definition 40 (The transposition function on balanced binary words).

We define the transposition function applied on balanced binary words as: τn:
S
p

k → S
p

k. τ0(u) = u, τ(u) = τ1(u) = τ(u,∆) where ∆ is the same as in Lemma
38, τn = τn−1 ◦ τ , and τ−n(u) = v if and only if τn(v) = u. If k and p are not
relatively prime, GCD(k, p) = x. ∀u ∈ S

p

k, u = vx. τn(u) = (τn(v))x.

Example 41. τ1(1101010) = 1011010, τ2(1010101) = 0101101, τp(w) = w,
and τ(110110) = 101101.

Lemma 42. The function τn is bijective.

Proof. Since τ1(ρn(inf(Spk))) = ρn(sup(Spk)), there is a one to one correspon-
dence between the elements and the images through the τ function.
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4.5. Equivalence between rotation and transposition on balanced binary words

Theorem 44 presents our original result on balanced binary word. It states
that for any given balanced binary word u, the transpose of u is equivalent to
the rotation of u with a spin −α. Let us first define α.

Definition 43 (The alpha coefficient). Let k, p be two relatively prime in-
tegers, 0 < k < p. α is the inverse of −k mod p. So we have −k∗α ≡ 1 mod p

and α relatively prime with p.

Theorem 44. ∀u ∈ S
p

k, ρ
−α(τ(u)) = u.

Proof. We are going to prove that u = u1.0.1.u2 and ρα(u) = u1.1.0.u2

(u1, u2 ∈ B∗). This means that u is the transpose of ρα(u). So we compare
u and ρα(u) bit-wise for i ∈ [[1, p]]. ρα(u)(i) = u(i − α) = ⌊(i− α) ∗ k/p⌋ −
⌊(i− 1− α) ∗ k/p⌋.
α in u(i− α) is replaced by its value and the equation is simplified in:

u(i− α) = ⌊ i∗k+1
p
⌋ − ⌊ (i−1)∗k+1

p
⌋. Otherwise, u(i) = ⌊ i∗k

p
⌋ − ⌊ (i−1)∗k

p
⌋.

For i ∗ k 6= k− 1 and i ∗ k 6= p− 1 modulo p, u(i− α) = u(i) and
for i ∗ k = p− 1 modulo p, u(i− α) = 1, u(i) = 0, moreover,
(i+ 1) ∗ k = p− 1 + k = k+ 1 modulo p, and u(i+ 1− α) = 0, u(i+ 1) = 1

The proposed algorithm computes the schedules of the transitions from the
schedules of its parent transitions. These schedules are equivalent by rotation
because they are all balanced. Thanks to Theorem 44, the rotation is used in-
stead of transposition in the schedule computation formulas. This simplification
lightens the formulas and allows correctness checking of the proposed algorithm.

4.6. From word to schedule

The unitary forward rotation represents the effect of a latency on a transition
schedule while the unitary forward transposition represents the effect of a delay.
Figure 6 focuses on two transitions of a 4-periodic MG with a period 7. The
schedules of A and B are binary words with length 7 containing 4 bits with the
value 1. In Figure 6-a, the schedule of B is the unitary rotation of the schedule
of A because no delay is affected to the place in-between. The arrows illustrate
this rotation (B(i+1) = A(i), ∀i mod 7). In Figure 6-b, two delays are affected
to the place in-between. B does not compute all the tokens generated by A as
soon as they are available any more. Two of them are delayed. The schedule of
B is the double transposition of the rotation of the schedule of A. The first arrow
in diagonal illustrates the rotation, the two next, the transpositions. In Figure
6-c, thanks to Theorem 44, the succession of operations presented in Figure 6-b
is replaced by the equivalent rotation of value: 1− 2 ∗ α where 1 is the original
rotation, −2 ∗ α represents the two transpositions. For (k, p) = (4, 7), we have
α = 5 (Definition 43). So the spin of the rotation is 5 (1−2∗α ≡ 1−2∗5 ≡ −9 ≡ 5
mod 7).
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Figure 6: a) The schedule of B is the unitary rotation of the schedule of A. b) The schedule of
B is the double transposition of the rotation of the schedule of A because the place in between
is a 2-delays place. c) Thanks to Theorem 44, the schedule of B in b) is the rotation of spin
5 of the schedule of A.

5. Balanced scheduling of MG

This section details the proposed algorithm that computes an execution
which is characterized by the following properties: i) the execution rate is
maximal, ii) place sizes are minimal, and iii) after a guided initialization, the
execution is ASAP.

Input: the proposed algorithm, presented in Algorithm 1, takes as input
a live and strongly connected MG with a throughput inferior or equals to 1.
Section 5.3 discusses the application of the proposed algorithm on a simply
connected MG.

Output: Algorithm 1 returns the computed execution along with the size
of the places required for this execution.

The following notation are used in Algorithm 1:

• G is the MG in input and M0 is its initial marking.

• D is the latest delays position (Definition 22).

• Execinitial is the initial guided execution of G from its initial marking to
Mperiodic.

• Mperiodic is the marking of G from which Execperiodic starts.

• Execperiodic is an balanced ASAP execution ofG from the markingMperiodic.

• Sched(t) is the schedule of the transition t in Execperiodic.

• The execution Exec = Execinitial.Execperiodic is the output of the pro-
posed algorithm.

• CExec gives place sizes according to Exec (Definition 14).
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We consider that the preliminary step of the proposed algorithm is the N-
equalization of the MG followed by the expansion of its latencies. N-equalization
is discussed in Section 3.7 and expansion of latencies is discussed in Section 3.6.

Algorithm 1 The proposed algorithm

Input : G with its initial marking M0.
Output : The execution Exec and the place sizes CExec.
1. (k, p)← compute k p(G)
2. D ← compute D(G)
3. Execperiodic ← compute Execperiodic(G,D, k, p)
4. Mperiodic ← compute Mperiodic(G,Execperiodic, p)
5. Execinitial ← compute Execinitial(G,M0,Mperiodic)
6. Exec← Execinitial .Execperiodic
7. CExec ← compute CExec(G,D, k, p).
return (Exec, CExec)

5.1. Algorithm details

5.1.1. Step 1: compute k and p

The formula is given in [5]. k = GCD(M0(c)) and p = GCD(L(c)), for all
cycle c of the CSCCs. Step 1 requires the enumeration of all the elementary
cycles. This enumeration has an exponential complexity with respect to the
number of transitions. It binds the overall complexity of the proposed algorithm.

5.1.2. Step 2: compute the latest delays position D

D has to be the latest delays position (Definition 22) in order to build the
ASAP execution Execperiodic. Theorem 23 shows that the latest delays position
can be deduced from any ASAP execution of G. Thus, Step 2 computes D from
the ASAP execution of G. Step 2 has a polynomial complexity according to the
number of transitions. Algorithm 2 details Step 2.

Figure 7 presents D on the running example. The right-most cycle, c1, is
critical, it does not contain any delay. The left-most cycle, c2, is not. The
difference of firing over a period is |c1| ∗ |c2|1−|c1|1 ∗ |c2| = 7 ∗ 2− 4 ∗ 3 = 2. The
places of c2 that do not belong to c1 should share 2 delays. The left-most and
top-most place contains all these delays because in the latest delays position,
the delays have to occur as late as possible.

5.1.3. Steps 3: compute Execperiodic
Step 3 affects a schedule to every transition with respect to D. Algorithm 3

details Step 3. It has a linear complexity according to the number of transitions.
In Figure 8, Step 3 generates a balanced binary word 1101010 ∈ S74 because

the MG is 4 periodic with a period 7. Step 3 affects this word to a transition
and it computes the schedule of the other transitions using the rotation. The
schedule of the 2-inputs transition (1010101) can be found from its right prede-
cessor ρ1(0101011) or from its left predecessor ρ5(0110101). The spin of this last
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Algorithm 2 compute D

Input : G.
Output : D.
Run the ASAP execution of G.
for all p ∈ P do
D(p) = Σp

i=1Delay(p, j0 + i) where j0 is the length of the initial part.
end for
while D is not the latest delay position do
for all t ∈ T do
forwarded delay = min(D(p) | ∀p ∈ •t)
for all p ∈ •t do
D(p)− = forwarded delay

end for
for all p ∈ t• do
D(p)+ = forwarded delay

end for
end for

end while
return D

rotation is 5 ≡ 1− 2 ∗ α mod p. The place in-between the transitions contains
2 delays. Since α = 5, 1− 2 ∗ α = 1− 2 ∗ 5 = −9 ≡ 5 mod 7 .

The consistency of this method is guaranteed because the number of delay
for each cycle is conformed to Theorem 20. The lemma 45 formalizes this result.

Lemma 45 (Creation of Execperiodic). Step 3 is consistent.

Proof. Let u ∈ S
p

k be a balanced binary word. The number of delays occurring
on a cycle c during a period of execution is n = M0(c)∗p−L(c)∗k. The latency
on this same cycle is L(c).

Algorithm 3 compute Execperiodic

Input : G, D, k, and p.
Output : Execperiodic.

Let t ∈ T , Sched(t)← get a word in(S
p/r
k/r) {with r = GCD(k, p).}

current transition← t
while ∃t′ ∈ T such that Sched(t′) is not defined do
for all t′ ∈ {(current transition•)•} do
Sched(t′)← ρ1−D(•t′)∗α(Sched(current transition))

end for
current transition← t′

end while
return Execperiodic
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Figure 7: D: The amount of delay is written within the place.

Figure 8: From the schedule’s seed, Step 3 generates all other schedules through rotation.
The schedule of the 2-inputs transition can be found from both its predecessor.
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If we impose the schedule of a transition t on c to Sched(t) = u and we
propagate this schedule to the successors according to Step 3, then t will be
ultimatly reached again. The updated schedule of the t will be ρL(c)−n∗αu. We
know from Definition 43 that α ∗ k ≡ −1 mod p so if we focus on the quantity
L(c)− n ∗ α:
L(c)−n∗α = L(c)−α∗ (M0(c)∗p−L(c)∗k) ≡ L(c)−α∗M0(c)∗p+α∗L(c)∗k
≡ L(c) − α ∗M0(c) ∗ p − L(c) mod p ≡ −α ∗M0(c) ∗ p mod p ≡ 0 mod p, it
is equivalent to 0 modulo p.

Consequently, the schedule of t remains the same, the method is consistent.

5.1.4. Step 4: compute Mperiodic

Step 4 deducesMperiodic from Execperiodic. Mperiodic is not only the marking
from which Execperiodic runs but also the marking generated by Execperiodic
after a period of execution. Consequently, the last step of a period reaches
Mperiodic. The last bit of Sched(•p) represents the activity of •p at the last
instant of the period. If it has been active, it has produced a token in p.
Algorithm 4 details Step 4. It has a linear complexity according to the number
of places.

Algorithm 4 compute Mperiodic

Input : G, Execperiodic, and p.
Output : Mperiodic.
p ∈ P , Sched(•p) = uω and Sched(p•) = vω

for all p ∈ P do
Mperiodic(p)← u(p) + [ρ(u) < v]
{[ρ(u) < v] = 1 if ρ(u) < v and 0 otherwise.}

end for
return Mperiodic

[ρ(u) < v] = 1 means that one token is being delayed in the place at the
current instant. [ρ(u) < v] is always equal to 0 when D(p) = 0 because v = ρ(u).
When D(p) > 0, v is the transpose of ρ(u). In the usual case, ρ(u) > v because
transposition shifts 1s to the right. But when the transposition occurs on the
last bit of the word, the transpose gets a bit on its first position and becomes
higher than the original word. Thus, if a transposition occurs on the last bit, it
means that a token is currently delayed in the place. Lemma 46 formalizes this
intuition.

Lemma 46 (Presence of tokens in delayed places). Let p be a place of G
such that D(p) = n > 0. Let u = Sched(•p) and v = Sched(p•). If ρ(u) < v, p
is delaying a token in the marking Mperiodic.

Proof. v = ρ1−n∗α(u) = τn(ρ(u)). By definition, the transpose of a word is
lower than the original word except when the last bit is transposed. In this
last case, the transpose is higher that the original word. If, v > ρ(u) (but
v = τn(ρ(u))), at least one of the transpositions occurs on the last bit. The
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interpretation of this statement is that the firing of p• was supposed to occur at
the last instant of the period but has been delayed to the next one. The token
related to this execution is currently in p.

Figure 9 illustrates Step 4. The last bit of the schedule of a transition
determines whether a token is present in its output place(s). The place with
delays contains a regular token because the schedule of the predecessor finishes
by 1 but it does not contain an extra token because 1010101 < ρ(0110101) =
1011010.

Figure 9: The step 4 generates Mperiodic from Execperiodic. The presence of an additional
token in the delayed place is found using the function [v > ρ(u)].

The correctness of Step 4 is presented in Section 5.2. First, Lemma 51 proves
that the marking Mperiodic is reachable from M0. Then, Theorem 56 shows that
the ASAP execution of G from Mperiodic is Execperiodic.

5.1.5. Step 5: compute Execinitial
Algorithm 5 computes Execinitial based on integer linear programming solv-

ing. The optimization criterion is the minimization of the number of firing
because one cannot express linearly the minimization of the number of steps
required to run Execinitial. The mapping Finit associates to each transition
the number of firing required to reach Mperiodic. The function build execution
builds Execinitial by simulating an ASAP execution of G where each transition
t cannot be fired more than Finit(t). The complexity of Step 5 depends upon
the algorithm used to solve the linear system of inequation. Lemma 47 shows
the correctness of Step 5.

In Figure 3, M0 is on the left. The 2-bits-length schedules attached to each
transition is Execinitial leading to Mperiodic on the right.

Lemma 47 (Correctness of Step 5). Algorithm 5 computes a valid execu-
tion Execinitial reaching Mperiodic.

24



Algorithm 5 compute Execinitial
Input : G, M0, and Mperiodic.
Output : Execinitial.
Cst = Ø{Cst is the set of linear constraints}
for all t ∈ T do
Cst+ = {Finit(t) ≥ 0}
for all p ∈ t• do
Cst+ = {Finit(

•p) = Finit(p
•) +Mperiodic(p)−M0(p)}

end for
end for
Finit ← lp solve(Cst,Min(Σ∀t∈TFinit(t)))
Execinitial ← build execution(Finit)
return Execinitial

Proof. Let us call M1 the marking at the end of Execinitial. ∀p ∈ P , M1(p) =
M0(p) − Finit(p

•) + Finit(
•p) = M0(p) − Finit(p

•) + Finit(p
•) +Mperiodic(p) −

M0(p) = Mperiodic(p).

According to [8], the maximum number of firings between two markings
(M0 and Mperiodic in our case) is in O(n3) where n is the number of transitions
in the MG. We assume that the length of Execinitial is convenient because:
i) the bound O(n3) is given in terms of number of firings. Execinitial allows
parallel firing of transitions. ii) the periodic execution Execperiodic covers a
set of p markings. The initial part can reach any of these marking. So the
problem is equivalent to: reaching the closest marking of Execperiodic instead
of only Mperiodic. iii) the cases where the upper bound is reached are extreme
cases where all tokens have to shift to another place far from the initial one or
because the shift of one token implies the shift of all others. In Mperiodic, the
tokens are “spread equally” in the MG. Mperiodic might be the easiest reachable
marking.

5.1.6. Step 6: compute Exec

Exec is composed of Execinitial followed by Execperiodic. After the guided
initialization, the execution is ASAP and repetitive. In Figure 4, the MG is
in its initial marking. The execution, Exec, is represented by the ultimately
k-periodic schedules attached to each transition.

5.1.7. Step 7: compute CExec

If a place does not contain delay, every token reaching the place leaves it at
the next instant. As long as a place contains at most one token in M0, its size
is 1. Lemma 48 demonstrates that if a place contains delays, tokens are never
delayed more that one consecutive instant because the MG is N-equalized and
the schedules are balanced. In consequence a place cannot accumulate more
than two tokens.
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Lemma 48 (Delayed place size is bounded by 2). According to Exec, place
size where delays occur is bounded by 2.

Proof. First, G is N-equalized, so the number of delay per place is bounded
by k. Secondly, since the execution is balanced, a token can be delayed only
once in a row. Lastly, since the execution is k-periodic, there is (at most) k

different tokens to delay. These conditions guarantee that a token cannot stay
more than 2 instants in the place. Consequently, no accumulation of more than
2 tokens can occur.

Even for delayed places, a size of two is required only if a token is delayed
while another reaches the place. Theorem 49 shows that a delayed place has a
size of one when D(p) < p − k because delays occur first on the 1 which are
followed by a 0. In Figure 7, all the places have a size of 1. In the delayed place
p, D(p) = 2 < 7− 4.

Theorem 49 (Exact delayed place size). Let p be a place,

CExec(p) = 1⇔ D(p) ≤ p− k

Proof. First, if a place p with D(p) = n has a size one, every other place p′

with D(p′) ≤ n also has a size one. If a place p with D(p) = m has a size
two, every other place p′ with D(p′) ≥ m also has a size two. This property
is guaranteed by the Lemma 38. In two different delayed places, the delayed
tokens are the same modulo rotation. So the problem of calibrating the size of
a place only depends upon the amount of delays in that place and not at all
about the location of these delays.

Let u = Sched(•p) and v = Sched(p•). A place p requires a size two when a
token is used after the next one has reached the place. Formally, there exists n
such that [v]n > [u]n (where [u]n is the position of the nth 1 in u). v says when
the current token is used, u says when a new token reaches p.

Let us assume thatD(p) = p−k. We have v = ρ1−(p−k)∗αu = ρ1−p∗α+k∗αu =
u so [u]n > [u]n never holds.

Let us assume that D(p) = p − k + 1. We have v = ρ1−(p−k+1)∗αu =
ρ1−p∗α+k∗α−αu = τ(u) so [τ(u)]n > [u]n holds when n is the index of the
delayed token.

The following theorem proves that the proposed algorithm computes an ex-
ecution which has a minimal size of the places as claimed earlier.

Theorem 50 (Minimal size of the places). CExec gives the minimal size of
places.

Proof. When D(p) ≤ p− k, CExec(p) = 1 so it is minimal.
Let us now assume an ASAP execution Exec′ from the markingM ′ reachable

from M0. Let assume a place p′ such that D(p′) = p − k + 1. At most p − k

tokens within a period can be delayed while no token follows. It remains at
least 1 token that has to be delayed but that is followed by another token. In
this last configuration, p contains two tokens and thus the size of p is at least
2. Consequently, CExec(p) is also minimal when D(p′) > p− k.
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5.2. Correctness of the step 4

Let us first prove the reachability of Mperiodic from M0 then we prove that
the ASAP execution from Mperiodic is Execperiodic.

5.2.1. Reachability of Mperiodic from M0

Lemma 51 (Reachability of Mperiodic from M0). Mperiodic, as computed in
the step 4, is reachable from M0.

Proof. According to [8], both markings are mutually reachable if and only if
for each cycle of the MG, the two markings have the same number of tokens.
Now, let us prove that Mperiodic and M0 respect this condition.

First, Lemma 53 considers that all the delays of a cycle are assembled in the
same place and proves that the condition holds. Lemma 53 requires the Lemma
52. Then Lemma 54 generalizes Lemma 53 to any allocation of delays in a cycle.

If all the delays are assembled in the same place p, Mperiodic(c) is equals to
the number of 1s in the suffix of length L(c) of Sched(p•) because the schedules
are, in such a case, elementary rotations of the previous ones and the bit of index
p says whether a token is there in the output place. We have seen in Section 4.3
that the number of 1s in a factor of a balanced binary word of length L(c) is
either ⌊L(c) ∗ |u|1/|u|⌋ or ⌈L(c) ∗ |u|1/|u|⌉. Lemma 52 proves that if the suffix of
length L(c) has ⌊L(c) ∗ |u|1/|u|⌋ 1s, p is currently delaying a token. Otherwise,
p is not. Consequently, the number of tokens in c is always ⌈L(c) ∗ |u|1/|u|⌉.
Lemma 53 concludes that if the MG is equalized, M0(c) = ⌈L(c) ∗ |u|1/|u|⌉ also.

Lemma 52 (Suffixes and lexicographic order in S
p

k). Let u ∈ S
p

k and j, l ∈
N such that 0 < j ≤ l and k > j ∗ p− k ∗ l ≥ 0. We note n = j ∗ p− k ∗ l.

There exists n balanced binary words v ∈ O(u) such that |suffix(v, l)|1 =
⌊l ∗ k/p⌋ (suffix(v, l) is the suffix of v of length l). Moreover, these n words
are the highest according to the lexicographic order.

Proof. Consider the word ul. By definition slope(ul) = slope(u) = k/p. ul

can be sliced in p factors of length l. Each factor is different from the others
and matches with a suffix of length l of v ∈ O(u). If the number of factors
containing ⌊l ∗ k/p⌋ 1s is different from n, slope(ul) cannot be k/p.

Moreover, if |suffix(v, l)|1 = ⌊l ∗ k/p⌋, |prefix(v, p − l)|1 = k − ⌊l ∗ k/p⌋.
So if |suffix(v, l)|1 = ⌈l ∗ k/p⌉, |prefix(v, p − l)|1 = k − ⌈l ∗ k/p⌉. A word
with more 1s in its prefix is higher than another with less 1s according to the
lexicographic order.

Lemma 53 (Reachability of Mperiodic from M0 in the simple case). Let c
be a cycle of G such that all the delays occurring in c are assembled in the place
p. We have Mperiodic(c) = M0(c).

Proof. Let us call u the schedule of p•. The number of token in c isMperiodic(c) =

Σ
L(c)−1
i=0 u(p− i) + [u > ρD(p)∗αu].
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Σ
L(c)−1
i=0 u(p − i) = |suffix(u, L(c)|1. Since u is balanced, ⌊L(c) ∗ k/p⌋ ≤

|suffix(u, L(c)|1 ≤ ⌈L(c) ∗ k/p⌉.
Case 1: if |suffix(u, L(c))|1 = ⌊L(c) ∗ k/p⌋, u is one of the D(p) highest

word of O(u) (Lemma 52). Consequently, u > ρD(p)∗αu because a rotation of α
increases the value of the word according to the lexicographic order but if the
highest is reached, another rotation of α gives the lowest. So [u > ρD(p)∗αu] = 1
and Mperiodic(c) = ⌊L(c) ∗ k/p⌋+1 = ⌈L(c) ∗ k/p⌉ (In the case D(p) 6= 0, p does
not divide k ∗ L(c)).

Case 2: if |suffix(u, L(c)|1 = ⌈L(c) ∗ k/p⌉, u is not one of the D(p)
highest word of O(u) (Lemma 52). Consequently, [u > ρD(p)∗αu] = 0, and
Mperiodic(c) = ⌈L(c) ∗ k/p⌉ also.

Conclusion: since G is N-equalized, M0(c)/L(c) ≥ k/p > M0(c)/(L(c)+1).
So (k ∗ L(c) + k)/p > M0(c) ≥ k ∗ l/p. By definition of the N-equalization, the
solution always exists and is unique: ⌈L(c) ∗ k/p⌉.

In Lemma 53, a delay can occurs only in one place but in Lemma 54, every
place can contain delays and they might be delaying a token in Mperiodic. In
this Lemma, we give the formula to compute Mperiodic from a place p0 that
we are going to consider as the first place of the cycle, then we prove that if a
delay is shifted to the last place of the cycle, the number of tokens in the cycle
will be the same. Thanks to this result, we can shift all the delays into the last
place and conclude that the number of tokens found in Lemma 53 is applicable
to the general case. The inertia of the shift operation on the number of tokens
is proven by considering the last places of the cycle such that the first and the
last of this sequence of places contain delays but none of the other in-between
does. In such a case, the effect of the shift operation on the formula to compute
Mperiodic can be analyzed locally.

Lemma 54 (Reachability of Mperiodic from M0 in the general case). For
all cycle c, Mperiodic(c) = M0(c).

Proof. Let c be a cycle of G. The places of c are {p0, p1, ..., pL(c)−1}. We note
u the schedule of the transition •p0.

Mperiodic(c) = Σ
L(c)−1
i=0

(

u(p− (i − (D(p0) + ...+D(pi)) ∗ α))+

[ρi+1−(D(p0)+...+D(pi+1))∗αu > ρi+1−(D(p0)+...+D(pi))∗αu]
)

.

Let i0 be such that ∀i ∈]i0, L(c) − 1], D(pi) = 0 and let us focus on the
few last terms of this sum such that i0 < i ≤ L(c) − 1 (In the worst case,
i0 = L(c)−2 and only the last term of the sum is there). The following equality
is going to be proved for these terms only:
[ρi0−(D(p0)+...+D(pi0))∗αu > ρi0−(D(p0)+...+D(pi0−1))∗αu] (A)

+Σ
L(c)−1
i=i0

u(p− (i− (D(p0) + ...+D(pi)) ∗ α)) (B)

+[u > ρD(pL(c)−1)∗αu] (C)
=
[ρi0−(D(p0)+...+D(pi0−1))∗αu > ρi0−(D(p0)+...+D(pi0−1)−1)∗αu] (A’)
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+Σ
L(c)−1
i=i0

u(p− (i− (D(p0) + ...+D(pi)− 1) ∗ α)) (B’)

+[u > ρ(D(pL(c)−1)+1)∗αu] (C’).
There is only three cases to study to prove this property:

• When (A) is equals to 1 but (A’) is equals to 0, then the first term of (B)
is equals to 0 and the first term of (B’) is equals to 1. If the first place
delays a token (A)=1 but not any more after the shift (A’)=0, the token
has been computed instead of being delayed and then it appears in the
next place (B’)=1. All the other term of the sum are the same.

• When (C) is equals to 0 but (C’) is equals to 1, the last term of (B) is
equals to 1 and the last term of (B’) is equals to 0. If the last place does
not delay any token (C)=0 but does after the shift (C’)=1, this token was
in the last but one place (B)=1 and is now in the last one (B’)=0. All the
other term of the sum are the same.

• In every other possible cases, (A) equals (A’), (B) equals (B’), (C) equals
(C’).

Thanks to this property, we know that the number of tokens in c is the
same wherever are the delays in the cycle. So the result found in lemma 53 is
applicable to the general case.

5.2.2. Validity of Execperiodic from Mperiodic

Lemma 55 (A step of execution from Mperiodic). Let M1 be the marking
resulting from a step of ASAP execution from Mperiodic, M ′

1 is the marking
resulting from a step of Execperiodic from Mperiodic.

Then, M1 = M ′
1

Proof. In an ASAP execution, a transition t executes if and only if all the
incoming places contains a token. In Mperiodic, the place •t contains a to-
ken if and only if Sched(••t)(p) = 1 or [ρ1(Sched(••t)) < Sched(t)]. In the
first step of Execperiodic, a transition t executes if and only if Sched(t)(1) =
1 ⇔ ρ−1(Sched(t))(p) = 1 ⇔ Sched(••t)(p) = 1 or that [ρ1(Sched(••t)) <
Sched(t)]. The condition of execution are the same. If the same transitions
are fired according to an ASAP execution or Execperiodic, then the resulting
markings are the same.

Theorem 56 (Validity of Execperiodic). The ASAP execution of G from the
marking Mperiodic is Execperiodic.

Proof. Step 3 is based on the affectation of a schedule by a random balanced
binary word from S

p

k. The lemmas 45, 51 and Lemma 55 also hold for any
other balanced binary word from S

p

k. Since all the words of S
p

k are equivalent by
rotation, Step 4 gives all the successive markings of Execperiodic when the Step
3 is initiated with, successively, all the words of Spk. For each of these marking,
Lemma 55 proves that the next marking is reachable through ASAP execu-
tion. Consequently, from Mperiodic, and after p steps of execution, Execperiodic
reaches Mperiodic.
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5.3. Extension to the simply connected case

As we have seen in proposition 18, one cannot guaranty that an ASAP and
bounded execution exists for a given simply connected MG. Since a System-
on-Chip cannot be designed with unbounded memories, the extension of the
proposed algorithm to simply connected case preserves the bounded property
at the expense of the ASAP property. The maximum execution rate is still
preserved but the minimality of the size of places is altered.

A simply connected MG can be transformed into a strongly connected one by
adding feedback paths. Thus, the proposed algorithm can be applied. To do so,
we add to the MG some feedback paths which bind all the components together.
The functional behavior of the system will be preserved but its scheduling will
be over-constrained by the added feedback paths i.e. adding different feedback
paths imply a different execution computed by the proposed algorithm. These
feedback paths act as synchronization barriers.

There is different algorithmic solution to realize the transformation; however,
the added feedback paths should not create a cycle with a throughput inferior
to the critical one in the original MG. Otherwise, the maximal execution rate
will not be achieved. It is easy to prove that the marking and the latency of the
added feedback paths can always be adjusted so that the created cycles have a
non-critical throughput.

The minimality of the size of the places is guaranteed for the original SCCs,
but the size of the places on the original DAC depends upon the added feedback
paths. One may find another set of feedback paths such that the size of places
on the original DAC is less. We have not yet studied this optimization.

Open MG. If a simply connected MG is open, one can consider that the system
has global input(s) and output(s). In order to schedule the MG, it is transformed
in a strongly connected one. Consequently, the MG becomes closed. The run
of the proposed algorithm shall return a schedule for every source and sink.
The schedule of a sink says when the system produces an output token and
the schedule of a source says when the system consumes an input token. Thus,
the concerned input token has to be present when required. In [20], we state
that the execution rates of the feeder and eater have to be the same in order
to calibrate the capacity of the “interconnection” place with a finite value and
thus ensure on-demand token availability. In [21], the authors study thoroughly
the sizing of buffer between clocked systems.

The AES example. Figure 10 presents an implementation of the AES encryption
standard. The MG has been represented using K-Passa (K-Periodic Asap Static
Schedule Analyser) [22]. K-Passa implements the proposed algorithm but also
the N-equalization. The circles represent the transitions of the system. The
arrows represent the sequences (arc→ place→ arc) in-between two transitions.
The two left most transitions called key and word are sources (the local loop
has been added for simulation purpose). The central transition called output
word is a sink. The schedule attached to each transition is the one computed
by the proposed algorithm. The guided initialization has a length 1, then the
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behavior is 1-periodic with a period 6. Every place has a size one. The only
place where one delay occurs is the one between word and mux (where a small
square appears), however a size one is enough.

As one can see, the AES example is a simply connected graph. In order to
run the proposed algorithm, two paths from the sink to each of the sources have
been added to the system.

Figure 10: The MG presents an implementation of the AES encryption standard.

6. Results and discussion

This paper proposes an algorithm to statically schedule any live and strongly
connected MG with a throughput inferior or equals to one. The proposed al-
gorithm computes the balanced ASAP execution where the execution rate is
maximal and place sizes are minimal. Moreover, a transformation has been
proposed to change a simply connected MG in a strongly connected MG such
that the proposed algorithm can be applied.

In the domain to the System-on-Chip design, the proposed algorithm is used
to schedule applications which are subject to the problem of long wire latency.
If we compare our approach to the latency insensitive design, this last is not
as strict as our approach about the constraint on availability of data on global
inputs. It is a purely dynamic solution but the cost for this dynamicity is
the duplication of every data path in the circuit and the replacement of every
simple register by a two-sized-register to manage the dynamic communication
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and computation protocol. This difference makes our approach better for pure
data flow system.
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