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Abstract Massively Parallel Processor Array (MPPA)

architectures are becoming widely available computing

platforms. Because of formal similarities, they are good

candidates for implementing Cellular Automata (CA).

An essential difference still remains regarding the free-

dom in communications. In MPPA there is a fixed on-

chip network interconnection topology but every CA

has its own definition of neighbourhood. While a cell

in a CA can be considered as directly connected to its

neighbours, these connections correspond to paths in

the network of the MPPA. The communications need

to be routed and scheduled to reach their proper desti-

nation.

In previous work we introduced a formal Data-Flow

Process Network model named KRG (for K-periodically

Routed Graph). Its main feature is to allow regular
switching directives. In the present paper we will use

it to represent the proper local sequences of routing di-

rectives that will efficiently propagate values from cells

to cells so as to implement the required CA neighbour-

hood. We present the Neighbourhood Broadcasting Al-

gorithm (NBA) that computes these routing directives.

One should note here that the problem is made more

complex as data traffic between distinct source and tar-

get cells must be merged, while multicast may save a

tremendous amount of communications when values are

required in multiple locations.

We demonstrate the expressive power of our formal-

ism on the case of a 2D CA where the neighbourhood

consists of all cells at Moore distance at most n. Further

potential applications of our framework are hinted.
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1 Introduction

Modern computing architectures are increasingly be-

coming parallel platforms. While this trend is now well-

established at the large scale of big parallel comput-

ers, grid and now cloud computing, it is also pervad-

ing all aspects of smaller scale architectures of the size

of a single chip, with hardware accelerators such as

DSPs, FPGAs and GPGPUs (Sangiovanni-Vincentelli

and Passerone, 2012; Sriram and Bhattacharyya, 2009;

de Micheli and Benini, 2006), or Massively Parallel Pro-

cessor Arrays (MPPA) (Melpignano et al, 2012; Kalray,

2012) and many-core systems-on-chip. To make the best

of such architectures, applications must exhibit as much

potential parallelism, either explicitly of through early

compilation analysis. The important question then be-

comes one of efficient mapping of such applications onto

such architectures. The approach has been described al-

ready decades ago as Adequation (between) Algorithm

and Architecture (AAA) (Grandpierre et al, 1999), and

is also sometimes tagged as platform-based design or Y-

chart design flow (Ferrari and Sangiovanni-Vincentelli,

1999), with the intention that the hardware platform

is adjusted to the application just as much as the con-

verse.

In this context, Cellular Automata (CA) can be

considered as one of the earliest modelling framework

where massively parallel application descriptions were

provided, with the implicit intention that they lead to

efficient execution on matching parallel architectures.
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While this has largely not occurred in the past because

of the lack of such existing efficient architectures, the

burst of new computing devices makes it worth a new

try.

Still, efficiency does not come for free because of new

emerging hardware, and parallelized systems may often

be only slightly faster, if not slower, than sequential

ones (while consuming more resources and power). One

can identify here several bottlenecks.

First, maximal concurrency inside the application

must be extracted, and carefully partitioned between

data and task parallelism. CA provide a formal Model

of Computation (MoC) where this has already been

achieved. Data-Flow Process Networks (DFPN), which

we shall later refer to, form another such formalism,

more aimed at the explicit representation of task paral-

lelism. Second, once the application has been described

in such a maximally concurrent fashion, a model of the

architecture must be provided at the same level, so as to

adjust the unrestrained concurrency of the application

to the physically limited parallelism of the execution

platform. Mapping then consists both of spatial distri-

bution allocation, and of temporal relative scheduling of

tasks that have to share the same processing resource.

Through mapping, a platform-independent application

becomes constrained as platform-aware. This design ap-

proach is pictured in Figure 1.
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Fig. 1 Platform aware design flow for parallel algorithms

One aspect that is often neglected in the AAA ap-

proach, or at least downplayed, is the way necessary

data transfers are handled in the mapping. Just as com-

putation resources, communication resources are lim-

ited in size in physical architectures, so that mapping

in time and in space of such data communications onto

the existing interconnect structure needs to be defined

and optimized as well. This issue is well exemplified on

Cellular Automata, where any cell can be freely thought

as directly connected to its neighbours, while the un-

derlying target architecture might not allow such a pro-

fusion of connections. In fact this may be viewed as the

implementation issue of CA in our setting.

We shall consider the problem here in the case when

the execution platform consists of a 2D grid array of

homogeneous processors, connected by a local On-Chip

Network (NoC), with one router next to each proces-

sor being able to propagate data values further North,

South, East, West, and Here. First we will provide a for-

mal model of such architecture, mostly structural but

with definite behavioural aspects for the router nodes

(so that it may in a sense qualify as a Model of Com-

munication). The model is named KRG, after the K-

periodically Routed Graph scheme that allows provid-

ing regular switching patterns for the data transfers.

While there are countless results on the use of CA

to efficiently and adequately model applicative prob-

lems, impossible to be all quoted here, one should men-

tion that there are also efforts to use dedicated struc-

tural shapes of specific CA to model hardware micro-

architectural VLSI aspects (see for instance (Chaudhuri

et al, 1997)). Although certainly borderline to our con-

cerns, direct platform modelling with CA is out of our

current scope.

After this long preamble, we shall apply it to de-

scribe how mapping the data communications in a CA

can be mapped to our KRG model. As an example

we shall focus on a specific case, which in fact is very

frequently encountered in practice: the next-value of

each node of the CA depends symmetrically on all its

neighbours at Moore distance at most n. We shall pro-

vide a routing solution where data can be switched

and duplicated to some regular traffic, where ”regu-

lar” means: provided as a simple recursive pattern. This

solution, named by us ”Neighbour Broadcasting Al-

gorithm (NBA)” (Millo and de Simone, 2012b), has

very nice qualities: first, it optimizes traffic sharing;

second, successive data values are delivered in accor-

dance to their Manhattan distance. This last features

allows starting computing the local next-value ”on-the-

fly” when, for example, the impact of immediate neigh-

bours is ”very strong” and then decreases according to

the distance.

1.1 Related work

1.1.1 High level modelling of dataflow application

Many approaches (Glitia et al, 2012; Herrera and Villar,

2011; Marouf and Sorel, 2011; Davare et al, 2007; Eker

et al, 2003; Jantsch, 2008) provide formal frameworks

aiming at solving the issues of spatial and temporal al-

location (scheduling, mapping). These approaches use
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different DFPN to describe the parallel algorithm. Most

of these DFPN are based on the Marked Graph (MG)

model (Commoner et al, 1971). The MG model has

been extended into the K-periodically Routed Graph

(KRG) model (Boucaron et al, 2010) which enables the

handling of mapping and scheduling information (spa-

tial and temporal allocation). However none of these

models considers the routing of the communications

through the on-board communication medium. In this

paper, we extend the usage (but not the model itself!)

of KRG to support the routing information.

1.1.2 Implementing cellular automata on high

performance platforms

There are mostly two kinds of high performance plat-

forms considered for the implementation of cellular au-

tomata: the Field-Programmable Gate Array (FPGA)

(Kobori et al, 2001; Halbach and Hoffmann, 2004) and

the Graphics Processing Unit (GPU) (Rybacki et al,

2009; Zaloudek et al, 2009). The work presented in this

article is twofold. First, it gives a framework to con-

sider the mapping, scheduling and routing of any data

flow application on any platform. Thus the specific con-

straints related to GPU or FPGA implementation could

be considered in the framework however it is not the

scope of the paper. Second, the article considers the

mapping of a cellular automata application on a net-

work on chip. We postulate that network on chip is the

most appropriate platform to implement cellular au-

tomata.

1.1.3 Decoupling communication and computation in

cellular automata

The foundation of our work lies in the distinction be-

tween computation phases where the next state of a

cell is computed and communication phases where the

new state is sent to the neighbours. This decoupling

has been first considered by Olivier Bouré et al. (Bouré

et al, 2011) who analyse the evolution of cellular au-

tomata where perturbations occur. Any computation

or communication can succeed or fail according to a

given probability. In our framework, every computation

or communication occurs but it has to be scheduled and

routed.

1.2 Contribution

The first contribution of this paper is to raise the rout-

ing activity of the design flow at a high level of abstrac-

tion. The second contribution is to provide a framework

(the KRG model plus some generic constructions) to in-

tegrate the routing directives along with the mapping

directives into the description of the algorithm when it

has been expressed using the MG model. The last con-

tribution is the analysis of the NBA algorithm, which

results in the resolution of the routing activity with ex-

plicit routing directives for the specific case of cellular

automata based applications.

1.3 Outline

The remaining of the article is arranged as follow: Sec-

tion 2 introduces the Marked Graph (MG) and the K-

periodically Routed Graph (KRG) models. In Section

3, we present the constructions that model the possible

constraints coming from the platform (mostly mutual

exclusive access to shared resources). We also model

a network on chip using the KRG model and explain

how the communications of a given application can be

mapped and routed on it. In section 4, we perform the

full behavioural analysis of the communication in a cel-

lular automaton mapped on a MPPA based platform

with a NoC. The NBA algorithm is presented with the

resulting routing directive. Lastly, Section 5 presents

a few preliminary experimental results and Section 6

concludes this article with some perspectives.

2 Process networks: from Marked Graph to

K-periodically Routed Graph

Marked Graph (MG) (Commoner et al, 1971) is a pure

data flow process network used to model different kinds

of data flow applications. In particular, a finite CA with

a given size and a given definition of the neighbourhood

can be modelled as a MG where every cell is represented

as a transition. The firing of a transition corresponds

to the computation of the local update rule on the cell.

The MG model is adequate to express the logical

parallelism of an application. The logical parallelism is

the maximum parallelism that the application can offer

in term of computation but also in term of communica-

tion. On contrary, the deployment of such application

on an execution platform leads to adapt the logical par-

allelism to the “limited” parallelism of the platform.

The KRG model is an extension of the MG model that

is used to refine the MG description of the application.

Thanks to the new constructions of the KRG model, the

limitations of the execution platform will be directly in-

tegrated into the description of the application.
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2.1 Marked Graph

The Marked Graph (MG) model (also known as Event

Graph) is a graph in which any vertex has a type. It

is either a transition or a place. This last holds tokens.

The edges of a MG are directed, they are hence called

arcs. An arc in a MG cannot connect two vertices of

the same type.

Definition 1 (Marked Graph)

A marked graph is a structure G = 〈T, P, F,M0〉
where

– T is a set of transitions.

– P is a set of places. T ∩ P = ∅.
– F ⊆ (T ×P )∪ (P ×T ) is a set of arcs. If t ∈ T and

p ∈ P , (t, p) and (p, t) are two arcs resp. from t to

p and from p to t.

– M : P → N is a marking. M0 is its initial marking.

– Each place has exactly one incoming and one out-

going arcs: ∀p ∈ P , |{(t, p) | ∀t ∈ T}| = |{(p, t) |
∀t ∈ T}| = 1.

The constraint on the number of inputs and out-

puts of every place guarantees that a token can be used

by only one transition. Consequently, the MG is said

conflict-free (or deterministic).

In the scope of this article, a MG models an applica-

tion where the transitions represent the different tasks

that can be performed concurrently in the application.

The places represent the interconnection buffers. The

arcs represent the data flows from task’s outputs to in-

terconnection buffers and from interconnection buffers

to task’s inputs. By extension, the sequence arc-place-

arc between two transitions represents a data depen-

dency between two tasks. The presence of a token in a

place represents the availability of a data element in the

interconnection buffer. A transition without incoming

(outgoing) arc represents a global input (resp. output)

of the application.

Figure 2 presents a MG with five transitions (dis-

played as rectangles) and five places (displayed as ovals).

Two of these places contain one single token (displayed

as black dots). The application represented in Figure

2 is a proportional-integral-derivative controller (PID

controller) with an auto adaptive command. It gets a

data, such as a speed, from a sensor, it computes (-/+)

the difference with the expected speed and generates a

command using a PID block. The command is set to an

actuator and feedback to the command that compute

the next expected speed according to the behaviour of

the system. For example, if the expected speed can-

not be reached because of a sporadic event external to

the system, it takes the decision to reduce the expected

speed so that the system will reach a stable state any-

how. Later, the expected speed can be set back to its

nominal value.

-/+ 

command 

PID 

get 

set 

(100)w 

(010)w 

(001)w 

(001)w 

(001)w 

Fig. 2 A marked graph

Notation 2 (Predecessor, successor)

Let G be a MG, t ∈ T and p ∈ P . We note :

– •t is the preset of t, •t = {p | (p, t) ∈ F}.
– t• is the postset t, t• = {p | (t, p) ∈ F}.
– •p is the transition which precedes p, •p = t such

that (t, p) ∈ F .

– p• is the transition which succeeds p, p• = t such

that (p, t) ∈ F .

2.2 Execution semantics of a MG

The execution semantics of a MG is based on a logical

time with a synchronous semantics (Millo and de Si-

mone, 2012a). At the instant 0, the MG is in its ini-

tial marking. Then, an execution step leads to another

marking at instant 1. Every subsequent execution step

entails a new marking. During a given execution step,

many firable transitions can be fired simultaneously

(synchronously) but each transition can be fired only

once.

Definition 3 (Firable transition in a MG)

In a MG G, a transition t ∈ T is firable at a marking

M if ∀p ∈ •t, M(p) > 0. A source is always firable. FM

is the set of firable transitions at a marking M .

Definition 4 (Execution model of a MG)

Let G be a MG and M its current marking. An execu-

tion step is a transition relation from M to M ′ denoted

M
FT−→M ′ with FT ⊆ FM , ∀p ∈ P ,

M ′(p) = M(p) + FT (•p)− FT (p•). (FT (t) = 1 if and

only if t ∈ FT . FT (t) = 0 otherwise).
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An execution (Exec) of a MG is a finite or infinite

sequence of execution steps:

Exec = M0
FT1−→ M1

FT2−→ M2
FT3−→ ...

FTi−→ Mi
FTi+1−→ ...

where FTi ⊆ FMi−1
.

An execution is said As Soon As Possible (ASAP)

when for every instant i, FTi = FMi−1

Definition 5 (Scheduling and schedule)

Let G be a MG with an execution Exec. Let t ∈ T be

a transition of G. The schedule of t is the binary word

relating the activity of t:

Sched(t) = FT1(t).FT2(t) · · ·FTi(t) · · · .
The scheduling of G for an execution Exec is the map-

ping t→ Sched(t) | ∀t ∈ T .

Remark 6 (Scheduling and execution)

The subsequent steps of an execution can be deduced

from its scheduling. Consequently, a scheduling defines

an execution and vice versa.

Figure 3 presents the same MG than in Figure 2

but with the schedule of each transition attached to it

as binary words. (u)ω means the infinite repetition of

the word u ((u)ω = u.u.u . . . )
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(001)w 

(001)w 

(001)w 

Fig. 3 A Scheduled marked graph

2.3 K-periodic routing pattern

Routing patterns are introduced in the form of infinite

binary sequences. 1 stands for left, 0 for right. Alterna-

tively, 0 and 1 can represent then and else, or up and

down.

Definition 7 (Binary words)

We note B = {0, 1} the set of Boolean values, B∗ the

set of finite binary words (sequence of Boolean values),

B+ the set of non-empty words, and ε the empty word.

Definition 8 (Infinite binary sequences)

Let Bω be the set of infinite binary sequences (that is,

sequences of Boolean values). An infinite sequence s ∈
Bω is called ultimately periodic iff it is of the form u.vω,

with u ∈ B∗ and v ∈ B+; u is called the initial part of

w, and v its periodic (or steady) part.

We note Pk
p the set of ultimately periodic binary

sequences (k-periodic sequences) with a steady part of

length p containing k occurrences of “1”. We call k the

periodicity and p the period of such sequences. Finally,

let P be the set of k-periodic sequences.

2.4 K-periodically Routed Graph

K-periodically Routed Graph (KRG) is an extension

of MG, where two kind of routing nodes inspired from

BDF (Parks, 1995) are introduced: Select (demux) and

Merge (mux). But whereas branching conditions in BDF

are left unspecified, they are defined by n-synchronous

(Cohen et al, 2006) binary sequences, in our case, com-

puted off-line. They carry stronger information about

routing than in CSDF (Bilsen et al, 1995). KRG is de-

terministic, and let us check on design safety (bounded

resources, liveness) (Coadou, 2010).

In the scope of this article, the KRG model is used to

refine the MG description of a data-flow application by

introducing constraints coming from the execution plat-

form. These additional constraints will be represented

using the newly introduced Select and Merge nodes.

Definition 9 (K-periodically Routed Graph)

A K-periodically Routed Graph is a structure

〈N , Se,Me, P,M0, SwitchCond〉, such that:

– N is a finite set of transition.

– Se is a finite set of Select nodes such that ∀ se ∈
Se : |se•| = 2 and |•se| = 1.

– Me is a finite set of Merge nodes such that ∀me ∈
Me : |me•| = 1 and |•me| = 2.

– SwitchCond is a function Me ∪ Se→ P.

– P is a finite set of places such that

P ⊂ (N ∪ Se ∪Me)×(N ∪ Se ∪Me) and ∀ p ∈ P :

|p•| = |•p| = 1.

P0 ⊆ P is the set of instantaneous places.

– M0 : P → N is the initial marking of places.

We call a KRG k-periodic due to the fact that all switch-

ing conditions (SwitchCond patterns) are k-periodic se-

quences.

∀X, Y ∈ {N , Se,Me, P}, X 6= Y → X ∩ Y = ∅

An instantaneous place is a specific kind of place

that can be passed through instantaneously. Let p ∈ P0

be an instantaneous place, when •p is fired, it generates
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a token in p and allows p• to be fired within the same

execution step. The instantaneous places are graphi-

cally represented as an oval similarly to normal places

but without black border.

The notion of execution step is consequently revised

compared to MG to be a sequence of micro-steps where

some firable nodes (transitions, Select, and Merge) are

triggered at the first micro-step. Then, the transition

that becomes firable due to the production of tokens

in instantaneous places can be fired at the next micro-

steps. When a token is produced in a non-instantaneous

place, it will be usable only at the next step. This exe-

cution semantics correspond the one of the synchronous

languages (Benveniste et al, 2003) such as Esterel, Lus-

tre or Signal.

Definition 10 (KRG firing rule)

The firing condition for transitions is the same than in

a MG: firing a transition n implies the consumption of

a token in each place of •n, and the production of a

token in each place of n•;

A Select node is firable when there is a token in input.

A Merge node m is firable when there is a token in

the input x and x is the first letter of SwitchCond(m).

Select node s fires by consuming the first letter x ∈ B
of

SwitchCond(s) and an input token, producing a token

on the output x place.

Merge node m fires by consuming the first letter x ∈ B
of SwitchCond(m) together with the token on input x,

and then produces a token on the output.

In the sequel we will use n-ary select and merge

nodes. n-ary nodes are the straightforward extension of

the binary select or merge nodes but to respectively n

inputs (outputs). The switching conditions are thus in-

finite words composed of n different letters. The formal

definition of n-ary select and merge nodes are presented

in the thesis of Anthony Coadou (Coadou, 2010).

Let us consider the application described in Figure

2 as a MG and the following set of processing elements

Pe = {Sensor,Actuator,DSP,CPU}. The KRG in

Figure 4 is a refinement of the application of Figure

2 including the mutual exclusive access of -/+ and PID

to the processing element DSP . If we focus our interest

on the box DSP , the token in the place between the

merge and the select node represents the usage of the

DSP. At the first iteration, the select node dispatches

the token to its output labelled with 1 which allows the

task -/+ to fire. Then, the merge node consumes the

token and sends it back to its initial position. At the

second iteration, the token is sent to PID and comes

back. The switching conditions of both the select and

the merge nodes are the same (10)ω but, in general,

-/+ 

command 

PID 

0
 

1
 

0
 

1
 

get 

set 

Sensor 

Actuator 

CPU DSP 

(10)w (10)w 

Fig. 4 The application represented by the MG of Figure 2
as been enriched with computation mapping information.

every node has its own. The well-construction of the

switching conditions is essential to guarantee the live-

ness of the system. For example, let us assume that

on the current example the switching condition of the

merge node is replaced by (01)ω. After the firing of -/+

the token would be stuck in input of the merge node be-

cause this last is waiting for a token on its other input.

This situation leads to a deadlock on that example.

The KRG of Figure 5 is an additional refinement of

the application described in Figure 2 where CPU and

DSP communicate through a bus. So the exchanges

between these two processing elements alternate. Simi-

larly to Figure 4, the construction presented in the box

Bus represents the mutual exclusive access to the com-

municating element. When -/+ and PID have fired, the

token is sent on the bus to CPU , command is executed

and the produced token is sent back to DSP through

the bus again.

3 Mapping data-flow applications on an

execution platform using the KRG model

The mapping consists in associating the transitions and

places of the original MG that describes the tasks and

the interconnections of the application to processing

and communicating elements of the execution platform.

In the scope of this paper, the authors discuss how a

given mapping can be integrated into the description of

the application using the KRG model. The problem of

finding the best mapping for a given application on a

given platform with respect to some optimization cri-

teria is out of the scope of this paper.
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Sensor 
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Actuator 

CPU 

-/+ 

command 

PID 

0
 

1
 

0
 

1
 

0
 

1
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1
 

get 
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Bus 

(01)w (10)w (10)w (10)w 

Fig. 5 The application represented by the KRG of Figure 2 as been further enriched with communication mapping information.

3.1 Mapping transitions to processing elements

Let Pe be a set of processing elements. A mapping

is a (total) function from N to Pe. Let n ∈ N be

a transition, PM(n) denotes the processing element

p ∈ Pe that allocates n. We define the function PM−1

from Pe to 2N that associates to every processing el-

ement p ∈ Pe, the set of transitions allocated on it

PM−1(p) = {n | PM(n) = p}.

When two or more transitions are mapped to the

same processing element, they cannot execute at the

same time. This semantics can be captured in KRG

using the construction presented in Figure 6. This con-

struction adds to each of the n transitions an incoming

and an outgoing arcs without modifying the existing

ones. The token represents the usage of the process-

ing element. The n-ary word u(v)ω gives the order into

which the transitions are going to be execution on the

processing element. For example, (12...n)ω would exe-

cute sequentially each transition in their numeric order

while 12(344)ω would initially process transition 1 then

transition 2 and then, the sequence transition 3 followed

by twice transition 4 would be repeated forever.

The refinement of the application described in Fig-

ure 2 with the mapping of transitions to processing el-

ements is given in Figure 4. The function PM is not

given but can be easily deduced from Figure 4. The

transitions get, set, and command are mapped to a ded-

icated processing element. No additional construction is

required. The element -/+ and PID have been mapped

to DSP ; the construction presented in Figure 6 has

been used.

2
 

1
 

…
 n

 
…

 

2
 1

 
…

 
n

 …
 

…
 

…
 

u(v)w u(v)w 

…
 

Fig. 6 The n transitions are mapped to the same processing
element.

3.2 Mapping places to communicating elements

We consider four kind of communicating elements for

the mappings of the communications: the point to point

connection, the bus, the internal memory and the net-

work on chip. We let to the user the care of extending

this work to other kind of communicating elements.

Each place of the original model of the application is

mapped to one of these elements. Formally, a mapping

is a (total) function from P to Ce. Let p ∈ P be a place,

CM(p) denotes the communicating element c ∈ Ce that

allocates p. We define the function CM−1 from Ce to

2P that associates to every communicating element c ∈
Ce, the set of places allocated on it CM−1(c) = {p |
CM(p) = c}.

The set of communicating elements Ce is the union

of the following sets:

– P2P , the set of point to point connections where

each allocates a single place:

∀p2p ∈ P2P , |CM−1(p2p)| = 1.

– B the set of buses where each may group many

places.
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– MPe the set of internal memories. Let p ∈ P be

a place and proc ∈ Pe be a processing element. If

{•p, p•} ⊆ PM−1(proc), then the communications

between •p and p• are mapped to the internal mem-

ory of the processing element proc.

– NoC the set of networks on chip where each may

group many places.

The semantics of a place, as it is defined in the origi-

nal MG model, matches with the point to point commu-

nication and with the internal memory. Consequently

there is no transformation of the model required for

these two kind of communicating elements. However,

the buses and networks on chip have a different seman-

tics that can be expressed in KRG with the transfor-

mations given below.

3.2.1 Mapping places to a bus

A bus allows only one communication at a time. Thus

there is a mutual exclusion between the places mapped

to the same bus. Figure 7 presents the transformation to

perform on the original model in order to capture the

semantics of a bus. Initially, there were m horizontal

places from left transitions to the right transitions at

the same level. Now, the m communication should go

through the single place in between the merge and the

select transition in a given order specified by u(v)ω.

2
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…
 m

 
…

 

2
 1

 
…

 
m

 …
 

…
 

…
 

u(v)w u(v)w 

…
 

…
 

Fig. 7 The m places are mapped to a bus.

The refinement of the application described in Fig-

ure 2 with the mapping of places to communicating

elements1 is given in Figure 5. The function CM is

not given but can be easily deduced from Figure 5. The

places in output of get and in input of set are mapped to

point to point connections. The place between -/+ and

PID is mapped to the internal memory of DSP . The

two last places are mapped to a bus. The construction

presented in Figure 7 has been used.

3.2.2 Mapping places to a network on chip

A network on chip is a mesh (or a torus) of routers

where each is connected to its four direct neighbours

on the grid. Each router is also connected to a local

1 in addition to the mapping of transitions to processing
elements

processing element that runs some of the tasks of the

original MG. Figure 8 captures the structure and the

semantics of a network on chip in KRG. The square

boxes are routers with five bi-directional channel de-

noted North, West, South, East, and Local. Local de-

notes the connection from the current router to the

transitions that are computed by the local processing

elements. There is m places in output of all these tran-

sitions that are connected to the network. The local

merge orders the emission of tokens on the network

according to the switching condition u(v)ω. Similarly,

there are n places in input of all these transitions that

get tokens from the network. The local select node or-

ders the reception of token from the network according

to its switching condition u′(v′)ω. The content of the

router box is detailed below.

2
 

1
 
…

 m
 

…
 

u(v)w 

2
 

1
 
…

 n
 

…
 

u’(v’)w 

To the  
local 
transitions 

From the  
local 
transitions 

Fig. 8 Representation of a network on chip in KRG.

For example, let us consider a MG composed of 128

transitions. Among them, Transition A is connected to

Transition B. This MG is mapped to a platform com-

posed of 64 processing elements connected through a

network on chip. First, all the transitions are mapped

to the 64 processing elements (2 transitions each). If

there exist a direct connection (a place) between two

transitions mapped on the same processing element, the

connection is assumed to be done through the internal

memory of the processing element. The corresponding

place appears on the KRG as it is in the MG. All the

remaining connections are mapped to the network on

chip. Let say that Transition A is mapped on the first

processing element and transition B is mapped on the

fifth processing element. When Transition A fires, it

generates a token that is consumed by the local merge.

Then the token is sent to the router and travels on
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the network until it reaches the router that is directly

connected to the fifth processing element. This router

sends the token to the local select node that consumes

it. Lastly, the token arrives in the place in input of

Transition B.

The network is subject to a correctness rule that

is (1) every connection mapped to the network adds

an input to a local merge node and an output to a

local select node. Formally, let us consider a network

on chip of size (X,Y ), ∀i ∈ [1, X] and ∀j ∈ [1, Y ],

n(i,j) is the number of outgoing places from the location

(i, j). m(i,j) is the number of incoming places from the

location (i, j). We have

ΣX
i=1Σ

Y
j=1n(i,j) = ΣX

i=1Σ
Y
j=1m(i,j) (1)

The router:

Figure 9 gives the internal crossbar of the routers that

are presented on Figure 8 as black boxes. The left part

of the crossbar is specific to the North input. The exact

same construction is made for each of the five inputs.

C
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From south 

From south 

From east 

From east 

From east 

From east 

From local 

From local 

From local 

From local 

From local 

From east 

From south 

From west 

Same construction  
for each input: 

Fig. 9 The structure of the router.

From an input to an output, every incoming token is

copied five times. Each occurrence goes through a select

node that decides whether the give token is propagated

in the output associated to the occurrence. Then, the

token is merged with all the others tokens coming from

different inputs but going to the same output. One can

see that one single token in input of a router can be mul-

ticasted to many outputs. Another interesting remark

to do is that every input of the router can be processed

in parallel. For example, if the routing directive is to

send every token on the left, a router can consume four

tokens from each of its cardinal inputs and propagates

these tokens on each of the cardinal output: South to

West, West to North, North to East, and East to South.

In addition, some of these tokens can be copied to the

local port if required.

It would be overwhelming to encode directly the

routing decisions as the switching conditions of the se-

lect and merge nodes appearing in the internal structure

of the router. It is preferable to consider the router as

a black box and give the sequence of routing decisions

(as directions) that are applied on the five input flows

of each router. We are thus performing an abstraction

of the router’s behaviour as the reactive process given

in Algorithm 1:

Algorithm 1 Abstraction of the behaviour of a router

as a reactive process
while true do

in ports = feeding rule(){decide which ports to read}
for all in port ∈ in ports do

token = in port.read()
destinations = propagation rule(token) { decide
where to propagate token }
for all out port ∈ destinations do

out port.write(token)
end for

end for
pause{wait for the next step}

end while

At each step, the router applies the feeding rule to

determine which input channels it should read. It is not

mandatory to consume a token on every input at every

step. Then, it consumes one token per input according

to the feeding rule and propagates it to one or many of

its output channels according to the propagation rule.

The feeding rule is a k-periodic infinite sequence of in-

put channels. The ist element of the sequence is the list

of input channels to consider at the step i. The propaga-

tion rule is composed of five k-periodic infinite sequence

of output channels; one per input channel. The ist ele-

ment of the jst sequence is the list of output channels

where to send the ist token from the jst input. The

compilation of the feeding and propagation rules in the

corresponding routing patterns of the internal represen-

tation of the router is not presented in the article due

to space limitation.

Figure 10 presents a refinement of the original MG

of Figure 2 where the places have been mapped on a

network on chip. The construction representing the mu-

tual exclusive access to the processing element DSP by

-/+ and PID has been omitted for the sack of clarity.

The feeding and propagation rules of the four routers

are given in Table 1. RX is the router connected to

the processing element X with X ∈ {sensor, actuator,
DSP, CPU}. The feeding and propagation rules on this

example are such that only one token is considered at

each step and there is no multicasting. However it is not

true in general. Rsensor is receiving only token from the
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1
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(01)w 

Sensor Actuator 

CPU DSP 

get set 

command 

Network on chip 

-/+ 

PID 

Fig. 10 The original application is mapped to a network on
chip.

local port and send them to the east. When Ractuator re-

ceives these token on its west port, it propagates them

on the south toward the DSP. Another path through

RCPU would have been chosen however, the channel

from RCPU to RDSP is already used for the exchanges

of tokens between CPU and DSP . We choose to disso-

ciate the paths as much as possible.

Router Feeding rule Propagation rule
Rsensor (L)ω (E)ω

Ractuator (WS)ω (SL)ω

RDSP (LE)ω (EL)ω

RCPU (WNLL)ω (LLNW )ω

Table 1 The feeding and propagation rules associated to
Figure 10

When the new configuration of a cellular automaton

is computed, the state of every cell has to be duplicated

and sent to its neighbourhood. The representation of

such behaviour in MG required to explicitly use a copy

transition that takes one token (the state) in input and

generates several copies. While mapping the cellular au-

tomaton represented as a MG to a MPPA with an on-

chip network, the copy transition can be absorbed by

the routers. Instead of explicitly copying the state and

sending several tokens on the network, only one token

is sent and the routing directive shall be to duplicate

this token whenever required. See Section 4 for details.

3.3 Routing and Scheduling

The mapping of an application on a platform intro-

duces select and merge nodes but also additional in-

termediary places in the system. The next step is to

compute the switching pattern of these nodes in or-

der to define 1/ the order into which the transitions

on the same processing element fire 2/ the order into

which the tokens go through the bus (if any) 3/ the

feeding and propagation rules of the routers of the Noc

(if any) 4/ the new schedule of every node (transition,

select and merge). These pieces of information can be

deduced from a co-simulation of the original model with

the refined model. Each step of execution of the original

model will be associated to a sequence of steps in the

refined model where the operations occurring in parallel

in the original model but mapped to the same process-

ing element are sequentialized. This method, used to

derive the scheduling information, needs to be comple-

mented with a method to efficiently compute the rout-

ing of the data on the network. Section 4 presents an

example of a cellular automaton mapped on a MPPA

with an on-chip network. We then present the Neigh-

bour Broadcasting Algorithm (NBA) that aims at pro-

viding an efficient routing scheme through the on-chip

network for the specific case of cellular automata.

4 Routing cellular automata

Many applications such as the game of life (Gardner,

1970) or the class of stencil computation (Datta et al,

2008) consist of a regular grid of tasks communicat-

ing with each other. In such applications, the state of

a task depends upon the previous states of its direct

neighbourhood. Sometime, not only the direct neigh-

bourhood is considered but also some indirect neigh-

bours matching a given stencil. In the worst case, every

task needs to know the state of its neighbours up to a

distance n. In the sequel, we consider CA based appli-

cation where the notion of neighbourhood is extended
to all the cells up to a distance n.

4.1 Cellular automata

Let us consider synchronous cellular automata where

the underlying topology is a finite rectangular grid of

cells of dimension two (Kari, 2005; Dennunzio, 2012).

We assume the topology to be a torus (the opposite

sides are glued together).

Let ca and cb be two cells identified by their vector of

coordinates respectively ca = (xa, ya) and cb = (xb, yb)

. Let diff = (xdiff , ydiff ) be the difference between ca
and cb: diff = ca−cb = (xa−xb, ya−yb). The distance

relative to the dimension (or coordinate) x (resp. y) is

|xdiff | (resp. |ydiff |).
The Manhattan distance (or norm) between ca and

cb is denoted ||diff ||1 and is equal to

||diff ||1 = |xdiff |+ |ydiff |
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The Moore distance (or norm) between ca and cb
is denoted ||diff ||∞ and is equals to

||diff ||∞ = max(|xdiff |, |ydiff |)

In the scope of this paper, we define the neighbour-

hood of a cell based on the Moore distance as follows.

Nn(c) is the neighbourhood of the cell c up to a radius

n (c is in its own neighbourhood).

Nn(c) = {c′ such that ||c− c′||∞ ≤ n}

The size of the neighbourhood Nn(c) is |Nn(c)| = (2 ∗
n+ 1)2.

Every cell c takes its state in a finite set of states

denoted S. The configuration of the automaton is a

mapping conf : Z2 → S that refers to the state of ev-

ery cell. The evolution of the automaton occurs syn-

chronously on discrete time steps. All tasks are up-

dated simultaneously according to the local rule. The

local rule is a function localRule : Sk → S where k

is the size of the neighbourhood (here k = |Nn(c)|).
At every time step, the local rule is applied in every

cell and the new states are computed to be conf ′(c) =

localRule(conf(c+x1), conf(c+x2), . . . , conf(c+xk))

where {∀i ∈ [1, k], xi} is a set of vectors addressing the

relative distance between c and each of its neighbours.

The new configuration of the automaton is thus conf ′.

The computation of the local rule requires to get

the states of all the neighbours. Since the cells are up-

dated synchronously, every cell needs to know the states

of all its neighbours simultaneously. When considering

the implementation of a CA on a MPPA with an on-

chip network, every cell simultaneously broadcasts its

state to all its neighbours in order to allow them to

update. The performances of this system will highly

depend upon the efficient routing of the data traffic on

the network. In the sequel, we introduce the KRG of a

CA mapped on an MPPA with an on-chip network. We

propose the NBA as the optimal routing solution and

we analyse the behaviour of this system with respect to

time and space.

4.2 Modelling cells and CA in KRG

Figure 11-a presents the model of a cell where there

are point to point connections 1/ from each of the m

cells in the neighbourhood and 2/ to each of the m cells

that need the state of the current cell to update2. We

let the reader thinks about the shape of the full cellular

automaton when the radius of the neighbourhood has

a radius superior to one.

2 this set of cells is different from the neighbourhood when
it is not a regular grid
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Fig. 11 The model of a cell before mapping and after map-
ping on a network on chip.

4.3 Mapping a cellular automaton on a network on

chip

Figure 11-b presents the KRG model of a cellular au-

tomaton mapped on a network on chip. First, the cell

sends its state (abstracted as a token) through the net-

work to all the cells that requires it to update. The

task of duplicating the token is left to the multicasting

ability of the routers as explain earlier. Then, the cell

receives the m tokens required to compute its new state

and updates.

Concerning the mapping of the cells on processing

elements, we assume in the scope of this paper that

there is as much processing elements as cells. Even

through this hypothesis is not much realistic regard-

ing the off-the-shelf platform; it enables us to perform

the routing analysis without the additional problem
of multi-scaling (when a grid of cells is allocated to

each processing element). In addition, this hypothesis is

more realistic while considering the implementation of

this model on hardware or FPGA (Kobori et al, 2001).

The following results remain helpful in these conditions.

4.3.1 Neighbourhood Broadcasting Algorithm (NBA)

NBA is a 2-dimensional propagation algorithm for cel-

lular automaton based applications that simultaneously

sends a token from every single cell to all their neigh-

bours up to a given radius. NBA sends a single to-

ken per cell and then broadcasts to all the other cells

through the network. The idea behind this exercise is

that the propagation pattern for any kind of neighbour-

hood where the furthest neighbour is at a radius n can

be deduced from the propagation pattern of the NBA

with a radius n.

Figure 12 shows how a single token is propagated

through the mesh up to a certain Moore distance. The
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1 2 3 4 5 6 

Fig. 12 The broadcasting pattern from a single token.

path from a given source to a given destination always

follows one coordinate direction fully, then the other

one. The token always turn left at this change of di-

rections, i.e. counter-clockwise. On the third picture of

Figure 12, the top-most, bottom-most, left-most, and

right-most routers are at a Manhattan distance n(= 3)

from the source. So on the fourth picture, the data are

not propagated straight but only left.

Another thing to notice is that traffics originating

from North and South (resp. East and West) never in-

terfere in the same router. Northbound tokens only use

South and East channels, southbound ones the North

and West channels instead. Figure 13 presents the only

four propagation patterns among all (modulo rotation)

that are used to realize the NBA. In these four patterns,

the token is sent to the local port. In B and D, it is sent

straight, lastly, in C and D it is multicasted on the left

branch.

A B C D 

Fig. 13 The four token propagation patterns for the NBA.

Pattern D is applied when a token comes from a

neighbour straight behind the current position; excepted

when a Manhattan distance n has been reached, in such

a case, Pattern C is applied. Pattern B is followed when

a token has already turned left once. Then when it has

covered n steps after turning left, Pattern A is followed

which terminates the propagation.

The tokens processing along vertical directions (resp.

horizontal) can be parallelized in the same step.

The feeding rule is the following:

1. At the first step, a router reads its local port (and

broadcasts the data in every cardinal direction),

2. At the even steps, the North and South input ports

are processed.

3. At the odd steps, the East and West input ports are

processed.

The feeding rules is summarized by the following

expression:
(
L
(N
S

E

W

)x)ω
(where x is the number of

steps required to propagates all the token in input of

the router).

NBA consists in a set of routing directives (the prop-

agation rule) that every router follows. The resulting

global behaviour will be the one presented in Figure 12

but for every router simultaneously.

The propagation rule is the following (n is the radius

of the neighbourhood):

1. If the data comes from a straight neighbour (the

secondary coordinate equals 0) :

(a) If the data comes from a distance n relative to

the main direction, it follows Pattern C of Figure

13.

(b) If the data comes from less than a distance n

relative to the main direction, it follows the Pat-

tern D of Figure 13.

2. If the data does not come from a straight neighbour

:

(a) If the data comes from a distance n relative to

the secondary direction, it follows the Pattern A
of Figure 13.

(b) If the data comes from less than a distance n

relative to the secondary direction, it follows the

Pattern B of Figure 13.

The propagation rule is given in Section 4.3.3 as

a sequence of decisions (similarly to Table 1 for the

PID controller) that has been computed statically for

a radius 5. The propagation rule is derived from the

following analysis of the NBA.

4.3.2 Analysis of the NBA in time and space

Let us focus on the traffic generated at the input port of

a router while running NBA. First, it appears that the

tokens arrive in the order of their Manhattan distance

from their source. The evolution of the traffic can be

divided in stages. The ist stage starts when the input

channel of the studied port contains the tokens from a

Manhattan distance i. The stage ends when all these
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tokens have been routed. As a indirect consequence, at

the end of the ist stage, the channel contains the tokens

from a Manhattan distance i+ 1 only. Figure 14 shows

which tokens are present in the channel at the beginning

of each stage. Figure 14 focuses on the right top corner

of a neighbourhood with a radius n = 5 (N5(r)).

Stage 1 

Stage 2 

Stage 3 

Stage 4 

Stage 5 

Stage 6 

Stage 7 

Stage 8 

Stage 9 

Stage 10 

r 
Fig. 14 The origin of the tokens in input of the North port
of a router r stages after stages.

Initially, every router broadcasts the tokens from

their local port in every direction. Consequently, at the

first stage, every router gets the tokens from its direct

neighbours in each of its input port. These tokens are

multicasted straight, left and to the local port because

they come from a straight neighbour.

At the second stage, every router gets two tokens in

each of its input port. The first token in the channel

has to be multicasted because it comes from a straight

neighbour but the second should not. So it generates

three tokens in each input port.

At stage n (Step 5 in Figure 14), each router has

in its input channel a token from a straight neighbour

at a Manhattan distance n. This token is propagated

left but not straight. It corresponds to the case (1.-(a))

of the routing directives (Section 4.3.1). The four other

tokens are propagated straight only.

At stage n + 1 onward, each router receives some

tokens coming from the neighbours at a distance n rel-

ative to the main direction. These tokens are not prop-

agated but only sent to the local port. However, the

router also receives some tokens that have to be for-

warded straight but none of them is multicasted on the

left anymore because they do not come from a straight

neighbour.

Theorem 11 (Time and space allocation)

For a radius n, NBA execution takes 2 ∗ n ∗ (n + 1)

steps to complete. In addition, a capacity n for every

interconnection buffer is enough.

Proof Let c be a cell of the application and r its router.

c has (2 ∗ n + 1)2 neighbours (including it). Each port

of r receives tokens from a quarter of the neighbours

(n ∗ (n+ 1) = (2 ∗ n+ 1)2 − 1/4).

A port has to deal with one token from each cell of

its quadrant, one at each micro-step. Since horizontal

(East, West) ports are sequential with vertical (North,

South) ports, the completion time for a router is twice

the time than for a single port (2 ∗n ∗ (n+ 1)). Finally,

every router acts and terminates simultaneously so the

completion time of a router is the one of the NBA.

At the first step of the nth stage, the interconnec-

tion buffer in input of each port of the router contains

n tokens. This step marks the maximal usage of the

places. ut

4.3.3 Routing the communication of NBA

Formally, let n be the radius of the neighbourhood and

r be a router. We give to r the coordinate

(
0

0

)
. The

coordinates iterate positively toward resp. the North

and East. Let North(r) be the ordered list of tokens

going through the FIFO buffer in input of the North

port of r. North(r) =

[(
x

y

)(
x′

y′

)
...

]
where

(
x

y

)
are

the coordinates of the source of the first token entered

in the channel and

(
x′

y′

)
are the coordinates of the sec-

ond. Initially, North(r) = [∅]. South(r), East(r), and

West(r) are defined similarly to North(r). North(r)

and West(r) are given by Table 2.

South(r) is the same as North(r) except that the

coordinates of the origins are the exact opposite of the

ones in North(r). Formally ∀
(
x

y

)
∈ North(r) at posi-

tion i, ∃
(
−x
−y

)
∈ South(r) at position i. East(r) can

be computed from West(r) with the same transforma-

tion. Table 2 also presents West(r). Here we choose

to put the main coordinate (i.e. y) on top to enhance

the similitude with North(r). For the same reason, the

second value is −x instead of x.

The order of arrival of the tokens in West(r) inside

a stage is the exact opposite of North(r). For instance,(
0

2

)
is followed by

(
1

1

)
in the second and third position

of North(r) but

(
1

1

)
is followed by

(
0

2

)
in the second

and third position of West(r). This order inversion oc-

curs because the feeding rule of the routers starts with

the vertical ports at the expense of the horizontal ones.

Table 2 gives the status of the channel in input of

a router step by step. Therefore, the behaviour of the

routers is predictable and can be computed statically.

The following algorithm generates the sequence of Ta-
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North(r) =

[ (
0
1

) (
0
2

) (
1
1

) (
0
3

) (
1
2

) (
2
1

) (
0
4

) (
1
3

) (
2
2

) (
3
1

)(
0
5

) (
1
4

) (
2
3

) (
3
2

) (
4
1

)
(

1
5

) (
2
4

) (
3
3

) (
4
2

) (
5
1

)(
2
5

) (
3
4

) (
4
3

) (
5
2

) (
3
5

) (
4
4

) (
5
3

) (
4
5

) (
5
4

) (
5
5

)]

West(r) =

[ (
0
1

) (
1
1

) (
0
2

) (
2
1

) (
1
2

) (
0
3

) (
3
1

) (
2
2

) (
1
3

) (
0
4

)(
4
1

) (
3
2

) (
2
3

) (
1
4

) (
0
5

)
(

5
1

) (
4
2

) (
3
3

) (
2
4

) (
1
5

)(
5
2

) (
4
3

) (
3
4

) (
2
5

) (
5
3

) (
4
4

) (
3
5

) (
5
4

) (
4
5

) (
5
5

)]
Table 2 North(r) and West(r) for a neighbourhood of radius 5.

ble 2 but for any radius n. A similar algorithm can be

written for the other ports of the router.

Algorithm 2 computes North(r) for any given router

r and radius n
Input : a radius n.
Output : North(r) for any router r.
North(r) = ∅
for sum = 1→ 2n do

if sum <= n then
x = 0

else
x = sum− n

end if
repeat

North(r).append(

(
x

sum− x

)
)

x = x + 1
until x < sum and x ≤ n

end for
return North(r)

From the sequence generated with Algorithm 2, the

propagation rule can be computed for every input chan-

nel. Then, one can generate the corresponding switch-

ing conditions of the select and merge nodes appearing

in the internal structure of the router. Table 3 gives the

propagation rule for the north input channel of a router

when the NBA has been applied on a neighbourhood

of radius n = 5 (The propagation rule for the other

input channels has been omitted). Every token is prop-

agated locally (L). There are only the 5 tokens coming

from a straight neighbour that are propagated left (to

the est (E)). There are only the 6 tokens coming from

a distance 5 according to the main direction that are

not propagated straight (to the south (S)). (x)y means

y repetitions of the pattern x. These decisions can be

taken from the analysis of North(r) given in Table 2.

Figure 15 gives the internal crossbar of a router for

a radius 5. The crossbar connects the inputs on the

left side of the figure to the outputs on the right side.

The connections to the local cell are at the bottom.

The crossbar presented in Figure 15 is a refinement of

(
S
E
L

)2 S

L

(
S
E
L

S

L

S

L

)2 S

L
E
L

(
S

L

)4

L

(
S

L

)4

L

(
S

L

)3

L

(
S

L

)2

L

S

L L

Table 3 The propagation rule of the north input channel for
a radius n=5.

the one presented in Figure 9: the switching conditions

are specified according to the NBA. However all the

branches that are not used for the routing of the NBA

have been pruned and so the structure of the router

is simpler. In addition, the instantaneous places in be-

tween the nodes have been omitted.

From left to right, the first Select node says when a

token has to be forwarded straight. The sequence of de-

cisions is given as a binary word. Concerning the tokens

from the North, the first tenth tokens are forwarded;

the eleventh is not, and so on. The second Select node

says when a token should be forwarded left. Concerning

the tokens from the West, the first one comes from a

straight neighbour and thus is forwarded. The second

is not and the third is. See Table 2 and 3 to match

the complete sequence. The first Merge nodes merge
the traffic in the order of arrival. The last Merge node

gives priority to the token from the local cell in order

to initiate the communication. Then, it routes the x

travelling tokens where x = n ∗ (n+ 1)− 1.

5 Preliminary experimental results

We have implemented the NBA in SystemC (Accellera,

2007). Our implementation is composed of:

– a module CompCell which implements the structure

and the behaviour of a cell. Initially, it sends its state

and then collects the states from the other cells in

its neighbourhood. When it has got all the data, it

computes its new state and, at the next step, re-

sends its state.

– a module Router which implements the structure

and the behaviour of a router.

– a module CA which is a torus with a parametric size

composed of cells (router + computation cell). The
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Fig. 15 The internal crossbar of the router with the switching conditions.

torus is both the structure of the cellular automaton

and the structure of the network on chip.

The propagation rule has been implemented by the

static patterns given in Table 3 and Figure 15. The ob-

served propagation time is conformed to the expected

one. This experiment consolidates the fact that a propa-

gation rule for a given application can be computed an-

alytically upfront as static decisions and then inserted

into the routers.

Stencil applications We have also extended the exper-

iments to the more general case of stencil applications

(Datta et al, 2008, 2009). Stencil applications are a class

of distributed applications where the new state of a cell

depends of the current state of some of its neighbours.

The map which says which neighbours are concerned

and which others are not is called a stencil. Stencil ap-

plications are massively used in scientific computation.

In our implementation, the stencil is given as an

odd square matrix of Boolean values where the middle

entry represents the concerned node. The other entries

represent its neighbourhood. The Boolean value says

whether the state of the corresponding neighbour is re-

quired or not. Every router is aware of the stencil and

routes the data with respect to their origin.

We ran many case studies where each stencil is char-

acterized by 1/ the number of neighbours it involves and

2/the Moore distance to the furthest neighbour. Table

4 relates the number of micro-steps required to route

all the tokens with respect to the different cases (The

number of neighbours in each stencil is noted N).

\ N = 4 8 16 24 32 48

||diff ||∞ ≤ 1 2 4 - - - -
||diff ||∞ ≤ 2 4 4 12 16 - -
||diff ||∞ ≤ 3 6 8 18 18 18 24

Table 4 Experimental results of routing duration for stencil
applications

Again, whatever is the shape of the stencil, the dy-

namic routing decisions can be replaced by static pat-

tern which are the same in every router. The next com-

putation step of the stencil application repeats the same

routing behaviour.

6 Conclusion

This paper focuses on the importance of the routing

activity in the design flow of parallel applications for

multicore platform. Network on chip based platforms

are subject to the same issues than usual network (con-

gestion, buffer overflow, arbitrary runtime routing de-

cisions). These problems limit the gain of performance

brought by the parallelization. On contrary to commu-

nication on the Internet, on-chip communications are

predictable and routing decisions can be taken in ad-

vance, thereby providing a mean to smooth the traffic.

We have presented the KRG model as one possible

way to include the routing information in the descrip-

tion of the application when modelled using MG.

Lastly, we have illustrated our approach with the

Neighbour Broadcasting Algorithm (NBA) which is a

routing algorithm for cellular automata based applica-
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tions. The routing decisions have been computed from

the behavioural analysis of the algorithm in order to

configure the routers of the network on the targeted

platform.

The first future direction of this work is to automate

the extraction of the routing and scheduling informa-

tion from the co-simulation of the original model with

the refined model. In this paper, we have presented the

scheduling and routing information specific to the NBA.

We expect that the method can be automated for any

MG.

The second is to consider the case where the cellular

automata is decomposed in regular blocks of cells and

all the cells of the same block are allocated to the same

processing element. This configuration is more realis-

tic for the implementation of cellular automata on net-

work on chip based platforms or GPU based platforms.

However, the study we have conducted in this article

remains appropriate to FPGA and hardware based im-

plementation and it could be interesting to go further

in these directions also.
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