
Abstract

The theory of latency-insensitive design (LID) was
recently invented to cope with the time closure
problem in otherwise synchronous circuits and
programs. The idea is to allow the inception of
arbitrarily fixed (integer) latencies for data/signals
traveling along wires. Then mechanisms such as
shell wrappers and relay-stations are introduced to
"implement" the necessary back-pressure
congestion control. As a result the LID is
behaviourally equivalent to the synchronous
specification, avoid starvation, deadlock and
congestion of local synchronous IP. We first
revisit the formal modeling of relay stations and
shells, and provide a number of properties
establishing the soundness of our models. Then we
face the issue of latency and throughput
"equalization" and moreover the problem of the
rational solution that we solve with a "fractional
register".

Table of Contents

● Introduction
● Modeling background
● Latency Insensitive Design

Dynamic scheduling
Static scheduling

● Tool development
● Conclusion and future works

Introduction

Long wire interconnect latencies induce time-
closure difficulties in modern SoC designs, with
propagation of signals across the dye in a single
clock cycle is problematic. The theory of Latency-
Insensitive Design (LID), proposed originally by L.
Carloni and al. [3, 4], offers solutions for this issue.

 LID starts from an ideal synchronous
specification model where computation and
communication are free, however those
assumptions are unrealistic (timing closure, delay).
Then after applying a de-synchronization stage
with unbounded buffers under an ASAP firing rule,
we resynchronize it using wrappers around IP
(Shells), specific wire-pipelining (Relay Stations)
and a latency insensitive synchronization protocol
that respect the partial ordering of events of the
specification. LID thus takes a synchronous
specification and build an equivalent one with
respect to ordering of events where we have stretch
the time on a given amount of cycles. We offer a
formal specification of the Shell and Relay-Station
using synchronous languages (Esterel, SyncCharts)
which are amenable to formal verification and
proof.

The foundations of the theory of static and
k-periodic scheduling for Weighted Marked
Graphs is to be found in [7,8]. In [7] the authors
name it as the Central Repetitive Problem (CRP). It
is formulated as a generic scheduling problem :
given a set of tasks, and constraints between them
and between different runs of the same task, the
goal is to execute this set of tasks infinitely while
minimizing time spent for each execution. In [8] it
is established that the scheduling of a connected
graph with cycles G, is ultimately k-periodic.
Indeed we can find a static scheduling of a LID
circuit without any synchronization protocol.

In our attempt to design a static
predictable scheduling for the whole systems, we
are now describing the successive algorithmic steps
involved in the process of equalizing the various
loop latencies.
 This last (The Fractional Register) is used
to hold back specific tokens for one instant, so that
rates are equalized and the tokens are presented
simultaneously to the computation nodes. The
desired effect is to compensate the rate difference
between cycles sharing computation node(s). It
consists of a (one-slot) register, used to "kidnap"
the token (and its value in a real setting) for one

SAME 2006 Forum October 4th & 5th 2006 1

SAME 2006 Forum

Session : TOOLS & METHODOLOGIES

Latency Insensitive Design : Dynamic and static scheduling with proper formal devices

Julien Boucaron, JeanVivien Millo and Robert de Simone : INRIA

SophiaAntipolis, France

clock cycle when a data arrive earlier. We have a
proper formal design of the Fractional Register.

Modeling background

We start from a very general definition, describing
what is common of all our models.

Definition 1 (Computation Network Scheme). We
call Computation Network Scheme (CNS) a graph
whose vertices are called computation nodes, and
whose arcs are called data transportation links.
 The intention is that nodes perform computations
by consuming a data on each of its incoming links,
and producing as a result a new data on each of its
outgoing links.

Definition 2. A Weighted Event Graph [6] (WEG)
is a CNS with integer-valued latency figures
adorning each computation node and data link.
This number indicates the time spent while
performing the corresponding computation or data
transportation. The corresponding firing rule is:
nodes fires immediately when all input tokens are
available.

WEGs can be expanded into intermediate models
where links are cut into sections by introducing
auxiliary transportation nodes (as many as the
prescribed latencies). It can be shown that the
global system preserves its essential functional
properties if the buffering mechanisms in between
transportation and computation nodes altogether
are limited to two-place buffers. Physical
implementation of these mechanisms in such case
rely on relay-stations and shell wrappers,
composing the core of so-called Latency-
Insensitive Design (LID) theory. We recall it in the
next section.

Definition 3 (Rates and critical cycles). Let G be a
WEG, and C a loop cycle in this graph. The rate r
of the loop is equal to T, where T is the
L number of tokens in the loop (which is constant),
and L is the sum of latencies labeling its arcs. The
throughput of the graph is defined as the minimum
of rates over all loops. A loop cycle is called
critical if it rate is equal to the graph throughput.

Definition 4 (Schedules). A schedule for a
computation net is a function Sched : N -> wN

assigning an infinite word wN {0, 1} to every
computation and transportation node of the net.
The intuition is that a schedule forces activity at
instants where it holds a "1", and inactivity when
"0". An infinite word w -> {0, 1} is called
ultimately periodic if it is of the form u.(v) where
u, v {0, 1}. u represents the initial part, v the
periodic one. We call the length of v (noted |v|) the
period of w, and the number of 1s in v, noted |v|1 ,

the periodicity of w. The rate r(w) of an ultimately
periodic word w is defined as |v|1/|v|. (borrow from
[5])

Latency Insensitive Design : dynamic
scheduling

 LID theory was introduced in [3]. It relies on the
fact that data links with latency, seen as physical
long wires in synchronous circuits, can be
segmented into sections. Specific elements are then
introduced the section boundaries. Such elements
are called relay-stations (RS). Instantaneous
communication is possible inside a given section,
but the values have to be buffered inside the RS
before it can be propagated to the next section. The
problem of computing realistic latencies from
physical wire lengths was tackled in [2], where a
physical synthesis floor-planner provides these
figures. Relay stations are complemented with so-
called shell wrappers (SW), which compute the
firing condition for their local synchronous
component (called "pearl" in LID theory). They do
so from the knowledge of availability of input data
and output storage slots.

Relay-Station(RS)
The signaling interface of a relay-station is
depicted in figure 1. The val signals are used to
propagate data/tokens, the stop signal are used for
congestion control. For symmetry here stop_out is
an input and stop_in an output.

figure 1: RS block diagram

 Intuitively the relay-station behaves as follows:
when traffic is clear (no stop), each data (token) is
propagated down at the next instant from the one it
was received. When a stop_out signal is received
because of downward congestion, the RS keeps its
data value. But then, the previous section and the
previous RS cannot be warned instantly of this
congestion, and so the current RS can perfectly
well receive another data at the same time it has to
keep the former one. So there is a need for the RS
to provide a second auxiliary register slot to store
this second data value. Fortunately there is no need
for a third one: in the next instant the RS cell can
propagate back a stop_in control information to
preserve itself from receiving yet another value.
Meanwhile the first data can be sent as soon as
stop_out signals are withdrawn, and the cell
remains with only one value, so that in the next
step it can already allow a new one and not send its
congestion control signal. Note that in this scheme
there is no undue gap between the data sent.

SAME 2006 Forum October 4th & 5th 2006 2

 This informal description is made formal with the
synchronous circuit and a FSM in [1].

Shell wrappers
 The purpose of shell wrappers is to trigger the
local computation node exactly when data are
available from each input data link, and there is
storage available for result in output data links. We
do suppose that computation nodes are
combinatorial elements, with time latencies
expressed outside them in the relay sections.
The signal interface of SWs consists of val_in and
stop_in signals indexed by the number of input
data links to the SW, and of val_out and stop_out
signals indexed by the number of its output data
links. There is an output clock signal in addition, to
fire the local component. This last signal will be
scheduled at the rate of local firing thus. Note that
it is here synchronous with all the val_out signals
when values are abstracted into tokens.
 The operational behavior of the SW is depicted as
a synchronous circuit in figure 2.

The Shell works as follows:
● The internal pearl's clock and all val_outi valid

output signals are generated once we have all
val_in, while stop is false. The internal stop
signal itself represents the disjunction of all
incoming stop_outj signals from outcoming
channels;

● The buffering register of a given input channel
is used meanwhile as long as not all other input
data are available;

● So, internal pearl's clock is set to false when
ever a backward stop_outj occurs as true, or a
forward val_ini is false. In such case the
registers already busy hold their true value,
while others may receive a valid data "just
now";

● Stop_ini signals are raised towards all channels
whose corresponding register was already
loaded (a data was received before, and still not
consumed), to warn them not to propagate any
value in this clock cycle. Of course such signal
cannot be sent in case the data is currently
received, as it would raise a causality paradox
(and a combinatorial cycle).

● Flip-flop registers are reset when the pearl's
clock is raised, as it consumes the input data.
Following the previous remark, the signal
stop_ini holding back the traffic in channel i is
raised for these channels where the data have
arrived before the current instant, even in this
case.

 One should note that the constraint demanded by
the relay stations for proper functioning holds here:
each output channel from the producer (is this case
the shell), one has stop_outj => ¬val_outj .

figure 2: Shell circuitry

Latency Insensitive Design : Static
Scheduling

We now turn to the issue of providing static
periodic schedules for LID systems. According to
the previous philosophy governing the design of
relay-stations, we want to provide solutions where
tokens are not allowed to accumulate at places in
large numbers. In fact we will attempt to equalize
the flows so that tokens arrive as much as possible
simultaneously at their joint computation nodes.
 An optimal time schedule can be built without
altering the global throughput on the topology of
the LID net (see [2]). Equalization is a mean to
slow-down uncritical cycles to the nearest rate of
critical cycles. Indeed Equalization does not
change or slow-down the rate of critical cycles,
thus we can still find a periodic schedule achieving
the same throughput while relaxing the rate of
uncritical cycles.

 We describe the successive steps:
Global throughput evaluation: We need to
compute the best feasible global rate, which is the
slowest rate (noted R) amongst individual loop
cycles. For this we do enumerate all elementary
cycles and compute their rates.

Integer latency insertion: This is solved by linear
programming techniques. Linear equation systems
are built to express that all elementary cycles, with
possible extra variable latencies on arcs, should
now be of rate R, the previously computed global
throughput. The equations are also formed while
enumerating the cycles in the previous phase. The
particular shape of the equation system lends itself
well to a direct greedy algorithm, stuffing
incremental additional integer latencies into the
existing systems until completion. This was
confirmed by our prototype implementations.

SAME 2006 Forum October 4th & 5th 2006 3

Schedule computation (using state space
construction): In order to compute the explicit
schedules of the initial and stationary phases we
currently need to simulate the system's behavior.
We also need to store visited state, as a termination
criterion for the simulation whenever an already
visited state is reached. The purpose is to build the
schedule patterns of computation nodes to
determine where residual fractional latency
elements have to be inserted.

Fractional latencies: In an ideally equalized
system, the schedules of distinct
computation/transportation nodes should be
precisely related: the schedule of the "next" node
should be that of the "previous" node shifted one
slot right. After we compute the effective
schedules, one can whether this is the case. If not,
then extra fractional registers need to be inserted
just after the regular register already set between
the nodes. This FR element should delay
discriminatingly some tokens (but not all).
 We shall introduce a formal model of our FR
elements in the next subsection. The block diagram
of its interfaces are displayed in figure 3.

figure 3: FR insertion in the network

Fractional register element (FR)

We now formally describe the specific FR
synchronous elements, both as a synchronous
circuit in figure 4(b) and as a corresponding Mealy
FSM in figure 4(a). The FR interface consists of
two input wires TokenIn and Hold, and one output
wire TokenOut. Its internal state consists of a
register CatchReg. The register will be used to
"kidnap" the token (and its value in a real setting)
for one clock cycle whenever Hold holds. We note
pre(CatchReg) the (boolean) value of the register
computed at the previous clock cycle. It indicates
whether the slot is currently occupied or free.

figure 4: The automaton (a) and the circuitry (b)
of the Fractional Register element

Our main design problem is now to generate Hold
signals exactly when needed to respect the previous
constraints. In addition it should be generated from
the schedules of the source and target computation
or transport nodes, to bridge from the former to the
latter. Consider again figure 3, we shall name w the
schedule of the previous source node, and w the
schedule of the next target node. After the regular
register delay the tokens are produce to the FR
entry on schedule 0.w (shifted one slot/instant
right). The fractional buffer should hold the token
exactly when the k

th
 active step at this entry is not

the k
th
 activity step at its target node that must

consume it. In other words the FR element
resynchronize its input and output. Stated formally,
this property becomes:
HOLD(n) = 1 IF F |0.wn|1 != (|w'n|1 - |w'0|1).
It says that at a given instant n we should kidnap a
value if the number of occurrences of 1 up to
instant n on the previous node is different than the
number of occurrences of 1 on the next
computation node. Figure 5 shows a possible
implementation computing Hold from signals that
would explicit provide the target and source
schedules as inputs.

figure 5: HOLD signal circuitry

Tool development

 We built a prototype tool named KPASSA (which
stands for K-Periodic Asap Schedule Simulation
and Analysis.) to simulate and analyze systems

SAME 2006 Forum October 4th & 5th 2006 4

like LID made of a combination of previous
components.
Our KPASSA tool implements the various
algorithmic stages described above. It computes
and displays the system throughput, shows critical
cycle loops and the locations of choice for extra
integer latency insertions in non-critical cycles. It
then computes an explicit schedule for each
computation and transportation node (in the future
it could be helpful to display only the important
ones), and provides locations for fractional
registers insertion. It also provides log information
on the numbers of elements added, and whether
perfect integer equalization was achieved in the
early steps.
 Tables 1 and 2 display benchmark results
obtained with KPASSA. The first examples were
obtained by assigning random latencies inside a
given range to existing block diagram
specifications. The last two examples are artificial
large models meant to test the limits of algorithmic
complexity. Table 1 records various size and
characteristics relevant to the complexity of our
algorithms. Table 2 reports some of the results
obtained: whether perfect equalization holds; the
number of fractional registers that should be
required in the initial and periodic phases (note that
FR elements may be needed in perfectly equalized
cases, when the system is not strongly connected);
the number of integer latencies added; performance
in time and space consumption.

Conclusion and Further Topics

Concerning the static scheduling, a number of
important topics are left open for further theoretical
developments:
● Relaxing the firing rule: So far the theory

developed here only consider the case where
local synchronous components all consume and
produce data on all input and output channels in
each computation step, and where they all run
on the same clock. So it can be proved that the
relaxed-synchronous version produces the same
output streams from the same input streams as
the fully synchronous specification Several
papers considered extensions in the context of
GALS systems, but then ignored the issue of
functional correspondence with an initial well-
clocked specification, which is our important
correctness criterion. This relaxation may help
to minimize some metrics :

● Discovering short and efficient
(minimizing number of FR elements)
initial phases is also an important issue
here.

● The distribution of integer latencies
over the arcs could attempt to
minimize (on average) the number of
computation nodes that are active
altogether. In other words
transportation latencies should be
balanced so that computations alternate
in time whenever possible. The goal is
here to avoid "hot spots" that is to say
flatten the power peaks. It could be
achieved by some sort of retiming/
recycling techniques and schedules

SAME 2006 Forum October 4th & 5th 2006 5

exploration still using a relaxed firing
rule;

● Marked graphs do not allow for control-flow
alternatives and control modes. One reason is
that, in a generalized setting such as full Petri
Nets, it can no longer be asserted that token are
consumed and produced at the same rate. But
explicit "branch schedules" could maybe help
regulate the branching control parts similarly to
the way they control the flow rate;

 Finally, the goal would be to define a general
GALS modeling framework, where GALS
components could be put in GALS networks (to
this day the framework is not compositional in the
sense that local components need to be
synchronous). A system would consists again of
computation and interconnect communication
blocks, this time each with appropriate triggering
clocks, and of a scheduler providing the subclocks
computation mechanism, based on their outer main
clock and several signals carrying information on
control flow.

References

[1] Julien Boucaron, Jean-Vivien Millo, and
 Robert de Simone. Another glance at relay
 stations in latency-insensitive designs. In FM-
 GALS'05, 2005.

[2] Mario R. Casu and Luca Macchiarulo. Floor-
 planning for throughput. In ISPD '04: Pro-
 ceedings of the 2004 international symposium
 on Physical design, pages 62-69, New York,
 NY, USA, 2004. ACM Press.

[3] Luca P.Carloni, Kenneth L.McMillan, and Al-
 berto L.Sangiovanni-Vincentelli. Theory of
 latency-insensitive design. IEEE Transactions
 on Computer-Aided Design of Integrated Cir-
 cuits and Systems, 2001.

[4] Luca P.Carloni, Kenneth L.McMillan, Alexan-
 der Saldanha, and Alberto L.Sangiovanni-
 Vincentelli. A methodology for correct-by-
 construction latency insensitive design. In THE
 BEST OF ICAD, 200x.

[5] Albert Cohen, Marc Duranton, Christine
 Eisenbeis, Claire Pagetti, Florence Plateau, and
 Marc Pouzet. N-synchronous kahn networks.
 In POPL 2006 Proceedings, January 2006.

[6] F. Commoner, Anatol W.Holt, Shimon Even,
 and Amir Pnueli. Marked directed graph. Jour-
 nal of Computer and System Sciences, 5:511
 523, october 1971.

[7] J. Carlier Ph. Chretienne. Probleme
d'ordonnancement: modelisation, complexite
algorithmes. Masson, Paris, 1988.

[8] F. Baccelli, G. Cohen, G.J. Olsder, and J.-P.
 Quadrat. Synchronization and Linearity. Wi-
 ley, 1992.

About the Authors

Julien Boucaron is a second-year PhD student in
the Aoste team at INRIA on a scholarship with
STMicroelectronics Project ForComent. He holds a
master degree from the university of Nice/Sophia-
Antipolis.

Jean-Vivien Millo is also (first-year) PhD student
in the Aoste team at INRIA, on a scholarship with
STMicroelectronics in the framework of the CIM
PACA Design Platform regional collaboration
initiative. He holds an engineering degree from
ESIGETEL and a master degree from university of
Marne la Vallee.

Robert de Simone is the head of INRIA Aoste
team, and a researcher at INRIA since 1985. His
former research interests include Concurrency
Theory and automatic Model-Checking, as well as
synchronous languages such as the
Esterel/SyncCharts formalisms; he is currently
involved in Globally-Asynchronous/Locally
synchronous Models of Computation.

SAME 2006 Forum October 4th & 5th 2006 6

