Front.Comput.Sci.0.0
DOIDOI

Scenario-based verification in presence of variability using a
synchronous approach

Jean-Vivien Millo', Frederic Mallet', Anthony Coadou?, S Ramesh?

1 INRIA/I3S/ UNS, Sophia-Antipolis, France
2 Global General Motors R&D, India Science Lab, GM Technical Center India, Bangalore, India

© Higher Education Press and Sringer-Verlag Berlin Heidelberg 2012

Abstract  This paper presents a new model of scenarios,
dedicated to the specification and verification of system be-
haviours in the context of Software Product Lines. We draw
our inspiration from some techniques that are mostly used
in the hardware community, and we show how they could
be applied to the verification of software components. We
point out the benefits of synchronous languages and models
to bridge the gap between both worlds.

Keywords Esterel, umL Marte , Scenario, Verification, Fea-
ture interaction, Variability

1 Introduction

The current development trends focus on developing Soft-
ware Product Lines (SPL) that involve multiple products
sharing some common features. Instead of putting various
software components in a library for a possible later reuse,
an SPL promotes a predictive and well-defined reuse of those
components among a set of final products. Each feature is im-
plemented as a separate component, then enabled according
to the needs of a given product. Recent studies have shown
that advances in SPL methodologies can yield substantial im-
provements in development cost, effort and time [44].

With the SPL approach comes the problem of feature in-
teraction [16,20]. Let use consider a set of features, each fea-
ture can be parametrized according to the scope of the SPL.
Even though every feature’s behaviour has been checked
independently, there is nothing that guarantee that the be-
haviour of the system running all these features will be cor-
rect. Let us consider the following example: the feature
Power lock of a car system lock or unlock the doors when
the key button is pressed. The feature Theft lock provides a

Received month dd, yyyy; accepted month dd, yyyy

E-mail: jean-vivien.millo@inria.fr, mallet@unice.fr, and {anthony.coadou,
ramesh.s} @ gm.com

second lock to the car. Theft lock is an optional feature and
when present, it can be trigged by pressing a second time on
the key button. The unlocking of the the theft lock is subject
to a user preference variant. It is trigged either by a single
press or a double press of the key button. In its first variant,
there is no specification about the order into which the theft
lock and the usual lock will be activated. However, the phys-
ical locks need to be activated in a specific order. This causes
hazardous behaviour.

The purpose of this paper is to present a verification ap-
proach to tackle the problem of feature interaction in the con-
text of SPL based development of embedded control soft-
ware. Due to the strong interest of the embedded control
software developer for the family of the synchronous lan-
guages [10], we take the assumption that the design language
of the verified system is either Esterel [41] or a language that
can be translated into Esterel with preservation of the original
semantics.

Scenarios [18,32,39] describing interaction of subsystems,
external actors and users are intuitive and powerful tools to
express complex behaviours of systems, be it software or
hardware. A designer can use them to describe either an ex-
pected behaviour or a prohibited use-case of a system. Sce-
narios are commonly stated at the requirements level, and
used as a partial description of the expected behaviour to
check whether the actual system implementation matches.

Introducing variability in the design model requires to in-
troduce variability in the checked properties as well. For in-
stance, LSC introduces a notion of liveness, that is “the dis-
tinction between possible and necessary behaviours™ [18]. In
an SPL context, “possible” means that there exists a configu-
ration that leads to the expected behaviour, while “necessary”
shall hold in any case. Some authors have gone one step
further [46, 47] to extend scenario models to the SPL case,
introducing variation points for describing parametrized be-
haviours. Our work follows this approach. We define a new
model of Sequence Diagrams with Variability (SDv), where



the variability is explicitly stated and modelled. Distinguish-
ing signals, which carry the notion of variability, from regular
signals makes a worthy information when it comes to the ver-
ification phase.

SDv model is based on scenarios that capture the expected
or unexpected feature interactions. We also propose a set of
transformations to generate Esterel observers from these sce-
narios. Such observers can be used to verify that a given (Es-
terel) implementation satisfies the specification described by
the scenarios, i.e., the implementation does not produce un-
expected interactions. For expected interactions, the verifica-
tion focuses on proving that there is a way in the implemen-
tation to actually produce all the expected interactions. We
proceed in three steps. First, we define the domain model,
the set of concepts that we deem necessary to deal with fea-
ture interactions in the context of software product lines and
in particular when there are some variability issues. The pro-
posed domain-specific language is called SDv. Second, to
implement the proposed language and rather than creating a
completely ad-hoc verification environment, we extend the
interactions defined in the Unified Modeling Language (umL).
UML is general purpose and starting from umL is a way to fo-
cus only on the extensions that are needed and to reduce the
implementation cost. This also facilitates the integration of
our verification technique in a complete design flow in which
uML is used by other stakeholders to describe requirements,
software components, deployments and so on. Since UML is
general-purpose, it lacks some of the key constructs that we
need in our language, most notably some constructs about
timing information and some aspects specific to the use of
synchronous semantics and of Esterel. To support these miss-
ing constructs we use a small subset of the umL profile for
Modelling and Analysis of Real-Time and Embedded sys-
tems (MaRTE)" and mainly of its Time Model [6]. MARTE is
an extension of umL dedicated to embedded systems. MARTE
is well-suited to our application domain that is mainly elec-
tronic controllers embedded in automotive applications. umML
plus MARTE are enough to make all the semantic distinctions
that we require for SDv. Third, the semantics of SDv is given
by transforming it into Esterel observers with a first occur-
rence semantics. This is our main contribution, i.e., provide
a language that can capture feature interactions, support vari-
ability and that is amenable to an automatic, formal and ex-
haustive analysis.

Another axis of research consists in looking for possible
improvements in the way scenarios are verified. We started
with two observations:

1. It appears that many state-of-the-art model-checkers for
software struggle to cope with the complexity of an
industrial-size project. In our case studies, symbolic
model-checking of a whole system remains too time-
costly, while exhaustive explorations either never termi-
nate or reach memory bounds (see Section 6).

2. However, model-checking is a widely used and

Dnttp://www.omgmarte.org

smoothly running technique in the hardware industry for
verifying design properties. For instance, it was already
used in production a decade ago to verify the correctness
of the entire logic of a Pentium 4 processor [33].

So why such a difference? Perhaps hardware-related tools
are more mature, hence resulting in an increased robustness.
But another part of the answer might be that hardware mod-
els allow more “efficient” optimizations and pruning in the
decision process.

As a consequence we propose to use some verification
techniques that are mostly used in the hardware community,
and to show how they could be applied to the verification of
such software components; here, synchronous languages and
models [10] can be considered as the bridge between both
worlds. The representation of the system as logical circuits
benefit from the massive parallelism and the various possible
logical optimizations; the state space explosion can be effi-
ciently limited by pruning unnecessary branches [38].

Section 3 presents the SDv model and its intuitive seman-
tics. Section 2 ... In Section 5, we present the transformation
rules to generate an Esterel observer from an SDv scenario.
Section 6 presents our validation approach and the benefits of
using hardware optimization and verification tools. Section 7
introduces an experimental use-case. We briefly discuss some
possible improvements and future works in Section 8.

1.1 Related works

Our work is at the crossing of four domains: SPL, verifica-
tion, scenario, and synchronous languages. We think that
these four keywords forms a unique identifier of our work.
However, the association of two or three of these keywords
refers to existing works that we are going to detail here:

1.1.1 Scenario and SPL

Message Sequence Charts (MSC) [39], UML Sequence Dia-
grams [32], and Live Sequence Charts (LSC) [18] have been
widely studied in the literature and recent extensions adapt
existing construct to the notion of variability [12,46,47].

1.1.2  Verification of SPL

There is a growing interest of the SPL community for the ver-
ification approach [17,23,27,30,31]. In this scope, Greenyer
et al. [22] are applying a verification approach to the fea-
ture interaction problem where a preliminary representation
of the behaviour of the system is expressed using scenarios.
On contrary, in our approach, the property is expressed with
scenario.

Some other works intends to provide a framework to man-
age [20] and detect [16] feature interaction. In the later, the
approach is product centric and so it is not scalable.



1.1.3  Verification of synchronous design using scenario

The proposed approach takes its roots in André’s seminal
works on SyncCharts [2] and Synchronous Interface Be-
haviours [3, 7], where two Esterel-related formalisms can be
used as design model and scenario model respectively.

2 Preliminaries

2.1 A tour of Esterel

Esterel is a member of the class of synchronous reactive lan-
guages [9, 10, 24]. These languages consider an explicit di-
vision of (logical) time into discrete instants, and make the
global assumptions that the amount of processing contained
in a so-called reaction will complete inside such an instant.
This assumption is met in hardware by establishing the proper
clock speed so that all electric fronts have become stable, in
general-purpose software be decreeing the end of the instant
once very instructions of the current reaction have been per-
formed (run to completion), in real-time software by guaran-
teeing worst-case reaction time (WCRT) bounds. The syn-
chronous assumption in turns guarantee that all behaviours
in the same reaction can be approximated to occur "in no
time"(simultaneously), which allows a powerful and simple
programming style where instants and scheduling schemes
are in the hand of the application designer (instead of, say,
system OS engineers).

Synchronous reactive systems can further be divided
into declarative ones, such as Lustre/SCADE [10] and Sig-
nal/Polychrony [10], promoting a streaming data-flow style,
and imperative ones, such as Esterel or the graphical Sync-
Charts version, with explicit control-flow mode structure as
hierarchical and/OR automata (with sequence, if-then-else
alternative, and parallel compositions). Other current syn-
chronous efforts include Quartz [40] and SynchronousC [42]
, and several others as well.

Constructive causality forms an issue specific to Esterel,
raised from instantaneous propagation of internal signals.
Consider the program fragment present S then emit
S; it is non-deterministic, as signal S can be determined as
present or absent in a consistent way. But one has to guess
the value of S, then check that it leads to no contradiction,
rather than propagate valid information from emissions to
receptions. The fact that Esterel allows reaction to absence
(present S else P makes things more complex, and
a full-fledge theory had to be developed (with in retrospect
some influence back to synchronous circuit design). As a re-
sult, many compiling schemes for the language go beyond
simple transformation into low-level object code, as causal-
ity checking is included on purpose into those simulation
schemes so that compiled programs are guaranteed free from
causal paradoxes, which may otherwise lead to deadlocks and
errors at runtime. Dedicated compilation techniques are de-
scribes in [36].

2.2 Software product line, feature, and variability con-
straints

Software Product Line (SPL) is a software development
framework to jointly design a family of closely related soft-
ware products in an efficient and cost-effective manner. The
development process is sliced in two activities: domain en-
gineering and product engineering [35]. The domain engi-
neering activity consists in developing the unitary blocks of
software (called the features) that will be assembled later to
derive products; this second activity is the product engineer-
ing. The difficulties in domain engineering is to develop a
feature while considering the relations and interactions with
the other features. The SPL based approach aims at facili-
tating the product engineering activity. In many cases, the
effective construction of a product (compile and link the fea-
ture source codes together) is automated from the selection
of features [26].

Each feature satisfies a specific end-user requirement. In
the scope of this work, we consider that a feature can have
(configuration) parameters that are set once and remain con-
stant throughout the execution. For example the feature gear
box can be set to automatic of manual. The features are usu-
ally organized in a feature diagram (with a tree structure) that
expresses all the relationships of dependency and exclusion
between them. A product of the family is a subset of features
that satisfies the constraints expressed in the feature diagram.
The feature diagram in Figure 1 focuses on the entry control
domain of an automotive product line. The features with a
filled circles on the top are mandatory while the ones with an
empty circle are optional. The features Gearbox, Door lock,
door unlock, Alarm, Last door closed lock, and Anti-lockout
have each a single parameter that can take a value from two
possible alternative choices. Similarly to the features, the
possible values of the parameters are subject to restrictions
such as exclusion or dependencies as it is expressed with the
cross tree arrows. Some details about the behaviour of the
features are given throughout the paper when required.

The number of products that one can derive from a given
SPL usually scales from thousands to billions or more [21]
thus the existing analysis and verification techniques cannot
be applied iteratively on every product of the family. The
trend tends to adapt these techniques to feature-based ap-
proaches where every feature is analysed independently and
then the per feature analysis results are combined to derive a
conclusion on the entire SPL [17,22,31]. Here, an interme-
diate step is considered where we analyse the interactions of
limited groups of features with a similar goal than the inte-
gration testing activity.

2.3  Marte and CCSL

The umL Profile for Modeling and Analysis of Real-Time and
Embedded systems [34] (maRTE), adopted in November 2009,
has introduced a Time model [6] that extends the informal
Simple Time of The Unified Modeling Language (umL 2.x).



Entry control

Post crash

Gearbox
unlock

Door
unlock

(=

Key
removed

Chime
controller

Last door
closed lock

1

| Excludes

E=IE
i)

Excludes

Fig. 1: An example of a feature diagram from the automotive industry.

This time model is general enough to support different forms
of time (discrete or dense, chronometric or logical). Its so-
called clocks allow enforcing as well as observing the occur-
rences of events and the behavior of annotated umL elements.
The time model comes with a companion language called
Clock Constraint Specification Language (ccsL) [4] and de-
fined in an annex of the MARTE specification.

The notion of multiform logical time has first been used
in the theory of Synchronous languages [10] and its poly-
chronous extensions [28]. The use of tagged systems to cap-
ture and compare models of computations was advocated
by [29]. ccsL provides a concrete syntax to make the poly-
chronous clocks first-class citizens of umL-like models.

A clock c is a totally ordered set of instants, I .. In the fol-
lowing, i and j are instants. A time structure is a set of clocks
C and a set of relations on instants 7 = | J.cc Ze-
ccsl considers two kinds of relations: causal and temporal
ones. The basic causal relation is causality/dependency, a bi-
nary relation on 7: <C 7 X 7. i < j means i causes j or j
depends on i. < is a pre-order on 7, i.e., it is reflexive and
transitive. The basic temporal relations are precedence (<),
coincidence (=), and exclusion (#), three binary relations on
7. For any pair of instants (i, j) € 7 X 7 in a time struc-
ture, i < j means that the only acceptable execution traces
are those where i occurs strictly before j (i precedes j). <
is transitive and asymmetric (reflexive and antisymmetric).
i = jimposes instants i and j to be coincident, i.e., they must
occur at the same execution step, both of them or none of
them. = is an equivalence relation, i.e., it is reflexive, sym-
metric and transitive. i # j forbids the coincidence of the two
instants, i.e., they cannot occur at the same execution step. #
is irreflexive and symmetric. A consistency rule is enforced
between causal and temporal relations. i < j can be refined
either asi < jori = j, but j can never precede i.

For SDv, we use the clocks as triggers. We also use the
basic ccsL relations (within umL constraints) to tell apart the
different relations that we have defined, i.e., Synchronization
(=), Dependency (<), StrictDependency (<).

Door Lock Reaction:
config: ?doorLockEnabled=true and ?gearboxIsAuto=true
trigger: ?engineStatus>=2 and ?doorsAreClosed=true

Door Lock

Gearbox

Environment

Fig. 2: Basic example of an SDv chart.

3 Sequence Diagram with Variability

SDv is a two-level model of scenarios where the variability
is considered as a first class citizen. At low-level, a chart de-
picts the interactions between the features of the system; they
are represented as actors. At a higher-level, a graph (similar
to MSG [39]) specifies how to combine several charts. In this
section, we explain the main constructs and illustrate them
with a few examples.

3.1 SDv chart

3.1.1 Configuration and trigger

A simple example of SDv is given in Figure 2. The chart is
called Door Lock Reaction. It is applicable for all configura-
tions such that door lock feature is enabled and the Gearbox
is configured to automatic. Notice that such a configuration
expression can only test signals propagating the values of the
parameters (including the presence or absence of features) re-
lated to the variability of the system; these parameters have
constant valuation during the execution and so have the as-
sociated signals. If this condition is not matched, then the
scenario is vacuously true (this case will be considered dif-
ferently from the completion of the scenario).

When the configuration holds, the scenario is not neces-
sarily immediately activated since one might want to wait for



the system to be in a specific state. Hence the scenario starts
as soon as its trigger turns true. In the case of Figure 2, the
engine has to be running and all the doors should be closed.
On contrary to configuration, the trigger is testing the value
of signals relating the state of the system that evolve during
the execution. It is not allow to use neither configuration pa-
rameters nor observed signals in the trigger expression.

One should notify the specific syntax of the configuration
and the trigger expressions that matches the implementation
language (here Esterel). The signals used in these expressions
refers to existing signals of the implementation.

Such configuration expressions are used in many other
constructs of SDv to specify variant behaviours such as the
event, the agent, the hot and cold conditions (see Figure 5) or
the branching structure of the graph (see Figure 7).

3.1.2 Event and precedence

The main component of a chart is the description involving
interactions among a set of actors. For instance, the chart
in Figure 2 involves three actors: Environment, Gearbox, and
Door Lock. Gearbox and Door lock are features of the system
(Figure 1). Each actor has its own time-line, which enforces
a sequential order on all the events, indicated by the dots on
each time-line. An event is a signal emitted by an actor. SDv,
besides event occurrences, specifies an order between pairs
of events from different time-lines, indicated by arrows: the
source of an arrow precedes the target.

In SDv, an event corresponds to the emission of a signal
by an actor. In contrast, MSC and LSC both use message
passing primitives between actors instead of events. Wired
communications in automotive systems actually use broad-
casting of signals over a given network, as defined in the syn-
chronous paradigm; hence we chose to refine our model to
match this approach.

The example in Figure 2 describes a behaviour of an auto-
matic lock system. In such a system, the Door Lock feature
is activated once the shift-out-of-park event occurs, indicated
in the chart by the causal arrow between these two events.
Similarly, all the doors are locked after the speed exceeds 8
mph. The latter is a strict precedence relation (indicated by
the crossed out arrow) and the locking event happens at least
one cycle after meeting the threshold (no simultaneity).

3.1.3 Repetition

An annotation of the form [m..M] adjacent to an event
specifies that the event shall be repeated at least m times and
at most M times, with 0 < m < M. M is finite. The default
annotation is [1:1]. When repeated events are involved in
precedence relations, the last occurrence of the source event
has to precede the first occurrence of the target event.

Figure 3 describes the behaviour of an alarm controller.
The described behaviour holds for all configuration (con-
fig:[always]) and trigs immediately (trigger:/always]).

Alarm Activation:
config: [always]
trigger: [always]

Environment

Intrusion

detected Chime [1:100]

Key button

pressed [3:3]

time[1:5] Armed

Fig. 3: Example of an SDv chart with repetitive events and
timed precedence.

Warning chime emission:
config: ?brakeSensorlsActive=true

trigger: [always]

Chime
controller
Emergency
braking * Crash Enable
detection
Door unlock ............................ Emlt

Fig. 4: Example of an SDv chart with parallel and syn-
chronous events.

The alarm emits chime events at least once and at most
hundred times when an intrusion attempt is detected, until the
car key is pressed exactly three times. The alarm controller is
then armed.

3.1.4 Timed precedence

A precedence between two events can also be labelled by a
relative time constraint: the consequence has to occur after
the cause, between a minimal and a maximal delay. That
is the case, in Figure 3, where the arming of the alarm is
supposed to occur from one to five logical instants after the
key button is pressed.

3.1.5 Parallel events

The order from top to bottom on a time-line guarantees a
strict sequential ordering. However, a vertical dotted seg-
ment close to a time-line can be used to specify that some
events occur concurrently, as shown in Figure 4: the emer-
gency breaking and the crash detection must happen before
the door unlocking (and after any other event earlier on the
time-line) but, relatively to each other, their order remains
unspecified.



Door Lock Reaction:
config: ?doorLockingEnabled=true
trigger: ?enginelsOn>=2 and ?doorsAreClosed=true

Door
Locking

Environment

Gearbox

?relock=true

Shift out of park
Ack

config: [always]
trigger: ?doorlock_status>=1

Brake
release

?relock=true
Lock

Fig. 5: Another example of an SDv chart where variability is
introduced in the chart body.

3.1.6 synchronization

An horizontal dotted line linking two events ensures the syn-
chrony of these events. In the example of Figure 4, the door
unlocking and the chime emission must happen exactly at the
same instant. If repeated events are synchronized, every in-
stance should be synchronized until the maximum number of
occurrence has occurred for one of them. Then, the other can
occur freely. The (logical) timed precedence and the synchro-
nization relations are specific elements of SDv .

3.1.7 Multi-line condition and variability in the chart body

A hexagonal box, intersecting all the time-lines, depicts a
condition which needs to hold for checking the rest of the
scenario. A multi-line condition can be hot and so is repre-
sented with a plain hexagon or cold and so is represented with
a dotted line hexagon. It also acts as a synchronization point
over all the actors, i.e. whatever is drawn above (resp. below)
a multi-line condition box on a time-line has to occur before
(resp. after) it. Like the charts, the multi-line condition uses
a configuration and a trigger condition describes the enabling
condition for the rest of scenario. When the configuration is
evaluated to false, the multi-line condition is ignored. Other-
wise, the trigger is evaluated once all actors are synchronized.
When the trigger is evaluated to true, the scenario is contin-
ued. When the trigger is evaluated to false and the multi-line
condition is hot (resp. cold), the chart terminates with an er-
ror (reps. a success).

An example is shown in Figure 5. In this example, the
second half of the scenario below the multi-line condition box
applies to all configurations. At the step after the signal Ack
has occurred, the multi-line condition tests whether the status
of the feature door lock is active. If it could not be met, then
the scenario could have terminated with an error at this point
otherwise, the Brake release signal is expected.

An it is shown in Figure 5, a configuration statement can
be attached to an actor or an event. The actor or the event

are considered in the chart only when the configuration of the
system is such that the statement holds.

If an event is disabled, it is not expected to occur and its
relations (precedence and synchronization) are ignored but
each event at the other end of these relations are still expected
to occur. If an actor is disabled, all events on its time-line and
their relations are ignored. The multi-line condition remains.
In Figure 5, when relock is false, neither the break release
event nor the lock event are expected.

3.2 SDv graph

Two or more scenarios specified as charts can be composed
to form a more complex scenario, which in turn can further
be composed. The composition operators are explain below.

Figure 6 describes a complex scenario, composed of two
charts or sub-scenarios p and ¢ in parallel, and noted pl||g,
which is composed sequentially with r. pl|g terminates when
p and ¢ terminates.

Fig. 6: Parallel, sequence and optional: p and g are in paral-
lel, then optionally in sequence with r

The arrow without the source but with pl|q as the target in-
dicates that it is the initial chart. The arrow from p||g to r in-
dicates the sequential relationship. Moreover, the dotted box
around r denotes an optional behaviour: An optional block
may or may not be executed. In opposition to the regular
chart, even if it is entered, it may be exited any time without
scenario failure.

Figure 7 illustrates the conditional branching. The sce-
nario in this figure starts with the behaviour as specified by
p, followed by either g or r. The conditions under which ¢
is evaluated is the label of the edge. Otherwise r is evalu-
ated. The condition is a configuration statement (related to
the variability of the system).

Figure 8 illustrates the repeat operator. In this figure, the
inner chart p is executed four times.

In Figure 9, another composition operator is illustrated:
the chart p is a pre-scenario, which acts like a guard to the
chart g. p prevents its guarded chart to be executed if it is not
matched. The guard may be exited any-time without scenario
failure. However, if p holds, then ¢ must hold.



E Paralle|

1." cenarios

El -
= name : EString

& Model [-E Optiona |
\® UnaryOperation| |® BinaryOperation
E Repeal
= value : Elni|

@ Signal
= name : EString
= type : SignalType

El Obsewedsign% E Confial i :
L I

frames

1 | configuration
configuration
8 Constraint
0.1 5 N
1|frame name : EString

B ScenarioFrame

7 specification : EStrin
0.1
configuration

= name : EString

1

| observed sianat:

onfiquration

configuration | 0.1 triggef 0.1 0.1

1.5
<enumeration>:
2 SignalT

~ pure

~ integer

~ boolean

B Synchronizatiot

mum\me,condmon% & MultilineCondition

0.*| relations

= min : Ent
= max : Elni

® Ent
Bp | events /" H E e
e — 2" % max : EIni
Z min : Elnt

o — 1

-

multiline_condition

B Agent

1.* | entries

operands

2

Fig. 10: The metamodel of SDv

Alarm Activation:
config: olways]
trigger: olways]

Environment

Intrusion
detected

Key button
pressed (3:3]

Alarm
controller

Ghime.
contoler

Fig. 7: Branching: p is executed, then either g or r

[4]

Fig. 8: Repeat: p is executed four times

Alarm Activation;
confg: (ahways]
trigger: (ahwoys]

Intrusion
detected

Key button
pressed (3:3)
Arme.

Fig. 9: Pre scenario: ¢ is executed if p succeeds

3.3 SDv metamodel

Thus, in the general case, an SDv behaviour is described with
a graph, whose nodes are scenarios, either charts or graphs.
The edges between a pair of nodes indicate the causality rela-
tion, and ensure a strict evaluation order between the related
cause and consequence: the last event of the cause scenario
must happen before the consequence scenario can start.

Figure 10 presents the metamodel of SDv. An SDv chart
is an instance of ScenarioFrame that contains an instance of
ScenarioBody. ScenarioBody contains the elements and rela-
tions we have described above (Agent, Event, ParallelEvents,
Multi-line Condition, Synchronization, Precedence). An SDv
graph is an instance of Operation that could be a tree of oper-
ations (Optional, Repeat, Parallel, Sequence, Pre, Branching)
where the leafs are instances of FrameReference that refer-
ences an instance of ScenarioFrame (an SDv Chart).



4 UML and MARTE for building SDv models

The previous section has discussed the important concepts re-
quired to introduce variability in Sequence Diagrams. From
an implementation perspective several solutions are available.
The first solution is to develop an ad-hoc domain-specific
environment for variability, a so-called domain-specific lan-
guage. Such a solution has many advantages since it would
allow building a specific environment that makes available
all the domain concepts needed to address the issue and only
them. It usually leads to very compact and very efficient en-
vironment. However, as always, introducing a new tool or
environment in a design flow of a big company may be cum-
bersome and the very least costly since it requires specific
training for the staff and building a set of transformation/in-
tegration tools to integrate this model with the other tools and
models used in the company.

An alternative solution is to use a general-purpose tool
(like the Unified Modeling Language—umL) and customize
it so that it can be used for our specific case. Using a tool
like umL can be very beneficial since lots of engineers are
already trained to use it and it covers several aspects of the
design flow (like requirement engineering, functional anal-
ysis, deployment). One tricky aspect when doing that is to
ensure that the same model elements are not used in the dif-
ferent contexts with two different semantics. Another point is
that umL is a general-purpose language but it is not intended
to cover all usages of all domains. Rather it provides some
mechanisms, light-weight extensions like profiling, to extend
it when it is required to alter the semantics of some elements
or to extend it by adding new concepts.

This section discusses a possible mapping between UML
model elements and SDv concepts, when possible. Some
aspects were not readily available in umL and required us-
ing specific extensions. In particular, since our intention is
to generate Esterel observers, the usual run-to-completion
event-based semantics of umL may significantly differ from
Esterel semantics and from the semantics of SDv discussed
in the following section. SDv sometimes uses specific syn-
chronous operations as well as some time-related features.
For such constructs, we have used the umL Profile for Mod-
eling and Analysis of Real-Time and Embedded systems
(MARTE). MARTE is dedicated to real-time and embedded sys-
tems and provides a rich model of time [6] largely inspired
from synchronous languages. It is therefore well-adapted
to cover some specific synchronous constructs. The pur-
pose here is not to rely heavily on MARTE but to use only
the minimum constructs required to cover our needs. MARTE
comes with a companion language, called the Clock Con-
straint Specification Language (ccsr), that is also sparsely
used when required. Some previous works has already dis-
cussed the way to generate Esterel observers from MARTE/ccsL
specifications [5], the work here is entirely different since the

primitive constructs of SDv are very different from ccsL con-
structs.

4.1 umL interactions

It seems quite natural to use uMmL interactions to model SDv
scenarios, however the particular context in which we are re-
quires further comments. This subsection discusses the main
concepts of SDv and the way they are encoded with umL
counterparts.

Models in SDv (cf. Fig. 2) have a direct equivalent in
uML models. A uMmL model owns some classes that can have
a particular behavior. A SDv model owns a set of scenar-
ios and a set of scenario frames. The latter set describes
a library of available behaviors, whereas the former set de-
scribes one particular way of using those behaviors from the
library. Therefore the ScenarioFrame are encoded as umL in-
teractions, whereas the Scenario are encoded as activities.

Scenario describes the ways the different frames are used
and composed. Several operations are provided. These op-
erations are encoded as ActivityNodes in umL. We can dis-
tinguish two kinds of nodes. The Frame is mainly a CallBe-
haviorAction that refers to a scenario frame (a UML interac-
tion). All the other operations are activity control nodes. The
Sequence is captured by control flows, whereas the Paral-
lel operation is captured by fork and join nodes of activities.
Branching, as well as Optional and Repeat are simply cap-
tured by decision nodes with adequate guards on the outgoing
control flows.

Scenario frames demands a bit more explanations. As
discussed before, they are encoded as umL interactions. Such
an interaction describes what is observed from the system.
Our observers observe both the system and the environment.
The SDv scenarios are used to specify what is expected from
these interactions between the environment and the system.
Observers must not interfere with the observed system, this
is particularly easy with Esterel-based systems since the ba-
sic communication mechanism is broadcast through signals.
Each scenario frame is therefore encoded as a umL interac-
tion, where the life lines represent the SDv agents and the
basic uML occurrence specifications represents occurrences of
events observed from either the system or the environment.

Signals are equivalent in SDv and in umr. The distinction
between trigger signals, configuration signals and observed
signals depends on the context in which they are used. The
configuration (resp. trigger) signals are the constrained ele-
ments of the configuration (resp. trigger) constraint.

Observed signals are particular cases and demand more
explanations. It is important that we know which signals are
observed or not. Only the orderings between the observed
signals impact the satisfaction or falsification of our observa-
tion interaction. Therefore, we impose that the umL interac-
tions must be included within a umLConsiderFragment. Such
fragments in umL explicitly specifies the relevant messages
for a given interaction. In our case, we use such fragments to
specify which signals are observed. Other signals may be ei-



ther configuration or trigger signals depending on the context
in which they are used.

Constraints are also strictly equivalent in SDv and
uMmL. However, we impose that the specification be a
uMLOpaqueExpression described with the language Esterel.
If so, then the umL specification becomes equivalent to our
EsterelExpression.

Events are captured as MessageOccurrenceSpecifications
and in ML, represent a message reception as if the signals re-
ceived through broadcast from the environment and the sys-
tem were received (but not consumed) by the observing inter-
action. If the min and max attribute of those events is simply
one, then nothing more is required. When those attributes dif-
fer from one, then the message occurrence specification must
be embedded within a Loop Combined Fragment that speci-
fies how many times this occurrence specification is repeated.

ParallelEvents in SDv means that there is not a strict or-
dering between two events, which can therefore occur con-
currently. This construct is equivalent to uML co-regions.
In umL, along a particular lifeline (an agent), the occurrence
specifications (the event occurrences) are strictly ordered un-
less surrounded by a co-region.

Relation clearly depart from messages in UML interactions
since they merely represent a constraint on the ordering in
which the related events must occur. UML provides a similar
construct called GeneralOrdering. The umL GeneralOrdering
is equivalent to our strict precedence. This is clearly, one of
the specificity of our approach since our umL interactions do
not focus on the messages but mostly on the general order-
ings. Actually, one can consider that the messages are sent
(with broadcast) by the environment to the observer. The
events are therefore message occurrence specifications but
we are not interested in the messages themselves and show
only the orderings among the various receptions of messages
(called events in SDv). The discussion between the different
kinds of relations is a bit subtle and is further discussed in
subsection 4.2.

MultilineCond are mainly used to synchronize the differ-
ent agents (or lifelines). When the condition is reached, then
the configuration constraint must be satisfied before proceed-
ing further. This is captured with umL state invariants with
a specific semantic interpretation. The scenario completes if
at some point, the state invariant becomes true (the configura-
tion is fulfilled) and the trigger occurs. A constraint is applied
to the state invariant to encode the trigger.

4.2 Specific synchronous constructs

Some constructs of SDv have no direct equivalent in UML.
For such cases we use MARTE stereotypes to build them. This
subsection discusses the few such cases.

Synchronization and precedences: the semantic varia-
tions amongst the different relations demand using some spe-
cific MARTE constructs and more particularly ccsL constraints.
ccsL introduces two basic relations between events: coin-
cidesWith and precedes. The former relation directly comes

from the synchronous origin of

ccsl and specifies that two events must always occur syn-
chronously. This is the exact intentional semantics of our
SDv synchronization. The latter relation specifies is an
asynchronous operator that specifies that an event precedes
another one. More precisely, aprecedesh means that the i
occurrence of event a must always be observed strictly before
the i occurrence of event b. This is equivalent to our Strict
precedence. Finally, the disjunction of the two constraints
allows building or (weak) precedence: the i occurrence of
event a must always be observed either synchronously with
or strictly before the i occurrence of event b. In the three
cases, we therefore use umL GeneralOrdering but we add a
ccsL constraint on it to distinguish the three cases.

Timed precedences are equivalent to umL duration con-
straints. However, uML do not specify the time reference used
to measure the duration itself. MARTE timed duration con-
straints are therefore used to introduce such time reference.
More specifically, a MARTE timed constraint add an explicit
reference to a clock. When applied to duration constraints,
this clock is used as a time reference to compute the duration.
Such a clock is exactly equivalent to Esterel notion of clock
and is therefore particularly well adapted to the situation.

Trigger are used to specify a specific condition on which
a scenario frame should execute. In our case, scenario frames
are specified as uML interactions and are therefore a special-
ization of the umLBehavior metaclass. MARTE provides a spe-
cific stereotype, called TimedProcessing that extends the Be-
havior metaclass with two new properties: start and finish.
These properties are events that specify when the behavior
starts its execution and when it finishes it. The start property
is therefore equivalent to the notion of trigger defined in SDv.
In MARTE, the start of a TimedProcessing is a simple event. It
can for instance be a TimeEvent whose specification (a umL
constraint) specifies exactly when this event occurs.

5 Observers-Based Synchronous Semantics of
SDv

Here we give an observer-based semantics of SDv. This
semantics associates an observer with each scenario (either
chart or graph). An observer is an automaton running along
with the system that collects the information about its state,
its inputs and outputs at every stage, and determines whether
the observed behaviour of the system matches the given sce-
nario. The observer automaton emits a single signal termi-
nated when the observation matches the scenario. The ob-
server is not modifying the behaviour of the observed system.

A scenario is validated when it occurs as soon as it as been
trigged. This is a the first occurrence semantics for which
only the first activation of the scenario can lead to success.

Another particularity of the semantics is that the scenario
succeed only if the expected events occur. The occurrence of
an event when it is not expected cause a failure.



10

The behaviour of a run of a scenario observer is defined as
a sequence of reactions:

SO % Sl %} o %} Sn_l lermlm:tedor@ 0 (1)
where /; is the set of observed signals in the observer at the
step j. S .1 is the derivative of S j, the new state reached
after the j” reaction. 0 denotes the scenario termination. The
output of the observer at the last reaction is either rerminated
when the scenario succeeds or @ when it fails. Each reaction
consists of a sequence of atomic and instantaneous micro-
reactions inferred by the structure of the body of the observer.

The body of the main Esterel module of a scenario is given
below. The error signal is required only for internal usage
while the terminated signal appears in the interface of the
main observer.

module main_observer:
input all the observed
output terminated;
signal error in

run observer [...];
end signal
end module

signals;

The module observer is an observer built from an
SDv chart of an SDv graph according to the translation rules
presented below.

5.1 The chart observer

The chart observer has two levels: the frame and the body.
The frame intends to check the configuration of the chart.
When it is correct, it starts waiting for the trigger and launch
the body of the observer when it trigs. The Esterel code of the
frame is given below. The second output error is required for
composition only.

module frame:
input all the observed signals;
output terminated , aborted;
present <configuration expression> then
trap trigger in
loop
present <trigger
exit trigger
end present;
pause
end loop
end trap;
run body
end present;
end module

expression> then

‘ agent, \ ‘ agent, \
S S
Observer
Acceptance| | Acceptance
watchdog || watchdog
S €Sy €
agentl agent2
Watchdog Watchdog
(event, parallel (event, parallel
events, condition) events, condition)

[strict] [timed] Q

precedence watchdog

Multi-line condition
watchdog

Fig. 11: The internal structure of the body of the chart ob-
server.

The body of the chart observer is a massively parallel Es-
terel program. Each time-line, each precedence, each multi-
line condition, each synchronization is translated in an Es-
terel module running in parallel to the others. The success
of the body is due to the presence of the expected signals in
the right order(s) at the right instant(s) but also to the absence
of the unexpected signals. The occurrence of an unexpected
signal aborts the body. To ensure this property, each signal
in input of the observer is caught by an acceptance watchdog
that either propagates the signal to the observer or aborts the
observer if the signal is unexpected at the current instant.

Figure 11 illustrates the internal structure of the body of
the chart observer. The signals S| and S, from the agent; are
caught by an acceptance watchdog. Every agent has its corre-
sponding watchdog which is composed of event watchdogs.
The precedence, synchronization, and multi-line condition
watchdogs watches their respective relation from the corre-
sponding SDv chart. The “Q" symbol indicates an exchange
of control signal internal to the observer. The remainder of
this section presents the internal structure and behaviour of
the body of the observer and its watchdogs.

The agent watchdogs are not implemented as Esterel mod-
ules (like the other watchdogs) but as a statement relating the
expected behaviour on the corresponding time-line. When
every agent’s statement terminates, the trap tterminated is
raised that causes the emission of the output ferminated fol-
lowed by the end of the execution. At any moment, the trap
tERROR can be raised by any of the watchdog that causes the
emission of the output aborted and the end of the execution.



module body:
input all the observed signals;
output terminated , aborted;
signal local control signals in
trap tterminated , tERROR in
run awl/accept_wd[...]; exit tERROR|]|...
Il
run pwl/preced_wd[...];
[
run swl/sync_wd[...];
[
run mwl/mlcond_wd [...];
Il
[
<Agent 1> |
I

exit tERROR|]...
exit tERROR||. ..

exit tERROR||...

<Agent n>
]; exit tterminated
handle tERROR do emit aborted;
handle tterminated do present aborted else
emit terminated end present
end trap
end signal
end module

5.1.1 Agent watchdog

follows the content of the agent’s time-line. There is three
possible actions occurring on the time-line: 1/ an event occurs
2/ parallel events occur 3/ a multi-line condition is crossed.
The statement of any agent watchdog can be generated

from the following algorithm:

1: present <agent configuration> then

2: for all action a in sequence on the time-line do

3: if a is an event occurrence then

4: present <event configuration> then
5: emit stopAcceptanceWatchdog;
6: run EventWatchdog]...];
7: emit startAcceptanceWatchdog
8: end ;
9: else if a is a parallel events occurrence then
10: [
11: for all event e in parallel do
12: emit stopAcceptance Watchdog;
13: run EventWatchdog]...];
14: emit startAcceptanceWatchdog
15: end for
16: IR
17: else if @ is a multi-line condition crossing then
18: present <ml condition configuration> then
19: emit rendezVous;
20: await immediate notification
21: end ;
22: end if
23: end for

11

24: end present

5.1.2  Event watchdog

checks for the occurrence of an event e from a specific agent.
First, the event watchdog waits for the minimal number of
occurrences of the observed signal and then it emits the inter-
nal control signal acknowledgement that is expected by the
other watchdogs. Then, it wait for additional occurrence of
the observed signal until either another signal is received or
too much occurrences of the signal occur. The first case is
a normal termination the second causes an error aborting the
entire observer. An event watchdog is an Esterel module with
the following shape. For every event, the watchdog is gener-
ated with the appropriate values for min and max. The second
part of the module is generated only when max > min. In the
following module, every occurrence of the repeat instruction
is unrolled in order to generate pure Esterel code. The same
is done for every module.

module EventWatchdog:
input observedEvent, any_Other_Event;
output error , acknowledgement,
occurred ;
await immediate observedEvent;
occurred ;
repeat (min—1) times
await observedEvent;
end repeat;
emit acknowledgement;
pause;
Yowhen max>min
weak abort
repeat (max — min + 1) times
await immediate observedEvent;
emit occurred;
pause
end repeat;
emit error
when immediate any_Other_Event;
present observedEvent then emit
present
end module

emit

emit occurred

error end

As an illustration of the event watchdog, let us consider
the chart of Figure 12. Let us assume that Producer emits
the signals A at the second instant and B at the third instant.
At the first instant, the event watchdog on A will be ready
to receive the signal. There is no incoming precedence and
the acceptance watchdog is deactivated thanks to the signal
stopAcceptanceWatchdog.

At the second instant, A is received, the acknowledgement
signal is sent (however no watchdog listen to it) and the ob-
server awaits the possible repetition of A

At the third instant, B occurs. The waiting on A is aborted,
the acceptance watchdog on A is re-activated (it will be ef-



12

Event production :
config: [always]
trigger: [always]

Producer

A[1:2]

Fig. 12: An occurrence of the signal B right after the first
occurrence of the signal A will terminate the event watchdog
on A.

fective at the next instant) and the event watchdog on A is
terminated. The control is given to the agent watchdog that
run the next event watchdog; It is on B. So the acceptance
watchdog on B is deactivated (and thus no error is raised) and
the event B is caught. The execution is paused.

At the fourth instant, the event watchdog on B is ter-
minated, the agent watchdog is terminated and the trap
tterminated is raised. The scenario succeeds.

5.1.3 Acceptance watchdog

is a special kind of watchdog that does not correspond to any
of the SDv operator but guaranty that only the expected sig-
nals are received. An acceptance watchdog is the following
Esterel module:

module AcceptanceWatchdog:
input observed, start, stop;
trap tERROR in
[
loop
abort
await immediate observed;
exit tERROR
when immediate stop;
await immediate start;
pause
end loop
]
end trap
end module

5.1.4 Multi-line condition watchdog

expects a rendez-vous signal from every concerned agent.
Then, it evaluates the condition. If it is met, it notifies the
agents observers that the execution can go ahead. If it is vi-
olated, it raise either an error to the chart observer in case of
an hot condition or a notification of preliminary termination

in case of a cold condition. The former cause the emission
of the aborted signal. This last cause the emission of the
terminated signal. In both cases, the execution of the chart
observer is terminated. An multi-line condition watchdog is
the following Esterel module:

module multiLineconditionWD
input isHot;
input rv_1,
output notify ,
[

condition ;
match ;

rv_n,
error ,

await immediate rv_1

await immediate rv_n
1;
present ?condition then
emit notify

else
present isHot then
emit error
else

emit match

end present
end present
end module

5.1.5 Precedence watchdog

ensures the satisfaction of a single precedence relation. The
precedence is satisfied when the last occurrence of the source
event occurs before the first of the destination event. A prece-
dence watchdog is the following Esterel module:

module PrecedenceWatchdog:
input source_completed, source_occurred,
dest_occurred ;
trap tERROR in
<weak> abort
await immediate
exit tERROR
when immediate source_completed;

dest_occurred ;

await immediate dest_occurred;
await source_occurred ;
exit tERROR

end trap

end module

The source_complemted signal is mapped to the acknowl-
edgement signal emitted in the event watchdog. Similarly, the
{source, dest}_occurred signals are mapped to the occurred
signals of their respective event watchdogs. The termination
of the execution of the watchdog cause the emission of the



aborted signal. The presence of the keyword [weak] change
the precedence watchdog in its strict version (See figure 2).

5.1.6 Time precedence watchdog

ensures the satisfaction of a single time precedence. When
the source signal is received, a signal called error is sustained
during min instants. Then it is idled during the correct time
frame and sustain afterwards. So, an early or (too) late recep-
tion of the target signal would be coupled with the presence
of the error signal that raises the trap fERROR in the observer.

module TimedDependenceWatchdog:
input source_completed, source_occurred,
dest_occurred ;
trap tERROR in
[
run dw / StrictDependenceWatchdog;
exit tERROR
111
[
signal error in
await immediate source_completed;
weak abort
loop
abort
repeat min times
emit error;pause
end repeat
repeat (max-min+1) times
pause;
end repeat
sustain error
when source_occurred
end loop
when dest_occurred;
present error then
exit tERROR
else halt
end present
end signal
]
end trap
end module

5.1.7 Synchronization watchdog

ensures the satisfaction of a single synchronization constraint
(horizontal dotted line). A synchronization watchdog re-
ceives the occurred signal of the pair of watched signals. If
they are not simultaneous, an error signal is raised to the ob-
server. An synchronization watchdog is the following Esterel
module:

13

module SynchronizationWatchdog:
input left, right;
trap tERROR in
repeat max times
abort
await immediate [left or right];
exit tERROR
when immediate [left and right];
pause
end repeat;
halt
end trap
end var
end module

5.2 The graph observer

A graph observer is an Esterel module where the only au-
thorized statement are the high level operators of SDv and
the calls (run expression) to a chart observer. The called ob-
server(s) can be either chart(s) or graph observer(s). The high
level operators can be composed freely with respect to the
well-parenthesizing rule.

A graph observer is decomposed in n Esterel modules
where n is the number of operations used in the graph. Let
assume the graph observer to be a tree of operators where
the leafs are calls to chart observers. Every node of the tree
is translated into a module and the module of the root node
is the main. Whatever is the operator, the generated Esterel
module has the same head and tail given below. Only the
inner part changes from an operator to another

module ComposedObserver:
input all the observed signals;
output terminated , aborted;
signal terminated_sl , terminated_s2 in
signal ERROR_sl, ERROR_s2 in
trap tterminated , tERROR in
BISTITIISd A ILU R EZETTEITEIISTEII TN o
await [ERROR_sl or ERROR_ s2];
exit tERROR
[
TITTETTTTTETTTEITTEITTTTTTTITTIE I o
<Operator dependent part>
exit
handle

tterminated

tERROR do
emit aborted;

handle tterminated do
present aborted else emit terminated
end present

trap

signal

signal

module

end
end
end
end



14

The signals terminated_s2 and ERROR_s2 are declared and
used only for binary operators (sequence, parallel, branching,
pre scenario). In case of optional operation, the FAILURE
section is omitted because an optional scenario does not raise
error. In case of pre scenario, the signal ERROR_s1 is not
included in the FAILURE for similar reason but ERROR_s2
is.

5.2.1 The optional statement

In the observer based semantics with a strong hierarchy as
it is for SDv, when a module receives an error from a child
module, it is supposed to propagate this error to its parent
module. But if the child module is running under an optional
statement, the error is blocked and the child terminates in-
stantaneously. The following statement is the inner part of
the generated Esterel module.

run Observer_1[signal terminated_s1/
terminated , ERROR_sl/aborted |;

5.2.2 Sequence

The following statement is the inner part of the generated Es-
terel module. One can see that the translation is quite straight-
forward because of the strict hierarchy imposed by our se-
mantics.

run Observer_1[signal terminated_s1/
terminated , ERROR_sl/aborted ]

run Observer_2[signal terminated_s2/
terminated , ERROR_s2/aborted ]

5.2.3 The parallel statement

The following statement is the inner part of the generated Es-
terel module.

run Observer_1[signal terminated_sl1/
terminated , ERROR_sl/aborted |

run Observer_2[signal terminated_s2/
terminated , ERROR_s2/aborted ]

5.2.4 The repeat statement

The following statement is the inner part of the generated Es-
terel module.

repeat m times
run Observer_1[signal terminated_sl/
terminated , ERROR_sl/aborted |;
pause
end repeat

5.2.5 The branching statement

The following statement is the inner part of the generated Es-
terel module.

present <conditionOfBranching> then

run Observer_1[signal terminated_sl1/
terminated , ERROR_sl/aborted |;

else

run Observer_2[signal terminated_s2/
terminated , ERROR_s2/aborted |;

end present

5.2.6 The pre-scenario statement

In a pre-scenario, the guard scenario (p) is executed first. If it
comes to its correct termination, the guarded scenario (g) fol-
lows. Otherwise, ¢ is skipped and the pre-scenario succeeds.

run Observer_1[signal terminated_sl1/
terminated , ERROR_sl/aborted ];
present terminated_s1 then
run Observer_2[signal terminated_s2/
terminated , ERROR_s2/aborted ]
end present

6 The Verification Flow

The verification flow that we use is illustrated in Figure 13. It
takes two kinds of inputs:

1. The system design: In our case, we chose to apply our
verification technique to systems designed using State-
charts or discrete-time Simulink, but the overall verifi-
cation flow could be more general, as far as we can gen-
erate an Esterel model from the design that preserves the
semantics;

2. A feature model from which we extract the variability
constraints related to the observed features and their pa-
rameters;

3. The SDv that is extracted from the requirements.

The Esterel synchronous language is used as a pivot be-
tween the design language, either Statecharts or Simulink,



requirements

UML Marte

Scenario

activity diagrams

code gen.

15

Logic

optimization

Correctness
check

Esterel

modules

Esterel compilation

Symbolic

Netlist model

flow

checking

Esterel

Statecharts,

Simulink... translator

Counter example

Fig. 13: The verification flow.

the variability constraints, and SDv observers, so that the ob-
served system and its observer can simply be synthesized and
linked together. A direct code generation from Statecharts
to Esterel might be tedious, so we first transform Statecharts
into SyncCharts [2]. Basically, this step consists in introduc-
ing a synchronous semantics to the model, but it is also nec-
essary to fix several syntactic issues (see Section 1). Then we
use the SyncCharts Compiler Collection [14] to generate the
Esterel code. As for discrete-time Simulink, its translation to
Lustre has been proposed by Tripakis et al. [43]; adapting it
to the Esterel case is a purely syntactic matter.

An Esterel compiler, such as the INRIA Compiler [41],
synthesizes a BLIF netlist from the Esterel code. This netlist
can then be optimized using any off-the-shelf logic optimizer,
as those commonly used in the hardware industry. Finally, the
scenario can be verified through symbolic model-checking.

6.1 From Statecharts to SyncCharts

Statecharts have been given many different semantics [25,
45]. In our case, we deal with a GM-specific semantics, close
to the one of Stateflow. Here we discuss a few translation
issues from such Statecharts to SyncCharts, but we do not
detail our domain-specific semantics since it is not essential
for the overall understanding of the process.

A common feature between our statecharts semantics and
the one of Stateflow or SyncCharts is that the evaluation of
transition guards is top-down: outgoing transitions of the ac-
tive macrostate have priority over the inner state transitions.

However, concerning the order in which outgoing transi-
tions of a given state are tested, SyncCharts ensure a strict
ordering using explicit priority, whereas our statecharts do
not offer any guaranty. Hence we can only ensure that the
transformation will preserve the semantics in case of non-
overlapping guards. Indeed this is a common design guide-

line for ensuring a deterministic behaviour?. The problem

of determining whether a statechart may suffer from overlap-
ping guards goes beyond the scope of this work, but in our
case we solved it through static analysis: if there exists a so-
lution satisfying the conjunction of guards, then we ask the
designer to strengthen those guards.

Our statecharts do not have a time model, and their reac-
tions are much less complex than those of general SyncCha-
rts, possibly involving combinatorial cycles or reincarnation.
When triggered, a statechart reacts to the input events by tak-
ing a single transition per step, which corresponds to an in-
stant in the synchronous terminology. Such a behaviour can
be obtained in SyncCharts using only strong, non-immediate
transitions.

SyncCharts enforce a strict hierarchy of states and transi-
tions, whereas Statecharts allow transitions to cross their par-
ent macrostate boundaries. Hence it is necessary to split the
transitions across state boundaries. The solution is inspired
from the translation of Esterel traps into SyncCharts, as pro-
posed in Prochnow et al. [37]. Figure 14 shows an example
of such trap, emulated using immediate weak abortions: the
traphalt signal may be emitted in order to prevent the termi-
nation at low-level if a trap with higher priority is emitted.
A similar transformation has been elaborated for incoming
transition across boundaries.

6.2 From umL Marte to SDv

We have implemented the transformation rules described in
Section 4 so that a user can capture a SDv specification using
a uML tool and then automatically generate Esterel observers.

2) In fact the generated sequential code would be obviously deterministic
in the usual sense. Here we mean that the designer is not necessarily aware
of internal choices taken by the code generator, and transition overlappings
at the model level might lead to unexpected behaviours from the designer’s
point of view.



16

(a) Statechart.

t, traphalt

<1> #traphalt

N

(b) SyncChart.

Fig. 14: Transformation of an outgoing transition.

It must be noted though that we have mainly worked on the
UML abstract syntax to implement this transformation. Even
though, the umL provides most of the necessary concepts find-
ing the right graphical tool is a separate issue. Indeed, even
though the profiling mechanism promises a lot, the available
implementations are far from satisfactory at the moment. A
big effort is still required from the umL tool vendors to make
the customization as easy as possible for the end users.

6.3 From SDv to an Esterel Observer

We have also implemented the transformation rules described
in Section 5 so that any SDv scenario (chart or graph) can be
converted into an Esterel observer.

The writing of SDv charts for observation purpose is sub-
ject to a limitation that prevent from ambiguous scenarios i.e.,
the last event on each time-line should have a fix repetition
value of the form [x : x]. Otherwise, the termination of the
chart cannot be ever decided. Let us consider the case of
Figure 15, where scenarios 1 and 2 are expected to occur in
sequence. The signal reaction is the last of scenario 1 and
the first of scenario 2. There is no way to decide whether the
second occurrence of the signal reaction should be collected
by scenario 1 or 2.

A more general solution, that we have not yet imple-
mented, would use a back-tracking mechanism or a pipelined
observer. We mention these ideas in Section 8.

6.4 Integrating variability constraints in Esterel

The main module is an Esterel module grouping together the
design modules running in parallel along with the scenario
observer. The list of inputs of the main module contains the
signals relating the configurations of the variability of the sys-
tem. As it is, the Esterel module accepts any combination of

Scenariol:
config: [always]
trigger: [always]

Actorl

Actor2

action
reaction[1:2]

Scenario2:
config: [always]
trigger: [always]

Actorl

Actor2

reaction

ack

Fig. 15: An example of ambiguous scenario where the final
optional signal of the first scenario conflicts with the first sig-
nal of the second scenario.

values (present/ absent) disregarding of the variability con-
straints defined in the feature model. We have defined three
different ways to express the variability constraints in Esterel:

First, we can use the Esterel constructions expressing the
exclusion and dependency between input signals. a#b means
that the input signals a and b cannot occur simultaneously
while a => b means that the presence of the signal a im-
plies the presence of b. These two constructs are expressive
enough to represent the mandatory, the optional, the exclu-
sion and the require relations. However they are not adequate
to represent or and xor group because at least one of the child
feature has to be present when the parent is present but there
is nothing in Esterel to force the presence of an input (We let
to the ready the task of expressing each relation in Esterel).

Second, we can convert the variability constraints in a
propositional formula [8] and add this constraint in the CTL
formula in input of the model checker. Let p be the proposi-
tional formula expressing the variability constraint and ¢ the
checked property in CTL. The property p = ¢ limits the
validity of the formula to the valid variants of the system

Last, we can write an combinatorial module that takes as
input a set of signals S and generate in output values for the
configuration signals of the system. The behaviour of the
module is such that every possible valuation of the signals of
S lead to a valid variant. This last solution need to modify
the interface of the main module. The signals of S have to
be added to the list of input signals whereas the configuration
signals are now declared as local signals.

6.5 The Need of Pre-Model-Checking Optimizations

The fact is that a scenario is used for checking a given trace,
or set of traces, but not the whole system behaviour: in most
cases, that does not involve each software component, and
even not each functionality of a given software component.



As a consequence, a pre-optimization can be used for prun-
ing as many dead or useless® branches as possible. Whereas
the generated netlist may be pretty large and complex, opti-
mization techniques allow to reduce massively the problem
complexity. On the netlist, just one output has to be con-
sidered, the one corresponding to the terminated signal, and
the other outputs can be ignored. A standard logical opti-
mizer would start from this output, track back the required
inputs and latches using a simple dependency analysis, and
remove all the dandling nodes that do not fan-out into the
output or such latches, thus allowing to only consider the
part of the design which is strictly necessary to the very ob-
server. This optimization, which basically consists in a depth-
search and produces a functionally equivalent model, is linear
in the size of the netlist. Further optimizations and cleaning
passes can be applied to the network, for simplifying either
the logic (balancing, refactoring, propagating constants, efc)
or the latches (retiming, merging equivalent registers).

It is noticeable that the variability can be efficiently han-
dled at this point. The actual configuration may vary from
a product to another, but we know that parameters are con-
stant for a whole product life, in opposition to regular signals
which may vary from an instant to another. Then a first ben-
efit comes from the fact that we introduced a semantic dif-
ference between variability and regular signals in Section 3.
This information allows register removals and logic mini-
mization using constant propagation if it is taken into account
by the tool: once a parameter value is set at the beginning of
the scenario, it holds till the end. The second valuable point
is that variability constraints can be used by the optimizer for
eliminating unreachable states and unnecessary logics. Thus
the state space explosion due to the design variability but also
to the gathering of the design models with the generated ob-
server can be fairly limited.

6.6 Model-Checking

A scenario is a representation of an expected or an unex-
pected behaviour. In the first case, the system is supposed
to support a run that validate the scenario. In the second, the
system should never support that run. The signal terminated
is emitted when the scenario finish successfully. The transla-
tion of the verification objective in CTL [19] is the following:
Expected scenario: EF terminated
Unexpected scenario:  AG !terminated
The INRIA Compiler [41] is provided with the Esterel ver-
ification engine called Xeve [13]. Xeve is a symbolic model
checker based on Binary Decision Diagram technology. It
takes in input a BLIF netlist along with the description of the
relations between the inputs (dependency, exclusion). One
can force the values of some inputs to present or absent or let
it free. For each output, Xeve is checking whether the sig-
nal is 1/ never emitted, 2/ possibly emitted, 3/ possibly not
emitted, or 4/ always emitted. Xeve is not doing distinction

3) With respect to the checked scenario.

17

between the depth (F/G) and the width (A/E) of the execu-
tion. In a scenario relating an expected behaviour, the output
terminated has to be possibly emitted whereas in a scenario
relating an unexpected behaviour, the output terminated has
to be never emitted.

7 Experiments

7.1 Unit testing

We have validated the correctness of our transformation from
SDv to Esterel by performing unit testing of every instruction
of the SDv language. For each instruction, we have gener-
ated a scenario that mostly use only it and we coupled this
scenario with a pseudo-design that either validates or invali-
dates the scenario. Both cases have been explored for every
instruction. We used the verification flow to check that the ac-
tual behaviour conforms to the expected one. We have writ-
ten 11 scenario frames and 17 scenarios (one for each sce-
nario frame plus one for each composition operator). These
scenario have been tested using 43 pseudo-designs where 24
conforms to the scenarios and 19 invalidates them. Every run
of the verification engine on these examples where fast (only
few milliseconds) but the size of the state space where very
limited (less than 100 states). We found a case where both
terminated and aborted where emitted simultaneously and
corrected it.

7.2 An industrial case study

We applied the proposed process to a real case-study from
the automotive industry. Among all, we have selected three
features that interact strongly and we have defined three sce-
narios. The first scenario relates an expected behaviour and
the two other relate unexpected behaviours. These scenarios
describe the interactions between the Environment (the user)
and the three controller’s features. Door Lock (DL) is the
core controller to deal with locking and unlocking actions,
Anti-Theft (AT) provides some automatic locking and safety
functionalities, and Anti-Lockout (AL) prevents the inadver-
tent lockout situations where keys are locked in the vehicle.
Figure 16 presents the three scenarios. The first relates the
main use case of the feature AL. The action AntiLockOut un-
locks the driver door when a key is detected inside the vehi-
cle.

The two other scenarios focus on the interactions between
DL and AT. When AT is enabled, it partially overrides the be-
haviour of DL. So it is not only about the correct behaviour of
AT but also that DL keeps stalling when it does. The second
scenario presents a problematic case where the theft lock is
unlocked after the normal lock. This case, if it occurs, could
physically damage the locks of the cars. Theft lock has to
be opened first. The last scenario presents another problem-
atic case. The AT feature has an option called SinglePress.



18

When one want to lock or unlock the theft lock, it could ei-
ther press twice the key button to lock first the normal lock
and then the theft lock or press once the key button to lock
both the locks (in the correct order). A similar distinction ex-
ists for the unlocking actions. This second option is available
only when the parameter PARAM _S inglePressAT is active.
The scenario describes the expected behaviour of the system
when the option SinglePress is selected. Since the precondi-
tion of the scenario is notPARAM_SinglePressAT, it is an
unexpected behaviour.

Scenario:
config: PARAM_AntiLockOutKeyInsideEnabled
trigger: [always]

AntiLockout

a) Scenario relating the expected interaction between DL
and AL.

Scenario:
config: PARAM_AT_Enabled
trigger: AT_Active

Environment

RequestUnlock
Unlock

UnlockTheftlock

b) Scenario relating the unexpected interaction between DL
and AT.

Scenario:
config: not PARAM_SinglePressAT and PARAM_AT_Enabled

trigger: PowerOFF and AllDoorsClosed
Lock

LockTheftLock

config: PARAM_AT_Enabled
trigger: AT_Active

RequestUnlock

Environment

UnlockTheftLock

Unlock

c¢) Scenario relating another unexpected interaction between
DL and AT.

Fig. 16: Experimental use cases: an entry point controller
made of three features (Door Locking, Anti-Theft, Anti-
Lockout).

Each feature is made of several concurrent statecharts, in-
teracting with each others: DL has 14 statecharts, AL has 4,
AT has 10. The Esterel code generation process translates
these three features to about 2,500 lines of code, plus 400
more lines for each observer. For improving the readability of
the Esterel code, we also make use of a library of predefined

Before reduction | After | Gain
Latches 147 83 43.5%
Gates 1,582 568 | 64.1%
Edges 3,744 1087 | 71.0%
Depth 49 22 55.1%
Table 1: Netlist optimization
Name #State space | Exec. time result
Scenariol | 16,213,825 11m 50s | possibly emitted
Scenario2 1,079,425 5s never emitted
Scenario3 267,265 5s never emitted

Table 2: Verification results

Esterel modules, such as SR latches or rising/falling edges
detectors. So we generate an Esterel module for each state-
chart, one module for the scenario, plus a top-level module
wrapping them all. The top level module is different for ev-
ery verification effort. For example, when checking the first
scenario, the feature AT could be disabled; when checking
to two others, the feature AL can be disabled. However, the
interfaces of the top level modules are the same. It has 93
inputs, among which 13 parameters specifying the variability
and 80 regular signals. The variability constraints has been
encoded as signal relation because there was no or or xor
groups to encode. Then the Esterel synthesis flow produces
a BLIF netlist. This BLIF netlist is then shrunk down by
60% in 1.27 second, using the Berkeley ABC [11] logic op-
timizer with a custom optimization script. Table 1 shows a
reduction of the size of the complexity of the network from
half to the two-thirds for the first top level modules. The two
others are optimized with a similar gain.

Finally the scenarios are verified using Xeve to determine
whether the ferminated signal can be emitted or not. The ex-
ecution time and the size of the state space is given in Table
2. One should note that for Scenario 2 and 3, the size of the
state space before the reduction made by ABC was respec-
tively 5 billions and 20 billions with an execution time of 1
and 11 hours.

8 Discussion and Further Works

We would like to extend our semantics from first occurrence
to any occurrence [45]. However, this improvement need to
deal with the problem of “frames interleavings”. When the
scenario fail, it is not enough to restart it from the begin-
ning but a back tracking mechanism has to be implemented
in the observer. For example, if the observer is expecting
the sequence of events aab but aaab comes. While receiving
the third signal a, the observer fails to match the pattern but
should not restart, instead, it should backtrack by a step only,

4 average value



as it is implemented in the Aho-Corasik algorithm [1].

We plan to tackle this issue in further works using

pipelined observers. The idea has already been used to some
extent for synthesizing logical circuits from regular expres-
sions [15]. However, regular expressions consider only one
input at a time, while big scenarios that we can consider may
have complex reactions involving dozens of signals at a time.
In some sense, this idea must be extended from one to n di-
mensions to solve this problem.

References

10.

12.

. Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An

aid to bibliographic search. Communications of the ACM, 18:333-340,
June 1975.

Charles André. SyncCharts: a Visual Representation of Reactive Be-
haviors. Technical Report RR 96-56, 13S, Sophia-Antipolis, France,
April 1996.

Charles André. Synchronous Interface Behavior: Syntax and Seman-
tics. Technical Report RR 0011, I3S, Sophia-Antipolis, France, De-
cember 2000.

Charles André. Syntax and semantics of the Clock Constraint Specifi-
cation Language (CCSL). Research Report 6925, INRIA, May 2009.
Charles André and Frédéric Mallet. Specification and verification of
time requirements with CCSL and esterel. In Christoph M. Kirsch and
Mahmut T. Kandemir, editors, LCTES, pages 167-176. ACM, June
2009.

Charles André, Frédéric Mallet, and Robert de Simone. Modeling
In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and
Frank Weil, editors, Model Driven Engineering Languages and Sys-

time(s).

tems, volume 4735 of Lecture Notes in Computer Science, pages 559—
573. Springer, 2007.

Charles André, Marie-Agnés Péraldi, and Jean-Paul Rigault. Scenario
and property checking of real-time systems using a synchronous ap-
proach. In ISORC, pages 438—444. IEEE Computer Society, 2001.

. Don Batory. Feature models, grammars, and propositional formulas.

In Henk Obbink and Klaus Pohl, editors, Software Product Lines, vol-
ume 3714 of Lecture Notes in Computer Science, pages 7-20. Springer
Berlin / Heidelberg, 2005.

A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270-1282, 1991.
Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-
wachs, Paul Le Guernic, and Robert de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE, 91(1):64-83, Jan-
uary 2003.

. Berkeley Logic Synthesis and Verification Group. ABC, release 10216.

http://www.eecs.berkeley.edu/alanmi/abc;/.

Rodrigo Bonificio and Paulo Borba. Modeling scenario variability
as crosscutting mechanisms. In Proceedings of the 8th ACM inter-
national conference on Aspect-oriented software development, AOSD
’09, pages 125-136, New York, NY, USA, 2009. ACM.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

19
Amar Bouali. Xeve: an Esterel Verification Environment (version
v1_3). Technical Report RT-0214, INRIA, Sophia-Antipolis, France,
December 1997.
Julien Boucaron and Daniel Gaffé. SyncCharts Compiler Collection.
http://julien.boucaron.free.fr/i3s/.
Janusz A. Brzozowski and Ernst Leiss. On equations for regular lan-
guages, finite automata, and sequential networks. Theoretical Com-
puter Science, 10(1):19-35, 1980.
Andreas Classen. Problem-oriented feature interaction detection in
software product lines. In Proceedings of the 9th International Confer-
ence on Feature Interactions in Software and Communication Systems
(ICFIS07), September 2007.
Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel
Legay. Beyond boolean product-line model checking: Dealing with
feature attributes and multi-features. In Proceeding of the International
conference on Software Engineering 2013 (ICSE i£;13), 2013.
Werner Damm and David Harel. LSCs: Breathing life into message
sequence charts. Formal Methods in System Design, 19:45-80, July
2001.
E. Allen Emerson. Temporal and modal logic. In HANDBOOK OF
THEORETICAL COMPUTER SCIENCE, pages 995-1072. Elsevier,
1995.
Roberto Silveira Silva Filho and David F. Redmiles. Managing fea-
ture interaction by documenting and enforcing dependencies in soft-
ware product lines. In Lydie du Bousquet and Jean-Luc Richier, ed-
itors, Feature Interactions in Software and Communication Systems
IX, International Co nference on Feature Interactions in Software and
Communication Systems, ICFI 2007, 3-5 September 2007, Grenoble,
France, pages 33—48. 10S Press, 2007.
Rick Flores, Charles Krueger, and Paul Clements. Mega-scale prod-
uct line engineering at general motors. In Proceedings of SPLC 2012,
pages 259-269, 2012.
Joel Greenyer, Amir Molzam Sharifloo, Maxime Cordy, and Patrick
Heymans. Efficient consistency checking of scenario-based product-
line specifications. In Proceeding of the international conference on
Requirement Engineering 2012 (RE’12), 2012.
Alexander Gruler, Martin Leucker, and Kathrin D. Scheidemann. Mod-
eling and model checking software product lines. In Proceedings of
FMOODS 2008, pages 113-131, 2008.
Nicolas Halbwachs. Synchronous programming of reactive systems.
Kluwer Academic Pub., 1993.
David Harel and Hillel Kugler. The Rhapsody semantics of Statecharts.
In Lecture Notes in Computer Science, volume 3147, pages 325-354.
Springer-Verlag, 2004.
Charles W. Krueger. New methods in software product line practice.
Commun. ACM, 49(12):37-40, 2006.
Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model checking
of domain artifacts in product line engineering. In ASE *09: Proceed-
ings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 269-280, Washington, DC, USA, 2009.
IEEE Computer Society.

Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann.



20

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Polychrony for system design. Journal of Circuits, Systems, and Com-
puters, 12(3):261-304, 2003.

E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework for com-
paring models of computation. [EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(12):1217-1229, Decem-
ber 1998.

Jing Liu, Samik Basu, and Robyn Lutz. Compositional model checking
of software product lines using variation point obligations. Automated
Software Engineering, 18:39-76, 2011. 10.1007/s10515-010-0075-7.
Jean-Vivien Millo, S Ramesh, Krishna Sankaranarayanan, and
Ganesh K Narwane. Compositional verification of software product
line. In Proceeding of the International conference on integrated For-
mal Method 2013 (iFM’2013), 2013.

Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure, V2.1.2, November 2007.

John O’Leary, Xudong Zhao, Rob Gerth, and Carl-Johan H. Seger.
Formally verifying ieee compliance of floating-point hardware. Intel
Technology Journal, Q1°99:1-14, 1999.

OMG. UML Profile for MARTE, v1.0. Object Management Group,
November 2009. formal/2009-11-02.

Klaus Pohl, Gifinter Bifjckle, and Frank van der Linden. Software
Product Line Engineering: Foundations, Principles, and Techniques.
Springer, Berlin Heidelberg New York, August 2005. ISBN: 3-540-
24372-0.

D. Potop-Butucaru, S.A. Edwards, and G. Berry. Compiling Esterel.
GeoJournal library. Springer, 2007.

Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Syn-
thesizing safe state machines from Esterel. Proceedings of the 2006
Conference on Language, Compilers, and Tool Support for Embedded
Systems (LCTES’06), 41:113—124, June 2006.

S. Ramesh and Purandar Bhaduri. Validation of pipelined processor

39.

40.

41.

42.

43.

44.

45.

46.

47.

designs using Esterel tools: A case study. In Proceedings of the 11th
International Conference on Computer Aided Verification (CAV’99),
pages 84-95, London, UK, 1999. Springer-Verlag.

Michel A. Reniers. Message Sequence Chart: Syntax and Semantics.
PhD thesis, Eindhoven University of Technology, 1999.

Klaus Schneider. The synchronous programming language quartz.
Technical report, Department of Computer Science, University of
Kaiserslautern, Kaiserslautern, Germany, 2009.

The Esterel Team. Esterel Compiler 5.92. http://www-
sop.inria.fr/esterel-org/filesvS_92/.

C. Traulsen, T. Amende, and R. von Hanxleden. Compiling synccharts
to synchronous c. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pages 1-4, 2011.

Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic.
Translating discrete-time simulink to lustre. ACM Transactions on Em-
bedded Computing Systems, 4, November 2005.

Frank Van der Linden, Klaus Schmid, and Eelco Rommes. Software
Product Lines in Action. Springer-Verlag, 2007.

Michael Von der Beeck. A comparison of Statecharts variants. In

Proceedings of the Third International Symposium on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, pages 128—148, Lon-
don, UK, 1994. Springer-Verlag.

Stefan Wagner, Maria Victoria Cengarle, and Peter Graubmann. Mod-
elling System Families with Message Sequence Charts: A Case Study.
Technical Report TUM-10416, Technische Universitdt Miinchen, Oc-
tober 2004.

Tewfik Ziadi, Loic Helouét, and Jean-Marc Jézéquel. Towards a UML
profile for software product lines. In Proceedings of the Fifth Inter-
national Workshop on Product Family Engineering (PFE-5), volume
3014, 2003.



