Boundness issues in CCSL specifications

Frédéric Mallet!

Université Nice Sophia Antipolis,
Aoste team-project, INRIA/I3S, F-06902, France
Frederic.Mallet@unice.fr

Abstract. The UML Profile for Modeling and Analysis of Real-Time
and Embedded systems promises a general modeling framework to design
and analyze systems. Lots of works have been published on the model-
ing capabilities offered by MARTE, much less on verification techniques
supported. The Clock Constraint Specification Language (CCSL), first
introduced as a companion language for MARTE, was devised to offer
a formal support to conduct causal and temporal analyses on MARTE
models.

This work introduces a state-based semantics for CCSL operators and
then focuses on the analysis capabilities of MARTE/CCSL and more
particularly on boundness issues.

The approach is illustrated on one simple example where the architecture
plays an important role. We describe a process where the logical descrip-
tion of the application is progressively refined to take into account the
candidate execution platforms through allocation.

Keywords: Logical Time, Architecture-driven analysis, UML MARTE,
Reachability analysis

1 Introduction

The uML Profile for Modeling and Analysis of Real-Time and Embedded sys-
tems [I] (MARTE), adopted in November 2009, has introduced a Time model [2]
that extends the informal Simple Time of The Unified Modeling Language (UML
2.x). This time model is general enough to support different forms of time (dis-
crete or dense, chronometric or logical). Its so-called clocks allow enforcing as
well as observing the occurrences of events and the behavior of annotated UML
elements. The time model comes with a companion language called Clock Con-
straint Specification Language (ccSL) [3] and defined in an annex of the MARTE
specification. Initially devised as a simple language for expressing constraints
between clocks of a MARTE model, cCSL has evolved and has been developed
independently of the UML. cCsL is now equipped with a formal semantics [3]
and is supported by a software environment (TimeSquare [4]@ that allows the
specification, resolution, and visualization of clock constraints.

! http://timesquare.inria.fr

MARTE promises a general modeling framework to design and analyze sys-
tems. Lots of works have been published on the modeling capabilities offered by
MARTE, much less on verification techniques supported. While the initial seman-
tics of ccsL is described as a set of rewriting rules [3], this paper proposes as a
first contribution a state-based semantics for each of the kernel CCSL operators.
The global semantics emerging of the parallel composition of CCSL constraints
then becomes the synchronized product of the automaton of each individual con-
straint. Since automaton for some CCSL operators can be infinite, this requires
specific attention to compute the synchronized product. The second contribution
is an algorithm that builds the synchronized product. The algorithm terminates
when the set of states reachable through the synchronized product is finite. The
third contribution is a discussion on a sufficient condition to guarantee that the
synchronized product is actually finite.

Section [2| proposes a state-based semantics for ccsL. Section [4]illustrates the
use of cCsL for architecture-driven analysis. It shows how abstract representa-
tions of the application and the architecture are built and how the two models
are mapped through an allocation process. Section [3| discusses boundness issues
on CCSL specifications. Section [5| makes a comparison with related works.

2 A state-based semantics for CCSL operators

This section starts with a brief introduction to cCSL and then gives a formal
definition of CCSL operators in terms of labeled transition systems. Some of the
CCSL operators require an infinite number of states.

2.1 The Clock Constraint Specification Language

The Clock Constraint Specification Language (CCSL) has been developed to elab-
orate and reason on the logical time model [2] of MARTE. A technical report [3]
describes the syntax and the semantics of a kernel set of CCSL constraints.

The notion of multiform logical time has first been used in the theory of
Synchronous languages [5] and its polychronous extensions [6]. The use of tagged
systems to capture and compare models of computations was advocated by [7].
CCSL provides a concrete syntax to make the polychronous clocks become first-
class citizens of UML-like models.

A clock c is a totally ordered set of instants, Z.. In the following, i and
j are instants. A time structure is a set of clocks C and a set of relations on
instants Z = | J ¢ Ze. CCSL considers two kinds of relations: causal and temporal
ones. The basic causal relation is causality/dependency, a binary relation on Z:
<CZ xTZ.i=<jmeans i causes j or j depends on ¢. < is a pre-order on Z, i.e.,
it is reflexive and transitive. The basic temporal relations are precedence (<),
coincidence (=), and exclusion (#), three binary relations on Z. For any pair of
instants (¢,7) € Z x Z in a time structure, i < j means that the only acceptable
execution traces are those where i occurs strictly before j (i precedes j). < is
transitive and asymmetric (reflexive and antisymmetric). ¢ = j imposes instants

7 and j to be coincident, i.e., they must occur at the same execution step, both of
them or none of them. = is an equivalence relation, i.e., it is reflexive, symmetric
and transitive. ¢ # j forbids the coincidence of the two instants, i.e., they cannot
occur at the same execution step. # is irreflexive and symmetric. A consistency
rule is enforced between causal and temporal relations. i < j can be refined
either as ¢ < j or ¢ = j, but j can never precede 3.

In this paper, we consider discrete sets of instants only, so that the instants
of a clock can be indexed by natural numbers. For a clock ¢ € C, and for any
k € N*, c[k] denotes the k'" instant of c.

2.2 CCSL clocks and relations

Definition 1. A Labeled Transition System [8] over a set A of actions is defined
as a tuple A = (S, T, s0,«, B, \) where

— S is a set of states,

— T is a set of transitions,

— s0 € S is the initial state,

— a,B : T — S denote respectively the source state and the target state of a
transition,

— A: T — A denotes the action responsible for a transition,

— the mappings {(a,\,8) : T — S x A X S are one-to-one so that T is a subset
of S x AxS.

In the context of CcCSL, the actions are clocks. For each ccsL clock ¢, we
build the Labeled Transition System Clock. = (S,T,a, 8,) over A, = {c, €}
such that

— S ={s}, T={te}, sO=s,
— a(t) = a(e) = B(t) = B(e) = s,
— At) =cand A(e) =e.

The € action allows for doing nothing. This is to allow composition with other
LTSs. Clock, is given in Figure a as an illustrationEI

Definition 2. Givenn sets of actions Ay, ..., A,, a synchronization constraint
1s a subset I of A1 x ... X A,.

Definition 3. If, fori=1,...,n, A; = (S;, T}, $0;, a;, Bi, \i) is a labeled transi-
tion system over A;, and if I C Ay X...x A, is a synchronization constraint, the
synchronized product [§] of A; with respect to I is the labeled transition system
(S,T,s0,a, 8, \) over the set I defined by

- S5=5%x...x8,,s0=50; xX...x50,,
—T={{t1,...,tn) €T1 X ... x Ty [{A1(t1), ..., A\n(tn)) € T},
— a({ty, ..., tn)) = {a1(t1), ..., an(tn)),

2 The e transitions are not shown to simplify the drawings. In all the presented LTSs,
it is always possible to do nothing by remaining in the same state.

= B((t1;- - tn)) = (Br(t1), - -, Bultn)),
-)‘(<tl>"-atn>> = <)‘1<t1)""7)‘n< ’ﬂ)>

Synchronization constraints allow for capturing the semantics of CCSL poly-
chronous operators. In this section, we focus on CCSL (binary) relations.

Relation 1. Given two clocks cl and 2, the coincidence operator c1 [=] c2
is the synchronized product of Clock.; and Clock.o with respect to the synchro-
nization constraint I = {{c1,¢2), (e,€)} (Fig.[]b).

Relation 2. The ccsL subclock operator (cl1 c2) is the synchronized prod-
uct of Clockey and Clockes with respect to the synchronization constraint I =

{(c1,¢2),(e,c2),(e,€)} (Fig.[Ic).

Relation 3. Figure ,d illustrates the ccsSL excludes operator (c1 c2) de-

fined as the synchronized product of Clock., and Clock.s with respect to the
synchronization constraint I = {{(cl,¢€), (¢, c2), (€, €)}.

a (cl1, c2) (c1,c2) (cl,¢€)

(e, ¢2) (e, ¢2)

(a) Clocka|(b) cl1[=]c2| (c)cl c2 (d) cl c2

Fig. 1. Primitive CCSL relations as Labeled Transition Systems

2.3 CCSL bounded expressions

In ccsL, expressions allow for the creation of new clocks based on existing ones.
Expressions can also be represented as labeled transition systems. Union and
intersection are two simple examples of CCSL expressions.

Expression 1. u 2 cl + ¢2 (u is the union of cl and c2) is represented by
the synchronized product of Clock.y, Clocke.s and Clock, with respect to the
synchronization constraint I = {{cl,c2,u), (c1,€,u), (e,c2,u), (e, €,€)} (Fig. @ a).

Expression 2. i £ cl.c2 (i is the intersection of ¢l and c2) is represented
by the synchronized product of Clock., Clock.s and Clock; with respect to the
synchronization constraint I = {(cl,¢2,i), (cl,€,€), (€, c2,€), (e, €,€)} (Fig.[3b).

Those two expressions are stateless (one state). Other expressions are stateful
and require building dedicated LTS to express their semantics.

(c1,c2,u) (c1,¢2,1)

(c1,€,u) (€,¢2,u) (cl,¢,¢€) (€, 2, €)
(a) w is the union of ¢l and ¢2 |(b) 7 is the intersection of ¢l and ¢2

Fig. 2. Union and intersection of clocks

Expression 3. The binary delay (delayed = base $ n) is represented by
a dedicated labeled transition system Delay(n) = (S,T,s0,a,8,\) over A =
{init, steady, e} with n + 1 states such that

- S = {d07d1,...,dn}, T:{t07t1,...7tn760,...,en}, SOZdo,

— a(t;) =d; and a(e;) =d; fori € {0...n},
— B(t;) =diy1 fori € {0...n} and B(t,) = dp,
Ble;) =d; forie {0...n},

— At;) = init for i € {0...n — 1} and A(t,) = steady and A(e;) = € for
i€{0...n}.

init denotes a preliminary phase during which the base clock must tick alone.

steady is a phase where both clocks base and delayed become synchronous for

ever. Figure [3| gives as an illustration the resulting transition systems to denote
b= a$ 1 (actions init and steady are hidden).

@ (a;€) @3 (a,b)

Fig. 3. Binary delay: b2 a4 $ 1

The binary delay is a particular case of a more general synchronous expression
called FilteredBy (denoted ¥). f = ¢ ¥ wu.(v)¥ defines the clock f as a subclock
of ¢ according to two binary words u and v.

Definition 4. A binary word w is a function, w : N* — {0,1, L}, such that
FeN wl)=1) = ((Vi>D)(w() =1)).

Definition 5. If w is a binary word, len(w) (denoted |w|) is called its length.
len : (N* = {0,1,1}) - NU{w}. If Vi € N*,w(i) # L then |w| = w and w
s said to be an infinite word, otherwise w is a finite word. When w is finite,
|lw| =min(i € N,w(i+1) = 1).

Definition 6. Let n be a positive natural number (n € N*). Let v be a finite
binary word. w = v™ is a finite binary word such that |w| = n * |v| and Vi €
1.n, V5 € {1..|v|},w(i* j) = v(j).

Definition 7. Let v be a finite binary word. w = (v)¥

such that ¥i € N,Vj € {1..Jv|},w(i % |v| + 5) = v(j).

s an infinite binary word

Definition 8. Let u and v be two binary words. w = u.v is a binary word
such that Vi € N* (i <|u] = w(i) =u(@d)) A (i > |u] = w() =v(i —|ul])).
If either u or v is infinite, then w is infinite. If both u and v are finite, then w
is finite and such that |w| = |u| + |v|.

Expression 4. Ifu and v are two finite binary words, the LTS for the CCSL ex-
pression FilteredBy is defined as follows. f = ¢ ¥ u.(v)® is the LTS Filter(u,v) =
(S,T,50,a, 8, \) over A ={zero,one,e} with n+ 1 states such that

- S = {81,...,8|u|+‘v|}, T = {tl,...,t‘u|+|v‘,€1,...,6‘u|+‘v|}, s0 = sy,
a(t;)) =s; forie {1...|ul+ |v|},
i) = zero if u(i) =0 and A(t;) = one if u(i) =1, fori e {1...|ul}

(t

(t

(t

(titiu)) = zero if v(i) = 0 and A(tit)y)) = one if v(i) = 1, fori e {1...|v|}
— afe;) = s; and B(e;) = s; and Xe;) =€ forie{l...|u|+|v|}.

B(ti) = siy1 fori € {1...Ju[+ |v| = 1} and B(tju|+|v]) = Sjul+1,
- A
A

The label one denotes instants where both f and c tick together. The label
zero when c ticks alone. Actually, Delay is just a particular case of filter with
u=0"and v =1.

Another interesting special case is when u = 0°/f and v = 1.0P~!, for of f €
N* and p € N. This defines a periodic pattern Periodic(of f,p), where of f
is called the offset and p the period. Delay(n) is also a particular periodic case
with an offset of n and a period of 1.

Figure [4] gives an example of a periodic filter, where b is periodic on a with
a period of 3 and an offset of 1: b= a ¥ 0.(1.0.0)~.

Fig. 4. Example of periodic filter with offset: b = a ¥ 0.(1.0.0)*

SampledOn is an expression that produces a clock s if and only if a clock
called trigger has ticked between the two previous successive ticks of a sampling
clock (base).

Expression 5. sampled £ trigger sampledOn base is the LTS Sampled =
(S, T,s0,a, B, \y over A = {base,trig, sample,alle} with 2 states such that

— S ={s1,52}, T = {b,bs, say, saz, t1,t2,€1,e2}, s0 = s1,

(b) = B(b) = s1 and A\(b) = base,

(sa;) = B(sa;) = s; and A(sa;) = all forie {1...2},

— aft;) = s; and B(t;) = s2 and A(t;) = trig forie {1...2},
(bs) = s2 and B(bs) = s1 and \(bs) = sample,

(e;) = B(e;) = s; and Ne;) =€ forie {1...2}.

Labels base and trig respectively denote instants where clocks base and
trigger tick alone. Label sample denotes instants where both clocks base and
sampled tick simultaneously. Label all denotes instants where all the three clocks
base, trigger and sampled tick simultaneously. Figure [5] gives the LTS for the
sampling operator.

(base, €, €) (e, trigger, €) (€, trigger, €)

(base, €, sampled)

(base, trigger, sampled) (base, trigger, sampled)

Fig. 5. Sampling: sampled £ trigger sampledOn base

2.4 Unbounded relations

Unbounded operators can be modeled with labeled transition systems that have
an infinite but countable number of states.

Relation 4. ccsL precedence left right is modeled as a labeled transition
system Precedes = (S, T, s0,«, 3, \) over A = {left,right,both,e} such that

- S = {pl\z € N}, T = {li,T’i,lTi,Bi‘i € N}, 50 = Pi,
a(li) = a(e) = a(lr;) = pi A a(r;) = pit1, Vi €N,
= B(li) = piv1 A B(ri) = Blei) = B(lry) = pi, Vi € N,
ML) = left A X(r;) = right A X(Ir;) = both A A(e;) = €,Vi € N.

Label left denotes instants where clock left must tick alone. Label right
denotes instants where clock right must tick alone. Label both denotes in-
stants where the two clocks must tick simultaneously. Figure [] shows the tran-
sition system for the CCSL relation a b, i.e., the synchronized product
of Clock,, Clocky, and Precedes with respect to the synchronization constraint
I = {{a,e,left), (e, b,right), (a,b,both), (e, €, €} (left, right and both are hidden
for the sake of simplicity).

This operator is called unbounded because the drift between a and b is not
bounded, i.e., a can tick infinitely often without b ticking at all. This operator

Fig. 6. CCSL precedence (infinite state LTS): a precedes b.

is not symmetrical. Even though a is unconstrained and can tick whenever it
wants and as fast as it wants, b on the contrary is constrained to be always a
little late compared to a. So b is said to be slower than a, or a is faster than b.

2.5 Unbounded expressions

In ccsL, there are two unbounded expressions that constrain neither a nor b:
Inf and Sup.

Inf(a,b) is the slowest clock that is faster than both a and b. In most cases,
Inf(a,b) is neither a nor b but a clock that sometimes tick simultaneously with
a (when a is in advance over b), sometimes it ticks simultaneously with b (when
a is late compared to b) and sometimes it ticks simultaneously with a and b
(when none of them precedes the other one).

Expression 6. Inf(a,b) is the labeled transition system Inf = (S, T, s0, a, B, \)
over A = {left,right, both,left_inf,right_inf,e} such that

— S={sli € Z}, T = {inc;,dec;, t;,e;|i € Z}, sO = so,

a(ine) = a(dec;) = a(both;) = a(e;) = s;, Vi € Z,
B(both;) = B(e;) = s; and B(inc;) = ;41 and B(dec;) = s;—1, Vi € Z,

— Aing;) =leftinf if i >0, and A(inc;) =left ifi <0,Vi€Z
A
A

dec;) = right_inf if i <0, and A(dec;) = right ifi <0, Vi€ Z
both;) = both and A(e;) =€, Vi € Z

Figure [7| shows the transition systems for i £ Inf(a,b). This LTS is infinite
on both sides. Let us note than by definition Inf(a,b) a and Inf(a,b) b,
which means that if Inf(a,b) is somehow constrained (i.e., by a synchronous
operator like filter), then this propagates the constraint on both a and b. Ad-
ditionally, whenever a clock ¢ is known to be faster than either a or b, then
c Inf(a,b), i.e., the tickings of Inf(a,b) are constrained (and bounded) by
all the clocks faster than either a or b.

Sup(a,b) is defined as the fastest clock that is slower than both a and b. In
most cases, Sup(a,b) is neither a nor b.

Expression 7. Sup(a,b) is a labeled transition system Sup = (S, T, s0, a, 5, \)
over A = {left,right,both,left_sup, right_sup, both_sup, e} such that

Fig. 7. ccsL Inf (infinite state LTS): ¢ = Inf(a,b).

— S={sli € Z}, T = {inc;,dec;, t;, ;i € Z}, sO = s,
a(ine) = a(dec;) = a(both;) = a(e;) = s;, Vi € Z,
ﬁ(both) = B(e;) = s; and B(inc;) = s;41 and B(dec;) = s;—1, Vi € Z,
— Aing;) =left if i > 0, and A(inc;) = left_sup if i <0, Vi € Z
— AMdec;) = right if i <0, and A(dec;) = right_sup if i <0, Vi € Z
— A(both;) = both if i #0 and A(e;) =€, Vi € Z, and)\(bothg) = both_sup

Figure |8 shows the transition systems for s = Sup(a, b). Let us note than by

definition a Sup(a,b) and b Sup(a, b), which means that the constraints

imposed on Sup(a,b) do not directly impact neither a or b. However, whenever
a clock ¢ is known to be slower than either a or b, then it is also slower than

Sup(a,b), i.e., (e such that a cVb| < = Sup(a,b)|<|c.

Fig. 8. ccsL sup (infinite state LTS): s = Sup(a, b).

3 Boundness issues on CCSL specifications

When several CCSL constraints are put in parallel, the composition is simply de-
fined as the synchronized product of the LTSs of the operators. However, since
some of the LTSs for the primitive operators are infinite (e.g., Fig. @ Fig. m
Fig. , the synchronized product might end up being infinite. However, even
though the product is potentially infinite, in some cases, only a finite subset of
the synchronized product is reachable from the initial state. Section shows
a case where the product of infinite LTSs is finite. The algorithm used in that

10

subsection only terminates when the product is actually finite. The following
section discusses a sufficient condition to decide whether the product is actu-
ally finite and therefore whether the algorithm proposed in Section [3.1] actually
terminates.

3.1 Finite synchronized product of infinite LTSs

Considering n LTSs such that, for i = 1,...,n, A; = (S;, T3, s0;, i, Bi, Ai)
and one synchronization constraint I C Ay x ... x A, the synchronized product
of A; with respect to I is a labeled transition system (S, T, s0, «, 3, \) over the
set I constructed as described in Algorithm [I} This algorithm terminates only
when the product has a finite number of states. Indeed, S is a set initialized
with only one state. At each iteration, one state st is removed from S and added
to S’. All the outgoing transitions of st are computed. If C' is the set of clocks,
there are at most 2/€! outgoing transitions. Some of these transitions may be
inconsistent. For each transition the target state st’ is computed and added to
S if not already present in S’. This condition guarantees that the same state is
not visited twice. The algorithm terminates when S is empty. S becomes empty
when all the targeted state are already in S’ (have already been visited). If
the set of reachable states is finite then when all the states are in S’ then S
is necessarily empty. Therefore, when the set of reachable states is finite the
algorithm terminates.

Algorithm 1. Synchronized product through reachability analysis
Let 8" + 0
Let s0 + s0; x ... x s0,
Let S + {s0}
while S is not empty {
Let st = st1 X ... X st, be one element of S
Let 8" + S’ U {st}
Let S < S\ {st}
Y{t1,...,tn) € I such that (Vi € {1...n})(a;(t;) = sti)} {
Let st' = ﬂl(tl) X ... X ﬁn(tn)
if st' ¢ S’ then S < SU{st'}

Let us take as an example the following CCSL specification: (a)N (b=
a$1)A(c b). This specification is defined as the synchronized product of
Precedes (Relation i), Delay(1) (Expression [3)), Precedes (Relation [4] again).

Initially, sO = pg X dp X pg. The first precedes relation (state py) imposes ¢
not to tick, the second precedes (state py) prevents b from ticking whereas the
delay expression (state dp) only allows a to tick alone without c. Therefore the
only outgoing transition consists in making a ticks alone going into the state
sl = p1 X dy X po. At this stage S = {s1} and S’ = {s0}. From s1, the first

11

precedes relation (state p;) does not impose any constraint while the second
one (state pg) still prevents b from ticking. The delay expression (state d1) only
allows doing nothing or making a and b tick simultaneously. Since b cannot tick,
then a cannot tick either, so only ¢ can tick leading to state s2 = pg x d1 X p;1.
Therefore S = {s0,s1} and S = {s2}. From s2, the first precedes relation
prevents ¢ from ticking, the second relation also prevents ¢ from ticking. The
delay expression only allows a and b to tick simultaneously. Taking this (sole)
solution leads to s1. Since sl is already in S/, no new state is added to S, which
is therefore empty. This terminates the algorithm. The resulting LTS has only
three states (Fig. [9).

(a, €, €) (€, € ¢)

ponoXpo pon1Xp1

(a,b,¢€)
Fig. 9. CCSL alternation: synchronized product of two precedences and one delay

This particular construction is very frequent, it has been called Alternation
and is denoted a c. Increasing the delay from 1 to n makes a particular rela-
tion, called bounded precedence and denoted as a c.a c=a c.
Previous works on CCSL where always assuming a bound for all CCSL opera-
tors, whereas here the bound is computed by reachability analysis. However,
the (semi) algorithm sketched above may not terminate when the synchronized
product is not finite. Therefore it is necessary to know beforehand whether the
result is finite or not.

3.2 A sufficient condition for having a bounded CCSL specification

We have seen in the previous subsection that knowing in advance whether the
synchronized product is finite is important. Indeed, when it is not finite, then Al-
gorithm (1| does not terminate. This section discusses ways to determine whether
the system is finite or not. The problem is similar to safety issues in process net-
works [9]. In process networks, a channel is k-safe it the channel can contain at
most k tokens. A process network is k-safe if all its channels are k-safe. However,
testing that a process network is k-safe is undecidable in the general case. How-
ever, the problem becomes decidable if we restrict to a special kind of process
networks, i.e., the marked graphs [10] or their extension, the synchronous data
flow (SDF) graphs [11].

So the idea here is to transform the cCSL specification into a SDF graph.
Since SDF do not have any notion of simultaneous action, the full semantics of

12

CCsL cannot be captured as an SDF graph but it can still capture an abstraction
of relative rates at which the clocks execute. Then, if the resulting SDF graph
is safe, the corresponding CCSL specification would be bounded. If the SDF
graph is not safe, then it does not say much of the CCSL specification since we
consider only an approximation of the CCSL semantics. Therefore, the safety
of the underlying SDF graph would only be a sufficient condition for a ccCsL
specification to be bounded.

CcCSL clocks define triggering conditions just like SDF computation nodes.
CCSL constraints impose conditions that determine the relative rates at which
each clock can tick. Similarly, SDF edges also determine some dependencies and
evolution rates between the SDF actions.

For instance, the precedence relation of CCSL simply states that one clock
cannot tick faster than the other one. It can be captured through the SDF
graph shown in Figure The boxes are computation nodes. The circle is an
infinite channel working as a FIFO with non-blocking writes and blocking reads.
Every time the node a executes, it produces a token (data) that enters the
communication channel. The node b can only execute if tokens are available in
the channel. When b executes it consumes one token from the (input) channel.
Therefore, the node b can compute its i*" execution only after a has computed its
i*" execution. This is the exact same semantics that a b except that there is
no temporal notion associated with SDF graphs, and no notion of simultaneity,
only of data dependency or causality.

a Q b

Fig. 10. CCSL precedence as an Synchronous Data Flow graph

Even though SDF does not have any notion of temporality, it can still provide
a support for abstracting the synchronous CCSL operators. Let us consider the
delay operator used in Figure[3]as an example. This operator says that ultimately
the two clocks a and ¢ execute at the same rate (synchronously). Since the delay
is of one unit, it also means that a is always one tick ahead of c. In other words,
the difference of ticks between a and c is exactly one, not more, not less. This
can be expressed as the SDF graph shown in Figure The one in the bottom
channel means that there is one initial token here, so that a can execute right
away. ¢ cannot execute since there is no token in its incoming channel. When «a
executes, it consumes a token in the bottom channel and produces one in the
top channel allowing ¢ to execute. As long as ¢ does not execute then a cannot
execute again. In marked graphs and in SDF graphs, the number of tokens over
a cycle is a constant. Having one initial token in this cycle guarantees that a and
c execute at the same rate in alternation.

13

O,
S (D

Fig.11. CCSL delay as an Synchronous Data Flow graph

Now, if we take the same example as in the previous subsection, we can build
an SDF graph for the cCSL specification: (a NDbEa$1)A(e b). Each
operator brings its own data/rate dependencies. The parallel composition of the
operators consists in putting together all these dependencies. The resulting SDF
graph is shown in Figure

O,
S (D

Fig.12. CCSL delay as an Synchronous Data Flow graph

Classical results on data flow process networks show that this graph is 1-safe
since no computation node is a sourcdﬂ or a sinkE| and all the two cycles (a-b-c
and a-c) have exactly one initial token. This means that all the three clocks a,
b and ¢ must execute at the same speed and therefore that the corresponding
CCsL specification has a finite number of states. The state being the differences
of ticks between the different clocks.

3 a source is a computation node without input edge
4 a sink is a computation node without output edge

14

4 Example: CCSL for capturing the architecture,
application and allocation

To illustrate the approach, we take an example inspired by [12], that was used for
flow latency analysis on AADI[specifications [I3]. However, with cCsL we are
conducting different kinds of analyses, section [b| discusses some common points
with classical real-time scheduling analysis.

4.1 Application

Figure [13| (on the top) considers a simple application described as a UML struc-
tured class. This application captures two inputs inl and in2, performs some
calculations (stepl, step2 and step3) and then produces a result out. This appli-
cation has the possibility to compute stepl and step2 concurrently depending on
the chosen execution platform. This application runs in a streaming-like fashion
by continuously capturing new inputs and producing outputs.

|
100 Hz @

sharedMemory

Fig. 13. Simple application

To abstract this application as a CCSL specification, we assign one clock to
each action. The clock has the exact same name as the associated action (e.g.,
stepl). We also associate one clock with each input, this represents the capturing
time of the inputs, and one clock with the production of the output (out). The
successive instants of the clocks represent successive executions of the actions or
input sensing time or output release time. The basic CCSL specification is:

mnl stepl A stepl step3 (1)
mn2 step2 A step2 step3 (2)
step3 out (3)

Eq. 1] specifies that stepl may begin as soon as an input inl is available.
Executing step3 also requires stepl to have produced its output. Eq. [2|is similar

5 AADL stands for Architecture & Analysis Description Language

http://www.aadl.info

15

for in2 and step2. Finally, Eq. [3] states that an output can be produced as soon
as step3 has executed. Note that CCSL precedence is well adapted to capture in-
finite FIFOs denoted on the figure as object nodes. Such a specification is clearly
unbounded, therefore TimeSquare cannot perform any kind of exhaustive anal-
ysis and can only produce a particular schedule that matches the specification

(see Fig. [14).

in1

stept

in2

step2

step3.

out

Fig.14. A valid schedule for the application part of Fig.

One way to reduce the state-space is to bound the drift between the inputs
and the outputs. This means limiting the parallelism by slowing down the pro-
duction of outputs when several computations are still on-going. This can easily
be done by adding a CCSL constraint like Eq. [

Sup(inl,in2) out (4)

The effect of this constraint can be seen on Figure Looking carefully
at this schedule, we can note that the arrival of in2 has been slown down to
avoid large accumulation of computations. For instance, the third occurrence of
in2 is delayed after the second occurrence of out. However, we can see that the
input inl keeps arriving at a fast rate allowing executions of stepl. However, the
execution of step3 is stalled after the corresponding occurrence of in2 has been
dealt with by step2 as required by Eq.

int - -
B
in2 m\\‘ ﬂ\
step2 Ij\\\

step3 ‘\ﬂ

out ﬂ

Fig. 15. Another valid schedule for the application part of Fig. [L3]

Reachability analysis as described in Section [3] tells us that the composition
is still not bounded because bounds on Sup(inl,in2) do not imply bounds on
both inl and in2. To have a complete finite systems, we can for instance replace
Eq. [by Eq.

Inf(inl,in2) out (5)

16

By doing so, our reachability analysis algorithm converges and produces the
state-space shown in Figure We have removed inl, in2, and out since they
were just adding interleaving without offering more actual parallelism in the
execution of actions.

(stepl, e, €) (e, step2, €)

(stepl, step2, €)

Fig. 16. Synchronous products of Egs. [[}f] and Eq. [f

This kind of analysis is useful to detect invalid CCSL specifications. For in-
stance, had we replaced Eq. @] by Eq. [f] instead of Eq.[5} we would have obtained
a finite result but with the state-space shown in Figure [[7] This figure shows a
typical case of deadlock in CCSL. Indeed, if from the initial state sg, we decide
to fire inl (resp. in2) alone, then Eq. |§| prevents inl + in2 from ticking again
before out ticks, but since in2 (resp. inl) was not produced and therefore step2
was not executed. Then step3 cannot execute either since it requires both stepl
and step2. If step3 cannot execute, then out cannot be produced, which then
results in a deadlock.

inl + in2 out (6)

4.2 Execution platform and allocation

Once the application is designed, then CCSL can also be used to capture the exe-
cution platform. Figure [13| (bottom part) shows the selected execution platform:
two tasks with different activation periods. The basic CCSL specification of the
execution platform is given as follows:

t1 2 ms v (1.0%)% (7)
22 t1 v (1.0) (8)

5 The algorithm is available as an Eclipse update site on
http://timesquare.inria.fr/sts/update_site/

http://timesquare.inria.fr/sts/update_site/

17

(stepl, e, €)

(stepl, step2,)

(€, €, step3)

Fig. 17. Synchronous products of Egs. and Eq. [6}

Eq.[8]is a pure logical relationship between t1 and ¢2 that states that thread
t2 is twice slower than thread t1, i.e., it is periodic on t1 with period 2 and
offset 0. Eq. [7]is also a periodic relation, but relative to ms, a particular clock
that denotes milliseconds. Being periodic on ms with a period of 10 makes t1 a
100 Hz clock and therefore 2 a 50 Hz clock.

When the execution platform is specified, the remaining task is to map the
application onto the execution platform. In MARTE, this is done through an
allocation. In ccCSL, this is done by refining the two specifications with new
constraints that specify this allocation. Since both step2 and step3 are allocated
on the same thread, then their execution is exclusive (Eq. E[) Then, the thread
being periodic, the inputs are sampled according to the period of activation of
the threads (Egs. . Then step3 needs inputs from both stepl and step2
before executing but it can execute only according to the sampling period of ¢1
since step3 is allocated to t1 (Eq. . Finally, all steps can only execute when
their input data have been sampled (Eq. .

step2 step3 9)
inl_s £ inl sampledOn ¢1 (10)
in2_s = in2 sampledOn 12 (11)
d3_s = Inf(stepl, step2) sampledOn t1 (12)
inl_s stepl A in2_s step2 A d3_s step3 (13)

All these new constraints do not change anything on the finiteness of the
whole system. They only reduce the set of possible executions. If the application
specification was finite, then its allocated version is still finite. If it was infinite,
they it remains infinite. Whether it is finite or not, TimeSquare can produce an
execution of this specification (see Fig. . On this schedule the dashed arrows
denote precedence relations, while the (red) vertical lines denote coincidence

18

relations. Note that the fact that ms is a physical clock does not impact the
calculus, it only impacts the visual representation of the schedule.

o aflm

in1_sampled

stept
in2 I

]

in2_sampled

step2

shared

shared_sampled

step3

out

Fig. 18. A valid schedule for the allocated application (Fig.

5 Related work

The transformation of CCSL into labeled transition systems has already been
attempted in [I4/I5]. However, in those attempts, the CCSL operators were
bounded because the underlying model-checkers cannot deal with infinite la-
beled transition systems. The purpose of this work is to deal with unbounded
operators.

In [I6], there was an initial attempt to provide a data structure suitable
to capture infinite transition systems based on a lazy evaluation technique. A
similar structure could be used in our case except that we consider clocks with
only two states (instead of three): tick or stall. Clock death is still to be further
explored.

The kind of applications addressed in section[]is very close to models usually
used in real-time scheduling theories. However, such theories usually rely on
task models that abstract real applications. Originally they were rather simple
(e.g., independent periodic tasks only for Rate Monotonic Analysis). Always
more sophisticated models now appear in the literature. They are all based on
numerous distinct parameters, providing numerical constraint values for timing
aspects (dispatch time, period, deadline, jitter drift...). Tasks are considered
as iterations of jobs (or jobs as instances of tasks). In our view, the successive
timing values for characteristic feature of successive jobs can each be seen as a
logical clock, and the time constraint relations between such clocks are usually
expressed as simple equalities and bounded inequalities that fall well into the
range of CCSL constructs descriptive power.

Classical (non real-time) scheduling, on its side, provides generally models
where the initial constraints are less on timing and more on dependencies or

19

on exclusive resource allocation. But resulting schedules are almost always of
modulo periodic nature, here again matching the CCSL expressiveness.

Usually, authors [I7/I8I19] rely on ”physical-by-nature” timing, found in the-
oretical models such as Timed Automata [20]. The distinctive difference is that
timed automata assume a global physical time. Timed events are then con-
strained by value relations between so-called clocks (a different notion from our
logical clocks), which are devices measuring physical time as it elapses.

Our work also bears some similarity with previous attempts by Alur and
Weiss [21122], which define schedules as infinite words expressed in regular ex-
pressions and then construct corresponding Biichi automata.

6 Conclusion

We have presented a state-based semantics of a kernel subset of cCSL, a lan-
guage that relies on logical clocks to express logical and temporal constraints.
Each ccsL operator (relation or expression) is defined as a label transition sys-
tem, that may have either a finite or infinite number of states. The parallel
composition of CCSL constraints is defined as the synchronized product of the
primitive label transition systems. A (semi)algorithm is proposed to actually
build the synchronized product of infinite transition systems by assuming that
only a finite number of states are accessible in the product. The algorithm only
terminates on that condition. Then a discussion is made on how data flow process
networks could be used as a sufficient condition to decide that the synchronized
product is actually finite. All the approach is illustrated on a simple example
often used in AADL and where a simple application is allocated onto a two
processor architecture. The work presented here improves on previous attempts
to support exhaustive analyses of CCSL specifications. Indeed, previous works
were only considering a priori bounded CCSL operators to guarantee the finite-
ness of the composition, while here no assumption is made on the boundness of
primitive operators.

As a future work, we should extend and prove that data flow process net-
works can actually be used to detect finite compositions of any unbounded ccsL
operators. Whereas it is pretty much clear that synchronous operators and reg-
ular asynchronous operators (like precedes, inf, sup) are always covered by syn-
chronous data flow graphs, it is much less clear for mix operators like sampledOn.
This aspect has only been briefly touched here to underline the fact that on sim-
ple examples our algorithm is actually useful.

References

1. OMG: UML Profile for MARTE, v1.0. Object Management Group. (November
2009) formal/2009-11-02.

2. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: 10th Int. Conf. on
Model Driven Engineering Languages and Systems (MODELS ’07). Number 4735
in LNCS, Nashville, TN, USA, ACM-IEEE, Springer (September 2007) 559-573

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

André, C.: Syntax and semantics of the Clock Constraint Specification Language
(CCSL). Research Report 6925, INRIA (May 2009)

Deantoni, J., Mallet, F.: Timesquare: Treat your models with logical time. In:
TOOLS (50). Volume 7304 of LNCS., Springer (2012) 34-41

Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. of the IEEE 91(1) (2003)
64-83

Le Guernic, P., Talpin, J.P., Le Lann, J.C.: Polychrony for system design. Journal
of Circuits, Systems, and Computers 12(3) (2003) 261-304

Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 17(12) (December 1998) 1217-1229

Arnold, A.: Finite transition systems - semantics of communicating systems. Int.
Series in Computer Science. Prentice Hall (1994)

Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress. (1974) 471-475

Commoner, F., Holt, AAW. Even, S., Pnueli, A.: Marked directed graphs. J.
Comput. Syst. Sci. 5(5) (1971) 511-523

Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9)
(1987) 1235-1245

Feiler, P.H., Hansson, J.: Flow latency analysis with the architecture analysis and
design language. Technical Report CMU/SEI-2007-TN-010, CMU (June 2007)

of Automotive Engineers, S.: SAE Architecture Analysis and Design Language
(AADL). (June 2006) document number: AS5506/1.

Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In Perseil, I., Breitman, K., Sterritt, R., eds.: ICECCS, IEEE
Computer Society (2011) 65-74

Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: Comparing
UML MARTE/CCSL and PSL. In Combi, C., Leucker, M., Wolter, F., eds.: TIME,
IEEE (2011) 141-148

Romenska, Y., Mallet, F.: Lazy parallel synchronous composition of infinite transi-
tion systems. In: ICTERI. Volume 1000 of CEUR Workshop Proc. (2013) 130-145
Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Times: A tool
for schedulability analysis and code generation of real-time systems. In: Formal
Modeling and Analysis of Timed Systems. Volume 2791 of LNCS. Springer (2004)
60-72

Krcal, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Tools and Algorithms for the Construction and Analysis
of Systems. Volume 2988 of LNCS. Springer (2004) 236-250

Abdedda Y.: Scheduling with timed automata. Theoretical Computer Science
354(2) (2006) 272-300

Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2)
(1994) 183235

Alur, R., Weiss, G.: Regular specifications of resource requirements for embedded
control software. In: Proc. of the 2008 IEEE Real-Time and Embedded Technology
and Applications Symposium. RTAS 08, Washington DC, USA,| IEEE Computer
Society (2008) 159-168

Alur, R., Weiss, G.: Rtcomposer:a framework for real-time components with
scheduling interfaces. In: Proc. of the 8th ACM Int. Conf. on Embedded soft-
ware. EMSOFT ’08, New York, NY, USA, ACM (2008) 159-168

	Boundness issues in CCSL specifications

