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Abstract

This paper addresses an interval analysis based study that is ap-
plied to the design and the comparison of three-degrees-of-freedom
(3-DoF) parallel kinematic machines. Two design criteria are used:
(i) a regular workspace shape and (ii) a kinetostatic performance
index that needs to be as homogeneous as possible throughout the
workspace. The interval analysis based method takes these two cri-
teria into account; on the basis of prescribed kinetostatic perfor-
mances, the workspace is analyzed to find the largest regular dex-
trous workspace enclosed in the Cartesian workspace. An algorithm
describing this method is introduced. Two 3-DoF translational par-
allel mechanisms designed for machining applications are compared
using this method. The first machine features three fixed linear joints
which are mounted orthogonally and the second features three lin-
ear joints which are mounted in parallel. In both cases, the mobile
platform moves in the Cartesian x–y–z space with fixed orientation.

KEY WORDS—parallel kinematic machine, design, interval
analysis, comparison, workspace, transmission factors

1. Introduction

Parallel kinematic machines (PKMs) are known for their high
dynamic performances and low positioning errors. The kine-
matic design of PKMs has drawn the interest of several re-
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searchers. The workspace is usually considered as a relevant
design criterion (Merlet 1996; Clavel 1988; Gosselin and An-
geles 1991). Parallel singularities (Wenger and Chablat 1997)
occur in the workspace where the moving platform cannot re-
sist any effort, and thus are very undesirable and generally
eliminated by design. The Jacobian matrix, which relates the
joint rates to the output velocities is generally not constant
and not isotropic. Consequently, the performances (e.g., max-
imum speeds, forces, accuracy, and stiffness) vary consider-
ably for different points in the Cartesian workspace and for
different directions at one given point. This is a serious draw-
back for machining applications (Kim et al. 1997; Treib and
Zirn 1998; Wenger, Gosselin, and Chablat 2001). Few paral-
lel mechanisms are isotropic throughout the workspace (Car-
ricato and Parenti-Castelli 2002, Kong and Gosselin 2002).
However, their low structural stiffness makes them inadequate
for machining applications because their legs are subject to
bending.

To be of interest for machining applications, a PKM
should preserve good workspace properties, that is, regular
workspace shape and acceptable kinetostatic performances
throughout. For example, in milling applications, the ma-
chining conditions must remain constant along the whole tool
path (Rehsteiner et al. 1999; Tlusty, Ziegert, and Ridgeway
1999). In many research papers, this criterion is not taken
into account in the algorithmic methods used to compute
the workspace volume (Luh et al. 1996; Merlet 1999). Other
papers present methods that compute the well-conditioned
workspace using discretization (Gosselin and Angeles 1988;
Stougthon and Arai 1993). Thus, the results they provide can-
not be proved formally. Conversely, interval analysis methods
applied to well-conditioned workspace computation provide
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guaranteed results (Merlet 2000; Chablat, Wenger, and Merlet
2002).

The comparison of PKM architectures is a difficult but rel-
evant challenge (Wenger, Gosselin, and Chablat 2001; Joshi
and Tsai 2003). Providing tools to allow designers or end-
users to rigorously compare PKM is indeed necessary because
the variety of existing PKMs makes it hard to choose which
one is best suited for a specific task.

In this paper, an interval analysis based method is ad-
dressed for the design and comparison of a three-degrees-
of-freedom (3-DoF) PKM. This method takes into account
two criteria: (i) a regular workspace shape and (ii) a kine-
tostatic performance index that needs to be as homogeneous
as possible throughout the workspace. Two basic tools and
an algorithm that considers these two criteria are introduced;
on the basis of prescribed kinetostatic performances, the
workspace is analyzed to find the largest regular dextrous
workspace (square, cube, cylinder, etc.) enclosed in the Carte-
sian workspace.

Two translational parallel mechanisms derived from the
Delta robot (Clavel 1988) are compared using this method.
The first machine, called Orthoglide (Chablat and Wenger
2003), features three fixed linear joints which are mounted
orthogonally and the second, called UraneSX (Renault Au-
tomation; Company and Pierrot 2002), features three linear
joints which are mounted in parallel. In both cases, the mo-
bile platform moves in the Cartesianx–y–z space with fixed
orientation.

In the next section we present the interval analysis based
method for 3-DoF PKM design. In Section 3 we present the
Orthoglide and UraneSX mechanisms, their kinematic equa-
tions and singularity analysis. In Section 4 we report on the
comparison between the two mechanisms through the deter-
mination of the largest dextrous cube for the Orthoglide and
the largest dextrous square for the UraneSX enclosed in the
workspace.

2. Description of the Interval Analysis Based
Method for 3-DoF Translational PKM Design

2.1. Preliminaries

2.1.1. Dextrous Cartesian Workspace

For a three-axis serial machine tool, a parallelepiped-shaped
Cartesian workspace allows the end-user to visualize eas-
ily where to place cutting paths. This consideration should
also hold for PKMs. However, the workspace shape is of-
ten geometrically complex and thus hard to visualize. There-
fore, a regular-shaped workspace is needed for PKMs. Thus,
we need to define a regular dextrous workspace which is a
regular-shaped workspace included in the machine Cartesian
workspace. Throughout the dextrous workspace, a kineto-
static performance index (that is chosen beforehand) remains

as homogeneous as possible. This index can be the local or
global conditioning (Gosselin and Angeles 1991) of the Ja-
cobian matrixJ (that maps the actuated joint rates of the ma-
nipulator into the velocity of the mobile platform), the force
or velocity transmission factors. These last two indices make
sense for a 3-DoF translational PKM with identical actuated
joints.

The method presented in this paper aims at designing such
a 3-DoF PKM. The velocity transmission factors are the ratio
between the actuated joints velocities and the velocity of the
mobile platform. They are the square rootsψ1, ψ2, andψ3

of the real eigenvaluesσ1, σ2, andσ3 of (JJT)−1. In order to
keep homogeneous kinetostatic properties, these factors are
bounded inside the dextrous workspace.The “regular dextrous
Cartesian workspace” can be defined as a set of pointsP in
the workspace such thatψ1, ψ2, andψ3 are bounded, i.e.,

WDextrous = {P ∈ W | ψmin ≤ ψi(P ) ≤ ψmax, i = 1,2,3}.
(1)

PointsP in WDextrous are called “dextrous points”.
The values ofψmin andψmax (σmin andσmax , respectively)

depend on given performance requirements. The method de-
scribed further aims at computing the largest dextrous Carte-
sian workspace included in the Cartesian workspace, so that
its ratio to the Cartesian workspace is the best one. To be
of real interest for milling applications, a PKM must indeed
include a large regular dextrous workspace in its Cartesian
workspace.

2.1.2. Introduction to the ALIAS Library

An algorithm for the definition of the largest dextrous
workspace included in the Cartesian workspace is described in
the following sections. This algorithm uses theALIAS library
(Merlet 2000), which is a C++ library of algorithms based
on interval analysis. These algorithms deal with systems of
equations and inequalities whose expressions are an arbitrary
combination of the most classical mathematical functions (al-
gebraic terms, sine, cosine, log, etc.) and whose coefficients
are real numbers or, in some cases, intervals. An interface ex-
ists with Maple that allows the automatic generation of C++
codes being given the Maple description of the system and
then to compile and run the generated code in order to obtain
the result within the Maple session. Without being exhaustive,
the ALIAS library provides algorithms that enable one (i) to
find an approximation of the real roots ofn-dimensional sys-
tems, (ii) to find an approximation of the variety defined by
n-dimensional systems, (iii) to find an approximation of the
global minimum or maximum of a function (eventually under
equations and/or inequalities constraints) up to an accuracy
provided by the user, and (iv) to analyze a system of algebraic
equations to determine bounds for its real roots.
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2.1.3. Geometric Constraints

The dextrous workspaceWDextrous is defined in eq. 1 as a func-
tion of the eigenvalues of(JJT)−1. These eigenvalues are de-
termined by solving the third degree characteristic polynomial
P of (JJT)−1. To decrease the computing time and to avoid nu-
merical problems on singularities, it is recommended to add
geometrical constraints. These constraints naturally depend
on the mechanism architecture (see Section 4.2).

2.2. A First Basic Tool: Box Verification

Our purpose is to determine the largest regular dextrous
workspace that is enclosed in the Cartesian workspace. For a
given point, we note “valid point” if it is a dextrous point and
“invalid point” otherwise. For that purpose we need to design
first a procedure, calledM(B), that takes as input a Cartesian
boxB and returns:

1 : if every point inB is valid;

−1 : if no point inB is valid;

0 : if neither of the other two conditions could be verified.

The first step of this procedure consists in considering an
arbitrary point of the box (e.g., its center) and to compute
the eigenvalues at this point; either all of them lie in the range
[σmin, σmax] in which case the center is called “valid” or at
least one of them lies outside this range and the center point
is denoted “invalid”.

2.2.1. Valid Center Point

In that case, if we are able to check that there is no point in
B such that one of the eigenvalues at this point is equal to
σmin or σmax , then we can guarantee that every point inB is
valid. Indeed, we assume that at a given pointB the lowest
eigenvalue is lower thanσmin; this implies that somewhere
along the line joining this point to the center of the box the
lowest eigenvalue is exactlyσmin.

To perform this check we set the unknown in the charac-
teristic polynomialP of (JJT)−1 to σmin (and then toσmax)
and we obtain a polynomial inx, y, z only. We now have to
determine if there exist some values for these three Cartesian
coordinates that cancel the polynomial, it being understood
that these values have to define a point belonging toB. This is
done by using an interval analysis algorithm from the ALIAS
library (Merlet 2000). The principle of this algorithm is to
calculate first the polynomial value for the center pointCB of
B. Without lack of generality we may assume that this value
is positive. If we are able to determine a pointSB in B such
that the polynomial value at this point is negative, then we can
guarantee that there exists a point on the line joiningCB toSB
such that the polynomial is exactly 0. The purpose of the al-
gorithm is now to determine if such a point exists. Now letBi

be a box included inB. Using interval analysis we are able to
calculate a range[mBi ,MBi ] such that for any pointX inBi we
havemBi ≤ P(X) ≤ MBi . Note that this interval evaluation is
numerically safe as the bounds of the range are calculated by
taking into account round-off errors. On the other hand, these
bounds may not be “sharp”, i.e., there may be noX inBi such
thatP(X) = mBi orMBi . Note, however, that the width of the
overestimation decreases with the width ofBi . Furthermore,
we may obtain a sharp evaluation by using, for instance, the
derivatives ofP. Indeed we may calculate the interval eval-
uation [rx,y,z, Rx,y,z] of ∂P/∂x, y, z and, if all three interval
evaluations have constant signs (i.e.,rx,y,z > 0 orRx,y,z < 0),
then sharpmBi ,MBi are obtained by setting the variables to
fixed values. For instance, ifrx > 0, thenmBi (MBi ) is ob-
tained by settingx to its lower (upper) bound. Note that other
methods may also be used to determine sharp bounds (see
Moore 1979; Neumaier 1990; Ratscheck and Rokne 1995).

Hence we have the following properties:

1. if mBi > 0, then for any point inBi the polynomialP
is positive;

2. if MBi < 0, then for any point inBi the polynomialP
is negative;

3. if mBi < 0,MBi > 0 and the bounds are sharp, then the
polynomialP cancels inBi ;

4. if mBi < 0, MBi > 0 and the bounds are not sharp,
then we cannot guarantee the sign of the polynomialP
within Bi .

At that point a simple branch-and-bound algorithm is used;
the initial boxB is bisected until either all the subboxes re-
sulting from the bisection satisfy property 1 (in which case
we can guarantee that the polynomialP never cancels forB
and consequently that all the eigenvalues ofP lie in the range
[σmin, σmax], which impliesM(B) = 1) or a subbox resulting
from the bisection satisfies property 2 or 3, which means that
at some point inB at least one of the eigenvalues ofP lies out-
side the range[σmin, σmax], which corresponds toM(B) = 0.

The algorithm may indeed return 0 for a box that includes
only valid points, but the width of this box will be lower than
α/2 (whereα is an accuracy threshold fixed in advance for
the computation) and hence the final result will be within the
tolerance margin of the calculation. The only case in which
the calculation will be not guaranteed will occur only whenα
is lower than the machine accuracy. However, we may deter-
mine that we are in such a configuration as the width of the
box from the machine viewpoint will be 0; if a box of width
0 is processed and the algorithm returns 0, then a warning
message will be issued indicating that the calculation is no
longer guaranteed. Note, however, that we may still use the
algorithm by using a multi-precision package such as MPFR
that will allow us to obtain a guaranteed result. Furthermore,
it is doubtful that computing the result with an accuracy better
than the machine precision makes sense.
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2.2.2. Invalid Center Point

Without lack of generality, we may assume that at the center of
the box the largest eigenvalue is greater thanσmax . If there is no
point inB such that one of the eigenvalues is equal toσmax , then
we can guarantee that for any point inB the largest eigenvalue
is always greater thanσmax and consequentlyM(B) = −1.
This check is performed by using the same method as in the
previous case.

2.3. A Second Basic Tool: Box Workspace Verification

During the calculation of the dextrous workspace, we consider
a Cartesian boxB and we have to examine if this box may
contain a point that is the center of a Cartesian boxBW with
edge lengthw, which is fully enclosed in the robot workspace.
We assume here that this workspace is defined by a set ofm

inequalitiesFj such that a pointX belongs to the workspace
if Fj(X) ≤ 0 for all j in [1,m]. LetBi be a subbox included
in B, defined by the three ranges[xi, xi], [yi, yi], [zi, zi]. All
the boxes with edge lengthw that have as center a point inBi
are included in the “hull box”HBi defined by the three ranges
[xi−w/2, xi+w/2], [yi−w/2, yi+w/2], [zi−w/2, zi+w/2].
As in the previous section we may use interval analysis to
compute an interval evaluation[mj

Bi
,M

j

Bi
] of all Fj(HBi )with

the following properties:

1. if Mj

Bi
< 0 for all j in [1,m], then any point ofBi

may be the center of a box with edge lengthw that is
included in the workspace;

2. ifmj

Bi
> 0, then no point ofBi may be the center of a box

with edge lengthw that is included in the workspace;

3. if mBi < 0 andMBi > 0, then we cannot determine if
some point withinBi may be the center ofBW .

Note also that, if the widths of all the ranges definingBi are
lower thanw, any boxBW contains the four corners of the box
Bi .

Using a similar branch-and-bound algorithm as in the pre-
vious section, we may now determine whether all, none or
some points ofB may be the center of a boxBW . The initial
box B is bisected until all the subboxes resulting from the
bisection satisfy either property 1 (then any point ofB may
be the center of a boxBW ) or property 2 (no point ofB may
be the center of a boxBW ). If a subbox satisfies property 3
and the widths of its ranges are lower thanw, we check if
the corners ofB belong to the workspace; if all the corners
either belong or do not belong to the workspace we continue
the bisection. If we have a mixed situation with some corners
belonging to the workspace whereas others do not, we may
state thatB contains both points that may be the center of a
boxBW and points that cannot. A similar situation is obtained
if we have found at least a subbox that satisfies property 1 and
a subbox that satisfies property 2.

At that point we may define a procedureG(B,w) that takes
as input a boxB and an edge lengthw and returns:

−1 : there are no points inB that may be the center of a
boxBW ;

1 : all the points inB may be the center of a boxBW ;

0 :B contains both points that may be the center of a box
BW and points that cannot.

2.4. Algorithm for the Determination of a Cubic Dextrous
Cartesian Workspace

An algorithm is now described for the determination of a cube
that is enclosed in the Cartesian workspace and aligned with
the coordinate axis, whose edge length is 2w and such that
there is no other cube enclosed in the workspace with an edge
length of 2(w+α).This algorithm can be applied to any 3-DoF
manipulator. Other shapes for regular dextrous workspace are
considered in Section 2.5.

The first step is to determine the largest cube enclosed
in the workspace with a center located at(0,0,0). This is
done by using theM procedure on the Cartesian boxBinit
[−kα, kα], [−kα, kα], [−kα, kα] wherek is an integer ini-
tialized to 1. Each time theM procedure returns 1 forBinit
(which means that the cube with edge length 2kα is enclosed in
the dextrous workspace) we double the value ofk. If this pro-
cedure returns−1 for a value ofk larger than 1 this implies that
the cube with edge lengthkα/2 is in the dextrous workspace
whereas the cube with edge lengthkα is not. Hence, ifk > 2
(otherwise no improvement is possible) we restart the process
with k = (k/2+k)/2.After a failure atkfail the principle is to
always choose a value ofkwhich is the mid-point between the
last valueks of k for whichM = 1 andkfail until kfail = ks+1.
For example, ifM returns 1 fork=1, 2, 4 and returns−1 for
k = 8 we setk to 6. Otherwise we have determined that
the cube with edge length 2kα is enclosed in the dextrous
workspace, whereas the cube with edge length 2(k + 1)α is
not. The value 2kα is hence an initial value forw. Note that
the above procedure may be used whatever the coordinates of
the center; it is implemented as a general purpose procedure
C(xM, yM, zM) that takes as input the coordinates of a point
M and returns the edge length of the largest cube centered at
M, that is enclosed in the dextrous workspace.

In the algorithm for determining the largest cube enclosed
in the dextrous workspace, we manage a list of Cartesian boxes
L that are processed by the algorithm in sequence. During the
processing, boxes may be added to a list. At one step of the
algorithm, we haven boxes in the list. When boxi is pro-
cessed, boxes 0 toi–1 have already been processed and may
be discarded whereas boxesi to n have to be processed. The
algorithm stops when all the boxes inL have been processed.
The box numberedi in the list is denotedBi and the maximum
number of boxes inL isN .
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At the beginning of the algorithm,L has only one boxB0

that contains the workspace (for example, for the Orthoglide
B0= { [−L,L], [−L,L], [−L,L]}). The algorithm can be
described by the following six steps.

1. Calculatew = C(0,0,0).

2. If i > n EXIT.

3. If G(Bi, w + α) = −1, then seti to i + 1 and go to 2.

4. If G(Bi, w + α) = 1, then calculatew′ =
C(xBi , yBi , zBi ) wherexBi , yBi , zBi are the coordinates
of the center ofBi . If w′ > w, then updatew. Go to
step 6.

5. If G(Bi, w + α)= 0, then go to step 6.

6. Bisect the variable in the boxBi that has the largest
range. For example, if the boxBi is defined as[xi, xi],
[yi, yi], [zi, zi] and the variablex has the largest range,
the bisection process creates two new boxesB1

i
=

{[xi, (xi + xi)/2], [yi, yi], [zi, zi]} andB2
i

= {[(xi +
xi)/2, xi], [yi, yi], [zi, zi]}. If n < N/2, both boxes are
stored at the end of the list (and we seti=i+1), other-
wise boxB1

i
is stored inL in place ofBi whereas box

B2
i

is stored at locationi + 1 after a shift of the boxes
Bi+1, . . . , Bn. Setn to n+ 1 and go to step 2.

Step 1 allows us to establish an initial value for the maxi-
mal edge length. Step 3 eliminates boxes that cannot contain
the center of the maximal cube due to the workspace limits.
Boxes satisfying step 4 are candidates to include the center
of the largest cube; hence, we calculate the largest cube cen-
tered at the box that may allow us to update the current value
of the largest edge. Step 6 is the bisection process that allows
us to decrease the size of the box with the effect of a sharper
calculation for the procedureG. Note also that two storage
modes are used for adding the boxes resulting from the bisec-
tion process. The second mode allows for a minimal memory
storage but has the drawback of focusing on a given part of
the workspace, whereas the center of the largest cube may be
located in another part. The first mode makes it possible to
explore various parts of the workspace which may result in
large improvement of the value ofw but with the drawback
of possibly creating a large number of boxes. The proposed
storage mode allows us to mix the advantages of both storage
modes.

This procedure ensures that we can determine a cube with
edge lengthw that is enclosed in the workspace and in the
dextrous workspace, whereas there is no such cube with edge
lengthw + α.

Note that an incremental approach is possible.After having
computedw = w1 with a given accuracyα it is always possi-
ble to replace the initial value ofw as calculated in step 1 of
the algorithm by the valuew1 when computing the cube with

a lower value forα. Computation times of the largest cube
for various accuracies are given for a specific 3-DoF PKM in
Section 4.3.

2.5. Other Regular Dextrous Workspace Shapes

Clearly, the largest cube may not be appropriate if the stud-
ied PKM has a rectangular or a spherical-shaped workspace.
The algorithm can thus be modified. Here are, for example,
the necessary changes that must be taken into account to con-
sider the largest sphere. The idea is to use spherical coordi-
nates and hencex, y, z are substituted byxc + r sinψ sinθ ,
yc +cosψ sinθ , zc + r cosθ , with r in [0, R],ψ, θ in [0,2π ].
xc, yc, zc are the coordinates of the center of the sphere andR

is its radius. Interval analysis allows us to deal with expres-
sions involving sine and cosine and hence proceduresM,G
can still be used with these new parameters. Similarly pro-
cedureC(xM, yM, zM) can be used to determine the largest
radius of the sphere centered at(xM, yM, zM) for which the
eigenvalues are valid. Hence, with this modification, the algo-
rithm can calculate the largest sphere enclosed in the dextrous
workspace.

Spheres and cubes are defined by their center and one ad-
ditional parameter, but other shapes may involve more param-
eters; for example a cylinder needs a center but also a height
and a radius. We can still perform a change in the variables so
that proceduresM,G can still be used. The key point is that
procedureC(xM, yM, zM) has to be modified as we have now
two optimization parameters. In that case, volume optimiza-
tion alone has less meaning; for example, the optimization
result for a cylinder may be a cylinder with a relatively small
radius and a large height, which may be of no interest.A cylin-
der of identical radius and height with a lower volume may
be the most interesting result. A possible way to manage this
problem is to assign a range[a, b] for the ratioR/hwhereR is
the cylinder radius andh its height. In that case the procedure
C has to solve an optimization problem which is to maximize
the volume of the cylinder under the constraints that the eigen-
values are valid and the ratioR/h satisfiesa ≤ R/h ≤ b.
ALIAS is still able to manage such an optimization procedure.

2.6. Approximate Calculation of the Dextrous Workspace

Small modifications in the previous algorithm allow us
to determine an approximation of the dextrous Cartesian
workspaceWDextrous as a set� of three-dimensional (3D) Carte-
sian boxes such that for any boxB in � and for any point in
B the constraints on the eigenvalues are satisfied. The width
of all the boxes in the set� is greater than a given threshold
ε; hence, we obtain only an approximation of the dextrous
Cartesian workspace. However, the algorithm provides the
volumeVa of the approximation and a volume errorVe such
that the volumeVd of the dextrous Cartesian workspace satis-
fiesVd ≤ Va +Ve. Decreasing the value ofε makes it possible
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to increaseVa and to decreaseVe. In this paper, this method is
used to analyze 3D boxes but it can be applied for any mech-
anism withn DoFs, the result being a set ofn-dimensional
boxes.

Initially Va andVe are set to 0.

1. If i > n EXIT.

2. If M(Bi) = −1, then seti to i + 1 and go to 1.

3. If M(Bi) = 1, then storeBi in � and add its volume to
Va. Seti to i + 1 and go to 1.

4. If M(Bi)= 0, then

(a) if the largest width ofBi is lower thanε, then[(b)]
add its volume toVe, seti to i + 1 and go to 1;

(a) otherwise go to step 5.

5. Process bisection for boxBi . Setn ton+1 and go to 1.

Note that this procedure may be incremental if the boxes ne-
glected at step 4(a) are stored in a fileF. Indeed, a first run
with a givenε allows us to obtain initial values forVa and
Ve. If the quality of the approximation is not satisfactory, we
may choose a smaller value ofε (e.g. ε/2). But instead of
starting with the initialB0, we may use the boxes stored inF,
thereby avoiding a repeat computation that has already been
done during the initial run.

3. Description of Orthoglide and UraneSX

The previous interval analysis based design method is now
applied to the comparison of two 3-DoF translational PKMs.
It is particularly interesting to compare these two mechanisms
because they belong to the same architecture family.

3.1. Orthoglide and UraneSX Architectures

Most existing PKMs can be classified into two main fami-
lies. The PKMs of the first family have fixed foot points and
variable length struts and are generally called “hexapods” or
“tripods”. The PKMs of the second family have variable foot
points and fixed length struts. They are interesting because
the actuators are fixed and thus the moving masses are lower
than in the hexapods and tripods.

The Orthoglide and the UraneSX mechanisms studied in
this paper are 3-DoF translational PKMs and belong to the
second family. Figures 1 and 2 show the general kinematic
architecture of the Orthoglide and of the UraneSX, respec-
tively. Both mechanisms have three parallelPRPaR identi-
cal chains (whereP , R, andPa denote prismatic, revolute,
and parallelogram joints, respectively).The actuated joints are
the three linear joints. These joints can be actuated by means
of linear motors or by conventional rotary motors with ball
screws.
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Fig. 1. Orthoglide kinematic architecture.
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Fig. 2. UraneSX kinematic architecture.

The output body is connected to the linear joints through
a set of three parallelograms of equal lengthsL = AiBi , so
that it can move only in translation. Vectorsei coincide with
the direction of theith linear joint. The base pointsAi are
located at the middle of the first two revolute joints of theith
parallelogram, andBi is at the middle of the last two revolute
joints of theith parallelogram.

For the Orthoglide mechanism, the first linear joint axis is
parallel to thex-axis, the second is parallel to they-axis, and
the third is parallel to thez-axis.When each vectorei is aligned
with AiBi , the Orthoglide is in an isotropic configuration and
the tool center pointP is located at the intersection of the
three linear joint axes.
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The linear joint axes of the UraneSX mechanism are par-
allel to thez-axis. In Figure 2, pointsA1, A2, andA3 are the
vertices of an equilateral triangle whose geometric center is
O and such thatOAi = R. Thus, pointsB1, B2, andB3 are
the vertices of an equilateral triangle whose geometric center
is P , and such thatOBi = r.

3.2. Kinematic Equations and Singularity Analysis

We recall briefly here the kinematic equations and the singu-
larities of the Orthoglide and of the UraneSX; see Company
and Pierrot (2002) and Chablat and Wenger (2003) for more
details.

Let θi andβi denote the joint angles of the parallelogram
about axesii andji , respectively (Figures 1 and 2). Letρ1, ρ2,
andρ3 denote the linear joint variables, and letL denote the
length of the three legs,AiBi .

For the Orthoglide, the position vectorp of the tool cen-
ter pointP is defined in a reference frame (O,x, y, z) cen-
tered at the intersection of the three linear joint axes (note that
the reference frame has been translated in Figure 1 for more
legibility).

For the UraneSX, the position vectorp of the tool center
pointP is defined in a reference frame (O,x, y, z) centered
at the geometric center of the pointsA1, A2, andA3 (same
remark as above).

Let ρ̇ be referred to as the vector of actuated joint rates and
ṗ as the velocity vector of pointP :

ρ̇ = [ρ̇1 ρ̇2 ρ̇3]T, ṗ = [ẋ ẏ ż]T. (2)

ṗ can be written in three different ways by traversing the three
chainsAiBiP :

ṗ = ei ρ̇i + (θ̇i ii + β̇iji )× (bi − ai ). (3)

Here,ai andbi are the position vectors of the pointsAi andBi ,
respectively, andei is the direction vector of the linear joints,
for i = 1,2,3.

We want to eliminate the three idle joint ratesθ̇i andβ̇i from
eq. (3), which we do by dot-product of eq. (3) bybi − ai :

(bi − ai )Tṗ = (bi − ai )Tei ρ̇i . (4)

Equation (4) can now be cast in vector form, namelyAṗ =
Bρ̇, whereA andB are the parallel and serial Jacobian matri-
ces, respectively:

A =

 (b1 − a1)

T

(b2 − a2)
T

(b3 − a3)
T


 and B =


 η1 0 0

0 η2 0
0 0 η3


 (5)

with ηi = (bi − ai )Tei for i = 1,2,3.
Parallel singularities occur when the determinant of the

matrixA vanishes, i.e., when det(A) = 0. Equation (5) shows
that the parallel singularities occur when

(b1 − a1) = α(b2 − a2)+ λ(b3 − a3), (6)

that is, when the pointsA1, B1, A2, B2, A3, andB3 lie in
parallel planes. A particular case occurs when the linksAiBi
are parallel:

(b1 − a1) || (b2 − a2) and

(b2 − a2) || (b3 − a3) and

(b3 − a3) || (b1 − a1).

Serial singularities arise when the serial Jacobian matrixB is
no longer invertible, i.e., when det(B) = 0. At a serial sin-
gularity a direction exists along which no Cartesian velocity
can be produced. Equation (5) shows that det(B) = 0 when
for one legi, (bi − ai ) ⊥ ei .

WhenB is not singular, we can write

ρ̇ = J−1ṗ with J−1 = B−1A. (7)

4. Comparison of Orthoglide and UraneSX

In this section, we calculate the edge length of the largest cube
for the Orthoglide and the edge length of the largest square
for the UraneSX, as well as the location of their respective
centers. To simplify the problem, the bounds on the velocity
transmission factors are such thatψmin = 1/ψmax .

4.1. Regular Dextrous Workspace Shape

The Orthoglide and the UraneSX are compared according to
the size of their largest regular dextrous workspace. Because
of the symmetrical architecture of the Orthoglide, the Carte-
sian workspace has a fairly regular shape in which it is pos-
sible to include a cube whose sides are parallel to the planes
xy, yz, andxz, respectively. The Cartesian workspace of the
UraneSX is the intersection of three cylinders whose axes are
parallel to thez-axis. Thus, the workspace is unlimited in the
z-direction and the Jacobian matrix does not depend on thez-
coordinate. Only the limits on the linear joints define the limits
of the Cartesian workspace in thez-direction. However, it is
possible to include a square in the planexy. Regular dextrous
workspaces are thus chosen to be a cube for the Orthoglide
and a square for the UraneSX.

4.2. Geometric Constraints

Section 2.1 is suggested to add geometrical constraints so
as to decrease the computing time and to avoid numerical
problems on singularities. Here, polynomialP is defined only
for the points within the intersection� of the three cylinders
defined by

x2 + y2 < L2 x2 + z2 < L2 y2 + z2 < L2 (8)

for the Orthoglide, and
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Table 1. Computation Time of the Largest Cube Enclosed in the Dextrous Workspace for Various Accuracies

Accuracyα (mm) 0.01 0.001 0.0001 0.00001
Computation time (s) 360 150 504 900

(x − R + r)2 + y2 < L2

(
x − (R − r)

1

2

)2

+
(
y − (R − r)

√
3

2

)2

< L2

(
x − (R − r)

1

2

)2

+
(
y + (R − r)

√
3

2

)2

< L2

for the UraneSX. With these constraints, matrixB is never
singular and thus can be always inverted. To solve numerically
the above equations and to compare the two mechanisms, the
length of the legs is normalized, i.e., we setL = 1.

4.3. Comparison Results

To compare the two mechanisms studied, the leg lengthL is
set to 1 and the bounds on the velocity factor amplification
are set toψ = [0.5 2], with α = 0.001. For the UraneSX, it is
necessary to define two additional lengths,r andR. However,
the edge length of the workspace depends only onR − r.

For the Orthoglide, it is found that the largest cube has its
center located at(0.086,0.086,0.086), and that the cube edge
length isLWorkspace = 0.644. Also, using the incremental ap-
proach described in Section 2.4, we obtain for the Orthoglide
the computation time of Table 1 on a Sun Blade workstation.

For the UraneSX, the design parameters are those defined
in Company and Pierrot (2002), which we have normalized to
haveL = 1, i.e.,r = 3/26 andR = 7/13. To compare the two
mechanisms, we increase the value ofR such thatR′ = R+λ
with λ = [0.0,0.2]. ForR < 7/13, the constraints on the
velocity amplification factors are not satisfied.

The optimal value ofR′ is obtained forλ = 0, i.e., for
the design parameters defined in Company and Pierrot (2002)
for an industrial application (see Table 2). To expand this
square workspace in thez-direction, the range limits must be
equal to the edge length of the square plus the range variations
necessary to move throughout the square in thex–y plane.

The constraints on the velocity amplification factors used
for the design of the Orthoglide are close to those used for the
design of the UraneSX which is an industrial machine tool.
For the same length of the legs, the size of the cubic workspace
is larger for the Orthoglide than for the UraneSX.

For the Orthoglide, the optimization puts the serial and
parallel singularities far away from the Cartesian workspace
(Chablat and Wenger 2003). The UraneSX has no parallel sin-
gularities due to the design parameters (R−r < L), but serial
singularities cannot be avoided with the previous optimization

Table 2. Variations of the Edge Length of the Square
Workspace for the UraneSX Mechanism

λ Center LWorkspace

0.00 (−0.0178,−0.0045) 0.510
0.05 (−0.0179,−0.0022) 0.470
0.10 (−0.0225,−0.0031) 0.420
0.15 (−0.0245,−0.0018) 0.370
0.20 (−0.0211,−0.0033) 0.320

function. To produce the motion in thez-direction, the range
limits of the linear joints are set such that the constraints on
the velocity amplification factors are not satisfied throughout
the Cartesian workspace.

The range limits�ρi of each prismatic joint can be de-
composed into two parts. For the Orthoglide and the UraneSX
respectively, the first part�fi makes it possible to move the
mobile platform throughout the face of the prescribed cube
and prescribed square, respectively, which is perpendicular to
the considered prismatic joint axis. The second part is equal
to the edge length of the cubic workspaceLWorkspace. The equa-
tions of the inverse kinematic model allow us to compute�fi
for the two mechanisms.

For the Orthoglide, the position and the size of the pre-
scribed cube define three range limits for thex–y–z platform
coordinates:

x = [−0.322+ 0.085,0.322+ 0.085] (9a)

y = [−0.322+ 0.085,0.322+ 0.085] (9b)

z = [−0.322+ 0.085,0.322+ 0.085]. (9c)

For the UraneSX, the position and the size of the pre-
scribed square define two range limits for thex–y platform
coordinates:

x = [−0.255− 0.018,0.255− 0.018] (9d)

y = [−0.255,0.255]. (9e)

For the Orthoglide, all�fi are equal due to the symmetrical
architecture. For the UraneSX, we take�f = Max(�fi).The
results are�f = 0.181 and�ρ = 0.825 for the Orthoglide
and�f = 0.353 and�ρ = 0.863 for the UraneSX. This
means that the range limits are quite similar for the same leg
length. To calculate the volume of the Cartesian workspace
of the two mechanisms for the previous range limits, we have
used a CAD system. Results are given in Table 3.

To help understand these results, Figures 3 and 4 show the
location of the largest cubic workspace inside the Cartesian
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Table 3. Workspace Volumes of the Two Mechanisms

Cartesian Workspace Volume Cubic Dextrous Ratio
With Optimized Ranges Limits Workspace Volume

Orthoglide 0.566 0.265 46.8%
UraneSX 0.544 0.132 24.3%

Fig. 3. Cartesian workspace and dextrous workspace for the
Orthoglide mechanism with optimized range limits.

workspace. As the Cartesian workspace of the Orthoglide is
regular and admits a quasi-cubic shape, the ratio between the
cubic workspace and the Cartesian workspace is better than
for the UraneSX.

In Table 4, the design parameters are compared to achieve
the same cubic dextrous workspace withLWorkspace = 1. The
leg length is directly connected to the dynamic properties
of the mechanism. The range limits and the leg length are
important parameters in the determination of the total size
of the mechanism and in its global cost. The volume of the
Cartesian workspace allows us to characterize the shape and
the volume of motion of the tool with regard to the useful
Cartesian workspace dedicated to manufacturing tasks (cubic
workspace).

These criteria allow us to optimize some geometric pa-
rameters to design a machine tool for milling applications.
Although in this approach the kinetostatic properties of the
Orthoglide are better than those of UraneSX, we cannot as-
sert that the Orthoglide is better than the UraneSX. One reason
is that these two PKMs are not aimed at identical manufactur-
ing tasks. The main applications of the UraneSX are drilling,
facing, and tapping whereas the Orthoglide is more universal.

Other shapes of regular dextrous workspaces can be com-
puted for the Orthoglide and the UraneSX by using cylindrical

Fig. 4. Cartesian workspace and dextrous workspace for the
UraneSX mechanism with optimized range limits.

or spherical coordinates to have the largest cylinder or sphere
respectively, even if these shapes are generally less relevant
for milling applications.

5. Conclusions

In this paper we introduce an interval analysis based study
for the design and the comparison of a 3-DoF PKM. Two
basic tools and an algorithm are described to determine the
largest regular dextrous workspace enclosed in the Cartesian
workspace. The dextrous workspace is part of the Cartesian
workspace in which the velocity amplification factors remain
within a predefined range. This means that throughout the
dextrous workspace, milling tool paths are available because
the variations of the kinematic performances index remain un-
der reasonable values. The regular dextrous workspace shape
is a cube for the Orthoglide and a square for the UraneSX.
This general method is coupled with geometric constraints
associated with the mechanisms studied to avoid numerical
problems at singular configurations. The shape of the dex-
trous workspace was chosen for milling applications but it
can be different for other applications. The range limits and
the volume of the Cartesian workspace were calculated to
compare the two mechanisms.
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Table 4. Synthesis of the Comparative Study For the Same Cubic Cartesian Workspace

Volume of the
Leg Length Range Limits Cartesian Workspace

Orthoglide 1.55 1.28 2.13
UraneSX 1.96 1.69 4.12
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