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Abstract

We consider inthispaper a Gough-type parallel robot and we present
an efficient algorithm based on interval analysis that allows us to
solvetheforward kinematics, i.e., to determine all the possible poses
of the platformfor given joint coordinates. Thisalgorithmisnumer-
ically robust as numerical round-off errors are taken into account;
the provided solutionsare either exact in the sensethat it will be pos-
sible to refine them up to an arbitrary accuracy or they are flagged
onlyasa“ possible”’ solution aseither the numerical accuracy of the
computation does not allow usto guarantee them or therobot isina
singular configuration. It allows usto takeinto account physical and
technological constraints on the robot (for example, limited motion
of the passive joints). Another advantage is that, assuming realis-
tic constraints on the velocity of the robot, it is competitive in term
of computation time with a real-time algorithm such as the Newton
scheme, while being safer.
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1. Introduction
1.1. Robot Geometry

Solving the Forward
Kinematics of a
Gough-Type Paralle
Manipulator with
Interval Analysis

1.2. The Forward Kinematics Problem

The forward kinematics (FK) problem may be stated as: be-
ing given the six leg lengths, find the current pdseof the
platform, i.e., the pose of the robot when the leg lengths have
been measured.

Although it may seem that this problem has been addressed
in numerous works, it has never been fully solved. Indeed, as
we will see, all authors have addressed a somewhat different
(although related) problew®: being given the six leg lengths,
find all then possible pose§ = {Si, ..., S,} of the plat-
form. It may be accepted that solvingis the first step for
solving the FK problem as soon as some method allows us
to determine which solutios; in the solution set of? is the
current poses, of the robot. Unfortunately, no such method
is known to date, even for planar parallel robots. This paper
will also address the? problem, although we will be able to
take into account, during the calculation, realistic constraints
on the robot motion that may reduce the number of solutions.

Problem# is now considered as a classical problem in
kinematics and is also used in other communities as a diffi-
cultbenchmark. Raghavan (1991) and Ronga and Vust (1992)
were the first to establish that there may be up to 40 complex
and real solutions te® while Husty (1996) succeeded in pro-

In this paper we consider a six-degrees-of-freedom (6-DORYIING @ univariate polynomial of degree 40 that allows us to
parallel manipulator (Figure 1) consisting of a fixed base ma@etermme all the .solut|ons. Dietmaier (1998) exhibited con-
and a mobile plate connected by six extensible links. Legflguratlons for which there were 40 real solution poses.

is attached to the base with a ball-and-socket joint whose

center isA; while it is attached to the moving platform with a 1.3. Solving Method for the Forward Kinematics

universal joint whose center &. The length of the legs (the

distance betwees; andB;) will be denoted by,. Areference

The methods traditionally used to solf&may be classified

frame(A4, x, y, z) is attached to the base and a mobile fram8&S:

(Ba, x,, y, Z,) is attached to the moving platform.
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« the elimination method;
 the continuation method;

» the Groebner basis method.
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An elimination method has been used by Husty (1996) to
obtain a 40th-order polynomial but using only symbolic com-
putation and a careful elimination process that guarantee that
we obtain the exact polynomial coefficients; unfortunately,
this procedure seems to be difficult to automate.

To solve a system of equatio§X) = 0, the continua-
tion method (Raghavan 1991; Sreenivasan and Nanua 1992;
Liu and Yang 1995; Wampler 1996) uses an auxiliary system
GX) = F+ Q- A, —F) = 0, whereF, is a system
“similar” to F, in the sense that it has at least the same num-
ber of solutions a$, of which all the solutions are known
and A is a scalar. When. is equal to 0G = F; and con-
sequently the solutions @ are known. These solutions are
used as an initial guess to solve, using a Newton scheme, a
new version ofG obtained forA = ¢ wheree has a small
value. This process is repeated foe 2¢ using the solutions
of the previous run as an initial guess and so on unt# 1
for whichG = F. In other words, starting from a system with
known solutions we follow the solution branches of a sys-
tem that slowly evolves towar. The main weakness of this
Fig. 1. Gough platform. approach is that it is necessary to follow a large number of

branches to find all the solutions Bf In our caseF; has to

have at least 40 solutions and hence 40 branches will be fol-

lowed, some of which will vanish if the FK problem has less
All these methods assume an algebraic formulation of ttiban 40 solutions. Furthermore, numerical robustness is diffi-
problem withn unknowns,x,, ... , x,. These methods will cult to ensure if a singularity is encountered when following
be described intuitively without trying to be rigorous. the branches.

In the elimination method (Innocenti 2001; Lee and Shim In the Gréebner basis approach, the property is used that
2001a) each equation of the system is expressed as a linter solutions of any algebraic systdéfare also solutions of
equation in term of monomialp] xi*...x (including the various other systems of equations in some other unknowns
constant monomial 1) in which one of the unknowss,is  y:- Among all these systems, one of them has the property of
supposed to be constant (i.e., the coefficients of the equatidrging triangular, i.e., the system has a first equation in one
are functions of, ). Additional equations are obtained by mul-unknowny,, the second equation has only y, as unknowns
tiplying the initial equations by a monomial until we obtainand so on, until the last equation with unknowns. .. , y,.

a square system of linear equations that can be expressedignce all the solutions of this system can be obtained by
matrix form as solving in sequence the first equation, then the second and
so on. Such a triangular system can be obtained by using

AX)X =0 @) the Buchberger algorithm (Lazard 1992; Faugere and Lazard

whereX is a set of monomials including the constant monol995). Although this method is currently the fastest to solve
mial 1. Due to this constant monomial, the above system ha#ed guaranteed manner, the FK problem (using the FGb and
solution only if|A(x,)| = 0, which is a univariate polynomial the RealSolving algorithms of Faugéand Rouillier (1995,

P, in x,. After solving this polynomial, a backtrack mecha-2003)) this approach can only be used when the coefficients
nism allows us to determine all the other unknowns for ead¥ the equations are rational (in which case the results are
root of the polynomialP,. The main weakness of this methodcertified) and its implementation involves the use of large
is the calculation ofA|; usuallyA is a rather large matrix integers.

and its determinant cannot be calculated in closed form. Most

authors propose to use a numerical method to evaluate lZ.BSoIving with Interval Analysis

coefficients of the polynomigdhA|; the determinant (of order )

n), which is a linear function of the polynomial coefficients,2-1- Interval Analysis

is calculated numerically for + 1 values of, and therefore e a1 analysis is an alternative numerical method that can

the coefficients can be obtained by solving a systemfl g ;s to determine all the solutions to a system of equations
linear equations. However, such a procedure is numerically, 4 inequalities systems within a given search space.
unstable and hence there is no guarantee of the correctness of

the solutions. 1. See http://www-calfor.lip6.fr¢jcf/index.html.




An interval X is defined as the set of real numberser-
ifying x < x < X. The “width” w(X) of an intervalX is the

quantityx — x while the “mid-point” M (X) of the interval is

(X + x)/2. The “mignitude” (“magnitude”) of an intervat
is the smallest (highest) value pf|, |x|. A “point interval”
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than 03333.... There are numerous interval arith-
metics packages implementing this property. One of the
most well known is BIAS/Profflusing the Gdoubl e

for interval representation. However, a promising new
package is MPFI (Revol and Rouillier 2002), based on

X is obtained ifx = x. A “box” is a tuple of intervals and its the multi-precision software MPFR developed by the
width is defined as the largest width of its interval members, SPACES projeét in which the interval is represented
while its center is defined as the point whose coordinates are by a number with an arbitrary number of digits.

the mid-point of the ranges.

Let f be a real-valued function of unknownsX = 22 Basic Solving Algorithm
{x1,...,x,}. Aninterval evaluatiorF’ of f for given ranges ) ) ] ]
(X4, ..., X,) for the unknowns is an interval such that Interval analysis based algorithms have been used in robotics
for solving the inverse kinematic of serial robots (Kiyoharu,
VX ={x1,...,x,}eX ={X1,...,X,)} Ohara, and Hiromasa 2001; Tagawa et al. 1999) and parallel

(2) robots FK (Castellet 1998; Didrit, Petitot, and Walter 1998;
Jaulin et al. 2001), workspace analysis (Chablat, Wenger, and
. Merlet 2002; Merlet 1999), singularity detection (Merlet and
Inotherwordsy, Y are lower and upper bounds for the value®aney 2001), evaluating the reliability of parallel robots (Car-
of f when the unknowns are restricted to lie within the boxeras et al. 1999), optimal placement of robots (Tagawa et al.
X. 2001), mobile robot localization (Bouvet and Garcia 2001)
There are numerous ways to calculate an interval evaluand trajectory planning (Piazzi and Visioli 1997). However,
tion of a function (Hansen 1992; Moore 1979). The simpleshterval analysis is a more complex method than may be
is the natural evaluation in which all the mathematical operahought at a first glance and we will present in this paper
tors in f are substituted by their interval equivalent to obtaiwarious improvements that have a drastic influence on the
F. For example, the classical addition is substituted by asfficiency.
interval addition defined as We start with the most basic solving algorithm that may
be derived from the properties of interval arithmetics. Let
By ={X4,...,X,} beaboxand = {f1(X),..., f,(X)}a

) ) ) ) set of equations to be solved withi. A list .£ will contain a
Interval equivalents exist for all the classical mathematical 0Rwt of poxes and initially = {B,}. Anindexi, initialized to 0

grators and hen.ce interval arithmgtics allows us.to calculate @) indicate which boxB; in .£ is currently being processed,
interval evaluation for most non-linear expressions, whethgjhije , will denote the number of boxes in the list. The interval
algebraic or not. For example, jf(x) = x + sin(x), thenthe g\ 51yation of the functiory; for the boxB; will be denoted
interval evaluation off for x € [1.1, 2] can be calculated as F,(B,). A thresholde will be used and, if the width of the
interval evaluation of all the functions for a bd is lower
thane and includes 0, theB; will be considered as a solution
of the system. The algorithm proceed along the following
steps.

Interval evaluation exhibits interesting properties, as follows. 1 |t < 5 then return to the solution list.

Y<fX)<v.

X1+ Xo = [x1 + X2, X1 + X2].

F([1.1,2]) =[1.1,2]+sin([1.1,2]) =[1.1, 2]
+[0.8912 1] =[1.9912 3].

1. If 0 ¢ F(X), then there is no value of the unknowns 2. |f at least oneF;(B;) exists such that & F;(B,), then
in the boxX such thatf (X) = 0. In other words, the i=i+1landgotol.

equationf (X) has no root in the bo%.
3. IfVj € [1,n]0 € F;(B;)) andw(F;(B;)) < €, then
2. The bounds of the interval evaluatisrusually overes- storeB; in the solution listj =i + 1 and go to 1.
timate the minimum and maximum of the function over
the box X, but the bounds of are exactly the mini-
mum and maximum if there is only one occurrence of

each unknown iry’ (Property A).

4. Select the unknownk whose interval has the
largest width inB;. Bisect its interval in the mid-
dle point and create two new boxes from;
as {Xy, ..., Xio1, [Xe, (Xi + X0)/2], ..., X,]} and

3. Interval arithmetics can be implemented taking intoac- ~ {X1, .-+, Xo 1, [(Xx + X3)/2, Xi], ..., X,]}. Store
count round-off errors. For example, the interval eval- these two boxes @B, .1, Byjo,n =n+2,i =i +1
uation of f = x/3 whenX is the point interval [1,1] andgoto 1.

will l?e the i_nterval[al, o] Whereql, «, are the closest 5 http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.
floating point numbers, respectively lower and greates. http:/iww.mpfr.org.
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Note that the storage method used here for the boxes is mobrdinates of the four pointB,, B,, Bs, B, in the general
very efficient as far as memory management is concernathse. The chosen points will be denoted the reference points
A first improvement is to substitute the bak by one of of the system, and the associated legs the reference legs. If
the two boxes that are created when bisecting it. A secomd, m € [3, 4] points are used for defining the pose of the
improvement, denoted a depth first storage mode, is to stgrkatform then for anyj in [m + 1, 6] we have
the second box at positiord+ 1 after a shift of the existing
boxes. This ensures that the widthRfis always decreasing
until either the box is eliminated or a solution is found. In this
mode, for a system af equations im unknowns, the width of

B; is at least divided by 2 after bisection. If the width of the \yhereo* are known constants such t@:m of = 1. Afirst
j =1 % =+

initial box By is wo the numberV of boxes that are needed isget of equations is obtained by expressing the leg lengths for
such that 2/ = wo/e and henc&V = n log(wo/€)/10g(2).  them chosen reference legs

For example, ifi = 9, w, = 10 ande = 1075, we obtain that

the number of boxes of should be 210 (to which we must (x; — x, )? + (y; — y.)* + (z; — 2,,)° = 02, j € [L.m],

k=m

OB, = > OB, (3)

k=1

add the memory to store the solutions). Hence, even with a (4)
high accuracy for the solution and a large initial search space
the necessary memory storage is small. wherep; is the known leg length.

As a matter of fact, the described algorithm will usually A second set of equations is obtained by writing the leg
not be very efficient, but there are numerous ways to improvengths for the legs: + 1 to 6, using the coordinates of the
it as will be shown later on. However, note that there is an eas; points defined in eq. (3):
way to improve the computation time of the basic algorithm;
indeed, we may notice that each box.his submitted to a izm 2 i=m 2
processing that does not depend upon the other boxes. Hence <Z X — xa,.> + (Z oy — y,,j)
it is possible to implement the algorithm in a distributed man- =1 i=1 )
ner. A master computer will send toslave computers the —m 2
first n boxes in the list. These slave computers will individu- + (Z aj-z,— — za,.> - p]?, jelm+1,6l.
ally perform a few iterations of the basic algorithm and will i1
send back to the master the remaining boxes iCitsst (if ) _ ) _ N ]
any) and the solutions it has found (if any). The master will he third set of equations is obtained by writing that th_e dis-
manage a global list and perform a few iterations of the t&nce between any couple of reference poBits... , B, is
basic algorithm if all the slaves are busy. We will discuss th@ known quantity
efflc!ency of the distributed implementation in the Example =)+ = 9+ (@ — 2, = 2,
sections. J )

iaje[lam]a l#]a

3. Equationsfor the Forward Kinematics whered;; is the distance between the poifsandB;. It may
be noted thategs. (4), (5) and (6) are a set of distance equations

Let A; and B; be the attachment points of the legn the which describe the distance between either points in the three-
base and on the platform, respectively. The coordinates of dimensional (3D) space or virtual points, i.e., points whose
in the reference frame will be denoteg, y,,, z,, While the ~coordinates are a linear combination of reference points (here
coordinates ofB; in the same frame are, y;, z;. Without POINtSB,,.1, ... , Bs are the virtual points).
lack of generality we may choosg, = y,, = z,, = 0 and We end up with a system of = 3m equations in the
Yo = Zs, = 0. Note that for a given robot and given leg3m unknowns(x;, y;, z;). It appears that for each equation
lengths it is always possible to change the numbering of tt the system (4), (5) and (6) there is only one occurrence
leg lengths and we will see that this has an influence on tieé each unknown. Consequently, according to Property A the
computation time of our algorithm. interval evaluation of each equation gives the exact minimum

There are numerous ways to write the equations of tr&d maximum values of the equations and this motivates the
inverse kinematics (which constitute the system of equatiotise of such representation of the pose of the platform.
to be solved for the FK problem) according to the parameters It must be noted, however, thatif = 4 we have not a
that are used to represent the pose of the platform. In tHiginimal parametrization of the system as only three points
paper a pose of the platform will be defined either by thare needed to define the pose of the platform. Indeed for point
coordinates of the three poinks, B,, B; (assumed to be not B; With k in [4,6] we have
collinear; such a triplet can always be found otherwise the . . .
robot is always singular) if the platform is planar, or by the BiBy = 141B1B; + 115B1B;s + 113B1B, x BiBs,  (7)
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where theu! are known constants. Hence we are dealing wittvhile the upper bound is
a system with twelve unknowns while the same problem may _ , )
be stated in terms of only nine unknowns. Equations 7 may Uy = Max((x; — xq,)" (¥; = X4,)%).
have been used forthe FK probleminthe general case to obtainClearl it eq. (8) has a solution for the current box, then the
the coordinates oB,, Bs, Bs as functions of the coordinates Y, 1req. . . . ’
: . . leftterm value at the solution will be includediih = U,NU..
of By, B,, Bs, thereby leading to a system of nine equat|on§ i
o .Three cases may occur:
in nine unknowns. However, eq. (7) have the drawback in
terms of interval analysis that there are multiple occurrences 1. U, N U, = ¢
of the same variable in the equation. Hence, for the general
case it is better to have more unknowns but no overestimation 2- U1 S Uz;
of the values of the equations. This is a general trend for the
. . . S . . 3. U,NU, C U,
interval analysis based method in which it is often interesting
to consider a simple expression even at the price of a largértU, N U, = ¥, then the equation has no solution and the

number of unknowns. current box can be rejected.0f, € U,, nothing is done. If
U, N U, C U, we may have eithel/; < U; and/orUs > U,.
4. Improving the Basic Solving Algorithm We assume thdl; < U,. This implies that

—
We have presented in Section 2.2 a basic solving algorithm. (xj = Xa)" = Us

The purpose of the following sections is to propose varioys;
methods that can be used to improve the efficiency of this

algorithm. _ /73 tx, <x; < Ts + X
4.1. Filtering the Boxes Hence, the lower or upper bounds figrmay be updated. We

. . . ) . ) assume now thdt’; > U; andU; > 0. This implies
A first possible way to improve the basic algorithm is to try - —

to decrease the width of the current box “in place”, a method R \/? f x> U
which is called filtering in the constraints programming com- Y= e Yo OF %) = Xo; + 4/ Vs,
munity. There are numerous filters that can be used, but Wich mav allow the range for. to be narrowed
will only present the methods that may be of interest for the A o g / o
s a simple example, consider the equation
FK problem.
x2+yi+22 =100

4.1.1 Constraint Propagation

with x; in [0,10] andy, z; in the range [4,6]. Applying the
Constraint propagation (Jaulin et al. 2001) is a classicaB method onx, we obtain
method in the field of interval analysis. Without going into
the details, its purpose is to use the constraints to filter the U, = x? = [0, 100]
boxes, i.e., either to try to reduce their width or evento elim- 7, — 100— y? — 72 = 100— [16, 36] — [16, 36]
inate them. _ (28, 68]

A first filtering method is the 2B approach, a derivation of T
the k-B method introduced in Collavizza, Deloble, and Ruehgthe intersection ol);, U, is [28,68] and hence? must lie
(1999). Let us consider, for example, eq. (4): in this range. Hence, we obtain thatmust lie in the range

) , . [v/28, v/68], i.e., approximately [4.24,8.24]. Hence the new
() = X)"+ () = ¥a)" + (2 = 2)" = 0 (8)  width of the range for, is 4 while the width of its initial
range was 10; a simple arithmetic operation has allowed us to
reduce the search space ferby 60%.

This process may be repeated for each unknown in the
equation and a similar process may be used for equations of
Let U, andU, be the interval evaluations of the left and righttype (5) and (6). Note also that, as soon as the range for a
terms of this equation. The lower bound of the interval evavariable has been changed, it may be interesting to restart the

We may rewrite this equation as

;= x)% = 02 = (v = ¥a))* = (zj — 2%

uationU, is obtained as process from the beginning as new variables may be updated.
There is, however, a limit to this process as the convergence of

0 if x; —x,, <0andx; —x,;, >0 this method is asymptotically slow. In our method, the process

U=1 & —x,)" ifx;—x, <0 is repeated only if the change of the width of the range for one

(x; —x,,)% ifx; —x, >0 unknown is greater than afixed threshold and the 2B method is
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used only on the equations that include an updated unknowrhere, for a given box, th& terms are constant. Let define
If we are using four reference points, the 2B method based en asa? + b7 + ¢%. Using interval arithmetics it is possible
ed. (7) will also be used to filter boxes. to determine an interval fo;=[c;, &;]. Introducinge; in

A second filtering method is the 3B method. In this apeq. (11) it becomes a linear equation in terms of the unknowns
proach therangk;, x;] for one variabler; inagivenboxBis  «;, a;, b;, ¢; while the unknowr; is submitted to the linear
replaced byx;, x; +¢€], wheree is an arbitrary small number, inequalities
while the ranges for the other unknowns are unchanged. We
then test whether, for this new set of ranges, the system may
have some solution either by using the 2B method and/or by
evaluating the equations. If the answer is negative, the ran@his process is repeated for each of thequations (4), (5)
for x; inthe boxB may be changed {a; +¢, X;]. The process and (6), and we end up with a linear systemmagquations
is then repeated on the new range but the change in the ranggerms of then unknownsa;, b;, ¢;, j € [1,3] andn ad-
will be doubled, i.e., we will test the range;, x; + 2¢]. The  ditional unknownsy, which represent the non-linear part of
process is then repeated until the no-solution test is no longgich equation. Furthermore, thesadditional unknowns are
satisfied. At this point we are testing the rarigg x; + k€],  submitted to the 2 linear inequalities (12). A direct conse-
wherek is a positive even integer. kf > 1 we may either re- quence of this linearization is that we may think to use the
peat the process with a changer stop the procedure. Note, first step of the simplex algorithm to determine if this linear
however, that as soon as the range for one variable has begstem admits a feasible region. If this is not the case, the non-
modified it may be interesting to use the 2B method to evelinear equations (4), (5) and (6) have no solution and the box is

9= = a;. (12)

tually update the range for all the unknowns.

rejected. However, if a feasible region is detected, we can still

Up to now, we have tried to decrease the width of thase the second step of the simplex method that allows us to
range for; by increasing its lower bound. Clearly the procesginimize or maximize a linear cost function. Here we will in
may be repeated on the “right” side by trying to decrease thgrn determine the minimum and maximum of each variable
upper bound of the range far; (i.e., we will test the range a;, b;, c;. If the minimum (maximum) is larger (lower) than
X; — €, x;]). In the same manner the process will be repeatede current bound for the variable, then this bound is updated

in turn for each unknown.

4.1.2. Global Filtering Methods

asa; is updated, leading to a new linear system. This process
is repeated until the change obtained for the bounds is lower
than a predefined threshold. Note that we use an interval vari-
ant of the simplex method in order to ensure that round-off

A drawback of the previously mentioned methods is that theYors do not have an impact on the result.
arelocal, i.e., they are working on each equation of the systém 1 second global filtering method is the classical interval

but are not considering the whole set of equations.

Newton method. Let a system mfequations im unknowns

Global filtering methods that consider at least two equa-

tions may be designed and we will present how two such

F={F(xy,...,x,)=0,i €[1,n]}

methods. The first global filtering method is inspired from

Yamamura, Kawata, and Tokue (1998). Let us consider ag

the equation
(xj _xcal-)2+(yj _ya‘,-)z—i_(zj _Zaj)zzpf' (9)
We will use the change of variable

aj =x; —Xj b,-zy,-—&cjzzj—ﬁ.

Hence the ranges for these new variables are
[0, %; — x;1,

0.5 -yl 0.5zl

Equation (9) may be written as

(aj - xaj +ﬂ)2 + (bj - yaj +&)2 + (Cj - Zaj +Z_/)2 = pj2
(10)

Expanding this equation we obtain

a?+b%+ 2+ Usa; + Upb; + Usc; + Uy = 0 (11)

ANd consider the following iterative scheme

Xip=MX) —AFMX))NX, =UNX,, (13)
whereA is an interval matrix that contains all the inverse of
the Jacobian matrix of the systef(we will not explain in
detail how to compute such a matrix). It is possible to show
the following properties of this scheme:

 if Uy N X, = @, then the systent has no solution in
X,

o if U, N X, C X, then solutions o in X, are also in
Xt

We use in fact the Hansen—Sengupta version of the interval
Newton method, which uses a pre-conditioning of the Jaco-
bian matrix by its inverse at the middle point of the box, to
improve the interval inputs (see Ratscheck and Rokne 1995).
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4.2. Unicity Operators lower thank in absolute value. We will now explain how to

calculate a box centereddt that contains only one solution

The purpose of these operators is to determine eventuall Pthe system but which will have, in general, a much larger
box, called a unicity box, which contains a unique solution o iameter tharg ’ ’
K.

the system, and which furthermore can be numerically com- Letus assume that, is a solution of a syster and thatx;

zllgggtlr?n? certified manner. Two such methods are used in %'ranother solution close ti,, henceF (X,) = F(X,) = 0.

Using the mean value theorem we obt&itX,) = F(Xo) +
J(X)(X1 — X,) whereJ is the Jacobian matrix of the sys-
4.2.1. Kantorovitch Theorem tem andX lies in the box[X,, X;1]. Hence we obtain that
J(X)(X1 — Xo) = 0 which admits a solution only i (X)
is singular. The principle is now to obtain a box centered at
F ={F(xy,...,x,) =0,i €1 n]}. X, such thatJ(X) is regular for any point in the box. To
obtain such a box we use the H-matrix theory of Neumaier
Let X, be a point and/ = {x/||X — Xo|| < 2By}, the norm (1990, 2001). We will explain first an implementation of this
being||A|| = Max; Z_/. la;;|. We assume thag, is such that  scheme that will work whatever is the systemmadquations
in n unknowns we are considering.
Let us consider a bo® [X, — €, X, + €] centered ak,
and compute the interval Jacobian matrix for this box that

Let a system of: equations im unknowns

1. the Jacobian matrix of the system has an invEgsat
Xo such thaf|Ty|| < Ao;

2. |IToF (Xo)|| < 2Bo; we multiply by the inverse of the Jacobian matrix computed
at X, to obtain an interval matri§ = ((S;;)). Consider the
3.3, |ng;‘;:| <Cfori,j=1,...,nandx e U; diagonal elemens;; having the lowest mignitude; and let
' ) us definem; as the sum of the magnitude of the intervals in
4. the constantd,, Bo, C satisfy 214,B,C < 1. the jth row of S, excluding the diagonal element of the line,

while M will be the maximum of thex,; over the rows of.
| If s;; > Mg, thenJ is regular over the whol&.
If the regularity test is satisfied foB, then we expand it
to [ X, — 2¢, X, + 2¢] until the regularity test is not satisfied
or the box[ X, — 2"¢, X, + 2%¢]. If the regularity test is not
satisfied fom = 1, then we will use the bo8By as a unicity

Then there is a unique solution f= 0 in U and the New-
ton method used witlk, as an estimate of the solution wil
converge toward this solution (Tapia 1971).

Conversely let us comput®, as ¥/ (2nA,C) and assume
that B < B,. Then there is a unique solution in the bo
[xo — 2B, xo + 2B,]. This is the general version of the Kan-
torovitch theorem but the system we are dealing with is sp OX. . . . .
cific. Indeed, the Hessian matrix is constant as we are dealin We may, however, speuahze this _scheme in the particular
with quadratic equations; a direct consequence is thaCthe®S€ of distance .equat|or_13.. Ir?deedl, in that case each compo-
term can be pre-computed. A further consequence is that nent cz)fthe Jacobian matrix is I|negr interms of the unknowns.
have been able to show that the facidn B, may be substi- Let {xi } be the elements of,, letJ, " be the mverse oZthe Ja-
tuted by the dimension of the space in which are written th(?s:Ob'an n_watrlx gomputed al, and letX, be defined apr; +«},
distance equations (i.e., three for the current problem), thervee_re" is the interval —e, €]. Each component, of the Ja-
enlarging the box in which a unique solution is found. In oufObian atx, can pe calculated ag; + B, whereqi,, Bij
algorithm, the Kantorovitch theorem is used for each box hag-re c_?nstants Wh'Ch dePe”d 0”_'}' upBi If we multiply J
ing a width lower than a given threshold, witg being the °Y Jo * we obtain amatriV = Jo°J = I, + A, where/, is

center of the box. This may allow us to find a ball centered gfe identity matrix of dimension andA is a matrlx'such that
xo that contains a unique solution. A;; = ¢;x whereg;; can be calculated as a function of the

coefficients and of the componentsigt'. For a given line of
the matrixU the diagonal element has a mignitude 1z;;|e
while the sum of the magnitude of the non-diagonal element

The second unicity operator is based on the use of the Newtisre >_;_; 1|, j # i. The matrixU will be guaranteed to be
scheme. For each box we run a few iterations of the Newtdggular if for alli

method with as an initial guess the center of the box. If after i
a f_ew iterations the scheme has converggd to a pojrior ¢ Z G0 G elLnl, j#i) <1—|Gile
which the absolute values of all the equations are lower than —

a small threshold, we will first verify that there is a bali3

centered aK that contains a solution of the FK problem bywhich leads to

using the Kantorovitch theorem applied>at However, the 1

diameter of this box will usually be very small as its maximum < = : :
is the norm of| |, F (X)|| with all elements ofF (X) being |Zii] + Max(Q i1 16D, k € [1,n], j #k

4.2.2. Inflation Operator

(14)
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Hence, the minimal valug, of the right term of this inequality 3. If local filter =1, theni =i + 1and goto 1 (4.1).
over the lines ot/ allows us to define abdX,—e¢,,, Xo+€,] i
which contains a unique solution of the system. In general, 4- If global filter =1, then’ =i +-1and goto 1 (4.1.2).
this pox will be larger than the box computed With the Kar_1- 5. If unicity method = 1 (4.2), then
torovitch theorem. Note that the round-off errors involved in
the computation off,* may lead to a wrong estimate of. (a) test if the solution has not already been found;
However, we can perform the regularity test with this value
and decrease it by a small amount if this test fails. o _
Ultimately the Kantorovitch scheme may fail if two (or (c) use the unicity box filter om; (4.3).

more) solutions are very close and the round-off error doc_as . If at least oneF; (B,) exists such that @ F;(B,), then
not allow us to separate them. In that case the algorithm will .

. ! - . i=i+1landgotol.
still stop as we give a minimum threshold on the width of
the box. If the width of a box is lower than this threshold 7. |f 0 ¢ F;(B) VY j € [1,n]landw(F;(B;)) < ¢, then
and the interval evaluations of the equations for this box all storeB; in the solution listj =i +1and goto 1.
include 0, then this box is considered a solution. However, if
a solution is returned as a box and not as a point interval it 8- Select the unknownk which has the largest
indicates that a further analysis has to be performed around ~Width in B;. Bisect its interval in the mid-
this interval solution; either we are close to a singularity (this ~ dle point and create two new boxes from,
can be detected safely using the scheme proposed in Merlet as Xi, ..., Xi1, [Xi, (Xi + Xi)/2],... . X,] and
and Daney 2001) or we have a cluster of solutions that can X1, ..., X;_1, [(&—FZ)/Z, X.1,..., X,]. Storethese
only be calculated by using an extended arithmetics such as  boxes asB,,1, B,;»,n =n + 2 and go to 1.
MPFI.

(b) if not add the solution to the solution list;

A further refinement may be added. Indeed, it is interest-
o ) o ing to determine as soon as possible all the solutions of the
4.3. Filtering with the Unicity Box system as the filtering with the unicity box described in the

Let us assume that a unicity ba has been found by one of previous section will decrease the search space. A pure depth

the methods proposed in the previous section. We will propdtSt Storage mode is not very efficient in this view. As the

gate this knowledge in the boxes still to be processed to avdiie"ing described in Section 4.2 may allow us to determine

finding again the same solution. Indeed, if there is an intef2€ Solution of the system even for boxes with a large width,

section between a ba% and8", then new solutions can only we will change the ordering of the boxes in the listAfter a
be found inB, — (B, N B"). For a boxB, in the list two cases fixed number of iterations of the algorithm, the current Bpx
may occur: will be substituted by the box having the largest width among

the boxes that have to be processed.
1. B, C 8" —the boxB, is eliminated from the list;

2. B'C B,orB' ¢ B,butBnB, £ f—B,— (BB is O DELErmining the Search Space

calculated. This calculation may lead to at mostrew Interval analysis is, in general, used for problems where

boxes but th's.’ shtc;]uldlbe gt\r/]mded. SO Wz _flrsSt f||'?er ﬂ)f nges for the solution may be specified. Furthermore, the
NEWDOXES using the a'gorithms proposed in Section iciency of these methods is usually very sensitive to the

and we impose a limit on the number of new boxe§

. ize of the search space.
(typically no more than four new boxes may be created Fortunately the FK problem belongs to the category of

problems for which bounds for the solutions are easily found.
4.4. The Improved Algorithm We will describe here simple methods that allow us to deter-

. . . . . . mine an initial search space.
The basic solving algorithm is hence improved by using the P

various methods described in the previous sections. The added ]
steps are presented in italic font, followed by the section numg:1- Boundsfroma Single Leg

ber that describes the step. By convention a step that allows@ggtaining bounds for theunknowns is straightforward when
to eliminate a box will returs-1, while a step that determines considering the constraint on one leg. et be the known

a solution will return 1. distance betweeB, and B; and define fot, j in [1, m]:
1. 0f§ , then return the solution list.
L=n Dij = Xq +p;+ d;
2. If solutions have been found filter B; with the unicity 4 = Yo tpjtd;

box filter (4.3). ryoo= e+ p;+d;.

1
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Clearly, for a givenj the x, y, z coordinates ofB; cannot for the y coordinate ofB;. As in the second casey is an
exceedp;;, q;;, r;; and be lower thar-p;;, —q;;, —r;;. Hence, upper bound for the coordinate ofB;.
an initial search space for the coordinatesBpfis the box Using this procedure a new bounding k8xs obtained for

defined as B;.Now, if A;, A; are not on the-axis of the reference frame
) ) there is a rotation matri® that allows us to convert a vector
[Max(—pi;), Min(p;j)]. [Max(—g;;), Min(g;;)], in our bounding box frame to a vector in the reference frame.

Applying this rotation matrix onB will allow us to obtain a
bounding box in the reference frame and update accordingly
wherei, j € [1, m]. the bounds for the unknowns. This process may be repeated
for each pair of legs.

[Max(—rij), Min(rij)]v

5.2. Improved Bounds for a Pair of Legs

. . _ 5.3. Numbering the Legs
Letus consider two legs with extreme poiBts B; and denote

D,; as the distance betwednandA ;. PointB; is constrained ltmustbe noted thatthe numbering of the legs may be changed
to lie on a sphers; centered a#; with radiusp,. Atthe same arbitrarily. Achange in this numbering has firstan effect onthe
time, this pointis constrained to lie inside a sphgyeentered - Size of the search space. For example, if we are using the two
atA; withradiusp;+d;; and, ifp; > d;;, o lie outside asphere previous algorithms it is interesting to reorder the numbering
S5 centered a# ; with radiusp; — d;;. Hence, four different of the legs so that the selected leg 1 will have the lowest leg

cases may occur fa; (Figure 2): length while the legs 2 and 3 will be those presenting the
lowest absolute value fqs; + d;; among the five remaining
1. Ifp;+dy; > pi+ Dy andp; —d;j < Dy, pointB; will - |egs. This allows us to reduce the size of the search space with
lie on the spher;. aminimal amount of computation time. However, it must also

be noted that the coefficient$ appearing in the FK equations

will lie on the part of the spherd; bordered by the Elaﬁhan |mp(()jr_tar;t rolef ?ﬁ th@: mi:rea_s;a OWecrﬁlase the :ﬁnge

intersection betwees;, S; which is the farthest from or . € coordinates ot the virtual points. . € will see in ?

A section devoted to the results that the choice of the numbering
’ has a drastic effect on the computation time.

3. Ifp;+d; < pi+ D; andp; —d,j < D,;;, point B
will lie on the part of the spherd,; bordered by the
intersection betwees,, S, and which is the closest to

Aj. The algorithm presented in the previous sections has two good

4. 1f p,+d, < p,+ D, andp, —d,j > D, pointB, features:
will lie between the part of the sphefe the closest to
A; delimited by the intersection betweén S, and the
part of the spheré; the closest to4; delimited by the
intersection betwee#fy, Ss.

6. Extensionsto the Improved Algorithm

 any additional constraints that may limit the number of
realistic solutions to the FK problem may be taken into
account with a direct impact on the computation time;

. . .  uncertainties on the robot can be taken into account.
In the first case, no further information on the bound for the

coordinate of3; compared to the bound found in the previousye will exemplify these features in the next two sections.
section will be obtained. For the three other cases, we assume

first that the directior;, A; is the direction of ther-axis of 6.1. Range of Motion for the Passive Joints

the reference frame. For the second case, we assumeé;that
is the circle projection of; in thex, z plane and letv;, N, be  An advantage of the proposed algorithm is that it can eas-
the intersection points betweé€h, Cs, both having the same ily be modified to take into account technological constraints
x coordinatexy. Then,xy is an upper bound for thecoordi- that will limit the number of solutions that can effectively be
nate ofB;. For the third case, l&t;, C, be the circle projection reached by the robot. For example, the passive joins,a;
ofthe spherey, S, inthex, z plane and leds;, M, bethetwo may have a limited range of motion. Each jointis such that the
intersection points of’;, C, (which have the same coordi- angled between the leg connected to the joint and a known
natex,). Clearly,x,, is a lower bound for the coordinate direction (defined by a unit vectar, the reference axis of the

of B; which is a better lower bound thanp,; found in the joint) must be less than a given valgg,. .

previous section. Furthermore,df + d;; < D;; thenz,; the For the joint atA; this may be written as
z coordinate ofV is an upper bound for thecoordinate of3;
while —z,, is a lower bound. As there is a circular symmetry AiB Uy > CcOSH, .. (15)

in the problem-z,, andz,, are also lower and upper bounds Pi
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Fig. 2. The four different cases for the possible locatioBofelated to the location o ;, the leg lengtlp; and the distance
betweenB;, B;. The allowed zone foB; on the sphere centered At with radiusp; is presented in gray.

In this equation the components of the vectgB; can be gf such that
expressed as a linear function of our unknowns whijley; 1 ) 3

are known quantities. Hence, we are able to evaluate for each U = B;BiB, + f7B1Bs + B(B1B; x B1B).

box the left ternU; of the DTEViOUS inequalities. An additional as we have assumed that B,, B; were not collinear. A sim-

filter will then be used in our algorithm: ilar filter for the limited motion of the joints aB; can thus be
o . designed using eq. (15).
* Forthe box evaluat®; and ifU; < €086, thenelim- note that taking into account the joint motion limitation
inate the box as it cannot contain a solution that willithin the calculation allows us to reduce the computation
respect the joint constraints. time and is better than computing all the solutions and then

sorting them.
« The left term of the inequality can be expressed as
ZE;M,(X,( W'hereXk are uqknowns ofthe FK problem. g 5 Modeling Uncertainties
The inequality can be written g8, X; > €0s0,,,, —

’;:; wiX.. Let W, be the interval evaluation of the Assume now that some parameters in the model of the robot
right term of this inequality and assume that is are notperfectly known; for example, the location of the joints
positive. We find thatX; must be greater or equal toat A;, B;, the leg lengths,.. may be known only up to a
W./mu,, which may allow us to update the range forgiven accuracy, usually relatively small. Up to now, we have
X,. Asimilar process may be used toimprove the rangeassumed that thegé parameterg); have a fixed value while
of the other variables. in fact they lie in known ranges). Note that very often the

real values of a parameter will indeed cover the full rargge
« Eliminate the solutions found in Section 4.2 that do nofior example, if we have clearance in the jointsAat B; the
satisfy the joint constraints. location of theA;, B; will depend upon the static equilibrium
of the robot.
For the joint atB; the reference axig; is no longer fixed Under this assumption the FK problem does not have a
in the reference frame. Hence its components have to be &gsite number of solutions but is a manifold of solutions as the
tablished as functions of the unknowns. There are constautzefficients of the FK equations are now intervals. However,
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we will still be able to determine an approximation of this < the equations which are to be solved are defined in a
manifold, i.e., find all the poses that can be reached by the = Maple session;
robot.

We will introduce as additional unknowns thevariables
Q; (for example Ax,,, Ay,,, Az, for the location of the4,
points). The FK equation becomes a systen @quations
in the N + n variables, but the algorithm can still be used to
solve this system provided that:

« by using a specific Maple library the C++ code based
on ALI AS which is necessary to solve the system is
automatically produced and then is executed. Further-
more, the C++ code that is equation-dependent (such as
the code for the 2B filtering method that is used when
dealing with eq. (7)) is also produced;

« the unicity filter (Section 4.2) is no longer used as usu-
ally it will not be possible to extract a square system in
then equations, but it may still be used if we consider
that the FK equations have interval coefficients (inthat . sing the multi-precision ability of Maple, the accu-
case the unicity filter will provide an outward hull of racy of the obtained solutions (related to the accuracy

the manifold); of the C++ code) can be improved (solutions may be
determined up to an arbitrary number of digits).

« the result of the solving algorithm is made available in
the Maple session;

« asolution is supposed to be found as soon as the width

of a box is lower thar while the interval evaluation of Note that it is possible to use this Maple interface to produce
the equations still contaiO — these boxes are written g generic C++ program that may be used for a given robot
in a file and their total volume i;; but for any leg lengths. Hence, the computation time given in
« boxes with a width lower than, a value provided by the following section will be the execution time of the generic
the user, are eliminated from the list of boxes — they afyogram. — .
) ; ALI AS also allows us to use the distributed implementa-
called the neglected boxes and their total volumé,is . . . . - ;
tion of the solving algorithm within the Maple session. Basi-

Using this method we will be able to calculate an approxically only the names of slave computers have to be givenand a
mation of the set of all solutions of the FK problem whateveglistributed implementation will be created using the message
the values of the physical parameters of the real robot. TH&ssing mechanisms of the parallel virtual machine (PVM;
approximation is an inward hull of the manifold. Geist 1994).

The total volume of the region that can be reached by the
robot will not exceedV, + V, and the ratioV,/V, is a good 8. Example 1
index to determine the quality of the approximation. Note als
that this quality index can be improved incrementally. Indee
we may store the neglected boxes obtained for a given val
;xhl of « in a file (V\I/hi::hh hgs led to {ah'soicyltiq? VOIU&TE) and A, [0,0.0] A, [62,0,0] As [7.13.0]

en process on e boxes in this file if a value < o

of o iz selected.)I/ndeed, there is no need to process again Aq [42,38,0] As [32,39,0] 4, [62 11,0]
the whole search domain as we have already determined thije the coordinates of thB, are
solution volumeV!. For thej run of the algorithm with value
o < o < ... < o for e, the solution volume will be B, [0,0,0] B, [14,0,0] B; [16,42 0]
V!4 VZ+ ...+ V/ while the neglected volume; will be B, [46.27.0] Bs [23.45,0] Bs [47,13,0].
suchthatV/ < vi-t <. .. < V.

ﬂere, we will use the FK problem presented in Lee and Shim
ZeOOlb). The coordinates of the points are

The length of the legs are

7. 1mplementation oy = 9944345126 p, — 1223824766

The tests have been performed using the softureAS * ps = 1192390086
whichis a C++ library, available for SUN/Unix and PC/Linux, pa = 1539499536 ps = 1362700605
which implement most interval analysis methods described in ps = 1560149565

the previous sections. Basic interval arithmetics operations are

performed with the BIAS/Profil library (with a precision of  Here, the platform is planar and hence we have nine un-
doubl e). Aninnovation of this package is that it is partiallyknowns. Note that due to the symmetry with respect to the
interfaced with Maple: base we will always obtain an even number of solutions (for
4.  http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS- eaCh. solutlgn WlthBl oyer the bas.e we will .Obtam another
C++.html and http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS- solution which is the mirror of the first one wit#, under the
Maple/ALIAS-Maple.html. base).
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8.1. Numbering the Legs and Computation Time Note that the distributed implementation allows a gain in
We may select arbitrarily the numbering of the legs by choo§0omputation time which may be larger than the number of ma-
ing three legs that will be numbered from 1 to 3 among the sBhines despite the overhead time due to the message passing
possible legs; hence there is a total of 20 possible numberirggheme. Indeed, in that case solutions may be found earlier in
Two factors may be modified when changing the numberinge process and the filtering process described in Section 4.3
the search space and the values ofdheoefficients. As the allows us to eliminate the solution parts within the box that
amount of time for computing the search space andsthe contain solutions, leaving only boxes that contain no solution
coefficients is very low, all combinations can be considere@nd are quickly dismissed as such.
The following elements can be calculated: mean vaiyef
the search space diameter ranges, minimal dianmigtefor
the range of the search space, mean vMy®f the absolute
value of the ninexj. coefficients, and mean valuég of the
diameter of the ranges for the six attachment pomtsFor
the current example, we obtain data provided in Table 1.
The values oM, allow us to distinguish three main groups:
:)ne ha\éi(r;g a v(?lgg/cl)s Ies(;s ttrr:an 200,_ one havinr? a_value bel- A, [0,0,0] A, [1.1079150, O]
ween an and the remaining one having a value
larger than 400. It seems reasonable to keep only as possible A3 [0.5490940.756063 0]

9. Example 2

In this section we will study the example provided in Diet-
maier (1998) which has 40 solutions. The coordinates of the
A, points are

numbering the elements of the first group as a ladgewill A4 [0.735077 —0.2239350.525991]
impose a large number of bisection to satisfy eq. (5). A second As [0.514188 —0.526063 —0.368418
criterion is thatM, should be minimal as the bisection will be A [0.5904730.094733 —0.205018

applied on the intervals that are used to compute this mean

value. Using both criteria, the most promising combinationgnhile the coordinates of ths, are

are (2,3,6), (2,3,5), (1,3,5), (1,3,6), (1,4,6), and (1,4,5), in this

order. B; [0,0,0] B, [0.5428050, 0]
The tests have been performed using the standard Maple B [0.956919 —0.528915 0]

interface of theAL1 ASlibrary on a single PC laptop EVO 410

C, 2 GHz. The problem admits a total of four solutions and B, [0.665885 —0.353482 1.40253§

hence a total of two solutions in our search space. The solving Bs [0.4783591.1587420.107673
times for finding all four solutions of the FK problem on the Bs [—0.137087 —0.235121 0.353913.
PC laptop for the six selected combinations are, respectively,

15,17,17,17, 20, and 23 s. The leg lengths are

Among all the combinations, the worst computation time is
420 s for the combination (1,5,6) which has the fourth largest p1=1 p,=00645275 p; =1086284
M, and the third largests. If we have selected the combi- ps = 1.503439 ps = 1.281933 ps = 0.771071
nation having the lowes¥, (1,2,3) we obtain a computation
time of 238 s (but this combination has the second laifgst  As the platform is not planar we use the formulation of the
If we rank the combination according to their values #6r  problem with twelve unknowns. Note that the solving param-
and M, and average the two ranks we again find that (2,3,@}ers are exactly the same as in the previous example although
is the best while (1,2,3) is among the worst. If we extend thate scale of this robot is quite different.
to the nine best combinations, the worst computation time is
179 s for (2,3,4). . . -

We have also tested the distributed implementation of OL?il' Numbering the L egs and Computation Time
algorithm which is also available directly within the MapleAs in the previous case the numbering of the legs has a large
interface. To average the performances, we have tested thBuence on the size of the search space and on the compu-
combination (1,2,6) which has the second bestbut the tation time. Here, the mean value of the ranges of the search
twelfth Mg and for which the computation time on the laptopspace is more significant as the number of unknowns is larger
is 50 s. than in the previous case.

The parallel implementation has been tested on a hetero-An analysis similar to that performed in the previous sec-
geneous cluster of 16 low-level SUN and PCs that are shartdn leads us to eliminate the combinations (2,3,5,6), (1,2,4,6),
by our team; the computation times vary between 5 and 15ed (1,2,3,5) that have by far the largéf (see Table 2).
according to the load of the slave computers. Then, the samelf we select the six combinations that have the Bésti.e.,
program has been tested on a cluster of 16 high-performandeg2,3,6), (1,2,5,6), (1,2,3,4), (1,3,5,6), (2,3,4,6), (1,3,4,6), we
2 Ghz PCs with a computation time of about 3—4 s. obtain respectively the following computation times: 22, 23,



Table 1. Evaluation of the Search
Space Size According to the Num-

bering of the Legs

Table 2. Evaluation of the Search Space Size According

to the Numbering of the Legs
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Combination M, M, Mg Lin
1,2,3 125.92 5.526 1064.08 44.9
1,2,4 146.32 2.346 554.717 449
1,2,5 138.77 1.324 331.64 449
1,2,6 137.05 1.443 352.63 44.9
1,34 148.57 1.37 3924 89.16
1,3,5 150.92 0.4229 172.538 89.16
1,3,6 150.82 0.444 177.229 89.16
1,45 150.06 0.5319 194.78 67.71
1,4,6 150.15 0.517 191.79 73.86
1,5,6 151.074 3.85 970.05 69.97
2,34 139.89 1.67 435.78 449
2,3,5 139.99 0.531 180.44 449
2,3,6 139.16 0.543 181.83 449
2,45 196.75 0.591 273.57 108.87
2,4,6 153.96 0.55 204.04 108.87
2,5,6 156.59 2.76 721 87.219
3,4,5 142.07 2.87 683.59 91.58
3,4,6 143.9 2.15 536.42 96.2
3,5,6 149.07 2.908 719.349 54.08
45,6 200.87 3.974 1269.98 150.69

The combination indicates which legs are the reference legs 1, 2
and 3 among the six possible legs.

Combination M, M
1,2,3,4 1.872567 4.084438
1,2,35 1.758934 41.559028
1,2,3,6 1.500378 6.901214
1,2,4,5 2.045049 2.752602
1,2,4,6 1.787842 11.106032
1,2,5,6 1.664384 4.693668
1,3,4,5 2.190959 2.380921
1,3,4,6 1.987354 5.58962
1,3,5,6 1.893959 4.303475
1,4,5,6 2.147044 6.74884
2,3,4,5 2.151589 4.654878
2,3,4,6 1.923324 3.567641
2,3,5,6 1.772669 8.321244
2,45,6 2.074924 2.622965
3,4,5,6 2.225193 2.35483

The combination indicates which legs are chosen

as reference legs 1, 2, 3, and 4 among the six possible

legs.

51, 51, 40, and 46 s. If we have eliminated only the combi-
nation having the wors#; (1,2,3,5) the worst computation
time will have been 329 s for combination (3,4,5,6) (which
has the wors#,), then 275 s for combination (1,3,4,5) (which
has the second worgt,) and finally 117 s for combination
(2,4,5,6).

10. Example 3

In this section we consider the INRIA “left-hand” parallel
robot that has been presented in numerous papers. Our algo-
rithm has been tested for all 64 combinations of leg lengths
obtained when each leg length is either the minimal or maxi-
mal possible joint limits 52.249, 55.749. For 14 combinations
among the 64 combinations, there is no solution for the FK
problem. On a single computer, the average computation time
for solving the FK problem is about 20 s with a minimum of

2 s and a maximum of 50 s.

Note that this algorithm is very efficient. We have sub-
mitted this problem ttNUMERI CA (Van Hentenryck, Michel,
and Deville 1997), a classical constraints-based solver, with-
out getting any solution after hours of computation. We have
also used a general solver implementedlin AS which was
able to find the solutions in about 1 h.
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11. Real-Time Oper ator « it allows us to take into account uncertainties in the
model of the robot or in the measurements of the leg

As mentioned previously, our algorithm is not intended to be lengths.

used in a real-time context. However, in this case we may as-

sume safely that the determination of the pose of the platforf{though the principle of interval analysis is quite straight-

at timer, may rely first on a similar calculation performed aforward we have shown that efficiency relies heavily on a set

time #,_, having given a pos&, , = (B, ..., B}, Fur- of filtering methods. Some of these methods are well known

thermore, we may assume that upper bou¥gs, 2,... on Put they have been improved to take into account the struc-

the velocities and angular velocities of the robot are knowfire of the FK equations and such a combination of methods

Itis then easy to deduce from_, a bounding box fo,. For has not been used in the past. The distance equation solver
each coordinate oB*. the box will be centered &8t and that has been presented here has also been used for the de-
J? J

its edge will have length@ — #c_1) (Vs + el B; Bal ). termination of conformation of molecules where the distance
The bounding box will usually be much smaller than th&etween the atoms are known (a molecule with 100 atoms has

bounding box used to determine all the solutions, and ofieen successfully identified).
experiment with the INRIA “left-hand” robot has shown that
in that case the computation time is approximately similas ck nowledgments
to the usually used Newton scheme. Indeed, if the Newton
scheme converges toward the current pose in most cases\it¢ are indebted to Pr. Neumaier for numerous discussions
unicity filter will determine that using the Newton scheme isibout systems solving and interval analysis that have allowed
safe. Hence, the only overhead will be due to this unicity tesis to greatly improve parts of our algorithm. We would also
which amounts mostly to the numerical inversion ofilar m  like to thank the anonymous reviewers for their very useful
matrix. The computation time of this inversion is negligiblecomments.
as soon as the Newton scheme needs more than one iteration
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