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Abstract

We consider in this paper a Gough-type parallel robot and we present
an efficient algorithm based on interval analysis that allows us to
solve the forward kinematics, i.e., to determine all the possible poses
of the platform for given joint coordinates. This algorithm is numer-
ically robust as numerical round-off errors are taken into account;
the provided solutions are either exact in the sense that it will be pos-
sible to refine them up to an arbitrary accuracy or they are flagged
only as a “possible” solution as either the numerical accuracy of the
computation does not allow us to guarantee them or the robot is in a
singular configuration. It allows us to take into account physical and
technological constraints on the robot (for example, limited motion
of the passive joints). Another advantage is that, assuming realis-
tic constraints on the velocity of the robot, it is competitive in term
of computation time with a real-time algorithm such as the Newton
scheme, while being safer.
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1. Introduction

1.1. Robot Geometry

In this paper we consider a six-degrees-of-freedom (6-DOF)
parallel manipulator (Figure 1) consisting of a fixed base plate
and a mobile plate connected by six extensible links. Legi

is attached to the base with a ball-and-socket joint whose
center isAi while it is attached to the moving platform with a
universal joint whose center isBi . The length of the legs (the
distance betweenAi andBi) will be denoted byρi . A reference
frame(A1, x, y, z) is attached to the base and a mobile frame
(B1, xr, yr, zr) is attached to the moving platform.
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1.2. The Forward Kinematics Problem

The forward kinematics (FK) problem may be stated as: be-
ing given the six leg lengths, find the current poseSc of the
platform, i.e., the pose of the robot when the leg lengths have
been measured.

Although it may seem that this problem has been addressed
in numerous works, it has never been fully solved. Indeed, as
we will see, all authors have addressed a somewhat different
(although related) problemP: being given the six leg lengths,
find all then possible poses� = {S1, . . . , Sn} of the plat-
form. It may be accepted that solvingP is the first step for
solving the FK problem as soon as some method allows us
to determine which solutionSj in the solution set ofP is the
current poseSc of the robot. Unfortunately, no such method
is known to date, even for planar parallel robots. This paper
will also address theP problem, although we will be able to
take into account, during the calculation, realistic constraints
on the robot motion that may reduce the number of solutions.

ProblemP is now considered as a classical problem in
kinematics and is also used in other communities as a diffi-
cult benchmark. Raghavan (1991) and Ronga and Vust (1992)
were the first to establish that there may be up to 40 complex
and real solutions toP while Husty (1996) succeeded in pro-
viding a univariate polynomial of degree 40 that allows us to
determine all the solutions. Dietmaier (1998) exhibited con-
figurations for which there were 40 real solution poses.

1.3. Solving Method for the Forward Kinematics

The methods traditionally used to solveP may be classified
as:

• the elimination method;

• the continuation method;

• the Gröebner basis method.
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Fig. 1. Gough platform.

All these methods assume an algebraic formulation of the
problem withn unknowns,x1, . . . , xn. These methods will
be described intuitively without trying to be rigorous.

In the elimination method (Innocenti 2001; Lee and Shim
2001a) each equation of the system is expressed as a linear
equation in term of monomials

∏
x
i1
1 . . . x

in
n

(including the
constant monomial 1) in which one of the unknowns,xk, is
supposed to be constant (i.e., the coefficients of the equations
are functions ofxk). Additional equations are obtained by mul-
tiplying the initial equations by a monomial until we obtain
a square system of linear equations that can be expressed in
matrix form as

A(xk)X = 0 (1)

whereX is a set of monomials including the constant mono-
mial 1. Due to this constant monomial, the above system has a
solution only if|A(xk)| = 0, which is a univariate polynomial
Pe in xk. After solving this polynomial, a backtrack mecha-
nism allows us to determine all the other unknowns for each
root of the polynomialPe. The main weakness of this method
is the calculation of|A|; usuallyA is a rather large matrix
and its determinant cannot be calculated in closed form. Most
authors propose to use a numerical method to evaluate the
coefficients of the polynomial|A|; the determinant (of order
n), which is a linear function of the polynomial coefficients,
is calculated numerically forn+ 1 values ofxk and therefore
the coefficients can be obtained by solving a system ofn+ 1
linear equations. However, such a procedure is numerically
unstable and hence there is no guarantee of the correctness of
the solutions.

An elimination method has been used by Husty (1996) to
obtain a 40th-order polynomial but using only symbolic com-
putation and a careful elimination process that guarantee that
we obtain the exact polynomial coefficients; unfortunately,
this procedure seems to be difficult to automate.

To solve a system of equationsF(X) = 0, the continua-
tion method (Raghavan 1991; Sreenivasan and Nanua 1992;
Liu and Yang 1995; Wampler 1996) uses an auxiliary system
G(X) = F + (1 − λ)(F1 − F) = 0, whereF1 is a system
“similar” to F, in the sense that it has at least the same num-
ber of solutions asF, of which all the solutions are known
andλ is a scalar. Whenλ is equal to 0,G = F1 and con-
sequently the solutions ofG are known. These solutions are
used as an initial guess to solve, using a Newton scheme, a
new version ofG obtained forλ = ε whereε has a small
value. This process is repeated forλ = 2ε using the solutions
of the previous run as an initial guess and so on untilλ = 1
for whichG = F. In other words, starting from a system with
known solutions we follow the solution branches of a sys-
tem that slowly evolves towardF. The main weakness of this
approach is that it is necessary to follow a large number of
branches to find all the solutions ofF. In our case,F1 has to
have at least 40 solutions and hence 40 branches will be fol-
lowed, some of which will vanish if the FK problem has less
than 40 solutions. Furthermore, numerical robustness is diffi-
cult to ensure if a singularity is encountered when following
the branches.

In the Gröebner basis approach, the property is used that
the solutions of any algebraic systemF are also solutions of
various other systems of equations in some other unknowns
yi . Among all these systems, one of them has the property of
being triangular, i.e., the system has a first equation in one
unknowny1, the second equation has onlyy1, y2 as unknowns
and so on, until the last equation with unknownsy1, . . . , yn.
Hence all the solutions of this system can be obtained by
solving in sequence the first equation, then the second and
so on. Such a triangular system can be obtained by using
the Buchberger algorithm (Lazard 1992; Faugère and Lazard
1995). Although this method is currently the fastest to solve
in a guaranteed manner, the FK problem (using the FGb and
the RealSolving algorithms of Faugère1 and Rouillier (1995,
2003)) this approach can only be used when the coefficients
of the equations are rational (in which case the results are
certified) and its implementation involves the use of large
integers.

2. Solving with Interval Analysis

2.1. Interval Analysis

Interval analysis is an alternative numerical method that can
be used to determine all the solutions to a system of equations
and inequalities systems within a given search space.

1. See http://www-calfor.lip6.fr/∼jcf/index.html.
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An intervalX is defined as the set of real numbersx ver-
ifying x ≤ x ≤ x. The “width” w(X) of an intervalX is the
quantityx − x while the “mid-point”M(X) of the interval is
(x + x)/2. The “mignitude” (“magnitude”) of an intervalX
is the smallest (highest) value of|x|, |x|. A “point interval”
X is obtained ifx = x. A “box” is a tuple of intervals and its
width is defined as the largest width of its interval members,
while its center is defined as the point whose coordinates are
the mid-point of the ranges.

Let f be a real-valued function ofn unknownsX =
{x1, . . . , xn}. An interval evaluationF of f for given ranges
{X1, . . . , Xn} for the unknowns is an intervalY such that

∀X = {x1, . . . , xn} ∈ X = {X1, . . . , Xn}
Y ≤ f (X) ≤ Y .

(2)

In other words,Y , Y are lower and upper bounds for the values
of f when the unknowns are restricted to lie within the box
X.

There are numerous ways to calculate an interval evalua-
tion of a function (Hansen 1992; Moore 1979). The simplest
is the natural evaluation in which all the mathematical opera-
tors inf are substituted by their interval equivalent to obtain
F . For example, the classical addition is substituted by an
interval addition defined as

X1 +X2 = [x1 + x2, x1 + x2].
Interval equivalents exist for all the classical mathematical op-
erators and hence interval arithmetics allows us to calculate an
interval evaluation for most non-linear expressions, whether
algebraic or not. For example, iff (x) = x + sin(x), then the
interval evaluation off for x ∈ [1.1,2] can be calculated as

F([1.1,2]) = [1.1,2] + sin([1.1,2]) = [1.1,2]
+ [0.8912,1] = [1.9912,3].

Interval evaluation exhibits interesting properties, as follows.

1. If 0 ∈ F(X), then there is no value of the unknowns
in the boxX such thatf (X) = 0. In other words, the
equationf (X) has no root in the boxX.

2. The bounds of the interval evaluationF usually overes-
timate the minimum and maximum of the function over
the boxX, but the bounds ofF are exactly the mini-
mum and maximum if there is only one occurrence of
each unknown inf (Property A).

3. Interval arithmetics can be implemented taking into ac-
count round-off errors. For example, the interval eval-
uation off = x/3 whenX is the point interval [1,1]
will be the interval[α1, α2] whereα1, α2 are the closest
floating point numbers, respectively lower and greater

than 0.3333. . . . There are numerous interval arith-
metics packages implementing this property. One of the
most well known is BIAS/Profil2 using the Cdouble
for interval representation. However, a promising new
package is MPFI (Revol and Rouillier 2002), based on
the multi-precision software MPFR developed by the
SPACES project3, in which the interval is represented
by a number with an arbitrary number of digits.

2.2. Basic Solving Algorithm

Interval analysis based algorithms have been used in robotics
for solving the inverse kinematic of serial robots (Kiyoharu,
Ohara, and Hiromasa 2001; Tagawa et al. 1999) and parallel
robots FK (Castellet 1998; Didrit, Petitot, and Walter 1998;
Jaulin et al. 2001), workspace analysis (Chablat, Wenger, and
Merlet 2002; Merlet 1999), singularity detection (Merlet and
Daney 2001), evaluating the reliability of parallel robots (Car-
reras et al. 1999), optimal placement of robots (Tagawa et al.
2001), mobile robot localization (Bouvet and Garcia 2001)
and trajectory planning (Piazzi and Visioli 1997). However,
interval analysis is a more complex method than may be
thought at a first glance and we will present in this paper
various improvements that have a drastic influence on the
efficiency.

We start with the most basic solving algorithm that may
be derived from the properties of interval arithmetics. Let
B0 = {X1, . . . , Xn} be a box andf = {f1(X), . . . , fn(X)} a
set of equations to be solved withinB0. A list L will contain a
set of boxes and initiallyL = {B0}. An indexi, initialized to 0,
will indicate which boxBi in L is currently being processed,
whilenwill denote the number of boxes in the list. The interval
evaluation of the functionfj for the boxBi will be denoted
Fj(Bi). A thresholdε will be used and, if the width of the
interval evaluation of all the functions for a boxBi is lower
thanε and includes 0, thenBi will be considered as a solution
of the system. The algorithm proceed along the following
steps.

1. If i > n, then return to the solution list.

2. If at least oneFj(Bi) exists such that 0∈ Fj(Bi), then
i = i + 1 and go to 1.

3. If ∀ j ∈ [1, n] 0 ∈ Fj(Bi) andw(Fj(Bi)) ≤ ε, then
storeBi in the solution list,i = i + 1 and go to 1.

4. Select the unknownk whose interval has the
largest width inBi . Bisect its interval in the mid-
dle point and create two new boxes fromBi
as {X1, . . . , Xk−1, [Xk, (Xk + Xk)/2], . . . , Xn]} and
{X1, . . . , Xk−1, [(Xk + Xk)/2, Xk], . . . , Xn]}. Store
these two boxes asBn+1, Bn+2, n = n + 2, i = i + 1
and go to 1.

2. http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.
3. http://www.mpfr.org.
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Note that the storage method used here for the boxes is not
very efficient as far as memory management is concerned.
A first improvement is to substitute the boxBi by one of
the two boxes that are created when bisecting it. A second
improvement, denoted a depth first storage mode, is to store
the second box at positioni + 1 after a shift of the existing
boxes. This ensures that the width ofBi is always decreasing
until either the box is eliminated or a solution is found. In this
mode, for a system ofn equations inn unknowns, the width of
Bi is at least divided by 2 aftern bisection. If the width of the
initial boxB0 isw0 the numberN of boxes that are needed is
such that 2(K/n) = w0/ε and henceN = n log(w0/ε)/ log(2).
For example, ifn = 9,w0 = 10 andε = 10−6, we obtain that
the number of boxes ofL should be 210 (to which we must
add the memory to store the solutions). Hence, even with a
high accuracy for the solution and a large initial search space
the necessary memory storage is small.

As a matter of fact, the described algorithm will usually
not be very efficient, but there are numerous ways to improve
it as will be shown later on. However, note that there is an easy
way to improve the computation time of the basic algorithm;
indeed, we may notice that each box inL is submitted to a
processing that does not depend upon the other boxes. Hence
it is possible to implement the algorithm in a distributed man-
ner. A master computer will send ton slave computers the
first n boxes in the list. These slave computers will individu-
ally perform a few iterations of the basic algorithm and will
send back to the master the remaining boxes in itsL list (if
any) and the solutions it has found (if any). The master will
manage a global listL and perform a few iterations of the
basic algorithm if all the slaves are busy. We will discuss the
efficiency of the distributed implementation in the Example
sections.

3. Equations for the Forward Kinematics

Let Ai andBi be the attachment points of the legi on the
base and on the platform, respectively. The coordinates ofAi
in the reference frame will be denotedxai , yai , zai while the
coordinates ofBi in the same frame arexi, yi, zi . Without
lack of generality we may choosexa1 = ya1 = za1 = 0 and
ya2 = za2 = 0. Note that for a given robot and given leg
lengths it is always possible to change the numbering of the
leg lengths and we will see that this has an influence on the
computation time of our algorithm.

There are numerous ways to write the equations of the
inverse kinematics (which constitute the system of equations
to be solved for the FK problem) according to the parameters
that are used to represent the pose of the platform. In this
paper a pose of the platform will be defined either by the
coordinates of the three pointsB1, B2, B3 (assumed to be not
collinear; such a triplet can always be found otherwise the
robot is always singular) if the platform is planar, or by the

coordinates of the four pointsB1, B2, B3, B4 in the general
case. The chosen points will be denoted the reference points
of the system, and the associated legs the reference legs. If
m, m ∈ [3,4] points are used for defining the pose of the
platform then for anyj in [m+ 1,6] we have

OBj =
k=m∑
k=1

αk
j
OBk, (3)

whereαk
j

are known constants such that
∑k=m

k=1 α
k
j

= 1. A first
set of equations is obtained by expressing the leg lengths for
them chosen reference legs

(xj − xaj )2 + (yj − yaj )2 + (zj − zaj )2 = ρ2
j
, j ∈ [1,m],

(4)

whereρj is the known leg length.
A second set of equations is obtained by writing the leg

lengths for the legsm + 1 to 6, using the coordinates of the
Bj points defined in eq. (3):

(
i=m∑
i=1

αi
j
xi − xaj

)2

+
(
i=m∑
i=1

αi
j
yi − yaj

)2

+
(
i=m∑
i=1

αi
j
zi − zaj

)2

= ρ2
j
, j ∈ [m+ 1,6].

(5)

The third set of equations is obtained by writing that the dis-
tance between any couple of reference pointsB1, . . . , Bm is
a known quantity

(xi − xj )2 + (yi − yj )2 + (zi − zj )2 = d2
ij
,

i, j ∈ [1,m], i = j,
(6)

wheredij is the distance between the pointsBi andBj . It may
be noted that eqs. (4), (5) and (6) are a set of distance equations
which describe the distance between either points in the three-
dimensional (3D) space or virtual points, i.e., points whose
coordinates are a linear combination of reference points (here
pointsBm+1, . . . , B6 are the virtual points).

We end up with a system ofn = 3m equations in the
3m unknowns(xi, yi, zi). It appears that for each equation
in the system (4), (5) and (6) there is only one occurrence
of each unknown. Consequently, according to Property A the
interval evaluation of each equation gives the exact minimum
and maximum values of the equations and this motivates the
use of such representation of the pose of the platform.

It must be noted, however, that ifm = 4 we have not a
minimal parametrization of the system as only three points
are needed to define the pose of the platform. Indeed for point
Bk with k in [4,6] we have

B1Bk = µk1B1B2 + µk2B1B3 + µk3B1B2 × B1B3, (7)
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where theµk
i
are known constants. Hence we are dealing with

a system with twelve unknowns while the same problem may
be stated in terms of only nine unknowns. Equations 7 may
have been used for the FK problem in the general case to obtain
the coordinates ofB4, B5, B6 as functions of the coordinates
of B1, B2, B3, thereby leading to a system of nine equations
in nine unknowns. However, eq. (7) have the drawback in
terms of interval analysis that there are multiple occurrences
of the same variable in the equation. Hence, for the general
case it is better to have more unknowns but no overestimation
of the values of the equations. This is a general trend for the
interval analysis based method in which it is often interesting
to consider a simple expression even at the price of a larger
number of unknowns.

4. Improving the Basic Solving Algorithm

We have presented in Section 2.2 a basic solving algorithm.
The purpose of the following sections is to propose various
methods that can be used to improve the efficiency of this
algorithm.

4.1. Filtering the Boxes

A first possible way to improve the basic algorithm is to try
to decrease the width of the current box “in place”, a method
which is called filtering in the constraints programming com-
munity. There are numerous filters that can be used, but we
will only present the methods that may be of interest for the
FK problem.

4.1.1 Constraint Propagation

Constraint propagation (Jaulin et al. 2001) is a classical
method in the field of interval analysis. Without going into
the details, its purpose is to use the constraints to filter the
boxes, i.e., either to try to reduce their width or even to elim-
inate them.

A first filtering method is the 2B approach, a derivation of
the k-B method introduced in Collavizza, Deloble, and Rueher
(1999). Let us consider, for example, eq. (4):

(xj − xaj )2 + (yj − yaj )2 + (zj − zaj )2 = ρ2
j
. (8)

We may rewrite this equation as

(xj − xaj )2 = ρ2
j
− (yj − yaj )2 − (zj − zaj )2.

LetU1 andU2 be the interval evaluations of the left and right
terms of this equation. The lower bound of the interval eval-
uationU1 is obtained as

U1 =



0 if xj − xaj ≤ 0 andxj − xaj ≥ 0
(xj − xaj )2 if xj − xaj ≤ 0
(xj − xaj )2 if xj − xaj ≥ 0

while the upper bound is

U1 = Max((xj − xaj )2, (xj − xaj )2).
Clearly, if eq. (8) has a solution for the current box, then the

left term value at the solution will be included inU3 = U1∩U2.
Three cases may occur:

1. U1 ∩ U2 = ∅;

2. U1 ⊆ U2;

3. U1 ∩ U2 ⊂ U1.

If U1 ∩ U2 = ∅, then the equation has no solution and the
current box can be rejected. IfU1 ⊆ U2, nothing is done. If
U1 ∩U2 ⊂ U1, we may have eitherU3 < U1 and/orU3 > U1.
We assume thatU3 < U1. This implies that

(xj − xaj )2 ≤ U3

or

−
√
U3 + xaj ≤ xj ≤

√
U3 + xaj .

Hence, the lower or upper bounds forxj may be updated. We
assume now thatU3 > U1 andU3 > 0. This implies

xj ≤ xaj −
√
U3 or xj ≥ xaj +

√
U3,

which may allow the range forxj to be narrowed.
As a simple example, consider the equation

x2
1 + y2

1 + z2
1 = 100

with x1 in [0,10] andy1, z1 in the range [4,6]. Applying the
2B method onx1 we obtain

U1 = x2
1 = [0,100]

U2 = 100− y2
1 − z2

1 = 100− [16,36] − [16,36]
= [28,68].

The intersection ofU1, U2 is [28,68] and hencex2
1 must lie

in this range. Hence, we obtain thatx1 must lie in the range
[√28,

√
68], i.e., approximately [4.24,8.24]. Hence the new

width of the range forx1 is 4 while the width of its initial
range was 10; a simple arithmetic operation has allowed us to
reduce the search space forx1 by 60%.

This process may be repeated for each unknown in the
equation and a similar process may be used for equations of
type (5) and (6). Note also that, as soon as the range for a
variable has been changed, it may be interesting to restart the
process from the beginning as new variables may be updated.
There is, however, a limit to this process as the convergence of
this method is asymptotically slow. In our method, the process
is repeated only if the change of the width of the range for one
unknown is greater than a fixed threshold and the 2B method is
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used only on the equations that include an updated unknown.
If we are using four reference points, the 2B method based on
eq. (7) will also be used to filter boxes.

A second filtering method is the 3B method. In this ap-
proach the range[xj , xj ] for one variablexj in a given boxB is
replaced by[xj , xj +ε], whereε is an arbitrary small number,
while the ranges for the other unknowns are unchanged. We
then test whether, for this new set of ranges, the system may
have some solution either by using the 2B method and/or by
evaluating the equations. If the answer is negative, the range
for xj in the boxBmay be changed to[xj+ε, xj ]. The process
is then repeated on the new range but the change in the range
will be doubled, i.e., we will test the range[xj , xj + 2ε]. The
process is then repeated until the no-solution test is no longer
satisfied. At this point we are testing the range[xj , xj + kε],
wherek is a positive even integer. Ifk > 1 we may either re-
peat the process with a changeε or stop the procedure. Note,
however, that as soon as the range for one variable has been
modified it may be interesting to use the 2B method to even-
tually update the range for all the unknowns.

Up to now, we have tried to decrease the width of the
range forxj by increasing its lower bound. Clearly the process
may be repeated on the “right” side by trying to decrease the
upper bound of the range forxj (i.e., we will test the range
xj − ε, xj ]). In the same manner the process will be repeated
in turn for each unknown.

4.1.2. Global Filtering Methods

A drawback of the previously mentioned methods is that they
are local, i.e., they are working on each equation of the system
but are not considering the whole set of equations.

Global filtering methods that consider at least two equa-
tions may be designed and we will present now two such
methods. The first global filtering method is inspired from
Yamamura, Kawata, and Tokue (1998). Let us consider again
the equation

(xj − xaj )2 + (yj − yaj )2 + (zj − zaj )2 = ρ2
j
. (9)

We will use the change of variable

aj = xj − xj bj = yj − yj cj = zj − zj .
Hence the ranges for these new variables are

[0, xj − xj ], [0, yj − yj ], [0, zj − zj ].
Equation (9) may be written as

(aj − xaj + xj )2 + (bj − yaj + yj )2 + (cj − zaj + zj )2 = ρ2
j
.

(10)

Expanding this equation we obtain

a2
j
+ b2

j
+ c2

j
+ U1aj + U2bj + U3cj + U4 = 0 (11)

where, for a given box, theU terms are constant. Let define
αj asa2

j
+ b2

j
+ c2

j
. Using interval arithmetics it is possible

to determine an interval forαj=[αj , αj ]. Introducingαj in
eq. (11) it becomes a linear equation in terms of the unknowns
αj , aj , bj , cj while the unknownαj is submitted to the linear
inequalities

αj ≤ αj ≤ αj . (12)

This process is repeated for each of then equations (4), (5)
and (6), and we end up with a linear system ofn equations
in terms of then unknownsaj , bj , cj , j ∈ [1,3] andn ad-
ditional unknownsαk which represent the non-linear part of
each equation. Furthermore, thesen additional unknowns are
submitted to the 2n linear inequalities (12). A direct conse-
quence of this linearization is that we may think to use the
first step of the simplex algorithm to determine if this linear
system admits a feasible region. If this is not the case, the non-
linear equations (4), (5) and (6) have no solution and the box is
rejected. However, if a feasible region is detected, we can still
use the second step of the simplex method that allows us to
minimize or maximize a linear cost function. Here we will in
turn determine the minimum and maximum of each variable
aj , bj , cj . If the minimum (maximum) is larger (lower) than
the current bound for the variable, then this bound is updated
asαj is updated, leading to a new linear system. This process
is repeated until the change obtained for the bounds is lower
than a predefined threshold. Note that we use an interval vari-
ant of the simplex method in order to ensure that round-off
errors do not have an impact on the result.

The second global filtering method is the classical interval
Newton method. Let a system ofn equations inn unknowns

F = {Fi(x1, . . . , xn) = 0, i ∈ [1, n]}

and consider the following iterative scheme

Xk+1 = (M(Xk)− A F(M(Xk))) ∩Xk = Uk ∩Xk, (13)

whereA is an interval matrix that contains all the inverse of
the Jacobian matrix of the systemF (we will not explain in
detail how to compute such a matrix). It is possible to show
the following properties of this scheme:

• if Uk ∩ Xk = ∅, then the systemF has no solution in
Xk;

• if Uk ∩ Xk ⊂ Xk, then solutions ofF in Xk are also in
Xk+1.

We use in fact the Hansen–Sengupta version of the interval
Newton method, which uses a pre-conditioning of the Jaco-
bian matrix by its inverse at the middle point of the box, to
improve the interval inputs (see Ratscheck and Rokne 1995).
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4.2. Unicity Operators

The purpose of these operators is to determine eventually a
box, called a unicity box, which contains a unique solution of
the system, and which furthermore can be numerically com-
puted in a certified manner. Two such methods are used in our
algorithm.

4.2.1. Kantorovitch Theorem

Let a system ofn equations inn unknowns

F = {Fi(x1, . . . , xn) = 0, i ∈ [1, n]}.
Let x0 be a point andU = {x/||x − x0|| ≤ 2B0}, the norm
being||A|| = Maxi

∑
j
|aij |. We assume thatx0 is such that

1. the Jacobian matrix of the system has an inverse+0 at
x0 such that||+0|| ≤ A0;

2. ||+0F(x0)|| ≤ 2B0;

3.
∑n

k=1 | ∂2Fi (x)
∂xj ∂xk

| ≤ C for i, j = 1, . . . , n andx ∈ U ;

4. the constantsA0, B0, C satisfy 2nA0B0C ≤ 1.

Then there is a unique solution ofF = 0 inU and the New-
ton method used withx0 as an estimate of the solution will
converge toward this solution (Tapia 1971).

Conversely let us computeB1 as 1/(2nA0C) and assume
that B1 ≤ B0. Then there is a unique solution in the box
[x0 − 2B1, x0 + 2B1]. This is the general version of the Kan-
torovitch theorem but the system we are dealing with is spe-
cific. Indeed, the Hessian matrix is constant as we are dealing
with quadratic equations; a direct consequence is that theC

term can be pre-computed. A further consequence is that we
have been able to show that the factorn in B1 may be substi-
tuted by the dimension of the space in which are written the
distance equations (i.e., three for the current problem), thereby
enlarging the box in which a unique solution is found. In our
algorithm, the Kantorovitch theorem is used for each box hav-
ing a width lower than a given threshold, withx0 being the
center of the box. This may allow us to find a ball centered at
x0 that contains a unique solution.

4.2.2. Inflation Operator

The second unicity operator is based on the use of the Newton
scheme. For each box we run a few iterations of the Newton
method with as an initial guess the center of the box. If after
a few iterations the scheme has converged to a pointX, for
which the absolute values of all the equations are lower than
a small thresholdκ, we will first verify that there is a ballBK

centered atX that contains a solution of the FK problem by
using the Kantorovitch theorem applied atX. However, the
diameter of this box will usually be very small as its maximum
is the norm of||+0F(X)|| with all elements ofF(X) being

lower thanκ in absolute value. We will now explain how to
calculate a box centered atX, that contains only one solution
of the system but which will have, in general, a much larger
diameter thanBK .

Let us assume thatX0 is a solution of a systemF and thatX1

is another solution close toX0, henceF(X0) = F(X1) = 0.
Using the mean value theorem we obtainF(X1) = F(X0)+
J (X)(X1 − X0) whereJ is the Jacobian matrix of the sys-
tem andX lies in the box[X0, X1]. Hence we obtain that
J (X)(X1 − X0) = 0 which admits a solution only ifJ (X)
is singular. The principle is now to obtain a box centered at
X0 such thatJ (X) is regular for any point in the box. To
obtain such a box we use the H-matrix theory of Neumaier
(1990, 2001). We will explain first an implementation of this
scheme that will work whatever is the system ofn equations
in n unknowns we are considering.

Let us consider a boxB [X0 − ε,X0 + ε] centered atX0

and compute the interval Jacobian matrix for this box that
we multiply by the inverse of the Jacobian matrix computed
atX0 to obtain an interval matrixS = ((Sij )). Consider the
diagonal elementSii having the lowest mignitudesii and let
us definemj as the sum of the magnitude of the intervals in
thej th row ofS, excluding the diagonal element of the line,
whileMS will be the maximum of themj over the rows ofS.
If sii > MS , thenJ is regular over the wholeB.

If the regularity test is satisfied forB, then we expand it
to [X0 − 2ε,X0 + 2ε] until the regularity test is not satisfied
for the box[X0 − 2nε,X0 + 2nε]. If the regularity test is not
satisfied forn = 1, then we will use the boxBK as a unicity
box.

We may, however, specialize this scheme in the particular
case of distance equations. Indeed, in that case each compo-
nent of the Jacobian matrix is linear in terms of the unknowns.
Let {x0

i
} be the elements ofX0, letJ−1

0 be the inverse of the Ja-
cobian matrix computed atX0 and letX1 be defined as{x0

i
+κ},

whereκ is the interval[−ε, ε]. Each componentJij of the Ja-
cobian atX1 can be calculated asαij + βijκ, whereαij , βij
are constants which depend only uponX0. If we multiply J
by J−1

0 we obtain a matrixU = J−1
0 J = In + A, whereIn is

the identity matrix of dimensionn andA is a matrix such that
Aij = ζijκ whereζij can be calculated as a function of theβ
coefficients and of the components ofJ−1

0 . For a given linei of
the matrixU the diagonal element has a mignitude 1− |ζii |ε
while the sum of the magnitude of the non-diagonal element
is ε

∑j=n
j=1 |ζij |, j = i. The matrixU will be guaranteed to be

regular if for alli

ε

j=n∑
j=1

|ζij | (i ∈ [1, n], j = i) ≤ 1 − |ζii |ε

which leads to

ε ≤ 1

|ζii | + Max(
∑j=n

j=1 |ζkj |), k ∈ [1, n], j = k . (14)
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Hence, the minimal valueεm of the right term of this inequality
over the lines ofU allows us to define a box[X0−εm,X0+εm]
which contains a unique solution of the system. In general,
this box will be larger than the box computed with the Kan-
torovitch theorem. Note that the round-off errors involved in
the computation ofJ−1

0 may lead to a wrong estimate ofεm.
However, we can perform the regularity test with this value
and decrease it by a small amount if this test fails.

Ultimately the Kantorovitch scheme may fail if two (or
more) solutions are very close and the round-off error does
not allow us to separate them. In that case the algorithm will
still stop as we give a minimum threshold on the width of
the box. If the width of a box is lower than this threshold
and the interval evaluations of the equations for this box all
include 0, then this box is considered a solution. However, if
a solution is returned as a box and not as a point interval it
indicates that a further analysis has to be performed around
this interval solution; either we are close to a singularity (this
can be detected safely using the scheme proposed in Merlet
and Daney 2001) or we have a cluster of solutions that can
only be calculated by using an extended arithmetics such as
MPFI.

4.3. Filtering with the Unicity Box

Let us assume that a unicity boxBu has been found by one of
the methods proposed in the previous section. We will propa-
gate this knowledge in the boxes still to be processed to avoid
finding again the same solution. Indeed, if there is an inter-
section between a boxBk andBu, then new solutions can only
be found inBk − (Bk ∩Bu). For a boxBk in the list two cases
may occur:

1. Bk ⊂ Bu – the boxBk is eliminated from the list;

2. Bu ⊂ Bk orBu ⊂ Bk butBu∩Bk = ∅–Bk−(Bk∩Bu) is
calculated. This calculation may lead to at most 2mnew
boxes but this should be avoided. So we first filter the
new boxes using the algorithms proposed in Section 4.1
and we impose a limit on the number of new boxes
(typically no more than four new boxes may be created).

4.4. The Improved Algorithm

The basic solving algorithm is hence improved by using the
various methods described in the previous sections. The added
steps are presented in italic font, followed by the section num-
ber that describes the step. By convention a step that allows us
to eliminate a box will return−1, while a step that determines
a solution will return 1.

1. If i > n, then return the solution list.

2. If solutions have been found filter Bi with the unicity
box filter (4.3).

3. If local filter = –1, theni = i + 1 and go to 1 (4.1).

4. If global filter = –1, theni = i + 1 and go to 1 (4.1.2).

5. If unicity method = 1 (4.2), then

(a) test if the solution has not already been found;

(b) if not add the solution to the solution list;

(c) use the unicity box filter onBi (4.3).

6. If at least oneFj(Bi) exists such that 0∈ Fj(Bi), then
i = i + 1 and go to 1.

7. If 0 ∈ Fj(Bi) ∀ j ∈ [1, n] andw(Fj(Bi)) ≤ ε, then
storeBi in the solution list,i = i + 1 and go to 1.

8. Select the unknownk which has the largest
width in Bi . Bisect its interval in the mid-
dle point and create two new boxes fromBi
as X1, . . . , Xk−1, [Xk, (Xk + Xk)/2], . . . , Xn] and
X1, . . . , Xk−1, [(Xk+Xk)/2, Xk], . . . , Xn]. Store these
boxes asBn+1, Bn+2, n = n+ 2 and go to 1.

A further refinement may be added. Indeed, it is interest-
ing to determine as soon as possible all the solutions of the
system as the filtering with the unicity box described in the
previous section will decrease the search space. A pure depth
first storage mode is not very efficient in this view. As the
filtering described in Section 4.2 may allow us to determine
the solution of the system even for boxes with a large width,
we will change the ordering of the boxes in the listL. After a
fixed number of iterations of the algorithm, the current boxBi
will be substituted by the box having the largest width among
the boxes that have to be processed.

5. Determining the Search Space

Interval analysis is, in general, used for problems where
ranges for the solution may be specified. Furthermore, the
efficiency of these methods is usually very sensitive to the
size of the search space.

Fortunately the FK problem belongs to the category of
problems for which bounds for the solutions are easily found.
We will describe here simple methods that allow us to deter-
mine an initial search space.

5.1. Bounds from a Single Leg

Obtaining bounds for thenunknowns is straightforward when
considering the constraint on one leg. Letdij be the known
distance betweenBi andBj and define fori, j in [1,m]:

pij = xaj + ρj + dij
qij = yaj + ρj + dij
rij = zaj + ρj + dij .
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Clearly, for a givenj the x, y, z coordinates ofBi cannot
exceedpij , qij , rij and be lower than−pij ,−qij ,−rij . Hence,
an initial search space for the coordinates ofBi is the box
defined as

[Max(−pij ),Min(pij )], [Max(−qij ),Min(qij )],
[Max(−rij ),Min(rij )],

wherei, j ∈ [1,m].

5.2. Improved Bounds for a Pair of Legs

Let us consider two legs with extreme pointsBi, Bj and denote
Dij as the distance betweenAi andAj . PointBi is constrained
to lie on a sphereS1 centered atAi with radiusρi . At the same
time, this point is constrained to lie inside a sphereS2 centered
atAj with radiusρj+dij and, ifρj ≥ dij , to lie outside a sphere
S3 centered atAj with radiusρj − dij . Hence, four different
cases may occur forBi (Figure 2):

1. If ρj +dij > ρi +Dij andρj −dij ≤ Dij , pointBi will
lie on the sphereS1.

2. If ρj + dij > ρi + Dij andρj − dij ≥ Dij , pointBi
will lie on the part of the sphereS1 bordered by the
intersection betweenS1, S3 which is the farthest from
Aj .

3. If ρj + dij < ρi + Dij andρj − dij ≤ Dij , pointBi
will lie on the part of the sphereS1 bordered by the
intersection betweenS1, S2 and which is the closest to
Aj .

4. If ρj + dij < ρi + Dij andρj − dij ≥ Dij , pointBi
will lie between the part of the sphereS1 the closest to
Aj delimited by the intersection betweenS1, S2 and the
part of the sphereS1 the closest toAj delimited by the
intersection betweenS1, S3.

In the first case, no further information on the bound for the
coordinate ofBi compared to the bound found in the previous
section will be obtained. For the three other cases, we assume
first that the directionAi,Aj is the direction of thex-axis of
the reference frame. For the second case, we assume thatC3

is the circle projection ofS3 in thex, z plane and letN1, N2 be
the intersection points betweenC1, C3, both having the same
x coordinatexN . Then,xN is an upper bound for thex coordi-
nate ofBi . For the third case, letC1, C2 be the circle projection
of the sphereS1, S2 in thex, z plane and letM1,M2 be the two
intersection points ofC1, C2 (which have the samex coordi-
natexM). Clearly,xM is a lower bound for thex coordinate
of Bi which is a better lower bound than−pij found in the
previous section. Furthermore, ifρj + dij < Dij thenzM ; the
z coordinate ofM is an upper bound for thez coordinate ofBi
while −zM is a lower bound. As there is a circular symmetry
in the problem,−zM andzM are also lower and upper bounds

for the y coordinate ofBi . As in the second case,xN is an
upper bound for thex coordinate ofBi .

Using this procedure a new bounding boxB is obtained for
Bi . Now, ifAi,Aj are not on thex-axis of the reference frame
there is a rotation matrixR that allows us to convert a vector
in our bounding box frame to a vector in the reference frame.
Applying this rotation matrix onB will allow us to obtain a
bounding box in the reference frame and update accordingly
the bounds for then unknowns. This process may be repeated
for each pair of legs.

5.3. Numbering the Legs

It must be noted that the numbering of the legs may be changed
arbitrarily. A change in this numbering has first an effect on the
size of the search space. For example, if we are using the two
previous algorithms it is interesting to reorder the numbering
of the legs so that the selected leg 1 will have the lowest leg
length while the legs 2 and 3 will be those presenting the
lowest absolute value forρi + di1 among the five remaining
legs. This allows us to reduce the size of the search space with
a minimal amount of computation time. However, it must also
be noted that the coefficientsαi

j
appearing in the FK equations

play an important role as they increase or decrease the range
for the coordinates of the virtual points. We will see in the
section devoted to the results that the choice of the numbering
has a drastic effect on the computation time.

6. Extensions to the Improved Algorithm

The algorithm presented in the previous sections has two good
features:

• any additional constraints that may limit the number of
realistic solutions to the FK problem may be taken into
account with a direct impact on the computation time;

• uncertainties on the robot can be taken into account.

We will exemplify these features in the next two sections.

6.1. Range of Motion for the Passive Joints

An advantage of the proposed algorithm is that it can eas-
ily be modified to take into account technological constraints
that will limit the number of solutions that can effectively be
reached by the robot. For example, the passive joints atAi, Bi
may have a limited range of motion. Each joint is such that the
angleθ between the leg connected to the joint and a known
direction (defined by a unit vectorui, the reference axis of the
joint) must be less than a given valueθmax .

For the joint atAi this may be written as

AiBi

ρi
.ui ≥ cosθmax. (15)
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Fig. 2. The four different cases for the possible location ofBi related to the location ofAj , the leg lengthρj and the distance
betweenBi, Bj . The allowed zone forBi on the sphere centered atAi with radiusρi is presented in gray.

In this equation the components of the vectorAiBi can be
expressed as a linear function of our unknowns whileρi,ui

are known quantities. Hence, we are able to evaluate for each
box the left termUi of the previous inequalities. An additional
filter will then be used in our algorithm:

• For the box evaluateUi and ifUi < cosθmax , then elim-
inate the box as it cannot contain a solution that will
respect the joint constraints.

• The left term of the inequality can be expressed as∑k=r
k=1µkXk whereXk are unknowns of the FK problem.

The inequality can be written asµ1X1 ≥ cosθmax −∑k=r
k=2µkXk. Let W1 be the interval evaluation of the

right term of this inequality and assume thatµ1 is
positive. We find thatX1 must be greater or equal to
W1/mu1, which may allow us to update the range for
X1. A similar process may be used to improve the ranges
of the other variables.

• Eliminate the solutions found in Section 4.2 that do not
satisfy the joint constraints.

For the joint atBi the reference axisui is no longer fixed
in the reference frame. Hence its components have to be es-
tablished as functions of the unknowns. There are constants

βk
i

such that

ui = β1
i
B1B2 + β2

i
B1B3 + β3

i
(B1B2 × B1B3),

as we have assumed thatB1, B2, B3 were not collinear. A sim-
ilar filter for the limited motion of the joints atBi can thus be
designed using eq. (15).

Note that taking into account the joint motion limitation
within the calculation allows us to reduce the computation
time and is better than computing all the solutions and then
sorting them.

6.2. Modeling Uncertainties

Assume now that some parameters in the model of the robot
are not perfectly known; for example, the location of the joints
at Ai, Bi , the leg lengths,. . . may be known only up to a
given accuracy, usually relatively small. Up to now, we have
assumed that theseN parametersQj have a fixed value while
in fact they lie in known rangesI jQ. Note that very often the
real values of a parameter will indeed cover the full rangeI

j

Q;
for example, if we have clearance in the joints atAi, Bi the
location of theAi, Bi will depend upon the static equilibrium
of the robot.

Under this assumption the FK problem does not have a
finite number of solutions but is a manifold of solutions as the
coefficients of the FK equations are now intervals. However,
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we will still be able to determine an approximation of this
manifold, i.e., find all the poses that can be reached by the
robot.

We will introduce as additional unknowns theN variables
Qj (for example,;xai , ;yai , ;zai for the location of theAi
points). The FK equation becomes a system ofn equations
in theN + n variables, but the algorithm can still be used to
solve this system provided that:

• the unicity filter (Section 4.2) is no longer used as usu-
ally it will not be possible to extract a square system in
then equations, but it may still be used if we consider
that the FK equations have interval coefficients (in that
case the unicity filter will provide an outward hull of
the manifold);

• a solution is supposed to be found as soon as the width
of a box is lower thanε while the interval evaluation of
the equations still contain 0 – these boxes are written
in a file and their total volume isVs ;

• boxes with a width lower thanα, a value provided by
the user, are eliminated from the list of boxes – they are
called the neglected boxes and their total volume isVn.

Using this method we will be able to calculate an approxi-
mation of the set of all solutions of the FK problem whatever
the values of the physical parameters of the real robot. This
approximation is an inward hull of the manifold.

The total volume of the region that can be reached by the
robot will not exceedVs + Vn and the ratioVs/Vn is a good
index to determine the quality of the approximation. Note also
that this quality index can be improved incrementally. Indeed,
we may store the neglected boxes obtained for a given value
α1 of α in a file (which has led to a solution volumeV 1

s
) and

then process only the boxes in this file if a valueα2 < α1

of α is selected. Indeed, there is no need to process again
the whole search domain as we have already determined the
solution volumeV 1

s
. For thej run of the algorithm with value

αj < αj−1 < . . . < α1 for α, the solution volume will be
V 1
s

+ V 2
s

+ . . . + V j
s

while the neglected volumeV j
n

will be
such thatV j

n
≤ V j−1

n
≤ . . . ≤ V 1

n
.

7. Implementation

The tests have been performed using the softwareALIAS 4

which is a C++ library, available for SUN/Unix and PC/Linux,
which implement most interval analysis methods described in
the previous sections. Basic interval arithmetics operations are
performed with the BIAS/Profil library (with a precision of
double). An innovation of this package is that it is partially
interfaced with Maple:

4. http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-
C++.html and http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-
Maple/ALIAS-Maple.html.

• the equations which are to be solved are defined in a
Maple session;

• by using a specific Maple library the C++ code based
on ALIAS which is necessary to solve the system is
automatically produced and then is executed. Further-
more, the C++ code that is equation-dependent (such as
the code for the 2B filtering method that is used when
dealing with eq. (7)) is also produced;

• the result of the solving algorithm is made available in
the Maple session;

• using the multi-precision ability of Maple, the accu-
racy of the obtained solutions (related to the accuracy
of the C++ code) can be improved (solutions may be
determined up to an arbitrary number of digits).

Note that it is possible to use this Maple interface to produce
a generic C++ program that may be used for a given robot
but for any leg lengths. Hence, the computation time given in
the following section will be the execution time of the generic
program.

ALIAS also allows us to use the distributed implementa-
tion of the solving algorithm within the Maple session. Basi-
cally only the names of slave computers have to be given and a
distributed implementation will be created using the message
passing mechanisms of the parallel virtual machine (PVM;
Geist 1994).

8. Example 1

Here, we will use the FK problem presented in Lee and Shim
(2001b). The coordinates of theAi points are

A1 [0,0,0] A2 [62,0,0] A3 [7,13,0]
A4 [42,38,0] A5 [32,39,0] A6 [62,11,0]

while the coordinates of theBi are

B1 [0,0,0] B2 [14,0,0] B3 [16,42,0]
B4 [46,27,0] B5 [23,45,0] B6 [47,13,0].

The length of the legs are

ρ1 = 99.44345126ρ2 = 122.3824766

ρ3 = 119.2390086

ρ4 = 153.9499536ρ5 = 136.2700605

ρ6 = 156.0149565.

Here, the platform is planar and hence we have nine un-
knowns. Note that due to the symmetry with respect to the
base we will always obtain an even number of solutions (for
each solution withB1 over the base we will obtain another
solution which is the mirror of the first one withB1 under the
base).
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8.1. Numbering the Legs and Computation Time
We may select arbitrarily the numbering of the legs by choos-
ing three legs that will be numbered from 1 to 3 among the six
possible legs; hence there is a total of 20 possible numbering.
Two factors may be modified when changing the numbering:
the search space and the values of theαi

j
coefficients. As the

amount of time for computing the search space and theαi
j

coefficients is very low, all combinations can be considered.
The following elements can be calculated: mean valueMs of
the search space diameter ranges, minimal diameterImin for
the range of the search space, mean valueMα of the absolute
value of the nineαi

j
coefficients, and mean valueM6 of the

diameter of the ranges for the six attachment pointsBi . For
the current example, we obtain data provided in Table 1.

The values ofM6 allow us to distinguish three main groups:
one having a valueM6 less than 200, one having a value be-
tween 200 and 300 and the remaining one having a value
larger than 400. It seems reasonable to keep only as possible
numbering the elements of the first group as a largeM6 will
impose a large number of bisection to satisfy eq. (5). A second
criterion is thatMs should be minimal as the bisection will be
applied on the intervals that are used to compute this mean
value. Using both criteria, the most promising combinations
are (2,3,6), (2,3,5), (1,3,5), (1,3,6), (1,4,6), and (1,4,5), in this
order.

The tests have been performed using the standard Maple
interface of theALIAS library on a single PC laptop EVO 410
C, 2 GHz. The problem admits a total of four solutions and
hence a total of two solutions in our search space. The solving
times for finding all four solutions of the FK problem on the
PC laptop for the six selected combinations are, respectively,
15, 17, 17, 17, 20, and 23 s.

Among all the combinations, the worst computation time is
420 s for the combination (1,5,6) which has the fourth largest
Ms and the third largestM6. If we have selected the combi-
nation having the lowestMs (1,2,3) we obtain a computation
time of 238 s (but this combination has the second largestM6).
If we rank the combination according to their values forMs

andM6 and average the two ranks we again find that (2,3,6)
is the best while (1,2,3) is among the worst. If we extend that
to the nine best combinations, the worst computation time is
179 s for (2,3,4).

We have also tested the distributed implementation of our
algorithm which is also available directly within the Maple
interface. To average the performances, we have tested the
combination (1,2,6) which has the second bestMs but the
twelfthM6 and for which the computation time on the laptop
is 50 s.

The parallel implementation has been tested on a hetero-
geneous cluster of 16 low-level SUN and PCs that are shared
by our team; the computation times vary between 5 and 15 s
according to the load of the slave computers. Then, the same
program has been tested on a cluster of 16 high-performance
2 Ghz PCs with a computation time of about 3–4 s.

Note that the distributed implementation allows a gain in
computation time which may be larger than the number of ma-
chines despite the overhead time due to the message passing
scheme. Indeed, in that case solutions may be found earlier in
the process and the filtering process described in Section 4.3
allows us to eliminate the solution parts within the box that
contain solutions, leaving only boxes that contain no solution
and are quickly dismissed as such.

9. Example 2

In this section we will study the example provided in Diet-
maier (1998) which has 40 solutions. The coordinates of the
Ai points are

A1 [0,0,0] A2 [1.107915,0,0]
A3 [0.549094,0.756063,0]
A4 [0.735077,−0.223935,0.525991]
A5 [0.514188,−0.526063,−0.368418]
A6 [0.590473,0.094733,−0.205018]

while the coordinates of theBi are

B1 [0,0,0] B2 [0.542805,0,0]
B3 [0.956919,−0.528915,0]
B4 [0.665885,−0.353482,1.402538]
B5 [0.478359,1.158742,0.107672]
B6 [−0.137087,−0.235121,0.353913].

The leg lengths are

ρ1 = 1 ρ2 = 0.645275 ρ3 = 1.086284

ρ4 = 1.503439 ρ5 = 1.281933 ρ6 = 0.771071.

As the platform is not planar we use the formulation of the
problem with twelve unknowns. Note that the solving param-
eters are exactly the same as in the previous example although
the scale of this robot is quite different.

9.1. Numbering the Legs and Computation Time

As in the previous case the numbering of the legs has a large
influence on the size of the search space and on the compu-
tation time. Here, the mean value of the ranges of the search
space is more significant as the number of unknowns is larger
than in the previous case.

An analysis similar to that performed in the previous sec-
tion leads us to eliminate the combinations (2,3,5,6), (1,2,4,6),
and (1,2,3,5) that have by far the largestM6 (see Table 2).

If we select the six combinations that have the bestMs , i.e.,
(1,2,3,6), (1,2,5,6), (1,2,3,4), (1,3,5,6), (2,3,4,6), (1,3,4,6), we
obtain respectively the following computation times: 22, 23,



Merlet / Solving the Forward Kinematics 233

Table 1. Evaluation of the Search
Space Size According to the Num-
bering of the Legs

Combination Ms Mα M6 Imin

1,2,3 125.92 5.526 1064.08 44.9
1,2,4 146.32 2.346 554.717 44.9
1,2,5 138.77 1.324 331.64 44.9
1,2,6 137.05 1.443 352.63 44.9
1,3,4 148.57 1.37 392.4 89.16
1,3,5 150.92 0.4229 172.538 89.16
1,3,6 150.82 0.444 177.229 89.16
1,4,5 150.06 0.5319 194.78 67.71
1,4,6 150.15 0.517 191.79 73.86
1,5,6 151.074 3.85 970.05 69.97
2,3,4 139.89 1.67 435.78 44.9
2,3,5 139.99 0.531 180.44 44.9
2,3,6 139.16 0.543 181.83 44.9
2,4,5 196.75 0.591 273.57 108.87
2,4,6 153.96 0.55 204.04 108.87
2,5,6 156.59 2.76 721 87.219
3,4,5 142.07 2.87 683.59 91.58
3,4,6 143.9 2.15 536.42 96.2
3,5,6 149.07 2.908 719.349 54.08
4,5,6 200.87 3.974 1269.98 150.69

The combination indicates which legs are the reference legs 1, 2
and 3 among the six possible legs.

Table 2. Evaluation of the Search Space Size According
to the Numbering of the Legs

Combination Ms M6

1,2,3,4 1.872567 4.084438
1,2,3,5 1.758934 41.559028
1,2,3,6 1.500378 6.901214
1,2,4,5 2.045049 2.752602
1,2,4,6 1.787842 11.106032
1,2,5,6 1.664384 4.693668
1,3,4,5 2.190959 2.380921
1,3,4,6 1.987354 5.58962
1,3,5,6 1.893959 4.303475
1,4,5,6 2.147044 6.74884
2,3,4,5 2.151589 4.654878
2,3,4,6 1.923324 3.567641
2,3,5,6 1.772669 8.321244
2,4,5,6 2.074924 2.622965
3,4,5,6 2.225193 2.35483

The combination indicates which legs are chosen
as reference legs 1, 2, 3, and 4 among the six possible
legs.

51, 51, 40, and 46 s. If we have eliminated only the combi-
nation having the worstM6 (1,2,3,5) the worst computation
time will have been 329 s for combination (3,4,5,6) (which
has the worstMs), then 275 s for combination (1,3,4,5) (which
has the second worstMs) and finally 117 s for combination
(2,4,5,6).

10. Example 3

In this section we consider the INRIA “left-hand” parallel
robot that has been presented in numerous papers. Our algo-
rithm has been tested for all 64 combinations of leg lengths
obtained when each leg length is either the minimal or maxi-
mal possible joint limits 52.249, 55.749. For 14 combinations
among the 64 combinations, there is no solution for the FK
problem. On a single computer, the average computation time
for solving the FK problem is about 20 s with a minimum of
2 s and a maximum of 50 s.

Note that this algorithm is very efficient. We have sub-
mitted this problem toNUMERICA (Van Hentenryck, Michel,
and Deville 1997), a classical constraints-based solver, with-
out getting any solution after hours of computation. We have
also used a general solver implemented inALIAS which was
able to find the solutions in about 1 h.
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11. Real-Time Operator

As mentioned previously, our algorithm is not intended to be
used in a real-time context. However, in this case we may as-
sume safely that the determination of the pose of the platform
at timetk may rely first on a similar calculation performed at
time tk−1 having given a posePk−1 = {Bk−1

1 , . . . , Bk−1
n

}. Fur-
thermore, we may assume that upper boundsVmax,>max on
the velocities and angular velocities of the robot are known.
It is then easy to deduce fromPk−1 a bounding box forPk. For
each coordinate ofBk

j
, the box will be centered atBk−1

j and
its edge will have length 2(tk − tk−1)(Vmax +>max ||BjB1||).

The bounding box will usually be much smaller than the
bounding box used to determine all the solutions, and our
experiment with the INRIA “left-hand” robot has shown that
in that case the computation time is approximately similar
to the usually used Newton scheme. Indeed, if the Newton
scheme converges toward the current pose in most cases the
unicity filter will determine that using the Newton scheme is
safe. Hence, the only overhead will be due to this unicity test
which amounts mostly to the numerical inversion of anm×m
matrix. The computation time of this inversion is negligible
as soon as the Newton scheme needs more than one iteration
to converge.

However, at the same time our algorithm is safer:

• if only one solution is found, we guarantee that the
solution is the current pose of the platform, while the
Newton scheme may converge toward a solution of the
forward kinematics that is not the current pose;

• if more than one solution is found, for example if the
robot is close to a singularity, then it will be safer to
immediately stop the robot as we cannot know for sure
what is the current pose; the Newton scheme in that
case may either fail to converge or provide a solution
that is not the current pose, with severe consequences.

12. Conclusion

Interval analysis provides an interesting alternative for numer-
ically solving the forward kinematics of parallel robots with
the following advantages:

• certified result—all solutions will be provided so that
they can be computed with a pre-selected accuracy and
singular configurations are detected;

• the method can be adapted to take into account physi-
cal constraints with the advantage that the computation
time will be reduced;

• it offers an alternative to real-time computation that is
as competitive in terms of computation time but is safer
than the Newton scheme;

• it allows us to take into account uncertainties in the
model of the robot or in the measurements of the leg
lengths.

Although the principle of interval analysis is quite straight-
forward we have shown that efficiency relies heavily on a set
of filtering methods. Some of these methods are well known
but they have been improved to take into account the struc-
ture of the FK equations and such a combination of methods
has not been used in the past. The distance equation solver
that has been presented here has also been used for the de-
termination of conformation of molecules where the distance
between the atoms are known (a molecule with 100 atoms has
been successfully identified).
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