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Abstract Process networks and data-flow graphs are used to capture data-
dependencies in computation-intensive embedded systems. Their simplicity al-
lows the computation of static schedules that reduce the dynamic overhead and
increase predictability. The resulting schedule is a total ordering of actor com-
putations and communications. It can therefore become an over-specification
of the initial system when several schedules are valid. This is particularly the
case for multidimensional data-flow applications.

We propose a methodology to avoid such an over-specification. We pro-
pose to use logical time to capture explicitly all the valid schedules for a given
multi-dimensional data-flow model. Then, we show that the proposed approach
allows for a progressive and explicit refinement of computation scheduling that
also captures constraints imposed by the environment and the execution plat-
form. All this is achieved by using uml marte concepts and the resulting
models can be considered for simulation and analysis with existing tools for
early design validation. The whole approach is validated on a typical applica-
tion devoted to radar signal processing.
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1 Introduction

Computation-intensive embedded systems require the parallel execution of
data-intensive computations on several computation units. Process networks [21]
and data-flow graphs [24,23,20] are adequate to capture the data dependencies
of such systems and to compute static schedules that optimize specific criteria
such as communication buffer size. Being able to compute static schedules also
reduces the scheduling overhead on target platforms, increases predictability,
and allows precise performance estimations. Such a schedule must satisfy both
the data dependencies and the execution constraints imposed by application
functionality, execution platforms and the environment.

The execution ordering depends on constraints of different na-
tures. In general, data dependency constraints induce only a partial execution
ordering on the way an application deterministically achieves its associated
functionality. In other words, whatever constraints are added to those already
induced by data dependencies, the application always computes the same func-
tion. As the execution ordering constraints implied by the data dependencies
must be respected to ensure that the application computes the right function,
we refer to the schedule computed from data dependency constraints as the
minimal execution ordering. All valid execution orderings are more constrained
(i.e. with less parallelism) than this one.

The target execution platform constrains a refinement of the partial sched-
ule inherent to the application functionality. Typically, this application func-
tionality is scheduled and executed according to the topology of its execu-
tion platform in terms of processors and memories. A multiprocessor plat-
form with a Network-on-Chip for communications is usually more efficient for
computation-intensive embedded systems than a uniprocessor platform using
a bus. These two platforms are likely to induce different schedulings of a given
application functionality and hence lead to different execution orderings.

Beyond the data dependencies inherent to application functionality and
execution platforms, the environment can impact the application schedule.
Typically, the availability, i.e. arrival ordering, of the inputs of an application
from the environment via some sensors influences the scheduling of applica-
tion tasks for an optimal execution. Similarly, an environment can impose
some constraints on the outputs of an application, e.g. some production rate
constraints on computed data to be sent to an actuator.

Embedded system design concepts: MARTE profile. The uml pro-
file for Modeling and Analysis of Real-Time and Embedded systems, referred
to as marte [25], has been recently adopted by the omg. It extends the Unified
Modeling Language (uml) [26] with concepts required to model embedded sys-
tems. The General Component Modeling (gcm) and Repetitive Structure Mod-
eling (rsm) packages offer a support to capture the application functionality.
gcm defines all basic concepts such as data flow ports, components and con-
nectors. rsm provides concepts for expressing repetitive structures and regular
topological connections. It is essential for the expression of parallelism, in both
application modeling and execution platform modeling; and for the allocation
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of applications onto execution platforms. In the context of application model-
ing, Array-OL with delays [20] is the underlying Model of Computation and
Communication (MoCC) which expresses data dependencies independently of
the scheduling. In [20] the authors argue that Array-OL with delays is well
suited to model multidimensional signal processing applications and compare
this MoCC to others, mainly derivatives of SDF. One of the interesting charac-
teristics of Array-OL with delays is that it is more abstract than the derivatives
of SDF. Indeed, it expresses data dependencies without any implied schedul-
ing, thus leaving the choice of the schedule to later design stages. This could
be viewed as a weak point of Array-OL with delays because an Array-OL with
delays model is not executable but it is actually very useful in our opinion be-
cause it leaves all the options open to adapt the schedule to the environment
and to the hardware architecture. Thus Array-OL with delays and marte rsm
allow to express the minimal execution ordering whereas it is not generally the
case with derivatives of SDF.

The Hardware Resource Modeling (hrm) package, which specializes the
concepts of gcm into hardware devices such as processor, memory or buses al-
lows the modeling of the execution platforms in marte. The Allocation (Alloc)
package allows the modeling of the space-time allocation of application func-
tionality on an execution platform. Both the hrm and Alloc pachages can be
used with the rsm package to allow a compact modeling of repetitive hardware
(e.g. grids of processing elements) and data and computation distributions of
a parallel application onto such repetitive hardware.

The models described with the previous packages can be refined with tem-
poral properties specified within the Time package. Such properties are typ-
ically clock constraints denoting some activation rate constraints about con-
sidered components. The concepts of the Time package are often used with
the Clock Constraint Specification Language (ccsl) [3], which was initially
introduced as a non-normative annex of marte.

Our contribution.
Data dependencies are explicitly captured by typical data-flow models.

They are often constrained via specific compiler choices to obtain a particu-
lar scheduling according to which their corresponding generated code is ex-
ecuted. These scheduling choices, left to a compiler, may not necessarily be
well-adapted to scheduling requirements supported by any execution platform.
As a result, this does not enable a very flexible choice of execution platforms for
a given data dependency specification beyond compiler scheduling constraints.
For a better exploitation of compilers in accordance with execution platform
constraints, we believe that scheduling constraints should be made explicit by
refining given data dependency specifications so that typical execution con-
straints coming from environment and platform can be clearly captured. So
how can we model all possible schedules and allow a designer to select the
most appropriate one with respect to the platform and environment induced
constraints?

We propose a uniform framework, illustrated in Figure 1, based on marte
for designing computation-intensive embedded systems with the repetitive
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Fig. 1 Outline of the proposed approach

structure modeling concepts. The resulting descriptions are enriched with clock
constraints information that explicitly capture information about environment
and execution platform properties of systems. The ultimate goal of our frame-
work is to permit an easy high-level design of computation-intensive embedded
systems with a possibility to get access to simulation and analysis tools, such
as Gaspard2 [14] and TimeSquare1 for early design validation. The usage of
the proposed framework is illustrated on a radar application that aims at de-
tecting from an aircraft the objects moving on the ground. In our opinion,
the overall work presented in this paper is one of the first design methodolo-
gies about marte, which addresses various features of embedded systems by
coherently combining a large set of marte concepts.

Outline. In the following, Section 2 presents some related works. Section 3
gives some background on marte to model computation-intensive embedded
systems. Section 4 describes our proposition for the use of marte to capture,
data-dependencies and causal dependencies at application level, physical con-
straints on execution platforms and environments, and constraints induced by
the allocation of applications onto execution platforms. Section 5 illustrates
the approach on a moving target indication application used in radars. Finally,
Section 6 gives concluding remarks.

1 http://timesquare.inria.fr/
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2 Related works

The Time package of marte promotes the use of logical time as a unifying
notion of time to capture both causal dependencies and physical time relation-
ships. Logical time was first introduced by Lamport to represent the execution
of distributed systems [22]. It has been extended and used in distributed sys-
tems to check the communication and causality path correctness [11]. At the
same period, Logical time has also been used in synchronous languages [4,5] for
its polychronous and multiform nature, i.e., based on several time references.

In the synchronous programming, the notion of logical clock has proved
to be adaptable to any level of description, from very flexible causal time de-
scriptions to very precise scheduling descriptions [7]. A simple and classical
use of multiform logical time for specification is “Task 1 executes twice as
often as Task 2 ”. The instant at which Task 2 executes is taken as a time
reference to specify the execution of Task 1. An event is then expressed rela-
tive to another one, that is used as a reference. No reference to physical time
is given. Although, if the (physical) duration between two successive execu-
tions of Task1 is given, the instants at which Task2 must execute can be
deduced. Relying only on the logical specification at early stages avoids over-
specifications induced by using physical time references while the execution
platform is not fully determined, yet. Actually, physical time is a particular
case of logical time where a physical clock is taken as reference. In this paper,
we show how marte can be used to capture explicitly both data-dependencies
and execution ordering imposed by the execution platform or the environment.
Pure data-dependencies are expressed using classical data-flow languages and
the execution ordering is captured through a logical time specification in ccsl.

The Gaspard2 environment [14], which is dedicated to MPSoC provides
tools to move from a high level marte description to implementation, through
successive model transformations. The Gaspard2 modeling relies on marte. In
particular, it uses the rsm, gcm, Alloc and hrm packages to model regular and
massively parallel hardware architectures and applications. To generate auto-
matically implementations from marte specifications, a model of a system is
transformed into a new hierarchical representation where the top level repe-
tition space represents the time. At the lower level of the hierarchy, the data
dependencies are modified such that all the task instances of the system can
execute at least once, i.e., enough data are produced for all the system tasks.
More recently, the authors proposed to use ccsl to enrich Gaspard2 mod-
els with activation rate relationships [13], specified as clock properties. These
properties are therefore analyzed according to application mapping choices on
a hardware platform, and processor frequencies [1]. This paper goes further
by extracting those activation rates from the execution platform, environment
and allocation constraints.

In a previous study [19], we have shown how logical time can be used to sup-
port for an explicit capture of all valid schedules for a given data-flow model.
Our interest was focused on the semantics of Synchronous Data Flow (sdf) [24]
and its multidimensional extension: Multidimensional-sdf [23], whereas the
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idea of [19] was to replace some of the data-dependencies by logical time con-
straints. This paper instead considers the logical time as complementary of
data dependencies. Indeed, logical clocks being mono-dimensional, the capture
of multidimensional data dependencies through logical clocks is cumbersome.
This paper aims at proposing to complement multidimensional data depen-
dencies descriptions based on rsm with logical time constraints that capture
the temporal dimension.

Beyond the above studies, we can also mention the hybrid modeling para-
digms that consists in combining dataflow models and control-oriented fea-
tures such as finite state machines. Such extensions have been widely stud-
ied for both monodimensional and multidimensional dataflow models [9]. Our
approach shares a similar goal with these approaches by combining rsm to
capture the dataflow aspects of an application while logical clocks of ccsl
capture environment and platform constraints.

3 Modeling Multidimensional Data-Flow Applications and their
Schedule with MARTE

We give here an overview of the Repetitive Structure Modeling and the Time
model of the marte uml profile. We also discuss in a more precise way the
issues addressed in this paper.

Before going into the description of these packages, let us recall briefly what
is a profile. This extension mechanism of uml allows to specialize the concepts
of uml. These concepts are called “meta-classes” in the uml specification (i.e.
the uml “meta-model”) and they can be extended by a “stereotype” that pre-
cises their semantics. A stereotype is key-word that can have some parameters
called “tagged-values” and that is used in a uml diagram to tag the concepts
is applied to. Thus the marte uml profile defines lots of stereotypes orga-
nized in packages to add the ability to model and analyze real-time embedded
systems to uml.

3.1 Repetitive Structure Modeling

As detailed in [20], a MoCC dedicated to multi-dimensional signal processing
applications (typical of multi-dimensional data-flow applications) has to allow
several constructs:

– Multidimensional data arrays,
– Sub- and over-sampling,
– Data access as sliding windows,
– Cyclic access to these data arrays,
– Delays or some form of memorization.

The Array-OL with delays MoCC allows all these constructs with a limited
number of concepts and a focus on a compact representation of the poten-
tial parallelism (both data and control parallelisms) of the application. The
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control parallelism is expressed by graphs of components and the data par-
allelism is expressed by multi-dimensional repetitions similar to nested loops
with uniform data-dependencies. Both forms of parallelism can be combined
hierarchically to express complex applications. The main limitation of Array-
OL with delays is that the only data structure available is multi-dimensional
arrays of fixed size.

These concepts have been included in marte by the way of the General
Component Modeling gcm package to model data-flow (uml only considers in-
teraction by services between components and gcm adds the necessary stereo-
types to enable data flows between components) and the Repetitive Struc-
ture Modeling (rsm) package to model multidimensional arrays and data-
parallelism. As a generalization, the usage of the rsm package is not limited
to model multi-dimensionnal data-flow applications but also the parallel hard-
ware and the mapping of the application to the hardware.

rsm allows the definition of repetitive structures interconnected by regular
connection patterns, via uml extensions focusing on two aspects:

1. the multiplicity (number of potential elements) of elements can be given
as a multidimensional array, called shape;

2. the topology of complex regular interconnections (exactly which elements
of a multidimensional array are linked to elements of another multidimen-
sional array) is given in a compact way.

These very general concepts of shape and interconnection topology apply
at three different levels:

1. at the application level the shape refers to multidimensional data struc-
tures and concurrent tasks that capture the potential (logical) parallelism
within the application. The interconnection reflects the data dependencies
between the tasks and the way the data are consumed or produced by those
tasks;

2. at the execution-platform level these concepts describe the available
(physical) parallelism: the shape describes the number of resources and
the interconnection gives the way they communication links between those
resources;

3. during the allocation regular patterns capture in a compact way the
temporal scheduling and spatial mapping of application elements (e.g.,
tasks) onto the hardware execution platform resources.

Before further describing these three aspects, we give a general description
of the rsm elements.

A marte rsm description relies on uml structured classifiers and gcm to
provide a hierarchical description of the internal structure of classes. It includes
internal parts, ports and connectors. Parts can interact together when their
ports are linked by a connector. They can also interact with the outside of the
structured class when one of its ports is connected to a port of the structured
class.
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A uml MultiplicityElement gives a range (upper and lower value) to restrict
the cardinality of a mono-dimensional set of Elements. Stereotype �Shaped� of
rsm extends this metaclass to enable the specification of multidimensional
arrays of model elements. Its shape property defines the number of dimensions
and the size of each dimension as a comma-separated sequence of integers
(e.g., {3, 2} is a bi-dimensional shape). Although stereotype �Shaped� can be
applied to any element that extends MultiplicityElement, rsm recommends
to restrict its use to parts and ports. This stereotype is used to specify the
repetition space of a part or a multidimensional array associated with a port.
When applied to a port, each point of a multidimensional array corresponds
to one connection end point. To tailor precisely the connection topology, rsm
proposes, via the abstract stereotype �LinkTopology�, a mechanism to extend
uml connectors and support the description of a regular connection pattern
with a single connector. This pattern identifies as connection end points sub-
arrays of points inside a multidimensional array. The considered patterns are
multidimensional arrays themselves and are described by a shape.

3.1.1 The tiling concept

rsm allows the description of repetitive structures, i.e., a uml structured clas-
sifier that contains the repetition of a specific part where each instance of the
repeated part operates with identical sub-arrays (patterns) of the repetitive
structure arrays. The shape associated with this part defines its repetition
space.

Within a repetitive structure, when ports of a repeated part are connected
to ports of the repetitive structure, a tiler defines the relationship between an
array and a collection of identical sub-arrays (one per instance of the repeated
part). It is used to define the mathematical relation that specifies how the
pattern paves the array for each instance of the repeated part. The tiling
process is described by a tiler having the following properties:

– A fitting matrix F , which represents the distribution of the elements of one
pattern within the array. A “fitted” pattern is called a tile (the column
vectors represent the regular spacing between the elements of a pattern in
the array relatively to a reference point).

– An origin vector o, which represents the reference point of the reference
pattern (for the reference repetition2).

– A paving matrix P , which describes how the tiles are used to pave the array
(the column vectors represent the regular spacing between the reference
points of the tiles relatively to the origin).

We can summarize the pattern construction with one formula. For a given
coordinate r inside a repetition space, i.e., 0 ≤ r < srep (the repetition space
is unique for a repetition task and all its inputs and outputs) and a given

2 The instance of the repeated part whose coordinate into the repetition space is 0 on
each dimension.



MARTE for computation-intensive data-flow applications 9

0 8

0

7

r =
(
0
0

)
0 8

0

7

r =
(
1
0

)
0 8

0

7

r =
(
2
0

)

0 8

0

7

r =
(
0
1

)
0 8

0

7

r =
(
1
1

)
0 8

0

7

r =
(
2
1

)
F =

(
1 0
0 1

)
spattern =

(
3
4

)
o =

(
0
0

)
sarray =

(
9
8

)
P =

(
3 0
0 4

)
srepetition =

(
3
2

)

Fig. 2 A 2D pattern tiling exactly a 2D array

coordinate i,0 ≤ i < spattern in the pattern, the corresponding element in the
array has the coordinates:

o + (P F ) ·
(

r
i

)
mod sarray, (1)

where sarray is the shape of the array, spattern is the shape of the pattern, srep
is the shape of the repetition space.

The tiling construction allows the specification of a large range of regular
paving constructions, that varies from the simple tiling by blocks as illus-
trated in Figure 2, to complex paving constructions: non-parallel with the
axes, strides, overlapping or modulo. The �Tiler� stereotype denotes a tiling
operation. It specializes �LinkTopology� by connecting a port of the repetitive
structure to a port of the repeated part.

3.1.2 Further useful concepts

uml connectors specify one-to-one links between multidimensional arrays with
identical shapes. The stereotype �Reshape� is an extension that introduces uni-
form links between multidimensional arrays with different shapes. By tiling
the arrays with an identical pattern, it links together the tiles of the source
and destination arrays. The reshaped topology can be seen as a representation
of a repetition with no behavior, it defines a repetition space and the shape
of the pattern (the same for all connection ends). A tiler has to be associated
with each connection end and it describes how the multidimensional shape
associated with this end is tiled by the repetition of patterns of the reshape.

The stereotype �InterRepetition� denotes a connector that connects ports
of the same repeated part and expresses links between uniformly-spaced in-
stances of the repeated part. It allows modeling topologies in which instances
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of the same repetition are interconnected, such as a grid or a cube topology.
The shapes of the connected ports must be identical and property repetition-
ShapeDependence defines the translation vector within the repetition space
between linked instances. For non-modulo inter-repetition dependencies (prop-
erty modulo), some translations are computed outside the repetition space. A
connector �DefaultLink� connected to one end of the inter repetition topology
defines a link whenever the translation of the inter-repetition is undefined.
This allows the specification of default values.

3.1.3 rsm modeling of repetitive applications and execution platforms

The previous generic concepts of rsm have different interpretations according
to their use in a specification of a repetitive application or a repetitive hardware
architecture. The next paragraphs elaborate on these differences.

Repetitive applications. When modeling repetitive applications, uml classes
abstract tasks. Tasks are application-related entities of parallelism seen as
mathematical functions reading data on their input ports and writing data on
their output ports. Ports are multidimensional data arrays characterized by
their shape (�Shaped�) and direction (�FlowPort�).

The difficulty and the variety of signal processing applications does not
come from the elementary functions (often available as library functions), but
from the way these functions access their input and output data as parts of
multidimensional arrays. The repetitive constructions focus on expressing the
inherent regularity of such applications. A class with no internal structure is
seen as an elementary task (a black box) and it can be deployed on a library
function for instance. The topological links define the data dependence graph,
while the repetitive structures express how a single sub-task is repeated and
how each instance of the repeated task operates with sub-arrays of the inputs
and outputs. Making the repetitive structures independent and therefore par-
allel by construction (equivalent to the parallelization of nested-loops [10]) is
key to express data parallelism. The repetitive application model captures the
potential logical parallelism of an application.

Figure 3 shows the visual representation of a simple rsm repetitive struc-
ture for application modeling. It is an example of matrix multiplication. The
port A reads an l ×m matrix 3 and the port B reads an m × n matrix. The
output is the matrix A× B of size l × n. The tiler after the port A slices the
matrix in l vectors of size m. Each vector corresponds to a line of the matrix.
The tiler after the port B slices the matrix in n vectors of size m. Each vec-
tor corresponds to a column of the matrix. On can see the differences on the
fiting and paving vectors between these two tilers. The elementary task takes
as inputs two vectors of size m. The elementary task has a repetition space
of (l, n) 4 which means that it has to be repeated l × n times to complete

3 The shape of a port gives the size of the matrix going through the port.
4 here again, the keyword shape is used. When it is attached to an elementary task, shape

denotes the repetition space.
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Fig. 3 An l ×m-matrix is multiplied to an m× n-matrix and thus gives an l × n-matrix.

the operation. l times on to the first dimension and n times on the second
dimension. The elementary task computes the sum of the pairwise products of
the input vectors values. Each execution of the elementary task produces one
scalar value that has to be placed correctly in the output l × n-matrix. The
output tiler do so.

An rsm application conforms to the Array-OL with delays (Array Oriented
Language) Model of Computation [20]. To make Array-OL with delays appli-
cations statically schedulable, rules are imposed on the specification, namely
regarding the single assignment and the complete production of array elements.
As a consequence of the single assignment formalism (no data element is ever
written twice while it can be read several times), the spatial and temporal
dimensions are treated equally in the arrays. In particular, time is spread over
one (or several) dimension(s) of each of the arrays: Each single assignment
data structure defines the entire range of values that are conveyed on the as-
sociated port during execution, while the repetition spaces define the entire set
of instances of the repeated task that will be instantiated at execution.

An important point is that the projection of the multidimensional struc-
tures in time and space is separated from the functional specification. This
allows building functional component libraries for reuse and gives a valuable
support to carry out some architecture exploration with the least possible
restrictions.

When employed for specifying applications, an inter-repetition dependence
expresses uniform dependences between repeated instances of the same re-
peated part. Consequently, it introduces additional constraints and potentially
restricts the completely parallel execution of independent instances of a repe-
tition.

The authors showed that any repetition involved in a loop fusion transfor-
mation is split into two hierarchical repetitions where the inferior level of hier-
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archy represents blocks (i.e., identical subset) of the initial repetition space. A
given inter-repetition dependence on the initial repetition is transformed into:

1. An inter-repetition dependence on the inferior hierarchy level if initial de-
pendences are all between instances inside the same block.

2. An inter-repetition dependence on the superior hierarchy level if initial
dependences are all between instances found in different blocks.

3. Two hierarchically connected inter-repetition dependences on the two hi-
erarchy levels, defining respectively dependences inside the blocks and be-
tween different blocks.

When propagating the data-flow ordering, an inter-repetition dependence in-
side the blocks constrains the parallelism of the instances inside each block. A
dependence between blocks introduces new scheduling constraints:

– If the dependence vector follows the direction of execution dictated by the
data-flow ordering, the inter-repetition dependence just introduces new
execution dependencies between the blocks, according to the dependence
vector.

– If the dependence vector conflicts with the execution dictated by the data-
flow ordering, the inter-repetition dependence must be moved inside the
blocks, by increasing the block size through a paving transformation.

Repetitive execution platforms. When combined with the Hardware Re-
source Modeling (hrm) package of marte, the same rsm constructions can
be used to model repetitive architectures. It is especially useful for architec-
tures with a large number of identical components (like meshes of processors).
Compact representations both simplify the modeling stage but also explicitly
unify components having identical properties. Repetitive execution platforms
capture the physical parallelism of the platform.

Stereotype �distribute� is proposed in rsm to specialize the marte allocation
and is employed for designing, similar to the reshape mechanism, a repetitive
allocation of multidimensional application structures (repetitions or data) onto
repetitive architecture units. Repetitive Allocation Modeling with marte is
discussed in [6]. The allocation of functional application elements onto the
available resources (the execution platform) results in a spatial distribution
and potentially reduces the logical parallelism defined in the application. In
the context of rsm, �distribute� can be used to specify spatial projection of
the multidimensional structures and partial time projection; i.e., two data
elements allocated to the same memory element cannot be read and written
concurrently; however, their scheduling is not constrained but implicitly chosen
at scheduling time.

3.1.4 Scheduling repetitive applications

An Array-OL with delays application expresses the maximum logical paral-
lelism through the use of the repetitive structures and the uml hierarchical



MARTE for computation-intensive data-flow applications 13

decomposition. It describes the data dependencies between the elements of the
arrays. As a direct consequence, it results a strict partial execution ordering
between the tasks accessing these arrays. Any schedule that respects this or-
dering computes the same output values from the same inputs. The space-time
mapping decision is separated from the functional specification and must re-
spect the strict partial execution ordering imposed by the specification. It is
a design intention that, by expressing the minimal execution ordering, lots of
decisions can and have to be taken when mapping a marte rsm specification
onto an execution platform.

The refactoring of the application for the space-time mapping boils down to
giving a data-flow ordering (in time) for each data structure. Doing so further
constrains the partial order defined by the data dependencies. For data-flow
languages as the synchronous data-flow family, the ordering in time in which
data are processed is inherent to the semantics of the language; a complete
ordering for each data structure of sdf or a partial (by dimension) ordering
for the data structure of Mdsdf. When the data-flow ordering is not entirely
defined within the specification, this choice is often done at compilation time
and is encoded in the (offline) scheduler. Note that the scheduler usually also
makes a choice on the ordering of the task instances (and not only on the data
structures).

While this approach is very interesting at its first stage by exhibiting logical
and physical parallelism, we found various drawbacks. First, the introduction
of time information comes with a change in the structure of the application
so that it can be difficult to apprehend its impact on the application. Second,
the modification of the data dependencies over-constrains the system and in
some cases drastically reduces the potential logical parallelism. Third, such
an approach hides in the scheduling constraints the ordering of data imposed
by the environment. Fourth, the information that specifies and explicits the
links and constraints involved by: the space, the time, the environment and
the platform are scattered (i.e., almost lost) in the transformation, making it
difficult to reason about potential optimizations of the allocation.

From the previous paragraphs, one can understand the need for making
explicit scheduling choices in system specifications defined with rsm. Such a
refinement can be done by considering additional scheduling constraints (from
environments and execution platforms) expressed with clocks as described in
the marte time sub-profile.

3.2 Time in MARTE

In marte, a clock is a totally ordered set of instants. A time structure is a
set of clocks C and a set of relations on instants. I denotes the union of all
instants of all clocks within a given time structure. We consider two kinds
of relations: causal and temporal ones. The basic causal relation over I is
causality/dependency, i ∈ I, j ∈ I, i 4 j means i causes j or j depends on
i, i.e., if j occurs then i also occurs. The three basic temporal relations over
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I are precedence (≺), coincidence (≡), and exclusion (#). For any instants
i and j in a time structure, i ≺ j means that the only acceptable execution
traces are those where i occurs strictly before (precedes) j. i ≡ j imposes
instants i and j to be coincident, i.e., they must always occur at the same
execution step, both of them or none of them. i # j forbids the coincidence
of the two instants, i.e., they cannot occur at the same execution step. Note
that, some consistency rules must be enforced between causal and temporal
relations. i 4 j can be refined either as i ≺ j or i ≡ j, but j can never precede
i. Furthermore, we do not assume a global notion of time. Temporality is
given by the precedence binary relation, which is partial, asymmetric (i.e.,
antisymmetric and irreflexive) and transitive. The coincidence binary relation
is an equivalence relation on instants, i.e., reflexive, symmetric and transitive.

In this paper, we consider discrete sets of instants only, so that the instants
of a clock can be indexed by natural numbers. For a clock c, c[k] denotes its
kth instant.

Specifying a full time structure using only instant relations is not realistic
since clocks are usually infinite sets of instants. Thus, an enumerative speci-
fication of instant relations is forbidden. The Clock Constraint Specification
Language (ccsl) defines a set of time patterns between clocks that apply to
infinitely many instant relations. As an example, consider clock relation prece-
dence (denoted ≺ ). c1 ≺ c2, read ‘c1 precedes c2’, specifies that the kth

instant of clock c1 precedes the kth instant of clock c2, for all k. More for-
mally: c1 ≺ c2 means ∀k ∈ N?, c1[k] ≺ c2[k]. (c1 by m) ≺ (c2 by n) is a
grouping extension that means ∀k ∈ N?, c1[m∗k] ≺ c2[(n−1)∗k+1]. Similarly,
c1 ⊂ c2 (c1 is a sub clock of c2) means that for all k, the instant c1[k] of

c1 coincides with exactly one instant of c2. More formally: c1 ⊂ c2 means

∀k ∈ N?,∃n ∈ N? s.t. c1[k] ≡ c2[n]. The relation ⊂ is order-preserving. All

the coincidence-based relations are based on isSubclockOf. When both c1 ⊂ c2

and c2 ⊂ c1 then we say that c1 and c2 are synchronous (c1 = c2). c1 4 c2
represents causality relationships, i.e., ∀k ∈ N? s.t. c1[k] ≡ c2[k]∨c1[k] ≺ c2[k].

A ccsl specification consists of clock declarations and conjunctions of clock
relations between clock expressions. A clock expression defines a set of new
clocks from existing ones, most expressions deterministically define one single
clock. An example of clock expression is delay (denoted $d). c $d n specifies
that a new clock is created and is the exact image of c, delayed for n instants
of d. c $c n is simply written c $ n.

By combining primitive relations and expressions, we derive a very useful
clock relation that denotes a bounded precedence. c1 ≺n c2 is equivalent to

the conjunction of c1 ≺ c2 and c2 ≺ (c1 $ n). The special case, when n is
equal to 1 is called alternation and is denoted c1 ∼ c2 (reads c1 alternates
with c2).

Another useful ccsl expression is given by operator union (denoted + ).

u = c1 + c2 defines a new clock u so that u is the fastest clock that is both
a subclock of c1 and c2: ∀k ∈ N?,∃i ∈ N? s.t. u[k] ≡ c1[i] ∨ u[k] ≡ c2[i].
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The UML Profile for MARTE proposes several specific stereotypes in the
Time chapter to capture CCSL specifications. Figure 4 briefly describes the
three ones that are used in the paper. Boxes with the annotation �metaclass�

denote the uml concepts on which our profile relies, so-called metaclasses.
Boxes with �stereotype� are the concepts introduced by marte, i.e., the stereo-
types. Arrow with a filled head represent extensions, whereas normal arrows
indicate properties of the introduced stereotypes. Clock extends uml Events to
spot those events that can be used as time bases to express temporal or logical
properties. ClockConstraint extends uml Constraints to make an explicit reference
to the constrained clocks. TimedProcessing extends Action to make explicit their
start and finishing events. When those events are clocks, then a ClockConstraint

can constrain the underlying action to start or finish its execution as defined
in a ccsl specification.

« metaclass »

Event

« stereotype »

Clock

« metaclass »

Action

« stereotype »

TimedProcessing

start finish

« metaclass »

Constraint

« stereotype »

ClockConstraint

* constrainedClocks

Time

Fig. 4 Excerpt of the MARTE Time profile

Figure 5 shows an example where those stereotypes are applied. The two
actions Inversion and Filter are stereotyped �TimedProcessing�. Their respective
start and finish events are Inversion.start, Inversion.finish, Filter.start
and Filter.finish. Those events are clocks even though the stereotype is not
actually displayed on that figure. Then a clock constraint specifies that Inversion

must finish before and every time Filter starts.

The operational semantics of ccsl constraints [3] has been formally de-
fined to allow for executing such specifications. TimeSquare5 is an Eclipse-
based environment dedicated to the analysis of ccsl models. It implements
the operational semantics of ccsl constraints and eases the use of marte
stereotypes. Amongst other features it also supports the animation of Papyrus

5 http://timesquare.inria.fr
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« timedProcessing »
Inversion

« timedProcessing »
Filter

input

output

steer

output

input
data input : Matrix

steer : Command data output : Matrix

« ClockConstraint »
{Inversion.finish precedes Filter.start}

Fig. 5 Applying MARTE time constraints

uml diagrams according to a given ccsl specification. Papyrus is an academic,
open-source, uml modeling tool provided by the CEA6. Figure 6 shows an ex-
ecution trace produced by TimeSquare focusing on the four clocks involved in
modeling the inversion and the filter.The dashed-arrows represent precedence
relations between instants. Amongst others, the figure shows that the finish
of Inversion precedes the start of Filter: Inversion.finish ≺ Filter.start. The
gray boxes are called ghosts. They represent instants at which a clock could
have ticked but has not, i.e., there is no constraint that either explicitly impose
the clock to tick or prevent it from ticking.

Fig. 6 Execution trace produced with TimeSquare

Note that this simple constraint allows streaming, which is not the by-
default semantics of UML activities. Indeed, the second occurrence of Filter.start
occurs after the third occurrence of Inversion.finish. This was not imposed
by the specification (there is no dashed arrow) but this was not forbidden ei-
ther. The two ghosts between the first and the second occurrence of Filter.start
show that this second occurrence could have come earlier, but under no con-
dition before the second occurrence of Inversion.finish.

4 Modeling for Analyzing Applications in their Environment

In this section, we first discuss an alternative way to express an RSM-based
model via an abstraction in order to mitigate its complexity in terms of par-
allelism (Section 4.1). Then, we deal with the explicit encoding of both the
space-time mapping choices and environment constraints (Section 4.2). These
constraints can be injected in a specification on arbitrary data structures and
we propose a method to automatically propagate them as additional execution
constraints (Section 4.3). We represent the allocation of an application on a

6 http://www.papyrusuml.org
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hardware platform by additional constraints, which do not reduce the possible
scheduling solutions (Section 4.4).

4.1 Capturing data dependences

An RSM-based model of an application expresses the data-dependences nec-
essary to the modeled computation and thus the full potential parallelism
permitted by this computation. This parallelism is expressed only for the com-
ponents that have an implementation. The elementary components are seen as
atomic (or sequential) computations. It is thus not possible to design a parallel
library of components with hidden applications. This limits the reusability of
components in the context of codesign where the effective use of the potential
parallelism of a component is a decision that could be taken after the design
of the component library.

We propose here a rich interface (as introduced by Alfaro and Henzinger
in [2]) that exposes an abstraction of the potential parallelism of a component
while hiding its implementation. The idea is to abstract a component as a rep-
etition using the RSM concepts. Thus a designer can use such an abstraction
in lieu of a component exposing its implementation for the purpose of deciding
how to concretely use its internal parallelism.

The abstraction of a component C is built using a bottom-up process start-
ing from the elementary components used as building blocks of C up to the
top level composition of C. At each level, the process uses refactoring trans-
formations from the set of transformations described in [16,17].

At the lowest hierarchical level, the abstraction of an elementary compo-
nent is a degenerate data-parallel repetition of one time the component itself.
Indeed, there is no parallelism available, the execution is atomic.

There are two kinds of compositions to build composite components: the
data-parallel repetition and the directed acyclic graph (DAG) composition.
Let us now detail how we build our abstraction with these two compositions,
starting with the data-parallel repetition.

The problem of the data-parallel repetition is to define how to build the
abstraction of a data-parallel repetition of an abstraction of an internal re-
peated component. As this internal repeated component is abstracted itself as
a data-parallel repetition, the problem can be viewed as how to abstract as a
data-parallel repetition two nested data-parallel repetitions. This problem is
exactly solved without any loss of parallelism by the “flatten” transformation.

The problem of the DAG composition is to define how to build the ab-
straction of a DAG composition of abstractions of internal components. As
these are data-parallel repetitions, the “one-level” transformation is used to
create a new hierarchy level where the top-level component is a data-parallel
repetition of a DAG of the original internal components. The top-level repeti-
tion represents a factorization of the parallelism expressed by the repetitions
of the internal components similar to what would be obtained by loop fusions.
Actually, the “one-level” transformation is a succession of “fusion” and “flat-



18 Calin Glitia et al.

ten” transformations two components at a time on the whole graph. The final
abstraction is obtained by keeping only this top-level repetition as a way to
express part of the potential parallelism of the original DAG composition. This
process may lose some potential parallelism but keeps the parallelism that can
be expressed as nested loops with uniform dependences.

For detailed examples of these transformations, the reader is invited to
read the papers where they have been presented [16,17] and for the full details
the PhD theses of Julien Soula [27], Philippe Dumont [8] and Calin Glitia [15].

For the rest of this paper the abstraction of the internal parallelism of
a component is indistinguishable from an ordinary component exposing its
implementation.

4.2 Space-time ordering

A data structure is represented in rsm by a port associated with a multi-
dimensional shape specifying the number of elements on each dimension. To
remind the reader, each single assignment data structure defines the entire
range of values conveyed on the annotated port. At the implementation level,
these values do not coexist in the same time range and not all the values need
to be stored persistently in memory. Because all the dimensions are treated
equally and time can be spread throughout multiple dimensions, the question
is: How can we define a data-flow order in time for a multidimensional data
structure?

We propose to define a special kind of data structure, called data-flow
shape, where the time is isolated as the last dimension of the multidimensional
shape. Because it is ordered in time, it is specified by applying stereotype
�Clock� on a shape. Ordering an existing shape is achieved by allocating it
onto a data-flow shape. This allocation must use the distribute concept of
rsm to specify the exact correspondence between data elements from the two
shapes.

Figure 7 shows a distribution example. How a data-flow shape propagates
its ordering in time in the specification is the topic of the following section.
This figure shows the distribution of a data array of shape ( 8

∞ ) (on the left-
hand side) onto a flow of shape ( 12

∞ ) (on the right-hand side). To do the
distribution, the data are virtually arranged within tiles of ( 4

3 ) (shown in
the middle of the figure). The numbers from 1 to 8 indicates how the tiles
are built. The four first tiles are built from the six first columns of the data
array. Each of these tiles make one single column of the output. �distribute�
has four properties. The patternShape gives the shape of the intermediate tile
( 4
3 ). The repetitionSpace here would be {2, 2, ∗} meaning that bunches of 4

tiles ( 2
2 ) are needed infinitely often in the intermediate representation. The

fromTiler property defines how the elements are taken from the input shape
to the intermediate tile. On this example, it would be fromTiler = {origin =
{0, 1}, fitting = {{1, 0}, {0, 2}}, paving = {{0,−1}, {4, 0}, {0, 6}}}. Finally,
the toTiler property defines how the elements are taken from the intermediate
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tile and filled into the output shape. On this example, it would be toT iler =
{origin = {0, 0}, fitting = {{1, 0}, {4, 0}}, paving = {{0, 1}, {0, 2}, {0, 4}}}.
Section 3.1.1 explains the tiling concept in details. A practical example on the
use of distribute is given in the following section (Fig. 15).
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Fig. 7 The distribution of a data array of shape
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)
onto a data-flow shape of
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4.3 Capturing execution constraints

We detail how the marte/rsm application can be enriched with explicit ex-
ecution constraints. This section starts with the intra task constraints (i.e.,
how we can constrain a single (repeated) task); then, we detail the inter task
constraints that occur when various tasks are linked in a consumer/producer
manner. Then, we take into consideration the time ordering induced by the al-
location of a port onto a sensor (or actuator) port. Finally, the last subsection
details the constraints that come from the allocation of tasks onto exclusive
access resources (e.g., processors, memory, bus).

4.3.1 Intra-task dependency specification

In rsm, the structural units are (repeated) tasks. The behavior of such tasks
represents either a single instance or a set of instances depending on the repe-
tition space of the task. The execution conditions of this behavior is given by
using stereotype �TimedProcessing�. It is used to create a start and a finish clock,
which can be constrained. The minimal execution constraint used is the same
than the one introduced at the end of section 3.2: task.start ≺ task.finish.

Because in a first step, we consider only the logical parallelism, the data
from the environment are always available and a task that consumes data
from the environment has a maximal logical parallelism. Consequently, The
�TimedProcessing� behavior represents either a single instance or a set of con-
current instances. We chose to represent the task instances in an activity
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diagram (see Fig. 8). On this diagram, only the control flows are represented
for simplification and clarity.

« timedProcessing »
Act Flatten

« timedProcessing »
Instance_1

« timedProcessing »
Instance_2

« timedProcessing »
Instance_T

...
« clockConstraint »
Flatten.start causes
inf(Instance_1.start,
Instance_2.start,
…,
Instance_T.start)

« clockConstraint »
Flatten.finish =
sup(Instance_1.finish,
Instance_2.finish,
…,
Instance_T.finish)

Fig. 8 Explicit parallelism

Each instance is stereotyped �TimedProcessing� to encode the potential par-
allelism. The instances can start at the same time or after the start of its
parent behavior Flatten. Flatten finishes as soon as the latest of its contained
instances finishes. ccsl operator inf (∧) computes the slowest of the clocks
faster than n given clocks. The kth instant of c1 ∧ c2 occurs simultaneously
with the kth instant of either c1 or c2, whichever occurs first. In a dual way, sup
(∨) is the fastest of the slower clocks. Consequently, two additional constraints
make the link between the start/finish events of the compound Flatten and
the start/finish events of each instance:

– Each of the T instances can start executing only after the start event of
Flatten, expressed compactly in ccsl by :

Flatten.start 4 Instance1.start ∧ . . . ∧ InstanceT .start

– The finish event of Flatten coincides with the latest finish event of the T
instances:

Flatten.finish = Instance1.finish ∨ . . . ∨ InstanceT .finish

4.3.2 Inter-tasks dependency specification

By using the method presented in Section 3.1.4, the execution constraints
between each producer/consumer are computed. The method result is that
NT executions of the producer are needed (to create enough data) for MT

executions of the consumer:
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(Producer.finish by NT ) ≺ consumer.start

Note that parameter MT is not used in this constraint but is used to con-
strain the number of parallel task instances used in the intra task parallelism.
Consequently, MT reflects the number of instances (T ) used in the previous
subsection.

We have shown how logical time and ccsl can be used to capture the func-
tional semantics of an rsm application, by encoding the execution constraints
between computational tasks and instances. It specifies the set of correct sched-
ules and can be used to simulate the model (i.e., to compute one valid schedule
if any). These schedules respect the data dependencies but are not aware of
the execution platform constraints. It is as if the application would run on an
ideal execution platform with infinite resources (execution, storage), no com-
munication costs and where any operation can execute in zero time. When
deploying an application on a real execution platform, execution constraints
are introduced in the system. First of all we present how the deployment in-
formation is translated into additional execution constraints (specified also in
ccsl), before introducing physical time concepts associated to the hardware
platform.

4.4 Encoding execution platform constraints

The application model captures the potential parallelism and assumes infinite
resources (see Section 3.1.3). The execution platform model describes the ac-
tual resources and therefore the physical available parallelism. The allocation
process maps application model elements onto execution platform elements
thus reducing the set of correct schedules. This section discusses our propo-
sition to model explicitly the allocation constraints using marte allocation
and time subprofiles. It is important to be able to specify the allocation con-
straints so that the specification of the correct schedule stay consistent with
the model. Moreover, it enables the detection of possible conflicts caused by
the limited amount of resources. Limitations may come from the number of
physical resources available or from non-functional properties, e.g., a reduced
time budget (deadline). Subsection 4.4.1 gives an example to capture the limi-
tation of physical resources, whereas subsection 4.4.2 elaborates on constraints
that must be applied when there is a limited time budget. The two kinds of
constraints can be described independently, the composed specification is a
conjunction of all the constraints.

4.4.1 Constraints to capture limited hardware resources

This section focuses on the modeling of exclusive accesses to shared resources.
We first assume the use of a mutual exclusion mechanism (see Eq. 2), then
we show that this constraint can be relaxed if the resource allows several
concurrent accesses (Eq. 3).
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An example of such a resource is a (mono-core) processor but it is also
the case for some communication buses or shared memories. For each exclu-
sive resource Res, we define two clocks: Resacquire and Resrelease. Resacquire
represents the successive entering into the critical section, i.e., the resource
is acquired. Resrelease models the instants at which the critical resource is
released, i.e., leaving the critical section.

Now let us consider the n tasks Ti (i ∈ [0;n]) that are allocated onto this
resource. For each task Ti, we consider two clocks Tistart and Tifinish. Clock
Tistart ticks whenever the task Ti starts and therefore when Ti acquires the
shared resource Res. Clock Tifinish ticks whenever Ti finishes and releases
the shared resource7.

This informal description of exclusive resource access by concurrent tasks
can be modeled in ccsl by the two following relations.

Resacquire = T1start + T2start + . . . + Tnstart

Resrelease = T1finish + T2finish + . . . + Tnfinish

Because the access to the resource is exclusive, the resource cannot be acquired
a second time if it has not been released first. This is captured by an alternation
as follows:

Resacquire ∼ Resrelease. (2)

This latter constraint can be easily relaxed to model resources with several
degrees of re-entrance. Indeed, it would just require to replace the alternation
constraint (Eq. 2) by a bounded precedence (see Eq. 3).

Resacquire ≺n Resrelease (3)

Finally, the tasks cannot execute at the same time. This is specified in
ccsl as follows:

∀j ∈ [0;n],∀k ∈ [0;n], j 6= k, T jstart # Tkstart.

Figure 9 shows an illustration with two tasks sharing the same processor.
This section has introduced a simple exclusion mechanism assuming a non-

preemptive scheduler. However, more complex mechanisms, like the ones re-
quired in preemptive scheduling can also be encoded in ccsl [12].

4.4.2 Constraints to capture limited time budgets

When the time limitations are inherent to an application itself, �TimedProcessing�

discussed in section 3.2 can be applied to express time constraints on actions
or behaviors. To express all time limitations it may be required to refine the
application by making explicit the communication accesses. Figure 10 presents
a refined view of the application, with a new action called Transport that rep-
resents the communication itself. When communications become explicit then

7 Let us note that we do not model here the failed attempts to capture the resource but
only the successful ones.
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act Application

cd ExecutionPlatform

« HwProcessor »
Processor

« allocated »
« ClockConstraint »
{ Processor.acquire = Filter.start + Inversion.start
Processor.release = Filter.finish + Inversion.finish
Processor.acquire alternatesWith Processor.release }

« timedProcessing »
Inversion

« timedProcessing »
Filter

input

output

steer

output

input
data input : Matrix

steer : Command data output : Matrix

« ClockConstraint »
{Inversion.finish precedes Filter.start}

Fig. 9 Two tasks sharing the same processor

�TimedProcessing� is used to express constraints on the duration of the commu-
nication or relationships between the start and the end of the communication.

« timedProcessing »
Inversion

« timedProcessing »
Filter

input

output

steer

output

input
data input : Matrix

steer : Command data output : Matrix

« ClockConstraint »
{Inversion.finish precedes Filter.start}

« timedProcessing »
Transport

input

output

Fig. 10 Refined application with explicit communication accesses.

Let us note that for this model to be a refinement of the Figure 5 action
Transport must conform to the initial constraint:

Inversionfinish ≺ Filterstart

In particular, this requires to have lossless communications but does not re-
quire to have an upper bound for the communication duration.

When the time limitations come from the execution platform then alloca-
tion constraints are used in two ways:

1. spatial distribution of application tasks onto execution platform elements;
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2. temporal scheduling of application tasks relative to the physical constraints
imposed by the execution platform.

Temporal scheduling requires the association of task rates to the processor
frequency on which it is allocated. As discussed before, task rates are expressed
through logical time expressions relative to each other. Whereas, the processor
frequency is imposed by a crystal oscillator and relates to physical durations.
ccsl clocks can either be logical or physical. Since logical clocks have been
discussed a lot, we elaborate now on mechanisms provided by ccsl to build
physical clocks, so-called chronometric clocks.

The marte library defines a dense clock called idealClock that represents
the perfect physical time. ccsl operator discretizedBy allows for discretizing
dense clocks. Note that discretization is not necessarily perfect and two clocks
discretized at the same rate need not be synchronous. The next two ccsl
relations illustrate the use of this operator.

oscillator = idealClock discretizedBy 0.000001 (4)

Tfinish ≺ (Tstart $ (oscillator)120) (5)

Eq. 4 builds a new clock oscillator that represents a 1MHz oscillator. Eq. 5
expresses that the duration of task T is less than 120 µs. T can either be a
computation (e.g., Filter) of a communication (e.g., Transport).

Every part of the system can now be refined with physical time durations
and still be simulated at the model level to ensure there still exist a correct
schedule. Note that it is also possible to check the correctness of the ccsl
specification with some non-functional requirements (deadlines, etc); see [12]
for details.

5 Validation on a Radar Application

5.1 The STAP radar application: an informal description

STAP [18] is a Moving Target Indication (MTI) application (Fig. 11), whose
goal is to detect from an aircraft the objects that move on the ground, and
especially move slowly among all the other generally still reflecting surfaces
under the radar beam (ground clutter). This is done by receiving the echo from
the ground of a periodic sequence of radar pulses (bursts). Radar processing
permits to estimate both the position of a target through the delay between
transmission of a signal (pulse) and reception of its echo, and its speed through
the Doppler effect that affects echoes of several identical pulses sent periodi-
cally: the speed of the target results in a (small) variation of its distance from
the radar, which is only visible as a phase shift on the radar signal. In this
basic approach, Doppler processing consists in a bench of filters (e.g. a Fast
Fourier Transform) each tuned towards a particular phase shift between suc-
cessive echoes. This kind of Doppler processing is in some situations sufficient
to separate reflecting objects on the basis of their speed. When the beam is
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Fig. 11 STAP

directed towards the ground, the largest part of the echoed energy is supposed
to come from the still objects that compose the ground (called clutter), while
the moving objects of interest send weak but phase-shifted echoes. However,
the radar beam is not perfectly sharp and has a width of a few degrees, which
results in giving to some still objects on the ground at the borders of the beam
a relative speed with respect to the aircraft (due to the aircraft’s own speed)
and creating undesired interferences over the moving targets echoes: this cre-
ates an ambiguity between intrinsic speeds and azimuths of targets. Adaptive
filtering techniques, where fixed filters are replaced by filters that are com-
puted at run-time from the received signal itself, help to minimize at best the
effects of an unwanted clutter signal due to the movement of the aircraft: in
this MTI case, the Space Time Adaptive Processing (STAP) is used.

In this method, a set of filters is computed at every burst, by solving linear
systems whose right hand side terms are reference vectors of theoretical phase
patterns expected on antenna sub-arrays at several consecutive pulses, each of
which corresponding to a particular (velocity, angle) hypothesis of the target
relatively to the aircraft. This is shown in Figure 11 where 2D patterns on
dimensions antenna and pulse (rec) are considered to compute filters that
remove the natural ambiguity between velocity and azimuth.
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5.2 The STAP model in MARTE RSM

The STAP application was modeled in Papyrus uml using the marte Profile
(Fig. 12)8. Starting from the top level, the application is successively depicted

Fig. 12 STAP: coarse-grain data-flow level

using a compound or repetitive decomposition. The compound is made of tasks
that can be deployed on library functions. The task can be furthered decom-
posed if more parallelism must be shown or exploited (Fig. 14). The infinite
dimension of the arrays processed by GlobalSTAP represents the abstraction
of time. Figure 12 describes the data-flow level of the application including
the infinite repetition (over time) of a single STAP data treatment.

Just one sample tiler is shown, expressing how the infinite radar signals,
represented by an array of shape {8, 128, 111, ∗} is decomposed into an infin-
ity {∗} of patterns with a shape {8, 128, 111}. The paving matrix {{0, 0, 0, 1}}
expresses the correspondence between the infinite repetition and the last di-
mension of the array. The fitting matrix {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}
expresses the correspondence between the pattern dimensions and the first
three dimensions of the array.

Here the stap element needs to be further decomposed into simpler tasks
until we reach a level where elementary tasks are allocated to the model of
the execution platform. Figure 14 illustrates the compound decomposition of
the repeated task stap into successive repetitive filters, with array sizes and

8 Throughout this last section, figures are screen captures of actual uml models.
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repetition spaces shown on the figure. The tilers that express the pattern/tiles
construction for each repetition are not made visible.9 At the filter level, each
repeated task has an elementary functionality which can be deployed on library
functions: e.g., matrix inversion, average computations. Elementary tasks are
shown with a dark background whereas compound tasks are shown with a
white background.

5.3 Space time ordering

As described in Section 4.2, we first have to make explicit the time ordering
for the availability of the input data. We make the assumption that the main
input (RadarIn) with a shape {8, 128, 111, ∗} is distributed on an sensor that
provides an array of data with a shape {128, 111, ∗} (see Fig. 13).

Fig. 13 The distribution of the main input on the sensor

The eight antennas provide their signals in sequence periodically. Thus, the
8 first arrays altogether form the first burst of data of the main input. The
distribution is depicted in Figure 13. The equivalent rsm modeling using the
distribute stereotype is depicted in Figure 15.

One should also note that the consequence of this specific space time or-
dering is that the task Pulse computes its entire output arrays before the next
tasks can run. However, the other tasks can be pipelined and thus the impact
on the memory is minimal. Table 1 gives the memory space required during
the execution.

5.4 Capturing data dependencies

Following our methodology described in Section 4.3, we have computed the
following execution dependencies.

9 A complete model is available at http://www-sop.inria.fr/aoste/dev/time_square/

ccsl-rsm.
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Fig. 14 STAP decomposition
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Fig. 15 The distribution of the main input on the sensor: RSM model

Interconnection Size of the array
Sensor → Pulse 128 ∗ 111

Pulse→ CovMatrix and STAP application 8 ∗ 128 ∗ 96
CovMatrix→ Average 80 ∗ 80 ∗ 119
Average→ Inversion 80 ∗ 80
Inversion→ Filter 80 ∗ 80
SteerIn→ Filter 80 ∗ 128

Filter → STAP application 80 ∗ 128
STAP application→ Doppler 119 ∗ 128

DoppIn→ Doppler 119 ∗ 128
Doppler → OUT 128

Table 1 Memory requirement of the STAP application

Intra-task dependency specification A first trivial constraint for each task spec-
ifies that each task must start before it finishes: taskstart 4 taskfinish where

task takes values in {PulseCompression, CovMatrix, Average, Inversion,
Filter, STAP application, Doppler}.

Inter-task dependency specification Figure 16 gives the dependency constraints
extracted from Figure 14.

Intra-task parallelism specification : Each task can be parallelized to compute
patterns simultaneously. All its instances can be executed in parallel. The



30 Calin Glitia et al.

following two ccsl constraints must be applied to every task.

taskstart 4 task i1start ∧ . . . ∧ task iXstart

taskfinish = task i1finish ∨ . . . ∨ task iXfinish

where task takes values in {PulseCompression, CovMatrix,Average, Inversion,
Filter, STAP application, Doppler}.

Table 2 gives the number of parallel instances (denoted X in the following)
for each task. The last column gives the number of repetitions of each instance
required to complete a burst of data of the global input.

Task Number of parallel instances (X) Repetition
PulseCompression 128 ∗ 96 = 12288 8

CovMatrix 119 96
Average 80 ∗ 80 = 6400 96
Inversion 1 96
Filter 80 ∗ 128 = 10240 96

STAP application 119 ∗ 128 = 15232 96
Doppler 128 96

Table 2 Number of parallel instances (X) for every task

Sensor ≺ PulseCompressionstart(
PulseCompressionfinish by 8

)
≺ (CovMatrixstart by 96)(

CovMatrixfinish

)
≺ (Averagestart)(

Averagefinish

)
≺ (Inversionstart)(

Inversionfinish

)
≺ (Filterstart)(

Filterfinish

)
≺ (STAP applicationstart)(

PulseCompressionfinish by 8
)

≺ (STAP applicationstart by 96)(
STAP applicationfinish

)
≺ (Dopplerstart)

Fig. 16 Inter-task dependency specification

The STAP application does not contain any inter repetition dependencies.

5.5 Hardware allocation of the STAP application

The application has been deployed on an illustrative multi core architecture.
The architecture is composed of an array of cores with a regular communica-
tion topology such as a network-on-chip. We assume that the communication
bandwidth on the network is non-blocking.

From the data dependencies, we can see that task PulseCompression has
to be completed before the next tasks start. However, the six other tasks can
be pipelined efficiently. Thus six cores has been affected to the application.
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Task PulseCompression is distributed on the six cores. Each core deals
with 2048 (= 12288/6) instances. Then, each of the six other tasks have been
deployed on one core each. CovMatrix on core1, Average on core2 and so on.

This deployment attempts to optimize the parallel usage of the cores. How-
ever, any other optimization criteria could have been selected and captured.
To capture this allocation specification, the following ccsl constraints must
be given:

The access to core1 is shared between the 2048 first instances of task
PulseCompression and all the 119 instances of task CovMatrix. This is mod-
eled using the mechanism described in Section 4.4.1. All these instances are
executed on the same core in a mutually exclusive way, one after the other.
We do care about their relative ordering, but we do not want all of them to
be executed simultaneously.

core1acquire = CovMatrix i1start + . . . + CovMatrix i119start +

PulseCompression i1start + . . . + PulseCompression i2048start

core1release = CovMatrix i1finish + . . . + CovMatrix i119finish +

PulseCompression i1finish + . . . + PulseCompression i2048finish

Similarly, the access to the other cores is shared between 2048 instances
of task PulseCompression and all the instances of the task allocated on that
core. Moreover, each of the six cores are exclusive resources:
∀c ∈ [1, 6], core cacquire ∼ core crelease. and

∀j, k, j ∈ [0;n], k ∈ [0;n], j 6= k, T jstart # Tkstart.

where n is the number of tasks on core c and Tj, Tk are instances allocated
to core c.

5.6 Simulation in TimeSquare

The ccsl clocks and constraints extracted from the STAP application have
been entered in the tool timesquare10 and simulated. TimeSquare executes
the operational semantics of ccsl constraints step by steps. At each step, it
computes the set of all the possible solutions that satisfies the ccsl specifi-
cation. If there is no possible solution, the specification is rejected meaning
that some constraints are contradictory. If there is only one solution, then the
specification is deterministic, the solution is applied and consequently all the
clocks enabled in the solution are fired. If there are several solutions, then a
simulation policy is applied to pick one solution amongst the valid ones. In
all the simulations performed in this section, we have always chosen the bal-
anced random simulation policy, that picks randomly one solution amongst
the acceptable ones. Other simulation policies could have been chosen.

10 http://timesquare.inria.fr
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Figure 17 presents one of the possible execution traces of the STAP. This
execution highlights data dependencies imposed by rsm stereotypes. Ghosts
(gray boxes) show instants at which there were some non-determinism that was
resolved by making the clocks not ticking. As explained before, dashed arrows
show constraints imposed by the ccsl specification. The big (red) rectangle11

shows that task PulseCompression must execute eight times to process the
whole arrays upfront before any other task can execute. Then, the six other
tasks (CovMatrix, Average, Inversion, Filter, STAP , Doppler) can execute
96 times in a pipelined fashion. This pattern of execution computes exactly
one burst of data. The pattern repeats infinitely often over the time dimension.

Fig. 17 STAP data dependencies

Figure 18 focuses on the pipeline itself and on the usage of the shared
cores. It shows another possible execution trace and use the ASAP (As soon
as possible) simulation policy. In the first phase, all the six cores execute the
12288 instances of PulseCompression. Then each of the remaining six tasks is
executed on a different core. Once the pipeline is filled, then the 96 execution
can execute at full speed with a 100% usage of the cores. At the end, the
pipeline is flushed and the pattern starts again.

The STAP specification does not explicitly impose to wait for the 96th ex-
ecution of Doppler before starting the pattern again. This has been imposed
by adding a back-pressure constraint. Without this constraint, some instances
of PulseCompression could have been interleaved with the pipelined tasks.
However, this would require having buffers large enough to save several in-
stances (at least two) of the full array. This back-pressure constraint makes it
possible to process the STAP with the full array stored only once. There can-
not be a bigger reduction of the memory usage anyway since task CovMatrix
requires having access to the full array before starting its execution.

Figure 19 shows a refinement of what is happening between each cou-
ple of PulseCompressionstart and PulseCompressionfinish. The 12288 in-
stances are spread into six groups of 2048, each of which is allocated on a
different core. Each group can therefore execute concurrently, all the groups

11 This red rectangle has been superimposed for the discussion. timesquare can only display
groups of ticks of the same clock (in green).
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Fig. 18 Pipelined execution of STAP

must finish one execution before task PulseCompression can be considered
as finished. This was captured using ccsl inf and sup operators. It is de-
picted by the vertical (red) plain lines, which mark coincident instants. Each
occurrence of PulseCompressionstart coincides with the earliest of the six
groups, whereas, each occurrence of PulseCompressionfinish coincides with
the latest one. Since nothing constrains the duration of each instance, the du-
ration can be arbitrarily high. We could refine what is happening between

Fig. 19 Instances of PulseCompression executing concurrently on six cores

PulseCompression i1start and PulseCompression i1finish to see the actual
execution of the 2048 instances that execute on core1 (with a shared access).
However, that would clearly point at the limitation of pure graphical repre-
sentations and stress the need for automatic trace exploration techniques that
have not been discussed here but are also available in timesquare.

The size of the considered example poses a clear problem of scalability. The
problem is not so much to solve the Boolean constraints but rather to capture
the thousands of constraints needed to model all the instance executions. The
abstraction presented in Section 4.1 can be used to abstract away some fine
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grain parallelism at the price of a reduction of scheduling possibilities. Another
way to deal with this large number of constraints is studied in some ongoing
extensions of ccsl that could be applied at the meta-model level rather than
at the model level. With such a facility it should be possible to specify that
a constraint should apply uniformly to the 12288 instances of one particular
model element, without having to enumerate all the constraints by hand. An-
other key issue concerns visualization. Graphical representations even though
useful to understand what happens are of little help when it comes to a sys-
tematic analysis of specifications. timesquare offers support for systematic
analyses not discussed here.

6 Conclusions

rsm has been proposed in the annex of the marte profile as a means to spec-
ify logical parallelism of multi-dimensional data-flow applications. The marte
specification gives several notations to address various aspects of embedded
systems but does not provide any methodology or even real size example on
how it can be exploited. This paper describes a family of applications, i.e.,
computation-intensive embedded systems, and show how different concepts of
marte can be used to capture complementary parts. Indeed, the proposed ap-
proach combines the use of the following concepts: Generic Component Mod-
eling, Hardware Resource Modeling, Allocation, Time, Repetitive Structure
Modeling.

By using the marte time model, we first proposed a way to introduce
explicitly the ordering in time rather than hiding it in a compilation phase.
Second, we enhanced the rsm model with logical clocks whose evolutions are
constrained by ccsl to represent the correct schedules with regards to data
dependencies. It gives a formal, explicit and executable semantics to the model.
Based on this, we have shown how it is possible to add ccsl constraints that
represent allocation choices of task instances on a hardware platform. These
constraints restrict the logical parallelism by the physical parallelism of the
platform. The combined use of rsm and ccsl has been illustrated on a non-
trivial example.

Future work should consider a larger part of the design flow presented in
this paper, from requirements to analysis, so as to cover an even larger part
of marte specification.
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