
Safe CCSL specifications and Marked Graphs

Frédéric Mallet
Univ. Nice Sophia Antipolis,

CNRS, I3S, UMR 7271, INRIA,
06900 Sophia Antipolis, France

Frederic.Mallet@unice.fr

Jean-Vivien Millo
Univ. Nice Sophia Antipolis,

CNRS, I3S, UMR 7271, INRIA,
06900 Sophia Antipolis, France

Robert de Simone
INRIA Sophia Antipolis Méditerranée,

06900 Sophia Antipolis, France

Abstract—The Clock Constraint Specification Language
(CCSL) proposes a rich polychronous time model dedicated to
the specification of constraints on logical clocks: i.e., sequences of
event occurrences. A priori independent clocks are progressively
constrained through a set of clock operators that define when
an event may occur or not. These operators can be described as
labeled transition systems that can potentially have an infinite
number of states. A CCSL specification can be scheduled by
performing the synchronized product of the transition systems
for each operator. Even when some of the composed transition
systems are infinite, the number of reachable states in the product
may still be finite: the specification is safe. The purpose of this
paper is to propose a sufficient condition to detect that the product
is actually safe. This is done by abstracting each CCSL constraint
(relation and expression) as a marked graph. Detecting that some
specific places, called counters, in the resulting marked graph are
safe is sufficient to guarantee that the composition is safe.

I. INTRODUCTION

The Clock Constraint Specification Language (CCSL) [1]
was initially introduced as a companion language of the UML
profile for Modeling and Analysis of Real-Time and Embedded
systems (MARTE). Its purpose is to provide a language to
specify functional and non-functional requirements on top of
UML models. It relies on a logical notion of time that can be
uniformly used to describe causal constraints in the application
part of a system, physical and temporal dependencies in
execution platforms as well as new constraints coming from
the allocation of the application onto the execution platform
or from external requirements from the designers.

The semantics of CCSL constraints was defined formally [2]
to support exhaustive analyses of CCSL specifications. Until
now, most work [3], [4], [5] on the exhaustive verification of
properties on a CCSL specification was assuming a bounded
subset of CCSL operators. Indeed, having a finite state-space is
required to do standard state explorations. Assuming bounded
primitive constraints is an easy way to guarantee that the whole
specification is bounded.

In [6], we have given a state-based representation of CCSL
constraints and we have shown that even though the primitive
constraints were unbounded, the composition of these primitive
constraints could lead to a system where only a finite number
of states were accessible. In this paper, we define a notion
of safety for CCSL and establish a condition to decide on
whether a CCSL specification is safe. Having such a condition
is an important and necessary step to allow co-design, code
generation and model-checking.

We propose an abstraction of a CCSL specification as a

Marked Graph (MG) and we use classical results on marked
graphs to decide on the safety of a CCSL specification. The
contributions consist in formally defining a safety condition
for a CCSL specification and proposing a transformation into
marked graphs to check this condition. A simple algorithm is
given to perform the analysis.

Section II introduces the considered CCSL constraints and
presents their state-based semantics. Section III defines for-
mally the notion of safety for a CCSL specification. It also
introduces a clock causality graph to capture the causality
relations extracted from each CCSL constraint. Section IV
recalls the definition of a MG, its execution semantics and
some useful classical results. Then, Section V gives the rules
to transform the clock causality graph in a MG and shows the
semantic equivalence between CCSL causality and a place in
MG. Finally, it gives a sufficient condition to decide whether
a CCSL specification is bounded and provides an algorithm to
check this condition. Section VI discusses a simple example
and Section VII browses the related works. Finally Section
VIII concludes with some views on possible extensions.

II. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

This section briefly introduces the logical time model [1]
of MARTE and the Clock Constraint Specification Language
(CCSL). A technical report [2] describes the syntax and the
semantics of a kernel set of CCSL constraints. We only describe
the constraints that are used for the discussion.

The notion of multiform logical time has first been used in
the theory of Synchronous languages [7] and its polychronous
extensions [8]. The use of tagged systems to capture and
compare models of computations was advocated by [9]. CCSL
provides a concrete syntax to make the polychronous clocks
first-class citizens of UML-like models.

A. Logical time model

Clocks in CCSL are used to measure dates of occurrences
of events in a system. Logical clocks replace physical dates by
a logical sequencing. We never presume that clocks or events
are described relative to a global physical time but we rather
consider that clocks are independent of each other.

Definition 1 (Logical clock): A clock c belongs to a set of
propositions C.

Clocks are assumed to be independent of each other.
During the execution of a system, clocks tick according to
occurrences of related events. The schedule captures what
happens during one particular execution.

Definition 2 (Schedule): A schedule is defined as a func-
tion Sched : N>0 → 2C . Given an execution step s ∈ N>0,
and a schedule σ ∈ Sched, σ(s) denotes the set of clocks that
tick at step s.

For a given schedule, it is useful to know the relative
advance of clocks, i.e., their configuration.

Definition 3 (Clock configuration): For a given schedule
σ, the configuration is defined as χσ : C ×N→ N. ∀c ∈ C, it
is defined recursively as:

• χσ(c, 0) = 0, the initial configuration,

• ∀n > 0, χσ(c, n) = χσ(c, n− 1) if c /∈ σ(n),

• ∀n > 0, χσ(c, n) = χσ(c, n− 1) + 1 if c ∈ σ(n).

For a clock c ∈ C, and a step n ∈ N, χσ(c, n) denotes the
number of times the clock c has ticked at step n for the given
schedule σ.

The Clock Constraint Specification Language is used to
specify a set of valid schedules. Since a CCSL specification
does not assume a global time, there is usually an infinite
number of schedules that satisfy a given specification. If there
is no satisfying schedule, then the specification is ill-formed.

Definition 4 (CCSL specification): A CCSL specification
Spec is a tuple 〈C, Rel,Def〉, where C is a set of clocks,
Rel and Def are two disjoint sets collectively called CCSL
constraints, Rel is a set of clock relations whereas Def is a
set of clock definitions.

1) Clock relations:

Definition 5 (Primitive CCSL relations): We define the set
of primitive relation operators: RelOp = { ⊂ , # , ≺ , 4 }.
A Clock relation is Rel : C ×RelOp×C. Let left : Rel→ C
be the function that gives the left clock involved in a relation.
Let right : Rel→ C be the function that gives the right clock
involved in a relation. Let op : Rel→ RelOp be the function
that gives the operator involved in a relation.

The first two relations are synchronous. They force clocks
to tick or not to tick depending on whether another clock ticks
or not. Subclocking prevents a subclock c1 from ticking when
its super clock c2 does not tick. In other words, c1 is a subclock
of c2 for a given schedule iff c1 only ticks when c2 ticks.
Exclusion prevents two clocks from ticking simultaneously.
Synchrony forces two clocks to tick always simultaneously.
Their satisfaction rules are given below.

Definition 6 (Synchronous relations): The satisfaction
rules for the synchronous constraints with regards to a given
schedule σ are:

σ |=ccsl c1 ⊂ c2 iff ∀n ∈ N>0, (Subclocking)
c1 ∈ σ(n) =⇒ c2 ∈ σ(n) (1a)

σ |=ccsl c1 # c2 iff ∀n ∈ N>0, (Exclusion)
c1 /∈ σ(n) ∨ c2 /∈ σ(n) (1b)

Note that by definition, Subclocking is a pre-order on C,
i.e., it is reflexive and transitive.

The latter two relations are asynchronous. They forbid
clocks to tick depending on what has happened on other clocks

in the earlier steps. Causality requires a clock c1 to be always
in advance on another clock c2 but allows the case where the
two clocks tick synchronously. Precedence is a stronger form
that forbids pure Synchrony and requires c1 to be strictly in
advance on c2.

Definition 7 (Asynchronous relations): The satisfaction
rules for the asynchronous constraints with regards to a given
schedule σ are:

σ |=ccsl c1 4 c2 iff ∀n ∈ N, (Causality)
χσ(c1, n)− χσ(c2, n) ≥ 0 (2a)

σ |=ccsl c1 ≺ c2 iff ∀n ∈ N, (Precedence)
(χσ(c1, n) = χσ(c2, n)) =⇒ c2 /∈ σ(n+ 1) (2b)

Note: Causality is another pre-order on C.

Proposition 8 (Precedence implies causality): The Prece-
dence is a stronger form of causality:
σ |=ccsl c1 ≺ c2 =⇒ σ |=ccsl c1 4 c2

The proof is given in [10].

2) Clock definitions: A clock definition is of the form c , e
where c ∈ C and e is a clock expression. We consider two
kinds of expressions the binary expressions and the unary
expressions.

Definition 9 (Primitive CCSL binary expressions): The
primitive binary expressions are BinExpr : C×ExprOp×C,
where ExprOp = { + , ∗ , ∧ , ∨ }.
Let first : BinExpr → C be the function that gives the first
clock involved in a binary expression.
Let second : BinExpr → C be the function that gives the
second clock involved in a binary expression.
Let op : BinExpr → ExprOp be the function that gives the
operator involved in a binary expression.

The first two clock expressions are based on Subclocking.
Union builds the slowest super clock of two given clocks.
Intersection builds the fastest clock that is a subclock of two
given clocks.

Definition 10 (Union and intersection): The satisfaction
rules of Union and Intersection for a given schedule σ are:

σ |=ccsl u , c1 + c2 iff ∀n ∈ N>0, (Union)
u ∈ σ(n)⇔ c1 ∈ σ(n) ∨ c2 ∈ σ(n) (3a)

σ |=ccsl i , c1 ∗ c2 iff ∀n ∈ N>0, (Intersection)
i ∈ σ(n)⇔ c1 ∈ σ(n) ∧ c2 ∈ σ(n) (3b)

The following clock expressions are based on Causality.
Infimum builds the slowest clock that is faster than two given
clocks. Supremum builds the fastest clock that is slower than
two given clocks.

Definition 11 (Infimum and Supremum): The satisfaction
rules of Infimum and Supremum for a given schedule σ are:

σ |=ccsl inf , c1 ∧ c2 iff ∀n ∈ N, (Infimum)
χσ(inf, n) = max(χσ(c1, n), χσ(c2,n)) (4a)

σ |=ccsl sup , c1 ∨ c2 iff ∀n ∈ N, (Supremum)
χσ(sup, n) = min(χσ(c1, n), χσ(c2, n)) (4b)

All the unary expressions are bounded, we only consider
here one of them, the Delay: e := c $ d, where d ∈ N. This
expression models a pure delay. It is used to produce a clock
that is always a given number of ticks d late compared to its
original clock. d is a positive integer.

Definition 12 (Delay): The satisfaction rule of Delay for a
given schedule σ and for a given natural number d ∈ N is:

σ |=ccsl del , c $ d iff ∀n ∈ N, (Delay)
χσ(del, n) = max(χσ(c, n)− d, 0) (5)

To help the reader understand the semantics of the expres-
sions, Figure 1 gives an example of schedule σ that satisfies
several expressions. Check marks represent the steps where a
given clock ticks.

step 1 2 3 4 5 6 7
c1 X X X
c2 X X X X

u , c1 + c2 X X X X X X

i , c1 ∗ c2 X
inf , c1 ∧ c2 X X X X
sup , c1 ∨ c2 X X X
d , c2 $ 2 X X

Fig. 1. An example of schedule σ

B. State-based representation of CCSL constraints

The time model gives a base to reason on clocks. CCSL
constraints are predefined patterns often encountered in sys-
tem specifications. The semantics of those constraints can be
defined using predicate logics (as in the previous subsection),
as a Structural Operational Semantics (SOS) [2] or equivalently
as transition systems [10]. The latter is used to support veri-
fication of properties on CCSL specifications through model-
checking.

The encoding as transition systems shows that some con-
straints can be encoded using finite-state transition systems.
Others require the use of transition systems with an infinite
number of states. A CCSL constraint that can be represented
by a transition system with a finite number of state is called
a bounded constraint. Other constraints are unbounded.1

1) Relations: Subclocking (Eq. 1a, Figure 2.(a)) and exclu-
sion (Eq. 1b, Figure 2.(b)) are bounded constraints. They only
impose conditions on what can happen during the current step,
without depending on what has happened in the previous steps,
i.e., they are stateless. Transitions are labeled with a tuple in
2C . The initial state is drawn with a double line. In Figure 2.(a),
for a given schedule σ and ∀s ∈ N>0, there are three solutions:

• 〈c1, c2〉: c1 and c2 tick together, c1 ∈ σ(s)∧c2 ∈ σ(s);

• 〈c2〉: c2 ticks alone, c1 /∈ σ(s) ∧ c2 ∈ σ(s);

• ∅: none of the two clocks tick2: c1 /∈ σ(s)∧c2 /∈ σ(s).

1Here the notion of boundness is loosely defined as the ability to have a
finite representation. The next subsection refines this notion.

2The transition where nothing happens are never drawn, but in any CCSL
constraints it is always possible to do nothing at each step.

The solution where c1 would tick alone is forbidden (see
Eq. 1a). Similarly in Figure 2.(b), c1 and c2 can never tick
together as stated in Eq. 1b.

〈c1, c2〉 〈c2〉 〈c1〉 〈c2〉

(a) c1 ⊂ c2 (b) c1 # c2

Fig. 2. Primitive CCSL relations as Labeled Transition Systems

On the contrary, Precedence (Eq. 2b) and Causality
(Eq. 2a, Figure 3) are unbounded constraints. Those constraints
require counting the difference of occurrences between the
two clocks, i.e., δ = χσ(c1, n) − χσ(c2, n). The definitions
of those constraints impose δ to be positive or null, but δ can
be arbitrarily big. Each state encodes a different value of δ.
Since δ can take any value in N, then there are an infinite
number of states.

δ = 0 δ = 1 δ = 2 δ ∈ N

〈c1〉

〈c1, c2〉

〈c1〉

〈c1, c2〉

〈c2〉

〈c1〉

〈c1, c2〉

〈c2〉

〈c1, c2〉

〈c2〉

Fig. 3. CCSL Causality (infinite state LTS): c1 4 c2.

2) Expressions: Union (Eq. 3a, Figure 4.(a)), Intersection
(Eq. 3b, Figure 4.(b)) and Delay (Eq. 5) are bounded expres-
sions.

〈c1, c2, u〉

〈c2, u〉〈c1, u〉

〈c1, c2, i〉

〈c2〉〈c1〉

(a) u , c1 + c2 (b) i , c1 ∗ c2

Fig. 4. Union and intersection of clocks

On the contrary, Infimum (Eq. 4a, Figure 5) and Supremum
(Eq. 4b) are unbounded CCSL expressions. Here again, we
need an unbounded integer counter to count δ = χσ(c1, n)−
χσ(c2, n). The main difference with Precedence here is that
δ can be positive or negative δ ∈ Z, but it is still unbounded.

s0 s1 . . .s−1. . .

〈c1, i〉

〈c2, i〉

〈c1, c2, i〉
〈c1, i〉

〈c2〉

〈c1, c2, i〉

〈c2〉

〈c1, c2, i〉
〈c1〉

〈c2, i〉

〈c1, c2, i〉
〈c1〉

〈c1, c2, i〉

Fig. 5. CCSL Infimum (infinite state LTS): i , c1 ∧ c2.

III. COMPOSITION AND SAFETY ISSUES

The previous section has given the semantics of each
constraint. We consider now a whole specification and we
consider more closely the notions of boundedness and safety.
We also finally state the problem and propose a solution.

A. Composition

Definition 13 (CCSL specification satisfaction): A sched-
ule σ satisfies a CCSL specification SPEC, iff it satisfies all
of its constraints: σ |=ccsl SPEC ⇔ (∀rel ∈ Rel, σ |=ccsl

rel) ∧ (∀def ∈ Def, σ |=ccsl def)

Definition 14 (Bounded CCSL relations): For a given
CCSL specification SPEC, a relation r ∈ Rel is
bounded iff (σ |=ccsl SPEC) =⇒ (∃m ∈ N,∀n ∈
N, |χσ(left(r), n)− χσ(right(r), n)| ≤ m).

Note that, by definition of Causality and because of Propo-
sition 8, we always have op(r) ∈ { ≺ , 4 } =⇒ ∀n ∈
N, χσ(left(r), n) − χσ(right(r), n) ≥ 0, so we do not have
to worry about finding a lower bound.

Definition 15 (Bounded CCSL expressions): For a given
CCSL specification SPEC, a binary expression e ∈ BinExpr
is bounded iff (σ |=ccsl SPEC) =⇒ (∃m ∈ N,∀n ∈
N, |χσ(first(e), n) − χσ(second(e), n)| ≤ m)). Unary ex-
pressions are always bounded.

In [6], we have shown that the behavior of a CCSL
specification was captured by the synchronized product of
the transition systems for each constraint. Obviously, when
all the composed transition systems are finite, then the result
is necessarily finite. However, the result can also be finite
when some of the composed transition systems have an infinite
number of states. This is because we only consider the states
that are reachable. So safety amounts to having only a finite
number of states in the product reachable from the initial state.
This is equivalent to being able to bound the counters used in
unbounded constraints.

Let us illustrate that on a simple example. Consider, for
instance the following CCSL specification: (c1 ≺ c2) ∧
(c′1 , c1 $ 1) ∧ (c2 ≺ c′1). In this specification, the
second constraint (Delay) is bounded, but the two others are
unbounded. However, the result is still considered to be safe
since there is only a finite number of reachable states in
the synchronized product as shown in Figure 6. This comes
from the fact that counters used in the two Precedences are
bounded by the Delay of the second constraint. This particular
composition pattern is frequently used and is called Alternation.

s0 s1 s2

〈c1〉 〈c2〉

〈c1, c′1〉

Fig. 6. A safe composition of unbounded constraints

Definition 16 (Safe CCSL specification): A CCSL specifi-
cation is safe iff ∀σ, σ |=ccsl SPEC:

• all the relations are bounded: ∀r ∈ Rel, r is bounded,

• all the binary expressions within a clock definition are
bounded: ∀e ∈ BinExpr, e is bounded

Definition 17 (Bounded precedence): We define a new
composite CCSL constraint called Bounded precedence by the
following satisfaction rule (n ∈ N):

σ |=ccsl c1 ≺n c2 iff (Bounded precedence)

σ |=ccsl c1 ≺ c2

∧ σ |=ccsl c
′
1 , c1 $ n

∧ σ |=ccsl c2 ≺ c′1

We call alternation the case where n = 1:

σ |=ccsl c1 ∼ c2 ≡ σ |=ccsl c1 ≺1 c2 (Alternation)

Proposition 18 (The bounded precedence is safe): Let
c = c1 ≺d c2, constraint c is safe.

Proof of Proposition 18: Let us take a σ such that σ |=ccsl

c1 ≺d c2. The first constraint gives ∀n ∈ N, χσ(c1, n) −
χσ(c2, n) ≥ 0. The third one gives ∀n ∈ N, χσ(c2, n) −
χσ(c′1, n) ≥ 0, so ∀n ∈ N, χσ(c1, n) − χσ(c′1, n) ≥ 0.
For the specification to be bounded, we need to show that
∃m ∈ N,∀n ∈ N, |χσ(c1, n)− χσ(c′1, n)| ≤ m.
If χσ(c1, n) ≤ d, then Eq. 5 gives χσ(c′1, n) = 0 and therefore
χσ(c1, n)− χσ(c′1, n) ≤ d.
If χσ(c1, n) ≥ d, then Eq. 5 gives χσ(c′1, n) = χσ(c1, n)− d
and also χσ(c1, n)− χσ(c′1, n) ≤ d.

Here, the axiomatic definitions of CCSL constraints give us
the result on safety. What we propose in the following is a
sufficient condition and an algorithm to decide that a given
CCSL specification is safe.

B. Safety issues

We consider an abstraction of the CCSL specification that
we call a causality clock graph. Indeed, Causality is the
foundational construct that introduces unbounded integers in
a CCSL specification. Then, we use this abstraction to show
that counters included in Precedence, Causality, Infimum and
Supremum constraints are bounded. For that purpose, we con-
sider the causal relations includes in a CCSL specification, but
we also consider causal relations induced by other constraints.
The causality clock graph captures all the causal relations,
whether directly specified or induced. The remainder of this
subsection discusses the induced causal relations.

Definition 19 (Causality clock graph): A Causality clock
graph (CCG) is a directed graph D = (C, A,∆). C is a set of
nodes denoting clocks. A ⊂ C × C is a set of arcs (directed
edges). ∆ ⊂ C×C is a set of counter-arcs between two clocks.

In a CCG, an arc a = (c1, c2) is directed from c1 to c2 and
denotes a causality c1 4 c2. A counter-arc δ = (c1, c2) is
used to identify a constraint that would generate an infinite

number of states if left unbounded. To each counter-arc δ =
(c1, c2), we associate a function δc2c1 :

δc2c1 : N→ N
n 7→ χσ(c1, n)− χσ(c2, n)

The safety analysis must show that for each counter-arc,
for each schedule σ, ∃m ∈ nat, ∀n ∈ N, |δc2c1 (n)| ≤ m.

Definition 20 (Complete causality clock graph): Given a
CCSL specification SPEC, a causality clock graph DSPEC

is complete with regards to SPEC when all the causal
relations implied by SPEC are captured in the graph and
only those relations. ∀σ, σ |=ccsl SPEC, ∀(c1, c2) ∈ C × C,
(∃d ∈ nat, ∀n ∈ N, δc2c1 (n) ≥ −d ⇔ (c1, c2) is an arc in
DSPEC)

The notion of completeness is necessary to show that no
causal relation has been ‘forgotten’ in the graph. It means
that as soon as a constraint implies that the counter between
two clocks can be bounded (either with a lower or an upper
bound) then (and only then) there should be a counter-arc in
the causality clock graph. Indeed, if arcs are missing, then the
safety analysis might conclude that a graph is not safe, while
a CCSL specification is actually safe.

C. Building the causality clock graph

Obviously, the constraint c1 4 c2 always induces a lower
bound. For the CCSL specification to be bounded, we need to
establish an upper bound. An arc from c1 to c2 denotes that
we have a lower bound (∀n ∈ N, δc2c1 (n) ≥ 0). A counter-arc
between c1 and c2 denotes that we need to establish the upper
bound. More formally, for a given CCSL specification SPEC,
we build the causality clock graph DSPEC = (C, A,∆) such
that ∀r ∈ Rel, op(r) = 4 =⇒
(left(r), right(r)) ∈ A ∧ (left(r), right(r)) ∈ ∆.

Building arcs only for these relations would lead to an
incomplete graph. Other bounds are indeed indirectly induced
by most CCSL constraints. The first obvious example is given
by Proposition 8. Hence, every Precedence also leads to an
arc and a counter-arc in the CCG. ∀r ∈ Rel, op(r) = ≺ =⇒
(left(r), right(r)) ∈ A ∧ (left(r), right(r)) ∈ ∆.

In the remainder of this section, the other implied causality
relations are discussed. All the proofs are available in the
Appendix.

The first family of implications comes from the relationship
between Subclocking and Causality.

Proposition 21 (Subclocking implies causality): When c1
is a subclock of c2 then c2 is faster than c1:
σ |=ccsl c1 ⊂ c2 =⇒ σ |=ccsl c2 4 c1

From Proposition 21, we deduce that we need to build an
arc in the CCG from c2 to c1 every time we find a constraint
of the form c1 ⊂ c2. However, because this constraint is
bounded (see Definition 14), we do not build any counter-arc
in that case.

All the expressions based on Subclocking, i.e.,Union and In-
tersection, also imply some causality relations. Here again, the
constraints are bounded relations and consequently, no counter-
arc is added to the CCG. Let us show these implications.

Proposition 22 (Union and subclocking): A clock is al-
ways a subclock of the union of itself with any other clock:
σ |=ccsl u , c1 + c2 =⇒ (σ |=ccsl c1 ⊂ u ∧ σ |=ccsl

c2 ⊂ u).

Corollary 23 (Union and causality): The union of two
clocks is faster than both clocks: σ |=ccsl u , c1 + c2 =⇒
(σ |=ccsl u 4 c1 ∧ σ |=ccsl u 4 c2).

The corollary comes directly from Propositions 21 and 22.

Proposition 24 (Intersection and subclocking): The inter-
section of two clocks is a subclock of both clocks: σ |=ccsl

i , c1 ∗ c2 =⇒ (σ |=ccsl i ⊂ c1 ∧ σ |=ccsl i ⊂ c2).

Corollary 25 (Intersection and causality): The
intersection of two clocks is slower than both clocks:
σ |=ccsl i , c1 ∗ c2 =⇒ (σ |=ccsl c1 4 i ∧ σ |=ccsl

c2 4 i).

To be complete, one should also show that Union (resp.
Intersection) does not imply any causality relations between
the clocks themselves but only between the union clock u
(resp. the intersection clock i) and the clocks c1 and c2. To
do so, consider a schedule, where c1 would tick alone. None
of the binary relations can prevent c1 from ticking and thus,
the distance between c1 and c2 can grow infinitely large, thus
preventing from having an upper bound. If now, we consider
a schedule were c2 ticks alone and c1 never ticks, then such
a schedule does not violate an union or intersection constraint
and still prevents us from having a lower bound.

The next step is to determine what causality relations are
implied by expressions Infimum and Supremum.

Proposition 26 (Infimum and causality): The infimum of
two clocks is always faster than both clocks: σ |=ccsl inf ,
c1 ∧ c2 =⇒ (σ |=ccsl inf 4 c1 ∧ σ |=ccsl inf 4 c2).

Proposition 27 (Supremum and causality): The
supremum of two clocks is always slower than both
clocks: σ |=ccsl sup , c1 ∨ c2 =⇒ (σ |=ccsl c1 4

sup ∧ σ |=ccsl c2 4 sup):

The same reasoning as for the Union and Intersection can be
used again to show that there is no causality relation between
c1 and c2 imposed by either Infimum or Supremum. However,
these binary expressions are unbounded (see Definition 15),
then we need to add a counter-arc (c1, c2) in the CCG (see
Figure 7). We know that inf is faster than both c1 and c2 but
we need to bound the counter δc2c1 between c1 and c2. Similarly,
we know that both c1 and c2 are faster than sup.

c1

c2

inf supδc2c1

Fig. 7. Causality Clock Graph for Infimum and Supremum.

The last step is to consider the unary expression Delay.

Proposition 28 (Delay and causality): A clock is always
faster than any clock that is delayed from it: ∀d ∈ N, σ |=ccsl

del , c $ d =⇒ 0 ≥ δcdel ≥ −d

Proof of Proposition 28: If χσ(c, n) ≤ d then Eq. 5
=⇒ χσ(del, n) = 0. Otherwise, χσ(del, n) = χσ(c, n) − d.
In both cases, 0 ≥ δcdel ≥ −d.

From Proposition 28, we can deduce that we have both a
lower and an upper bound, therefore we must add two arcs:
one from c to del and one from del to c. Since the constraint
is bounded, no counter-arc must be added in the CCG.

In the following section, we use the complete causality
graph to decide whether the CCSL specification is safe.

IV. MARKED GRAPHS

A Marked Graph (MG) is a graph where vertices can have
two types: transitions and places. A place can store tokens.
The arcs of a MG cannot connect two vertices of the same
type. A source is a transition without incoming arcs. A sink
is a transition without outgoing arcs.

A. Structure

Definition 29 (Marked Graph): A marked graph is a struc-
ture G = 〈T, P, F 〉 where

• T is a set of transitions;

• P is a set of places. T ∩ P = ∅;

• F ⊆ (T ×P)∪ (P × T) is a set of arcs. If t ∈ T and
p ∈ P , (t, p) and (p, t) are two arcs resp. from t to p
and from p to t;

• Each place has exactly one incoming and one outgoing
arcs: ∀p ∈ P , |{(t, p) | ∀t ∈ T}| = |{(p, t) | ∀t ∈
T}| = 1.

The constraint on the number of place inputs and outputs
guarantees that a token can be used by only one transition.
Consequently, the MG is said to be conflict free or determin-
istic. Figure 8 presents a MG with 4 transitions (rectangles)
and 5 places (ovals).

 B

 A

 C

 U

Fig. 8. An example of MG.

Notation 30 (Predecessor, successor): Let G be a MG, t ∈
T and p ∈ P . We note :

• •t is the preset of t, •t = {p | (p, t) ∈ F};

• t• is the postset t, t• = {p | (t, p) ∈ F};

• •p is the transition entering p, •p = t ⇐⇒ (t, p) ∈ F ;

• p• is the transition exiting p, p• = t ⇐⇒ (p, t) ∈ F .

A MG is connected if there exists a path, in the underlying
undirected graph, relating any pair of vertices. When it is
not connected, every part is called a partition. It is strongly
connected if there exists a path, in the MG itself, relating any
pair of vertices. A strongly connected component (SCC) of a
MG is a sub-graph that is strongly connected (a sub-graph of
a MG is a MG composed of a subset of T , a subset of P , and
a subset of F); A cycle is a path from a transition to itself.
It is called elementary if all the transitions of the cycle are
different. A Direct Acyclic Component (DAC) is a sub-graph
that does not contain any cycle.

B. Execution semantics

Definition 31 (Marking): The marking of a MG is the
number of tokens in the places. M : P → N is a marking.
M0 usually denotes the initial marking.

We define an execution semantics of a MG based on a
logical time with a synchronous semantics. At the instant 0,
the MG is in its initial marking. Then, an execution step
leads to another marking at instant 1 and so on. During a
single execution step, several firable transitions can be fired
simultaneously (synchronously) but each transition can be fired
only once.

Definition 32 (Firable transition at a marking M in a MG):
In a MG G, a transition t ∈ T is firable at a marking M if
∀p ∈ •t, M(p) > 0. A source is always firable. FM is the set
of firable transitions at a marking M .

Definition 33 (Execution model of a MG): Let G be a
MG and M its current marking. An execution step is a
transition relation from M to M ′ denoted M

FT−→ M ′ with
FT ⊆ FM , ∀p ∈ P , M ′(p) = M(p) + FT (•p) − FT (p•).
(FT (t) = 1 if and only if t ∈ FT . FT (t) = 0 otherwise).

An execution (Exec) of a MG is a finite or infinite
sequence of execution steps: Exec = M0

FT1−→ M1
FT2−→

M2
FT3−→ ...

FTi−→Mi
FTi+1−→ ... where FTi ⊆ FMi−1

.

Definition 34 (Scheduling and schedule): Let G be a MG
with an execution Exec. Let t ∈ T be a transition of G.
The schedule of t is the binary word relating the activity of
t: Sched(t, i) = FT1(t).FT2(t) · · ·FTi(t). In case of infinite
execution, Sched(t,∞) is noted Sched(t).

The scheduling of G for an execution Exec is the mapping
t→ Sched(t) | ∀t ∈ T .

The successive steps of an execution can be deduced from
its scheduling. Consequently, a scheduling defines an execution
and vice versa.

C. Classical results

Definition 35 (Liveness): A MG is live if there exists an
execution where every transition is fired infinitely often.

F. Commoner et al. [11] show that the number of tokens on
a cycle remains constant through execution. They deduce a MG
is live iff all its cycles contain at least one token. Moreover,
the maximum number of tokens in a place is bounded by the
number of tokens in the cycle in which the place belongs. Thus
every place of a SCC is bounded.

As a corollary, J. Carlier and P. Chrétienne [12] prove that
the relative execution rates of two transitions from the same
SCC is bounded. Let t1 and t2 be two transitions from the
same SCC, at some point during the execution, t1 can execute
more than t2 but eventually t1 will be stuck until t2 catches
up.

Property 36 (Bounded relative execution rate): Let G be
a MG that contains at least one SCC and Exec one execution
of G. t1 and t2 are two transitions from the same SCC.
∃n0 ∈ N such that:
∀i ∈ N, −n0 ≤ |Sched(t1, i)|1 − |Sched(t2, i)|1 ≤ n0
(where |u|1 returns the number of 1 in the binary word u).

V. DETECTING SAFE CCSL SPECIFICATIONS

The purpose of this section is to present rules to transform
a CCSL specification into a Marked-Graph (MG) and express
a sufficient condition on the MG that implies the safety of the
original specification. We present the transformation rules and
we show that the exact semantics of a Causality relation in
CCSL

(
4

)
is captured by a place in MG. Then, we explain

the condition to declare a CCSL specification safe and how
classical algorithms from graph theory allows for automating
the analysis.

A. From CCSL to MG

Definition 37 (Transformation from CCSL to MG): Let
〈C, A,∆〉 be the clock causality graph extracted from a
CCSL specification where C is a set of clocks and A be
the set of CCSL causality relations that can be derived
from all the relations and expressions in the original CCSL
specification (as it is presented in Section III). ∆ is the list of
δ counter-arcs. A CCSL causality relation a ∈ A is modeled
as an element of C × C such as c1 4 c2 gives a = (c1, c2)
where c1, c2 ∈ C, a ∈ A. Similarly, a δ counter is modeled
as a pair (c1, c2) ∈ C × C.

The CCSL specification 〈C, A,∆〉 is transformed as follows.
Let G be a MG with G = 〈C,P, F 〉 where

• C = C: one transition for each clock;

• P = A: one place for each arc;

• ∀p ∈ P where p = (c1, c2) ⇔ (c1, p) ∈ F and
(p, c2) ∈ F .

The MG presented in Figure 8 is the MG transformation
of the following CCSL specification:

B 4 C | U , A + B | U ∼ C (6)

The first constraint leads to a place between B and C. U
is the clock representing the union (A + B). The alternation
is translated in the two places from U to C and vice-versa
(see Proposition 18). The two last places are derived from the
definition of union expression (see Proposition 23). Figure 12
shows the corresponding clock causality graph.

According to the execution semantics of a MG, a transition
is firable when every incoming place holds at least a token.
This reflects the fact that a clock can tick only when the
causality constraints are satisfied. Then the transition produces

A

B C

U

δCB

Fig. 9. Causality Clock Graph for Figure 8

one token in every place in output of the transition. Similarly,
when a clock ticks, it releases the causality constraints for
which it is the source.

Causality (c1 4 c2) is encoded as ∀n ∈ N, δc2c1 (n) ≥ 0
(see Proposition 2a). Definition 37 transforms each Causality
into a place p from transition c1 to c2. Initially, M0(p) = 0
(δc2c1 (0) = 0) and c2 is not firable. c1 can tick any time and
if it ticks n times, it produces n tokens in p and c2 can tick
no more than n times because a marking is never negative. So
the semantics of Causality is preserved and ∀n ∈ N, Mn(p) =
δc2c1 (n).

B. Boundedness

In a SCC of a MG, every transition indirectly depends
upon every other transition. The relative execution rate of any
two transitions is bounded (Property 36). We deduce that for
a given δc2c1 ∈ ∆, c1 and c2 belongs to the same SCC if
and only if δc2c1 is bounded. Consequently, the original CCSL
specification that is captured by the SCC can be expressed as
a finite transition system.

Concerning Figure 8, the CCSL union expression has a state
based semantics composed of only one state. So the addition
of this expression to an existing specification does not turn
it into unbounded if it was bounded. However, the relation
B 4 C introduces a δCB counter but this counter is bounded
since B and C belongs to the same SCC composed of the
transition B, C, and U . One should also note that the place
between U and A is unbounded in the usual sense of MG, i.e.,
it exists an execution where the number of tokens in that place
goes to infinity. However, there is no δAU counter-arc and so
the original CCSL specification remains bounded.

Theorem 38 (Safe CCSL specification): Let 〈C, A,∆〉 be
the causality clock graph extracted from a CCSL specification.
Let G be the MG derived from 〈C, A,∆〉.

∀δc2c1 ∈ ∆,
(1) ∃n0 ∈ N such that −n0 ≤ δc2c1 ≤ n0
(2) c1 and c2 belongs to the same SCC.
(1) is equivalent to (2)

Proof: Property 36 proves this result.

Figure 10 presents the MG representation of the following
specification:

B 4 C | I , A ∧ B | I ∼ C | A 4 C (7)

The second example (B) is similar but S = A ∨ B
replaces I = A ∧ B. In both cases, the ∆ = {δCA , δCB , δBA}.

The first specification is safe because the MG is strongly
connected but the second is not because the transition A and
C (as well as B and C) are not in the same SCC.

 A

 B

 C

 I

 A

 B

 C

 S

A) B)

Fig. 10. A) MG for a safe specification. B) MG for an unsafe specification.

C. Resolution

The following algorithm performs the safety
analysis as it is defined above. The function
buildMGfromCausalityClockGraph() follows the rules
given in Defintion 37. It has a linear complexity. Then the
function computeStronglyConnectedComponents() is
implemented by Tarjan’s algorithm [13] with a complexity
O(|C| + |P |). Each operator from the CCSL specification
introduces at most four places in the causality clock graph
so the complexity is bounded by O(5 ∗ |C|). SCCs is the
decomposition of G in strongly connected components. One
should note that a simply connected transition would appear
to be the only transition of its own SCC. Finally, every δ
counter is tested once to know whether the pair of clocks is
in the same SCC. If not, the counter is unbounded so δ is
added to ∆u.

Algorithm 1 Safety analysis
INPUT: 〈C,P,∆〉 {a causality clock graph.}
OUTPUT: ∆u {The list of unbounded counters.}
∆u = ∅
G = buildMGfromCausalityClockGraph(〈C,P,∆〉)
SCCs = computeStronglyConnectedComponents(G)
for all δc2c1 ∈ ∆ do

if SCCs(c1) 6= SCCs(c2) then
{SCCs(c) returns the SCC of c}
∆u = ∆u ∪ {δc2c1}

end if
end for
return ∆u {if ∆u = ∅, the CCSL specification is safe.}

VI. EXAMPLE: CCSL FOR CAPTURING THE
ARCHITECTURE, APPLICATION AND ALLOCATION

To illustrate the approach, we take an example inspired
by [14], that was used for flow latency analysis on AADL3

specifications [15]. However, with CCSL we are conducting
different kinds of analyses, section VII discusses common
points.

Figure 11 considers a simple application described as a
UML activity. This application captures two inputs in1 and

3AADL stands for Architecture & Analysis Description Language

in2, performs some calculations (step1, step2 and step3)
and then produces a result out. This application has the
possibility to compute step1 and step2 concurrently depending
on the chosen execution platform. This application runs in a
streaming-like fashion by continuously capturing new inputs
and producing outputs.

ad application

step1

step2

step3

in1

in2

out

Fig. 11. Simple application

To abstract this application as a CCSL specification, we
assign one clock to each action. The clock has the exact same
name as the associated action (e.g., step1). We also associate
one clock with each input, this represents the capturing time
of the inputs, and one clock with the production of the
output (out). The successive instants of the clocks represent
successive executions of the actions or input sensing time or
output release time. The basic CCSL specification is:

in1 4 step1 ∧ step1 ≺ step3 (8)

in2 4 step2 ∧ step2 ≺ step3 (9)

step3 4 out (10)

Eq. 8 specifies that step1 may begin as soon as an input
in1 is available. Executing step3 also requires step1 to have
produced its output. Eq. 9 is similar for in2 and step2. Eq. 10
states that an output can be produced as soon as step3 has
executed. Note that CCSL precedence is well adapted to capture
infinite FIFOs denoted on the figure as object nodes. Such
a specification is clearly not safe. One way to reduce the
state-space is to bound the drift between the inputs and the
outputs. This means limiting the parallelism by slowing down
the production of outputs when several computations are still
on-going. This can easily be done by adding a CCSL constraint
like Eq. 11. (

in1 ∨ in2
)
∼ out (11)

However, results from the previous section shows that this
new specification is still not safe because bounds on Supremum
do not imply bounds on both in1 and in2. Figure 12 gives the
corresponding clock causality graph. None of the counters are
bounded.

To have a complete finite system, we can for instance
replace Eq. 11 by Eq. 12.(

in1 ∧ in2
)
∼ out (12)

This time, the specification becomes safe (see Figure 13)
since all the counters are bounded. The most difficult to

http://www.aadl.info

in1

in2

step1

step2

step3outin1 ∨ in2

Fig. 12. Causality Clock Graph with Eqs. 8,9,10, and 11

establish is δin2in1 , which is not directly implied by any causality
relation4. This example is further discussed in [10].

in1

in2

step1

step2

step3outin1 ∧ in2δin2in1

Fig. 13. Causality Clock Graph with Eqs. 8,9,10, and 12

VII. RELATED WORK

In [16], a technique was provided as an effort to automati-
cally analyze CCSL specifications through a transformation into
signal. The purpose was to generate executable specifications
through discrete controller synthesis. However, this work did
not consider the Infimum and Supremum operators that intro-
duce unbounded counters and did not address the problem of
deciding whether the specification was safe or not.

Exhaustive analysis of CCSL through a transformation into
labeled transition systems has already been attempted in [5],
[4]. However, in those attempts, the CCSL operators were
bounded because the underlying model-checkers cannot deal
with infinite labeled transition systems. The purpose of this

4The algorithm is available as an Eclipse update site on
http://timesquare.inria.fr/sts/update site/

work is to deal with unbounded operators and provide an
algorithm to decide that a CCSL specification is safe.

In [17], there was an initial attempt to provide a data
structure suitable to capture infinite transition systems based
on a lazy evaluation technique. A similar structure could be
used in our case except that we consider clocks with only two
states (instead of three): tick or stall. Clock death is still to be
further explored.

The kind of applications addressed with CCSL is very close
to models usually used in real-time scheduling theories. How-
ever, such theories usually rely on task models that abstract
real applications. Originally they were rather simple (e.g.,
independent periodic tasks only for Rate Monotonic Analysis).
Always more sophisticated models now appear in the literature.
They are all based on numerous distinct parameters, providing
numerical constraint values for timing aspects (dispatch time,
period, deadline, jitter drift. . .). Tasks are considered as itera-
tions of jobs (or jobs as instances of tasks). In our view, the
successive timing values for characteristic feature of successive
jobs can each be seen as a logical clock, and the time constraint
relations between such clocks are usually expressed as simple
equalities and bounded inequalities that fall well into the range
of CCSL constructs descriptive power.

Classical (non real-time) scheduling, on its side, provides
generally models where the initial constraints are less on
timing and more on dependencies or on exclusive resource al-
location. But resulting schedules are almost always of modulo
periodic nature, here again matching the CCSL expressiveness.

Usually, authors [18], [19], [20] rely on ”physical-by-
nature” timing, found in theoretical models such as Timed
Automata [21]. The distinctive difference is that timed au-
tomata assume a global physical time. Timed events are then
constrained by value relations between so-called clocks (a
different notion from our logical clocks), which are devices
measuring physical time as it elapses.

Our work also bears some similarity with previous attempts
by Alur and Weiss [22], [23], which define schedules as infinite
words expressed in regular expressions and then construct
corresponding Büchi automata.

VIII. CONCLUSION AND FUTURE WORKS

The article presents a set of rules to derive CCSL causality
relations from every CCSL constraint. These relations are used
to abstract a CCSL specification as a MG where each clock
becomes a transition and each causality relation a place. In
addition, the δ counters are defined to be the only counters
that need to be bounded in order to ensure the safety of
the CCSL specification. Thanks to classical results from MG
analysis, we express a sufficient condition to decide when a
CCSL specification is safe while analyzing the representation
of the δ counters in the MG. Finally we provide an algorithm
based on Tarjan’s algorithm to automate the verification.

In future work, we plan to improve the transformation
rules from a CCSL specification to MG so as to have a
more accurate (less abstract) MG representation. The goal is
to perform liveness analysis in addition to safety. Such an
extension requires to have a closer look to the tokens in the MG

http://timesquare.inria.fr/sts/update_site/

and possibly to enrich the transformation with ratios à-la SDF
[24] in order to properly capture CCSL periodic expressions.

ACKNOWLEDGMENT

This work has been partially funded by ARTEMIS Grant
N◦269362 – Project PRESTO - http://www.presto-embedded.
eu

REFERENCES

[1] C. André, F. Mallet, and R. de Simone, “Modeling time(s),” in 10th Int.
Conf. on Model Driven Engineering Languages and Systems (MODELS
’07), ser. LNCS, no. 4735, ACM-IEEE. Nashville, TN, USA: Springer,
September 2007, pp. 559–573.

[2] C. André, “Syntax and semantics of the Clock Constraint Specification
Language (CCSL),” INRIA, Research Report 6925, May 2009.
[Online]. Available: http://hal.inria.fr/inria-00384077/

[3] J. Suryadevara, C. C. Seceleanu, and P. Pettersson, “Pattern-driven
support for designing component-based architectural models,” in ECBS.
IEEE Computer Society, 2011, pp. 187–196.

[4] R. Gascon, F. Mallet, and J. DeAntoni, “Logical time and temporal
logics: Comparing UML MARTE/CCSL and PSL,” in TIME, C. Combi,
M. Leucker, and F. Wolter, Eds. IEEE, 2011, pp. 141–148.

[5] L. Yin, F. Mallet, and J. Liu, “Verification of MARTE/CCSL time
requirements in Promela/SPIN,” in ICECCS. IEEE Computer Society,
2011, pp. 65–74.

[6] F. Mallet and J.-V. Millo, “Boundness issues in CCSL specifications,”
in ICFEM, ser. Lecture Notes in Computer Science. Springer, 2013,
to appear.

[7] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages 12 years later,” Proc.
of the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[8] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system
design,” Journal of Circuits, Systems, and Computers, vol. 12, no. 3,
pp. 261–304, 2003.

[9] E. A. Lee and A. L. Sangiovanni-Vincentelli, “A framework for com-
paring models of computation,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 12, pp. 1217–
1229, December 1998.

[10] F. Mallet, J.-V. Millo, and Y. Romenska, “State-based representation
of CCSL operators,” INRIA, Research Report RR-8334, Jul. 2013.
[Online]. Available: http://hal.inria.fr/hal-00846684

[11] F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed
graphs,” J. Comput. Syst. Sci., vol. 5, no. 5, pp. 511–523, 1971.

[12] J. Carlier and P. Chrétienne, Problème d’ordonnancement: modélisation,
complexité, algorithmes. Paris: Masson, 1988.

[13] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., vol. 1(2), p. 146160, 1972.

[14] P. H. Feiler and J. Hansson, “Flow latency analysis with the architecture
analysis and design language,” CMU, Tech. Rep. CMU/SEI-2007-TN-
010, June 2007.

[15] S. of Automotive Engineers, SAE Architecture Analysis and Design
Language (AADL), June 2006, document number: AS5506/1. [Online].
Available: http://www.sae.org/technical/standards/AS5506/1

[16] H. Yu, J.-P. Talpin, L. Besnard, T. Gautier, H. Marchand, and P. L. Guer-
nic, “Polychronous controller synthesis from marte ccsl timing speci-
fications,” in MEMOCODE, S. Singh, B. Jobstmann, M. Kishinevsky,
and J. Brandt, Eds. IEEE, 2011, pp. 21–30.

[17] Y. Romenska and F. Mallet, “Lazy parallel synchronous composition
of infinite transition systems,” in ICTERI, ser. CEUR Workshop Proc.,
vol. 1000, 2013, pp. 130–145.

[18] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times:
A tool for schedulability analysis and code generation of real-time
systems,” in Formal Modeling and Analysis of Timed Systems, ser.
LNCS. Springer, 2004, vol. 2791, pp. 60–72.

[19] P. Krcál and W. Yi, “Decidable and undecidable problems in schedula-
bility analysis using timed automata,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS. Springer, 2004, vol.
2988, pp. 236–250.

[20] Y. Abdeddaim, E. Asarin, and O. Maler, “Scheduling with timed
automata,” Theoretical Computer Science, vol. 354, no. 2, pp. 272–300,
2006.

[21] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[22] R. Alur and G. Weiss, “Regular specifications of resource requirements
for embedded control software,” in IEEE Real-Time and Embedded
Technology and Applications Symp. IEEE CS, 2008, pp. 159–168.

[23] ——, “Rtcomposer:a framework for real-time components with
scheduling interfaces,” in Int. Conf. on Embedded software, ser. EM-
SOFT ’08. ACM, 2008, pp. 159–168.

[24] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE transactions on
computers, vol. C-36, no. 1, pp. 24–35, 1987.

APPENDIX
PROOFS

Proof of Proposition 21: By recursion on χσ .
HR(n) = χσ(c2, n) ≥ χσ(c1, n).
HR(0) is true since χσ(c2, 0) = χσ(c1, 0) = 0.
Assume HR(n-1).

• If c1 /∈ σ(n) ∧ c2 /∈ σ(n) then χσ(c1, n) =
χσ(c1, n − 1) ∧ χσ(c2, n) = χσ(c2, n − 1) then
HR(n).

• If c1 /∈ σ(n) ∧ c2 ∈ σ(n) then χσ(c1, n) =
χσ(c1, n − 1) ∧ χσ(c2, n) = χσ(c2, n − 1) + 1 then
HR(n).

• If c1 ∈ σ(n) then c2 ∈ σ(n) and χσ(c1, n) =
χσ(c1, n − 1) + 1 ∧ χσ(c2, n) = χσ(c2, n − 1) + 1
then HR(n)

Eq. 1a forbids the fourth case.

Proof of Proposition 22: Let us assume σ |=ccsl u ,
c1 + c2.
(c1 ∈ σ(n) =⇒ (c1 ∈ σ(n) ∨ c2 ∈ σ(n)) =⇒ u ∈
σ(n)) =⇒ σ |=ccsl c1 ⊂ u.
(c2 ∈ σ(n) =⇒ (c1 ∈ σ(n) ∨ c2 ∈ σ(n)) =⇒ u ∈
σ(n)) =⇒ σ |=ccsl c2 ⊂ u.

Proof of Proposition 24: Let us assume σ |=ccsl i ,
c1 ∗ c2.
(i ∈ σ(n) =⇒ (c1 ∈ σ(n) ∧ c2 ∈ σ(n)) =⇒ c1 ∈
σ(n)) =⇒ σ |=ccsl i ⊂ c1.
(i ∈ σ(n) =⇒ (c1 ∈ σ(n) ∧ c2 ∈ σ(n)) =⇒ c2 ∈
σ(n)) =⇒ σ |=ccsl i ⊂ c2.

Proof of Proposition 26: Let us assume σ |=ccsl inf ,
c1 ∧ c2.
(χσ(inf, n) = max(χσ(c1, n), χσ(c2,n)) =⇒ χσ(inf, n) ≥
χσ(c1, n)) =⇒ σ |=ccsl inf 4 c1.
Similarly, χσ(inf, n) ≥ χσ(c2, n)) =⇒ σ |=ccsl inf 4 c2.

Proof of Proposition 27: Let us assume σ |=ccsl sup ,
c1 ∨ c2.
(χσ(sup, n) = min(χσ(c1, n), χσ(c2,n)) =⇒ χσ(c1, n) ≥
χσ(sup, n)) =⇒ σ |=ccsl c1 4 sup.
Similarly, χσ(c2, n) ≥ χσ(sup, n)) =⇒ σ |=ccsl c2 4 sup.

http://www.presto-embedded.eu
http://www.presto-embedded.eu
http://hal.inria.fr/inria-00384077/
http://hal.inria.fr/hal-00846684
http://www.sae.org/technical/standards/AS5506/1

