Formal Methods for Scheduling of Latency-Insensitive
Designs *

Julien Boucaron
AOSTE Project
INRIA Sophia-Antipolis

Robert de Simone
AOSTE Project
INRIA Sophia-Antipolis

Jean-Vivien Millo
AOSTE Project
INRIA Sophia-Antipolis

August 27, 2007

Abstract

LID (Latency-Insensitive Design) theory was in-
vented to deal with SoC timing closure issues, by
allowing arbitrary fixed integer latencies on long
global wires. Latencies are coped with using a
resynchronization protocol that performs dynamic
scheduling of data transportation. Functional be-
haviour is preserved.

This dynamic scheduling is implemented using
specific synchronous hardware elements: Relay-
Stations (RS) and Shell-Wrappers (SW). Our first
goal is to provide a formal modeling of RS and SW,
that can then be formally verified.

As turns out, resulting behaviour is k-periodic,
thus amenable to static scheduling. Our second goal
is to provide formal hardware modeling here also. It
initially performs Throughput Equalization, adding
integer latencies wherever possible; residual cases
require introduction of Fractional Registers (FRS) at
specific locations.

Benchmark results are presented, run on our
KPassa tool implementation.

1 Introduction

Long wire interconnect latencies induce time-
closure difficulties in modern SoC designs, with
propagation of signals across the die in a sin-
gle clock cycle is problematic. The theory of
Latency-Insensitive Design (LID), proposed origi-
nally by Luca Carloni, Kenneth McMillan and Al-
berto Sangiovanni-Vincentelli [7, 8], offers solutions
for this issue. This theory can roughly be described
as such: an initial fully synchronous reference spec-
ification is first desynchronized as an asynchronous
network of synchronous block components (a GALS
system); it is then re-synchronized, but this time with

*Work partially supported by ST Microelectronics and Texas
Instruments grants in the context of the French regional PACA
CIM initiative

proper interconnect mechanisms allowing specified
(integer-time) latencies.

Interconnects consist of fixed-sized lines of so-
called Relay-Stations. These Relay-Stations, to-
gether with Shell-Wrapper around the synchronous
Pearl IP blocks, are in charge of managing the sig-
nal value flows. With their help proper regulation of
the signal traffic is performed. Computation blocks
may be temporarily paused at times, either because
of input signal unavailability, or because of the in-
ability of the rest of the network to store their out-
puts if they were produced. This latter issue stems
from the limitation of fixed-size buffering capacity
of the interconnects (Relay-Station lines).

Since their invention Relay-Stations have been a
subject of attention for a number of research groups.
Extensive modeling, characterization and analysis
were provided in [9, 14, 13].

‘We mentioned before that the process of introduc-
ing latencies into synchronous networks introduced,
at least conceptually, an intermediate asynchronous
representation. This corresponds to Marked Graphs
[16], a well-studied model of computation in the lit-
erature. The main property of Marked Graph is the
absence of choice which matches with the absence
of control in LID.

Marked Graphs with latencies were also consid-
ered under the name of Weighted Marked Graphs
(WMG)[19]. We shall reduce WMGS to ordinary
Marked Graphs by introducing new intermediate
Transportation Nodes (TN), akin to the previous
Computation Nodes (CN) but with a single input and
output link. In fact LID systems can be thought of as
WMGs with buffers of capacity 2 (exactly) on link
between Computation and/or Transportation Nodes.
The Relay-Stations and Shell-Wrappers are an oper-
ational means to implement the corresponding flow-
control and congestion avoidance mechanisms with
explicit synchronous mechanisms.

The general theory of WMG provides many useful
insights. In particular it teaches us that there exists
static repetitive scheduling for such computational

behaviors [6, 2]. Such static k-periodic schedulings
have been applied to software pipelining problems
[18, 5], and later SoC LID design problems in [12].
But these solutions pay in general little attention to
the form of buffering elements that are holding val-
ues in the scheduled system, and their adequacy for
hardware circuit representation. We shall try to pro-
vide a solution that “perfectly” equalizes latencies
over reconvergent paths, so that token always arrive
simultaneously at the Computation Node. Sadly, this
cannot always be done by inserting an integer num-
ber of latency under the form of additional trans-
portation sections. One sometimes need to hold back
token for one step discriminatingly ans sometimes
does not. We provide our solution here under the
form of Fractional Registers (FR), that may hold
back values according to an (input) regular pattern
that fits the need for flow-control. Again we con-
tribute explicit synchronous descriptions of such el-
ements, with correctness properties. We also rely
deeply on a syntax for schedule representation, bor-
rowed from the theory of N-synchronous processes
[15].

Explicit static scheduling that uses predictable
synchronous elements is desirable for a number
of issues. It allows a posteriori precise re-
dimensioning of glue buffering mechanisms be-
tween local synchronous elements to allow the sys-
tem to work, and this without affecting the compo-
nents themselves. Finally, the extra virtual latencies
introduced by equalization could be absorbed by the
local computation times of CN, to resynthesize them
under relaxed timing constraints.

We built a prototype tool for equalization of la-
tencies and Fractional Registers insertion. It uses a
number of elaborated graph-theoretical and linear-
programming algorithms. We shall briefly describe
this implementation.

Contributions: Our first contribution is to pro-
vide a formal description of Relay-Stations and
Shell-Wrappers as synchronous elements [4], some-
thing that was never done before in our knowledge
(the closest effort being [10]). We introduce lo-
cal correctness properties that can easily be model-
checked; these generic local properties, when com-
bined, ensure the global property of the network.

We introduce the Equalization process to stati-
cally schedule a LID Specification: slowing down
“too fast” cycles while maintaining the original
throughput of the LID Specification. The goal is to
simplify the L1D protocol.

But rational difference of rates may still occur af-
ter Equalization process, we solve it by adding Frac-
tional Registers (FR), that may hold back values ac-
cording to a regular pattern that fits the need for

flow-control.

We introduce a new class of smooth schedules that
optimally-minimizes the number of FRS used on a
statically scheduled LID design.

Article Outline: In the next Section we provide
some definitional and notational background on var-
ious models of computations involved in our mod-
eling framework, together with an explicit repre-
sentation of periodic schedules and firing instants;
with this we can state historical results on k-periodic
scheduling of WMGs. 1In Section 3 we provide
the synchronous reactive representation of Relay-
Stations and Shell-Wrappers, show their use in
dynamic scheduling of Latency-Insensitive Design,
and describe several formal local correctness proper-
ties that help with the global correctness property of
the full network. Statically scheduled LID systems
are tackled in Section 4; we describe an algorithm to
build a statically scheduled LID, possibly adding ex-
tra virtual integer latencies and even Fractional Reg-
isters. We provide a running example to highlight
potential difficulties. We also present benchmarks
result of a prototype tool which implements the pre-
vious algorithms and their variations. We conclude
with considerations on potential further topics.

2 Modeding Framework

2.1 Computation nets

We start from a very general definition, describing
what is common of all our models.

Definition 1 (Computation Network Scheme). We
call Computation Network Scheme (CNS) a graph
whose vertices are called Computation Nodes, and
whose arcs are called links. We also allow arcs with-
out a source vertex, called input links, or without tar-
get vertex, called output links.

An instance of a CNS is depicted on Figure 1 (a).

The intention is that Computation Nodes perform
computations by consuming a data on each of its
incoming links, and producing as a result a new
data on each of its outgoing links.

The occurrence of a computation thus only de-
pends on data presence and not their actual values,
so that data can be safely abstracted as tokens. A
CNS is choice free.

In the sequel we shall often consider the spe-
cial case where the CNS forms a strongly connected
graph, unless specified explicitly.

This simple model leaves out the most important
features, that are mandatory to define its operational
semantics under the form of behavioral firing rules.
Such features are:

(b)

00'1'1'01(0'1101)*

(©)

(d)

Figure 1: (a) An example of CNS (with rectangu-
lar Computation Nodes), (b) a corresponding WMG
with latency features and token information, (c)
a SMG/LID with explicit (rectangular) Transporta-
tion Nodes and (oval) places/Relay-Stations, divid-
ing arcs according to latencies, (d) a LID with ex-
plicit schedules

o the initialization setting (where do tokens re-
side initially),

o the nature of links (combinatorial wires, simple
registers, bounded or unbounded place, ...),

e and the nature of time (synchronous, with com-
putations firing simultaneously as soon as they
can, or asynchronous, with distinct computa-
tions firing independently).

Setting up choices in these features provides distinct
Models of Computation.

2.2 Synchronous/asynchronous
sions

Ver-

Definition 2. A Synchronous Reactive Net (S/R net)
is a CNS where time is synchronous: all Computa-

tion Nodes fire simultaneously. In addition links are
either (memoryless) combinatorial wires or simple
registers, and all such registers initially hold a token.

The S/R model conforms to synchronous digital
circuits or (single-clock) synchronous reactive for-
malisms [3]. The network operates “at full speed”:
there is always a value present in each register,
so that CNs operates at each instant. As a result,
they consume all values (from registers and through
wires), and replace them again with new values pro-
duced in each register. The system is causal iff there
is at least one register along each cycle in the graph.
Causal S/R nets are well-behaved in the sense that
their semantics is well-founded.

Definition 3. A Marked Graph is a CNS where time
is asynchronous: computations are performed inde-
pendently, provided they find enough tokens in their
incoming links; links have a place holding a num-
ber of tokens; in other words, Marked Graphs form
a subclass of Petri Nets. The initial marking of the
graph is the number of tokens held in each place. In
addition a Marked Graph is said to be of capacity k
if each place can hold no more than k tokens.

There is a simple way to encode Marked Graphs
with capacity as Marked Graphs with unbounded ca-
pacity: this requires to add a reverse link for each
existing one, which contains initially a number of
tokens equal to the difference between the capacity
and the initial marking of the original link.

It was proved that a strongly connected Marked
Graph is live (each computation can always be fired
in the future) iff there is at least one token in every
cycle in the graph [16]. Also, the total number of to-
kens in a cycle is an invariant, so strongly connected
Marked Graphs are k-safe for a given capacity k.

Under proper initial conditions S/R nets and
Marked Graphs behave essentially the same, with
S/R systems performing all computations simulta-
neously “at full rate”, while similar computations

are now performed independently in time in Marked
Graph.

Definition 4. A Synchronous Marked Graph (SMG)
is a Marked Graph with an ASAP (As Soon As Possi-
ble) semantics: each Computation Node (transition)
that may fire due to the availability of it input tokens
immediately does so (for the current instant).

SMGs and the ASAP firing rule are underlying the
works of [6, 2], even though they are not explicitly
given name there.

Figure 1 (c) shows a Synchronous Marked Graph.
Note that SMGs depart from S/R models: here all
tokens are not always available.

2.3 Adding latencies and time dura-
tions

We now add latency information to indicate trans-
portation or computation durations. These latencies
shall be all along constant integers (provided from
“outside™).

Definition 5. A Weighted Marked Graph (WMG) is
a CNS with (constant integer) latency labels on links.
This number indicates the time spent while perform-

ing the corresponding token transportation along the
link.

We avoid computation latencies on CNs, which
can be encoded as transportation latencies on links
by splitting the actual CN into a begi n/ end_CN.
Since latencies are global time durations, the rele-
vant semantics which take same into account is nec-
essarily ASAP. The system dynamics also imposes
that one should record at any instant “how far” each
token is currently in its travel. This can be mod-
eled by an age stamp on token, or by expanding the
WMG links with new Transportation Nodes (TN) to
divide them into as many sections of unit latency.
TNs are akin to CNs, with the particularity that they
have unique source and target links. This expansion
amounts to reducing WMGS to (much larger) plain
SMGs. Depending on the concern, the compact or
the expanded form may be preferred.

Figure 1 (b) displays a Weighted Marked Graph
obtained by adding latencies to figure (a), which can
be expanded into the SMG of figure (c).

For correctness matters there should still be at
least one token along each cycle in the graph, and
less token on a link than its prescribed latency. This
corresponds to the correctness required on the ex-
panded SMG form.

Definition 6. A Latency-Insensitive Design (LID) is
a WMG where the expanded SMG obtained as above
uses places of capacity 2 in between CNs and TNs.

This definition reads much differently than the
original one in [8]. This comes partly from an impor-
tant concern of the authors then, which is to provide
a description built with basic components (named
Relay-Stations and Shell-Wrappers) that can easily
be implemented in hardware. Next Section 3 pro-
vides a formal representation of Relay-Stations and
Shell-Wrappers, together with their properties.

Summary CNS lead themselves quite naturally
to both synchronous and asynchronous interpreta-
tions. Under some easily expected initial conditions,
these variants can be shown to provide the same in-
put/output behaviours. With explicit latencies to be
considered in computation and data transportation

this remains true, even if congestion mechanisms
may be needed in case of bounded resources. The
equivalence in the ordering of event between a syn-
chronous circuit and a LID circuit is shown in [7],
and equivalence between a MG and a S/R design is
shown in [20].

2.4 Periodic behaviors, throughput and
explicit schedules

We now provide the definitions and classical results
needed to justify the existence of static scheduling.
This will be used mostly in Section 4, when we de-
velop our formal modeling for such scheduling using
again synchronous hardware elements.

Definition 7 (Rate, throughput and critical cy-
cles). Let G be a WMG graph, and C a cycle in this
graph.

The rate R of the cycle C' is equal to % where T is
the number of tokens in the cycle, and L is the sum
of latencies of the arcs of this given cycle.

The throughput of the graph is defined as the mini-
mum rate among all cycles of the graph.

A cycle is called critical if its rate is equal to the
throughput of the graph.

A classical result states that, provided sim-
ple structural correctness conditions, a strongly-
connected WMG runs under a ultimately k-periodic
schedule, with the throughput of the graph [6, 2]. We
borrow notation from the theory of N-synchronous
processes [15] to represent these notions formally, as
explicit analysis and design objects.

Definition 8 (Schedules, periodic words,
k-periodic schedules). A pre-schedule for a
CNS is a function Sched : N — wy assigning
an infinite binary word wy € {0,1}* to every
Computation Node and Transportation Node N
of the graph. Node N is activated (or triggered,
or fired, or run) at global instant 7 iff wy (i) = 1,
where w(i) is the i‘" letter of word w.

A pre-schedule is a schedule if the allocated ac-
tivity instants are in accordance with the token dis-
tribution (the lengthy but straightforward definition
is left to the reader). Furthermore, the schedule is
called ASAP if it activates a node N whenever all
its input tokens have arrived (according to the global
timing).

An infinite binary word w € {0,1}* is called ul-
timately periodic: if it is of the form w.(v)“ where
wand v € {0,1}*, u represents the initialization
phase, and v the periodic one.

The length of v is noted |v| and called its period. The
number of occurrences of 1s in v is denoted |v|; and
called its periodicity. The rate R of an ultimately

periodic word w is defined as %

A schedule is called k-periodic whenever for all
N, wy is a periodic word.

Thus a schedule is constructed by simulating the
CNS according to its (deterministic) ASAP firing
rule.

Furthermore, it has been shown in [2] that the
length of the stationary periodic phase (called pe-
riod) can be computed based on the structure of
the graph and the (static) latencies of cycles: for a
CSCC (Critical Strongly Connected Component)
the length of the stationary periodic phase is the
GC D (Greatest Common Divisor) over latencies of
its critical cycles. For instance assume a C.SCC
with 3 critical cycles having the following rates:
2/4,4/8,6/12, the GC'D of latencies over its crit-
ical cycles is: 4. For the graph, the length of its sta-
tionary periodic phase is the LC'M (Least Common
Multiple) over the ones computed for each CSCC's.
For instance assume the previous C'SCC and an-
other one having only one critical cycle of rate 1/2
then the length of the stationary periodic phase of
the whole graph is 2.

Figure 1(d) shows the schedules obtained on our
example. If latencies were “well-balanced” in
the graph, tokens would arrive simultaneously at
their consuming node; then, the schedule of any
Node should exactly be the one of its predecessor(s)
shifted right by one position. However it is not
the case in general when some input tokens have
to stall awaiting others. The “difference” (target
schedule minus 1-shifted source schedule) has to
be coped with by introducing specific buffering ele-
ments. This should be limited to the locations where
it is truly needed. Computing the static scheduling
this allows to avoid adding the second register that
was formerly needed everywhere in RSS, together
with some of the backpressure scheme.

The issue arises in our running example only at
the top-most Computation Node. We indicate it by
prefixing some of the inactive steps (0) in its sched-
ule by symbols: lack of input from the right input
link (), or from the left one (°).

3 SynchronoustoLID: Dynamic
Schedule

In this Section we shall briefly recall the theory of
Latency-Insensitive Design, and then focus on for-
mal modeling with synchronous components of its
main features [4].

LID theory was introduced in [7]. It relies on the
fact that links with latency, seen as physical long
wires in synchronous circuits, can be segmented into
sections. Specific elements are then introduced in
between sections. Such elements are called Relay-

Stations (RS). They are instantiated at the oval places
in Figure 1(c). Instantaneous communication is pos-
sible inside a given section, but the values have to be
buffered inside the RS before it can be propagated to
the next section. The problem of computing realistic
latencies from physical wire lengths was tackled in
[11], where a physical synthesis floor-planner pro-
vides these figures.

Relay-Stations are complemented with so-called
Shell-Wrappers (SW), which compute the firing con-
dition for their local synchronous component (called
Pearl in LID theory). They do so from the knowl-
edge of availability of input token and output storage
slots.

3.1 Reay-Stations

The signaling interface of a Relay-Station is depicted
in Figure 2. The val signals are used to propagate
tokens, the St op signal are used for congestion con-
trol. For symmetry here St op_out is an input and
st op_i n an output.

val_in val_out

1
Producer I RS .
stop_in L stop_out

Figure 2: Relay-Station - Block Diagram

Intuitively the Relay-Station behaves as follows:
when traffic is clear (no stop), each token is propa-
gated down at the next instant from the one it was
received. When a st op_out signal is received be-
cause of downward congestion, the RS keeps its to-
ken. But then, the previous section and the previous
RS cannot be warned instantly of this congestion,
and so the current RS can perfectly well receive an-
other token at the same time it has to keep the former
one. So there is a need for the RS to provide a second
auxiliary register slot to store this second token. For-
tunately there is no need for a third one: in the next
instant the RS can propagate back a st op.i n con-
trol information to preserve itself from receiving yet
another value. Meanwhile the first token can be sent
assoon as St op_out signals are withdrawn, and the
RS remains with only one value, so that in the next
step it can already allow a new one and not send its
congestion control signal. Note that in this scheme
there is no undue gap between the token sent.

This informal description is made formal with the
description of a synchronous circuit with two reg-
isters describing the RS in Figure 3, and its corre-
sponding syncchart [1] (in Mealy FSM style) in Fig-
ure 4.

The syncchart contains 4 states:

enpt y when no token are currently buffered in the

. data_in
val_in
* val_in
DATA
MAIN
HALF&val_in&
stop_out
MAIN | AUX
val_out stop_in
- v
data_out
a) b)

Figure 3: Relay-Station - a) Control Logic b) Data
Path

not (val_in)/

val_in/ not (val_in) & not (stop_out)
- / val_out(main)
val_in & not (stop_out)
/ val_out(main)

not (val_in) & stop_out/

not (stop_out)

val_in & stop_out/
/ stop_in, val_out(aux)

val_in

stop_out
/ stop_in

Figure 4: Relay-Station syncchart

RS; in this state the RS simply waits for a valid
input token coming, and store it in its mai n
register then it goes to state hal f. stop_out
signals are ignored, and not propagated up-
stream, as this RS can absorb traffic.

hal f when it holds one token; Then the RS only
transmits its current, previously received token
if ever it does not receive an halting stop_out
signal. If halting is requested, (stop_out), then
it retains its token, but must also accept a po-
tential new one coming from upstream (as it
has not sent any back-pressure holding sig-
nal yet). In the second case it becomes full,
with the second value occupying its “emer-
gency” auXiliary register. If the RS can trans-
mit (stop_out = false), it either goes back to
enpt y or retrieve a new valid signal (val_in),

remaining then in the same state. On the other
hand it still makes no provision to propagate
back-pressure (in the next clock cycle), as it is
still unnecessary due to its own buffering ca-
pacity.

ful | when it contains two tokens; then it raises in
any case the stop_in signal, propagating to the
upstream section the hold-out stop_out signal
received in the previous clock cycle. If it does
not itself receive a new stop_out, then the line
downstream was cleared enough so that it can
transmit its token; otherwise it keeps it and re-
mains halted.

error is a state which should never be reached (in
an assume/guarantee fashion). The idea is that
there should be a general precondition stating
that the environment will never send the val_in
signal whenever the RS emits the stop_in sig-
nal. This should be extended to any combi-
nation of RS, and build up a “sequential care-
set” condition on system inputs. The property
is preserved as a postcondition as each RS will
guarantee correspondingly that val_out is not
sent when stop_out arrives.

NB: The notation wval_out(main) or
val_out(aux) means emit the signal wval_out
taking its value in the buffer, respectively, main or
auz.

Correctness properties Global correctness de-
pends upon an assumption on the environment (see
description of error state above). We now list
a number of properties that should hold for Relay-
Stations, and further links made of a connected line
L, (k) of n successive RS elements and currently
containing k values (remember that a line of n RS
can store 2n values).
On a single RS:

o [0 —(stop_out A val_out) (back-pressure con-
trol takes action immediately);

o O ((stop_out N\ X (stop-out)) = X (stop-in)
(a stalled RS gets filled in two steps)

where [, O, U and X are the traditional Always,
Eventually, Until and Next (linear) temporal logic
operators. More interesting properties can be as-
serted on lines of RS elements (we assume that by
renaming stop_{in, out} and val_{in, out} signals
form the I/O interface of the global line L, (k)):

o O (—stop-out = —X"(stop-in)) (free slots
propagate backwards);

o O((stop_out U X@=F(true)) =
X@n=k)(stop_in)) (overflow);

° ((} val_in A D(O(ﬁstop_out)) = Qual_out)
(if traffic is not completely blocked from below
from a point on, then tokens get through)

The first property is true of any line of length n, the
second of any line containing initially at least k to-
kens, the third of any line.

We have implemented RSs and lines of RSs in
the Est er el synchronous language, and model-
checked combinations of these properties using
Esterel Studio' ™.

3.2 Shel-Wrappers

The purpose of Shell-Wrappers is to trigger the local
Computation Node exactly when tokens are avail-
able from each input link, and there is storage avail-
able for result in output links. It corresponds to a
notion of clock gating in circuits: the SW provides
the logical clock that activates the IP component rep-
resented by the CN. Of course this requires that the
component is physically able to run on such an irreg-
ular clock (a property called patience in LID vocab-
ulary), but this technological aspect is transparent to
our abstract modeling level. Also, it should be re-
membered that the CN is supposed to produce data
on all its outputs while consuming on all its inputs in
each computation step. This does not imply a combi-
natorial behavior, since the CN itself can contain in-
ternal registers of course. A more fancy framework
allowing computation latencies in addition to our
communication latencies would have to be encoded
in our formalism. This can be done by “splitting” the
node into a begi n_CN and a end_CN nodes, and
installing internal transportation links with desired
latencies between them; if the outputs are produced
with different latencies one should even split further
the node description. We shall not go into further
details here, and keep the same abstraction level as
in LID and WMG theories.

The signal interface of SWs consists of val _i n
and st op.i n signals indexed by the number of in-
put links to the SW, and of val _out and st op_out
signals indexed by the number of its output links.
There is an output ¢l ock signal in addition, to fire
the local component. This last signal will be sched-
uled at the rate of local firing thus. Note that it is here
synchronous with all the val _out signals when val-
ues are abstracted into tokens.

The operational behavior of the SW is depicted as
a synchronous circuit in Figure 5 (a), where each
I nput i module has to be instantiated with the
Figure 5 (b), with its signals properly renamed, fi-
nally driving the data path in Figure 5 (c). The SW is
combinatorial, it takes one clock cycle to pass from

I EsterelStudio™ is a
Technologies

trademark of FEsterel

val_out [1]

clock = VAL_OUT
val_out [i] «--

val_out [m]

ALL_VAL_IN

VAL_IN [1]

l VAL_IN[I]JE v VALININT | ¢

1 Input 1 E Input i E Input N
. stop| in [1] Estop"rin [il Istoplin [l
R
= valin[1] val_in [i] val_in [n]
|
. (@)
\
. A
vaLIN] [clock DATA_IN
val_in&clock
FF-IN
FF_OUT
B
val_in [i lstopfin i data_in
(b) (c)
Figure 5: (a) Shell-Wrapper Circuitry, (b) Input

module, and (c) Data Path

RSs before the SW, through the SW and its Pearl, and
finish into RSs in outputs of the SW. The Pearl is Pa-
tient, the state of the Pearl is only changed when
clock (periodic or sporadic) occurs.

The SW works as follows:

o the internal Pearl’s clock and all val out; valid
output signals are generated once we have all
val_in (signal ALL_V AL_IN in Figure 5 (a)),
while stop is false. The internal stop signal
itself represents the disjunction of all incom-
ing stop_out; signals from outcoming channels
(signal STOP_OUT in Figure 5 (a));

o the buffering register of a given input channel
is used meanwhile as long as not all other input
tokens are available (Figure 5 (b));

e 5o, internal Pearl’s clock is set to false when-

ever a backward stop_out; occurs as true, or a
forward val_in; is false. In such case the reg-
isters already busy hold their true value, while
others may receive a valid token “just now”;

e stop_in; signals are raised towards all chan-
nels whose corresponding register was already
loaded (a token was received before, and still
not consumed), to warn them not to propagate
any value in this clock cycle. Of course such
signal cannot be sent in case the token is cur-
rently received, as it would raise a causality
paradox (and a combinatorial cycle).

o flip-flop registers are reset when the Pearl’s
clock is raised, as it consumes the input to-
ken. Following the previous remark, the signal
stop_in; holding back the traffic in channel ¢ is
raised for these channels where the token have
arrived before the current instant, even in this
case.

Correctness properties Again we conducted a
number of model-checking experiments on SWs us-
ing ESTEREL STUDIO:

. D((3j, stop_out;)V = ﬂclock) where j is an
input index;

e 0O((3j, stop-out;) = (Vi, wal-out;))
where j/i is an input/output index respec-
tively;

o O((Vj, nstop_out; A —X(stop-out;)) =
(X (clock) = Fi, X (val_in;))) where j,i are
input index (if the SW was not suspended at
some instant by output congestion, and it trig-
gers its pearl the next instant, then it has to be
because it received a new value toke on some
input at this next instant)

On the other hand, most useful properties here would
require syntactic sugar extensions to the logics to be
easily formulated (like “a token has had to arrive on
each input before or when the SW triggers its local
Pearl”, but they can arrive in any order).

As in the case of RSs, correctness also depends on
the environmental assumption that Vi, stop_in; =
—wal_in;, meaning that upward components must
not send a value while this part of the system is
jammed.

3.3 Tool implementation

We built a prototype tool named KPASSA? to simu-
late and analyze a LID system made of a combina-
tion of previous components.

2stands for K-Periodic Asap Schedule Smulation and Analy-
sis, pronounced “Que pasa ?”

Simulation is eased by the following fact: given
that the ASAP synchronous semantics of LID ensures
determinism, for closed systems each state has ex-
actly one successor. So we store states that were al-
ready encountered to stop the simulation as soon as
a state already visited is reached.

While we will come back to the main functions
of the tool in the next Section, it can be used in this
context of dynamic scheduling to detect where the
back-pressure control mechanisms are really been
used, and which Relay-Stations actually needed their
secondary register slot to preserve from traffic con-
gestion.

4 Synchronous to LID: Static
Scheduling

We now turn to the issue of providing static peri-
odic schedules for LID systems. According to the
previous philosophy governing the design of Relay-
Stations, we want to provide solutions where tokens
are not allowed to accumulate into places in large
numbers. In fact we will attempt to equalize the
flows so that tokens arrive as much as possible si-
multaneously at their joint Computation Nodes.

We try to achieve our goal by adding new vir-
tual latencies on some paths that are faster than oth-
ers. If such an ideal scheme could lead to perfect
equalization then the second buffering slot mecha-
nism of Relay-Stations and the back-pressure con-
trol mechanisms could be done without altogether.
However it will appear that this is not always feasi-
ble. Nevertheless integer latency equalization pro-
vides a close approximation, and one can hope that
the additional correction can be implemented with
smaller and simpler Fractional Registers.

Extra virtual latencies can often be included as
computational latencies, thereby allowing the re-
design of local Computation Nodes under less strin-
gent timing budget.

As all connected graphs, general (connected) CNS
consist of Directed Acyclic Graphs of strongly con-
nected components. If there is at least one cycle in
the net it can be shown that all cycles have to run
at the rate of the slowest to avoid unbounded token
accumulation. This is also true of input token con-
sumption, and output token production rates. Before
we deal with the (harder) case of strongly connected
graphs that is our goal, we spend some time on the
(simpler) case of acyclic graphs (with a single input
link).

4.1 DAG Case

We consider the problem of equalizing latencies in
the case of Directed Acyclic Graphs (DAGs) with

a single source Computation Node (one can reduce
DAGs to this sub-case if all inputs are arriving at the
same instant), and no initial token is present in the
DAG.

Definition 9 (DAG Equalization). In this case the
problem is to equalize the DAG such that all paths
arriving to a Computation Node are having the same
latency from inputs.

We provide a sketch of the abstract algorithm and
its correction proof.

Definition 10 (Critical Arc). We define an arc
as critical if it belongs to a path of maximal la-
tency Max;(N) from the global source Computa-
tion Node to the target Computation Node N of this
arc.

Definition 11 (Equalized Computation Node). We
define a Computation Node N which is having only
incoming critical arcs to be an equalized Compu-
tation Node, i.e from any path from the source to
this Computation Node we have the same latency
Maz(N).

If a Computation Node has only one incoming arc
then this arc will be critical and this Computation
Node will be equalized by definition.

The core idea of the algorithm is first to find for
each Computation Node N of the graph what is its
maximal latency Max;(N) and to mark incoming
critical arcs; Then the second idea is to saturate all
non-critical arcs of each Computation Node of the
DAG in order to obtain an equalized DAG.

The first part of the algorithm is done through a
modified longest-path algorithm, marking incoming
critical arcs for each Computation Node of the DAG
and putting for each Computation Node V its maxi-
mal latency Max;(N) (as shown in algorithm 1).

The second part of the algorithm is done as fol-
lows (see algorithm 2): Since it may exist incom-
ing arcs of a Computation Node N that are not
critical: it exists an ¢ integer number that we can
add such that the non-critical arc becomes criti-
cal. We can compute this integer number € easily
through this formula: Maxz;(N) = Maz;(N') +
non_critical _arc; + €, where N’ is the source Com-
putation Node passing through the non-critical arc
and reaching the Computation Node N. Now, the
non-critical arc through the add of € is critical.

We apply this for all non-critical arcs of the Compu-
tation Node NV, then the Computation Node is equal-
ized.

Finally, we apply this for all Computation Nodes of
the DAG, then the DAG is equalized.

Algorithm 1 procedure

(NODE source)

Require: Graph is a DAG
for all ARC arc of source.getOutputAres()
do

NODEFE node < arc.getTargetNode();
unsigned currentLatency < arc.getLatency()
+ source.getLatency();
{if the latency of this path is greater}
if (node.getLatency() < currentLatency)
then
arc.setCritical(true);
node.setLatency(currentLatency);
{ update arcs critical field for “node” }

recursive_longest_path

forall ARC node_arc of node.getInputArcs()

do
if (node_arc.get Latency() +

node_arc.getSourceNode().get Latency() <

currentLatency) then
node_arc.setCritical(false);
else
node_arc.setCritical(true);
end if
end for
{recursive call on ”node” to update the
whole sub-graph}
recursive_longest_path(node);

end if
end for
Algorithm 2 procedure final_equalization
(GRAPH graph)

Require: Graph is a DAG
for all NODE node of graph.getNodes() do
forall ARC arcof node.getInputArcs() do
if (arc.isCritical() == false) then
unstgned maxL < node.getLatency();
unstgned € < maxL - (arc.getLatency()
+ arc.getSourceNode().getLatency());
arc.setLatency(arc.getLatency() + €);
arc.setCritical(true);
end if
end for
end for

(CY (b) (©)

Figure 6: (a) An unequalized, (b) critical paths an-
notated (large links) and (c) equalized DAG

An instance of the unequalized, critical arcs an-
notated and equalized DAG is shown in Figure 6:
Starting from the unequalized graph in Figure 6

(a):

The first pass of the algorithm is determining for
each Computation Node, its maximal latency M ax;
(in circles) and incoming critical arcs denoted using
large links as in Figure 6 (b).

The second part of the algorithm is adding ““vir-
tual” latencies (the €) on non-critical incoming arcs,
since we known what are the critical arcs coming
through each Computation Node (large links), then
we just have to add the needed amount (¢) in order
that the non-critical arc is now critical: the sub be-
tween the value of the target Computation Node, mi-
nus the sum between the arriving critical arc and its
source Computation Node maximal latency. For in-
stance, consider the Computation Node holding a 9,
the left branch is not critical, hence we are just solv-
ing9 = 6 + 1+ € and € = 2 thus the arc will now
have a latency of 3 = 1+ € and is so critical by defi-
nition. Finally the whole graph will be fully-critical
and thus equalized by definition as in Figure 6 (c).

Definition 12. A critical path is composed only of
critical arcs.

Theorem 1. DAG equalization algorithm is correct

Proof. For all Computation Nodes, there is at least
one critical arc incoming by definition; then if there
is more than one incoming arc, we add the result of
the sub between the maximum latency of the path
passing through the so-called critical arc and the add
between the non-critical arc latency and the maxi-
mum latency of the path arriving to the Computation
Node where the non-critical arc starts. Now any arc
on this given Computation Node are all critical and
thus this Computation Nodes is equalized by defini-
tion. And this is done for any Computation Node,

thus the graph is equalized. Since in any case we do
not modify any critical arc, we still have the same
maximum latency on critical paths. O

4.2 Strongly Connected Case

In this case, the successive algorithmic steps in-
volved in the process of equalization consist in:

1. Evaluate the graph throughput;

2. Insert as many additional integer latencies as
possible (without changing the global through-

put);

3. Compute the static schedule and its initial and
periodic phases;

4. Place Fractional Registers where needed;
5. Optimize the initialization phase (optional)

These steps can be illustrated on our example in
Figure 1.

1. The left cycle in Figure (b) has rate 2/2 = 1,
while the (slowest) rightmost one has rate 3/5.
Throughput is thus 3/5;

2. A single extra integer latency can be added to
the link going upward in the left cycle, bring-
ing this cycle’s rate to 2/3. Adding a second
one would bring the rate to 2/4 = 1/2, slower
than the global throughput. This leads to the
expanded form in Figure 1 (c);

3. The WMG is still not equalized. The actual
schedules of all CN can be computed (using
KPASSA, as displayed in Figure (d). Inspect-
ing closely those schedules one can notice that
in all cases the schedule of a CN is the one of
its predecessors shifted right by one position,
except for the schedule of the topmost Com-
putation Node. One can deduce from the dif-
ferences in scheduling exactly when the addi-
tional buffering capacity was required, and in-
sert dedicated Fractional Registers which delay
selectively some tokens accordingly. This only
happens for the initial phase for tokens arriving
from the right, and periodically also for tokens
arriving from the left;

4. It could be noticed that, by advancing only the
single token at the bottom of the up going right-
most link for one step, one reaches immediately
the periodic phase, thus saving the need for a
FR element on the right cycle used only in the
initial phase. Then only one FR has to be added
past the regular latch register colored in grey.

We describe now the equalization algorithm steps
in more details:

Graph throughput evaluation: For this we enu-
merate all elementary cycles and compute their
rates. While this is worst-case exponential, it is
often not the case in the kind of applications en-
countered. An alternative would be to use well-
known “minimum mean cycle problem” algorithms
(see [17] for a practical evaluation of those algo-
rithms). But the point here is that we need all those
elementary cycle for setting up Linear Programming
(LP) constraints that will allow to use efficient LP
solving techniques in the next step. We are cur-
rently investigating alternative implementations in
KPASSA.

Integer latency insertion: This is solved by LP
techniques. Linear equation systems are built to ex-
press that all elementary cycles, with possible ex-
tra variable latencies on arcs, should now be of rate
R, the previously computed global throughput. The
equations are also formed while enumerating the cy-
cles in the previous phase. An additional require-
ment entered to the solver can be that the sum of
added latencies be minimal (so they are inserted in a
best factored fashion).

Rather than computing a rational solution and then
extracting an integer approximate value for laten-
cies, the particular shape of the equation system
lends itself well to a direct greedy algorithm, stuffing
incremental additional integer latencies into the ex-
isting systems until completion. This was confirmed
by our prototype implementations.

The following example of Figure 7 shows that our
integer completion does not guarantee that all ele-
mentary cycles achieve a rate very close to the ex-
tremal. But this is here because a cycle “touches” the
slowest one in several distinct locations. While the
global throughput is of 1%, given by the inner cycle,
no integer latency can be added to the outside cycle
to bring its rate to % from i. Instead four fractional
latencies should be added (in each arc of weight 1).

‘0‘0'01(0000100001000001) 00’01(0000100000100001)

0000(00'01000010000100) 00'0'1(0000°010000100001)

Figure 7: An example of WMG where no integer la-
tency insertion can bring all the cycle rates the clos-
est to the global throughput.

Initial and Periodic phase Schedule computation:
In order to compute the explicit schedules of the ini-

tial and stationary phases we currently need to sim-
ulate the system’s behavior. We also need to store
visited state, as a termination criterion for the sim-
ulation whenever an already visited state is reached.
The purpose is to build (simultaneously or in a sec-
ond phase) the schedule patterns of Computation
Nodes, including the quote marks (*) and (°), so as
to determine where residual fractional latency ele-
ments have to be inserted.
In a synchronous run each state will have only one
successor, and this process stops as soon as a state al-
ready encountered is reached back. The main issue
here consists in the state space representation (and
its complexity). Further simplification of the state
space in symbolic BDD model-checking fashion is
also possible but it is out of the scope of this paper.
We are currently investigating (as “future work™)
analytic techniques so as to estimate these phases
without relying on this state space construction.

Fractional Register insertion: In an ideally
equalized system, the schedules of distinct Compu-
tation/Transportation Nodes should be precisely re-
lated: the schedule of the “next” CN should be that
of the “previous” CN shifted one slot right. If not,
then extra Fractional Registers need to be inserted
just after the regular register already set between
“previous” and “next” nodes. This FR should delay
discriminatingly some tokens (but not all).

We shall introduce a formal model of our FR in
the next SubSection. The block diagram of its inter-
faces are displayed in Figure 8.

We conjecture that, after integer latency equal-
ization, such elements are only required just be-
fore Computation Nodes to where cycles with dif-
ferent original rates re-converge. We prove in sub-
section 4.4 that this is true under general hypothesis
on smooth distribution of tokens along critical cy-
cles. In our prototypal approach we have decided
to allow them wherever the previous step indicated
their need. The intention is that a regular register
coupled with a FR one should almost amount to a
RS, with the only difference that the backpressure
control stop_{in/out} signal mechanisms could be
simplified due to static scheduling information com-
puted previously.

previous next
Computation |~ Computation
Node Node

Figure 8: Fractional Register insertion in the Net-
work.

Optimized initialization. So far we have only
considered the case where all components did fire
as soon as they could. Sometimes delaying some
computations or transportations in the initial phase
could lead faster to the stationary phase, or even
to a distinct stationary phase that may behave more
smoothly as to its scheduling. Consider in the ex-
ample of Figure 1 (c) the possibility of firing the
lower-right Transportation Node alone (the one on
the backward up arc) in a first step. This modifica-
tion allows the graph to reach immediately the sta-
tionary phase (in its last stage of iteration).

Initialization phases may require a lot of buffer-
ing resources temporarily, that will not be used any-
more in the stationary phase. Providing short and
buffer-efficient initialization sequences becomes a
challenge. One needs to solve two questions: first,
how to generate efficiently states reachable in an
asynchronous fashion (instead of the deterministic
asap single successor state); second, how to dis-
cover very early that a state may be part of a peri-
odic regime? These issues are still open. We are
currently experimenting with KPASSA on efficient
representation of asynchronous firings and resulting
state spaces.

Remark When applying these successive transfor-
mation and analysis steps, which may look quite
complex, it is predictable that simple sub-cases of-
ten arise, due to the well-chosen numbers provided
by the designer. Exact integer equalization is such a
case. The case when fractional adjustments only oc-
cur at reconvergence to a critical paths are also no-
ticeable. We built a prototype implementation of the
approach, which indicates that these specific cases
are indeed often met in practice.

4.3 Fractional Register element (FR)

We now formally describe the specific FR, both as
a synchronous circuit in Figure 9(b) and as a corre-
sponding syncchart (in Mealy FSM style) in Figure
9(a).

The FR interface consists of two input wires
val_in and hold, and one output wire val_out. Its in-
ternal state consists of a register catch_reg. The reg-
ister will be used to “kidnap” the valid data (and its
value in a real setting) for one clock cycle whenever
hold holds. We note pre(catch_reg) the (boolean)
value of the register computed at the previous clock
cycle. It indicates whether the slot is currently occu-
pied or free.

It is possible that the same data is held several
instants in a row. But meanwhile there should be
no new data arriving, as the FR can store only one
value; otherwise this would cause a conflict.

val_in & not (hold) val_in & hold not(val_in) & hold

S G

val_in / val_out

(@
data_in
val_in&hold
data <
reg
0 1
catch_rel
hold val_in data_out
(b) (c)

Figure 9: (a) The syncchart, (b) the interface block-
diagram of the FR, and (c) the datapath

It is also possible that a full sequence of consecu-
tive datas are held back one instant each in a burst
fashion. But then each data/value should leave the
element in the very next instant to be consumed by
the subsequent Computation Node; otherwise this
would also cause a conflict.

Stated formally, when hold A pre(catch_reg) holds
then either val_in holds, in which case the new data
enters and the current one leaves (by scheduling con-
sistency the Computation Nodes that consumes it
should then be active), or val_in does not hold, in
which case the current data remains (and, again by
scheduling consistency, then the Computation Node
should be inactive). Furthermore the two extra con-
ditions are requested:

[hold = (val_in V pre(catch_reg)):] if nothing
can be held, the scheduling does not attempt to;

[(val_in A pre(catch_reg)) = hold:] otherwise
the two datas could cross the element and be
output simultaneously.

The FR behavior amounts to the two equations:

[catch_reg = hold:] the register slot is used only
when the scheduling demands;

[val _out = val_out, V val_outs :]

e val_out; = val_in @ pre(catch_reg) A

—hold.

e val_outy =

hold.

val_in N\ pre(catch_reg) A

either a new value directly falls across, or an
old one is chased by a new one being held in its
place.

Our main design problem is now to generate hold
signals exactly when needed. Its schedule should
be the difference between the schedule of its source
(Computation or Transportation) Node shifted by
one instant, and the schedule of its target node; in-
deed, a token must be held when the target node does
not fire while the source CN did fire to produce a to-
ken last instant, or if the token was already held at
last instant.

Consider again Figure 8, we shall name w the
schedule of the previous source CN, and w’ the
schedule of the next target CN. After the regular
register delay the datas are produce to the FR en-
try on schedule 0.w (shifted one slot/instant right).
The Fractional Register should hold the data exactly
when the k" active step at this entry is not the k*"
activity step at its target CN that must consume it.
In other words the FR resynchronize its input and
output, which cannot be away be more than one ac-
tivity step. This last property is true as the schedules
were computed using the LID approach with Relay-
Stations, which do not allow more than one extra to-
ken in addition to the regular one on each arc be-
tween Computation or Transportation Nodes.

Stated formally, this property becomes:
hold(n) = 1 iff [0wali # (i — [whly).
It says that at a given instant n. we should kidnap a
value if the number of occurrences of 1 up to instant
n on the previous CN is different than the number
of occurrences of 1 on the next Computation Node.
More precisely, the —|wg|; term takes care of a
possible initial activity at the target CN, not caused
by the propagation of tokens from the source CN,
that would have to be removed.

hold A

1
current next

Figure 10: hold implementation.

Figure 10 shows a possible implementation com-
puting hold from signals that would explicit provide
the target and source schedules as inputs.

Correctness properties It can be formally proved
that, under proper assumptions, a full RS is sequen-
tially equivalent to a system made of a regular reg-
ister followed by a fractional one, with the respec-

tive stop_out and hold signal equated (as in figure
11). The exact assumption is that a stop_out/hold
signal is never received when the systems consid-
ered are already full (both registers occupied in each
case). Providing this assumption to a model-checker
is cumbersome, as it deals with internal states. It
can thus be replaced by the fact that never in history
there are more than one val_in signal received in ex-
cess of the val_out signals sent. This can easily be
encoded by a synchronous observer.

In essence the previous property states that the
two systems are equivalent safe for the emission of
stop_in on a full RS. This emission can also be shown
to be simulated by inserting the previous HOLD
component with proper inputs. Of course this does
not mean that the implementation will use such a dy-
namic HOLD pattern, but that simulating its effect
(because the static scheduling instructs us of when
to generate the signal) would make things equal to
the former RS case.

.................

val_in stop_in

Pt

val_in l stop_in vy

HOLD
[\
__/

7Y
(@ (b)

not (val_in)/

not (val_in) & not (stop_out)

val_in/
/ val_out(reg DFR)

val_in & not (stop_out)

/ val_out(regcDFR
B CCDS

not (stop_out)
Ival_out(FR) + SHIFT()

not (val_in) & stop_out
/ + SHIFT()

val_in & stop_out/

SHIFT() : the data in register "reg" goes in the "FR".
It is a internal function.
©

Figure 11: Equivalence of RS and FR roles

4.4 |ssuesof optimal FR allocation

As already mentioned in the case of a SCC we still
do not have a proof that in the stationary phase it is
enough to include such elements at the entry points
of Computation Nodes only, so they can be installed
in place of more Relay-Stations also. Furthermore
it is easy to find initialization phases where tokens
in excess will accumulate at any locations, before
the rate of (the) slowest cycle(s) distribute them in a
smoother, evenly distributed pattern. Still we have
several hints that partially deal with the issue. It
should be remembered here that, even without the
result, we can equalize latencies (it just needs adding
more FRS).

Definition 13 (Smoothness). A schedule is called
smooth if the sequences of successive 0 (inactive) in-
stants in the schedule in between two consecutive 1
cannot differ by more than 1. The schedule (1001)*
is not smooth since they are two consecutive 0 be-
tween the first and second occurrences of 1, while
there is none between the second and the third.

Conjecture 1. If all Computation Node schedules
are smooth, rates can be equalized using FR only at
Computation Node entry points.

Counter example 1. We originally thought that the
conjecture 1 should be sufficient, but the counter ex-
ample of the figure 12 was found: Assume a simple
graph formed with two cycles sharing one CN. The
first critical cycle has 7 tokens and 11 latencies, the
second one has 5 tokens and 7 latencies. It exists
a stationary phase were the schedule of all CN is
smooth (it’s [10101010111] or any rotation of this
word) but we need two successive FRs on the non
critical cycle because only one FR should overflow.

10111101010 10101011110

:I - “\
ic1:5/7 C2:7/1%
‘ 01010301111 /

Figure 12: Counter example of the conjecture 1. the
FR overflow at instant 7.

The reason of this failure is that the definition of
smoothness is not restrictive enough. In the sched-
ule of the counter-example 12, the pattern 10 is re-
peated 3 times at the beginning and we have 3 oc-
currences of 1 (which are not followed by any 0) at
the end. 0 and 1 are not spread regularly enough in

the schedule. However, if the schedule of the CN be-
come (01011011011), we now need only one FR on
the non critical cycle.

We propose a new definition:

Definition 14 (Extended Smoothness). A schedule
w is said extended smooth if any subword, with a
length [, contains either n bits at 1 orn + 1 bits at 1,
where n is equal to Ll*l‘;jlh |, |w|y is the number of
occurrences of 1 in w and |w] is the length of w.

4.5 Tool implementation

Our KPASSA tool implements the various algorith-
mic stages described above. Given that we could not
yet prove that FR were only required at specific lo-
cations, the tool is ready to insert some anywhere.
KPASSA computes and displays the system through-
put, shows critical cycles and the locations of choice
for extra integer latency insertions in non-critical cy-
cles. It then computes an explicit schedule for each
Computation and Transportation Node (in the fu-
ture it could be helpful to display only the important
ones), and provides locations for Fractional Regis-
ters insertion. It also provides log information on
the numbers of elements added, and whether perfect
integer equalization was achieved in the early steps.

In the future, we plan to experiment with algo-
rithms for finding efficient asynchronous transitory
initial phases that may reach the stationary peri-
odic regime faster than with the current ASAP syn-
chronous firing rule.

Figure 13 displays a screen copy of KPASSA on a
case study drawn from [9]. Using the original la-
tency specifications our tool found a static sched-
ule using less resources than the former implemen-
tation based on Relay-Stations and dynamic back-
pressure mechanisms. And now the activation peri-
ods of components are fully predictable.

5 Experimentson casestudies

Tables 1 and 2 display benchmark results obtained
with KPASSA on a number of case studies. The first
examples were built from [9] for MPEG2 Video En-
coder and from existing and publicly available mod-
els of structural IP block diagrams (IP MegaStore
of Altera). But the latency figures were suggested
by ours industrial partners of PACA CIM initiative
In [11] the authors use a public-domain floorplanner
to synthesize approximate latency figures, based on
wire lengths induced by the placement of IPs. The
last two examples are based on graph shapes and la-
tency distribution that are a priori adverse to the ap-
proach (without being formerly worst-cases).

Frane Memory |+ 0T | i
o B e Weanteer regutator

Inyerse Quantizer|

\

=
tc]

SR HCRENS 5 Cowmnae

Toput| ki
¥ 3
e
wPreprocessing |Motion Conpensation | Memory Frane
bi] i T
- g4
Motion Estination %5 e”COC‘EV'BCL)IEFER.
7 a o
o B— iy
11 "
Inverse Quantizer
111000000100 1001(01010013*
T 5
(B) -

10cT
%‘ 111000000100100(10101003*

£ 4

f

Figure 13: An example simulation result (MPEG2
Encoder) with KPASSA. In (A), the graph; in (B),
the displayed schedules for two vertices

Table 1 provides features of size that are relevant
to the algorithmic complexity. Table 2 reports the
results obtained, about: whether Perfect Equaliza-
tion holds; on the number of Fractional Registers
required in the initial and periodic phases (note that
some FR elements may still be needed for the ini-
tial part even in perfectly equalized cases); on the
number of integer latencies added; on time and space
performances.

The current implementation of the tool is not yet
optimized for complexity in time and space, until
now this is not yet important. The graph state en-
coding is naive, and algorithms are not optimal.

KPASSA is a formal tool that is able to compute
effectively the length of initialization and periodic
pattern, to compute an upper-bound of the number
of resources used for the implementation. The tool
provides huge preliminary implementations for the
static-scheduled LID, but it let us experiment new
ideas to optimize those implementations.

In addition to the results shown in the Tables 1
and 2, KPASSA also provides synthetic information
on the criticality of Nodes: cycles can be ordered
by their rates, and then Nodes by the slowest rate
of a cycle it belongs to. Then the nodes are painted

from red (“Hotspot™) to blue (“Coldspot™) accord-
ingly. This visual information is particularly useful
before Equalization.

6 Further Topics

Concerning the static scheduling, a number of im-
portant topics are left open for further theoretical de-
velopments:

e Relaxing the firing rule: So far the theory de-
veloped here only consider the case where local
synchronous components all consume and pro-
duce token on all input and output channels in
each computation step, and where they all run
on the same clock. In this favorable case func-
tional determinacy and confluence are guaran-
teed, with latencies only impacting the rela-
tive ordering of behaviors. So it can be proved
that the relaxed-synchronous version produces
the same output streams from the same input
streams as the fully synchronous specification
(indeed the rank of a token in a stream corre-
sponds to its time in the synchronous model,
thereby reconstructing the structure of succes-
sive instants). Several papers considered ex-
tensions in the context of GALS systems, but
then ignored the issue of functional correspon-
dence with an initial well-clocked specification,
which is our important correctness criterion.
This relaxation may help minimize some met-
rics :

— We certainly would like to establish
that FR are needed only at Computation
Nodes, minimizing their number rather
intuitively;

— Discovering short and efficient (minimiz-
ing number of FR) initial phases is also an
important issue here.

— The distribution of integer latencies over
the arcs could attempt to minimize (on av-
erage) the number of Computation Nodes
that are active altogether. In other words
transportation latencies should be bal-
anced so that computations alternate in
time whenever possible. The goal is here
to avoid ““hot spots™ that is to say flat-
ten the power peaks. It could be achieved
by some sort of retiming/recycling tech-
niques and schedules exploration still us-
ing a relaxed firing rule;

e Marked Graphs do not allow control-flow (and
control modes). The reason is, in general case
such as full Petri Nets, it can no longer be as-
serted that token are consumed and produced at

| | #Nodes | #Cycles | #Critical Cycles | Max Cycle Latency | Throughput |

MPEG?2 Video Encoder 16 7 3 21 3/7
Encoder MultiStandard ADPCM 12 23 23 14 12
H264/AVC Encoder 20 12 3 27 4/9
29116a 16bits CAST MicroCPU 11 7 3 35 3/35
Abstract Stress Cycles 40 2295 1 1054 4/29
Abstract Stress Nodes 175 3784 1 1902 4/29
Table 1: Example sizes before equalization
| | Perfect Eqn. | #FR init/periodic | #Added latencies || Time Memory
MPEG?2 Video Encoder N 9/5 18 <1 sec “11MB
Encoder MultiStandard ADPCM Y 24/0 91 <1 sec “11MB
H264/AVC Encoder N 18/11 0 ~ Isec “11MB
29116a 16bits CAST MicroCPU Y 0/0 0 ~ Isec “11MB
Abstract Stress Cycles N 55/24 1577 “17 sec “16MB
Abstract Stress Nodes N 59/23 2688 "4 min “43MB

Table 2: Equalization performances and results (Run on P4 3.4Ghz, 1IGB RAM , Linux 2.6 and JDK 1.5)

the same rate. But explicit “branch schedules™
could maybe help regulate the branching con-
trol parts similarly to the way they control the
flow rate;

Finally, the goal would be to define a general
GALS modeling framework, where GALS compo-
nents cold be put in GALS networks (to this day the
framework is not compositional in the sense that lo-
cal components need to be synchronous). A system
would consist again of computation and interconnect
communication blocks, this time each with appro-
priate triggering clocks, and of a scheduler provid-
ing the subclocks computation mechanism, based on
their outer main clock and several signals carrying
information on control flow.

Summary In this article we first introduced full
formal models of Relay Stations and Shell Wrap-
pers, the basic components for the theory of
Latency-Insensitive Design. Altogether they allow
to build a dynamic scheduling scheme which stalls
traveling values in case of congestion ahead. We es-
tablished a number of correctness properties holding
between (lines of) RSs and SWs.

Then, using former results from scheduling the-
ory we recognized the existence of a static periodic
schedules for networks with fixed constant latencies.
We tried to use these results to compute and optimize
the allocation of buffering resources to the system.
By equalization we obtain location where a full extra
latency is always mandatory (these virtual latencies
can later be absorbed in the redesign of more relaxed
IP components). Fractional latencies still need to be
inserted to provide perfect equalization of through-
puts. By simulation we compute the exact sched-
ules of Computation Nodes, and deduce the loca-

tions of Fractional Register assignments to support
that. We conjectured that under simple “smooth-
ness” assumptions on the token values distribution
along graph cycles the FR elements could be inserted
in an optimized fashion. We also proved properties
on FR implementation, and its relation to RSs.

Finally we described a prototype implementation
of the techniques used to compute schedules and al-
locate integer and fractional latencies to a system, to-
gether with preliminary benchmarks on several case
studies.

References

[1] Charles André. Representation and analysis of
reactive behaviors: A synchronous approach.
In Computational Engineering in Systems Ap-
plications, Lille, France, pages 19-29, July
1996. Also available as I3S technical report
RR 95-52.

[2] Frangois Baccelli, Guy Cohen, Geert Jan Ols-

der, and Jean-Pierre Quadrat. Synchronization

and Linearity: an algebra for discrete event

systems. John Wiley & Sons, 1992.

Albert Benveniste, Paul Caspi, Stephen Ed-
wards, Nicolas Hallbwachs, Paul Le Guer-
nic, and Robert de Simone. The synchronous
languages 12 years later. In IEEE Proceed-
ings, number 1, pages 64-83. INRIA and
IRISA/INRIA and Columbia University and
Verimag/CNRS, January 2003.

[4] Julien Boucaron, Jean-Vivien Millo, and
Robert De Simone. Another glance at
relay stations in latency-insensitive design.

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

Electr. Notes Theor. Comput. Sci., vol. 146(no.
2):pages 41-59, 2006.

Francois R. Boyer, El Mostapha Aboulhamid,
Yvon Savaria, and Michel Boyer. Optimal
design of synchronous circuits using software
pipelining techniques. In ICCD’98, pages 62—
67. IEEE Computer Society, 1998.

Jacques Carlier and Philippe Chrétienne.
Probléme d’ordonnancement: modélisation,
complexité, algorithmes. Masson, Paris, 1988.

Luca Carloni, Kenneth McMillan, and Alberto
Sangiovanni-Vincentelli. Theory of latency-
insensitive design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, vol. 20(no. 9):pp. 1059-1076,
2001.

Luca P. Carloni, Kenneth L. McMillan,
Alexander Saldanha, and Alberto L.
Sangiovanni-Vincentelli. A methodology
for correct-by-construction latency insensitive
design. In ICCAD ’99: Proceedings of the
1999 |IEEE/ACM international conference
on Computer-aided design, pages 309-315,
Piscataway, NJ, USA, 1999. IEEE Press.

Luca P. Carloni and Alberto L. Sangiovanni-
Vincentelli. Performance analysis and opti-
mization of latency-insensitive systems. In The
Proceedings of the Design Automation Confer-
ence, pages 361-367. UC Berkeley, June 2000.

Mario R. Casu and Luca Macchiarulo. A
detailed implementation of latency insensitive
protocols. In Proceedings of Formal Methods
for Globally Asyncronous Locally Syncronous
Architectures, pages 94 — 103, 2003.

Mario R. Casu and Luca Macchiarulo. Floor-
planning for throughput. In ISPD ’04: Pro-
ceedings of the 2004 international symposium
on Physical design, pages 62-69, New York,
NY, USA, 2004. ACM Press.

Mario R. Casu and Luca Macchiarulo. A new
approach to latency insensitive design. In DAC
’04: Proceedings of the 41st annual conference
on Design automation, pages 576-581, New
York, NY, USA, 2004. ACM Press.

Ajanta Chakraborty and Mark R. Greenstreet.
A minimalist source-synchronous interface. In
Proceedings of the 15th IEEE ASIC/SOC Con-
ference, pages 443-447, September 2002.

Tiberiu Chelcea and Steven M. Nowick. Ro-
bust interfaces for mixed-timing systems with

[15]

[16]

(17]

(18]

[19]

(20]

application to latency-insensitive protocols. In
Design Automation Conference, pages 21-26,
2001.

Albert Cohen, Marc Duranton, Christine
Eisenbeis, Claire Pagetti, Florence Plateau, and
Marc Pouzet. N-synchronous kahn networks: a
relaxed model of synchrony for real-time sys-
tems. In POPL *06: Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages
180-193, New York, NY, USA, 2006. ACM
Press.

F. Commoner, Anatol W.Holt, Shimon Even,
and Amir Pnueli. Marked directed graph. Jour-
nal of Computer and System Sciences, 5:511—
523, October 1971.

Ali Dasdan. Experimental analysis of the
fastest optimum cycle ratio and mean algo-
rithms. ACM Transactions on Design Automa-
tion of Electronic Systems, 9(4):385-418, Oc-
tober 2004.

Vincent Van Dongen, Guang R. Gao, and
Qi Ning. A polynomial time method for op-
timal software pipelining. In CONPAR ’92/
VAPP V: Proceedings of the Second Joint In-
ternational Conference on Vector and Paral-
lel Processing, pages 613-624, London, UK,
1992. Springer-Verlag.

Chander Ramchandani. Analysis of Asyn-
chronous Concurrent Systems by Timed Petri
Nets. PhD thesis, MIT, Cambridge, Mas-
sachusetts, USA, September 1973.

Alexandre V. Yakovlev, Albert M. Koelmans,
and Luciano Lavagno. High-level mod-
eling and design of asynchronous interface
logic. IEEE Design and Test of Computers,
vol.12(no. 1):pp. 32-40, 1995.

