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Abstract

This paper addresses an interval analysis based study that is ap-
plied to the design and the comparison of three-degrees-of-freedom
(3-DoF) paralléel kinematic machines. Two design criteria are used:
(i) a regular workspace shape and (ii) a kinetostatic performance
index that needs to be as homogeneous as possible throughout the
workspace. Theinterval analysis based method takes these two cri-
teria into account; on the basis of prescribed kinetostatic perfor-
mances, the workspace is analyzed to find the largest regular dex-
trous wor kspace enclosed in the Cartesian workspace. An algorithm
describing this method isintroduced. Two 3-DoF trandlational par-
allel mechanismsdesigned for machining applicationsare compared
using this method. The first machine featuresthree fixed linear joints
which are mounted orthogonally and the second features three lin-
ear joints which are mounted in parallel. In both cases, the mobile
platformmovesin the Cartesian x—y—z spacewith fixed orientation.

KEY WORDS—parallel kinematic machine, design, interva

analysis, comparison, workspace, transmission factors

1. Introduction

An Interval Analysis
Based Study for

the Design and the
Comparison of
Three-Degrees-of -
Freedom Parallel
Kinematic Machines

searchers. The workspace is usually considered as a relevant
design criterion (Merlet 1996; Clavel 1988; Gosselin and An-
geles 1991). Parallel singularities (Wenger and Chablat 1997)
occur in the workspace where the moving platform cannot re-
sist any effort, and thus are very undesirable and generally
eliminated by design. The Jacobian matrix, which relates the
joint rates to the output velocities is generally not constant
and notisotropic. Consequently, the performances (e.g., max-
imum speeds, forces, accuracy, and stiffness) vary consider-
ably for different points in the Cartesian workspace and for
different directions at one given point. This is a serious draw-
back for machining applications (Kim et al. 1997; Treib and
Zirn 1998; Wenger, Gosselin, and Chablat 2001). Few paral-
lel mechanisms are isotropic throughout the workspace (Car-
ricato and Parenti-Castelli 2002, Kong and Gosselin 2002).
However, their low structural stiffness makes them inadequate
for machining applications because their legs are subject to
pending.

To be of interest for machining applications, a PKM
should preserve good workspace properties, that is, regular
workspace shape and acceptable kinetostatic performances
throughout. For example, in milling applications, the ma-
chining conditions must remain constant along the whole tool
path (Rehsteiner et al. 1999; Tlusty, Ziegert, and Ridgeway

Paralle_l kinematic machines (PKMS)_ z_ire_known fortheirh_iglj_ggg). In many research papers, this criterion is not taken
dynamic performances and low positioning errors. The kings account in the algorithmic methods used to compute
matic design of PKMs has drawn the interest of several e workspace volume (Luh et al. 1996; Merlet 1999). Other
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workspace using discretization (Gosselin and Angeles 1988;
Stougthon and Arai 1993). Thus, the results they provide can-
not be proved formally. Conversely, interval analysis methods
applied to well-conditioned workspace computation provide
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guaranteed results (Merlet 2000; Chablat, Wenger, and Merket homogeneous as possible. This index can be the local or
2002). global conditioning (Gosselin and Angeles 1991) of the Ja-
The comparison of PKM architectures is a difficult but relcobian matrixJ (that maps the actuated joint rates of the ma-
evant challenge (Wenger, Gosselin, and Chablat 2001; Joslpulator into the velocity of the mobile platform), the force
and Tsai 2003). Providing tools to allow designers or endsr velocity transmission factors. These last two indices make
userstorigorously compare PKM is indeed necessary becasemse for a 3-DoF translational PKM with identical actuated
the variety of existing PKMs makes it hard to choose whicfoints.
one is best suited for a specific task. The method presented in this paper aims at designing such
In this paper, an interval analysis based method is ad-3-DoF PKM. The velocity transmission factors are the ratio
dressed for the design and comparison of a three-degrebstween the actuated joints velocities and the velocity of the
of-freedom (3-DoF) PKM. This method takes into accountobile platform. They are the square rogtg ., and
two criteria: (i) a regular workspace shape and (ii) a kinesf the real eigenvalues,, o,, ando; of (JJ7)~1. In order to
tostatic performance index that needs to be as homogene&esp homogeneous kinetostatic properties, these factors are
as possible throughout the workspace. Two basic tools abdunded inside the dextrous workspace. The “regular dextrous
an algorithm that considers these two criteria are introduce@artesian workspace” can be defined as a set of pdirits
on the basis of prescribed kinetostatic performances, thige workspace such that, v, andy; are bounded, i.e.,
workspace is analyzed to find the largest regular dextrous
workspace (square, cube, cylinder, etc.) enclosed inthe Cartey, . — (P ¢ W| ¥, < Vi(P) < Yars i = 1,2, 3}
sian workspace. (1)
Two translational parallel mechanisms derived from the
Delta_robot (leavel 1988) are compared using this methog,ointsp N Wooqou are called
The first machine, called Orthoglide (Chablat and Wenger The values off,.;, and .., (0, ando,,., respectively)

2003), features three fixed linear joints which are mount pend on given performance requirements. The method de-
°”h°9°”_a”y and the second, called UraneSX (Renault Az rine further aims at computing the largest dextrous Carte-
tomation; Company and Pierrot 2002), features three linegg, \yorkspace included in the Cartesian workspace, so that

jqints which are mOL_mted in para!lel. In both caS(_es, t_he M@s ratio to the Cartesian workspace is the best one. To be
bile platform moves in the Cartesiafy—z space With fixed ot o5 interest for milling applications, a PKM must indeed

orientation. , , _ include a large regular dextrous workspace in its Cartesian
In the next section we present the interval analysis bas%rkspace

method for 3-DoF PKM design. In Section 3 we present the

Orthoglide and UraneSX mechanisms, their kinematic equa-

tions and singularity analysis. In Section 4 we report on thf.l.z. Introduction to the ALIAS Library

comparison between the two mechanisms through the deter-

mination of the largest dextrous cube for the Orthoglide anh algorithm for the definition of the largest dextrous

the largest dextrous square for the UraneSX enclosed in t@rkspace included in the Cartesian workspace is described in

workspace. the following sections. This algorithm uses the ALIAS library
(Merlet 2000), which is a C++ library of algorithms based

.. . on interval analysis. These algorithms deal with systems of
2. Description of the Interval Analysis Based eqguations and inequalities whose expressions are an arbitrary

Method for 3-DoF Translational PKM Design combination of the most classical mathematical functions (al-
o gebraic terms, sine, cosine, log, etc.) and whose coefficients
2.1. Preliminaries are real numbers or, in some cases, intervals. An interface ex-
ists with Maple that allows the automatic generation of C++
codes being given the Maple description of the system and
For a three-axis serial machine tool, a parallelepiped-shaptdn to compile and run the generated code in order to obtain
Cartesian workspace allows the end-user to visualize edbe result within the Maple session. Without being exhaustive,
ily where to place cutting paths. This consideration shoulthe ALIAS library provides algorithms that enable one (i) to
also hold for PKMs. However, the workspace shape is ofind an approximation of the real rootsofdimensional sys-
ten geometrically complex and thus hard to visualize. Theréems, (ii) to find an approximation of the variety defined by
fore, a regular-shaped workspace is needed for PKMs. Thusdimensional systems, (iii) to find an approximation of the
we need to define a regular dextrous workspace which isgégobal minimum or maximum of a function (eventually under
regular-shaped workspace included in the machine Cartesigguations and/or inequalities constraints) up to an accuracy
workspace. Throughout the dextrous workspace, a kinetprovided by the user, and (iv) to analyze a system of algebraic
static performance index (that is chosen beforehand) remaigguations to determine bounds for its real roots.

“dextrous points”.

2.1.1. Dextrous Cartesian Workspace
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2.1.3. Geometric Constraints be a box included iB. Using interval analysis we are able to
. . . calculate arangen,, M ]1such that for any poinX in B; we
The dextrous workspacoeqas is defined in eq. 1as a func- havem, < P(X) < M,,. Note that this interval evaluation is

- i Ty-1 H _ !
tion of the eigenvalues ¢) ). These eigenvalues are de numerically safe as the bounds of the range are calculated by

termined by solving the third degree characteristic pOIVnomi?szing into account round-off errors. On the other hand, these
Pof (JJ7)~1. To decrease the computing time and to avoid ny- unds may not be “sharp”, i.e., there may bexfin B, SU(':h

merical problems on singularities, it is rgcommended to a tP(X) = my, or My, Note, however, that the width of the
geometrical co_nstramts_. These constraln_ts naturally depe&\&erestimaﬂon decreases with the widthif Furthermore,
on the mechanism architecture (see Section 4.2). we may obtain a sharp evaluation by using, for instance, the
derivatives of#. Indeed we may calculate the interval eval-

2.2. A First Basic Tool: Box Verification uation[r,.,., R, ,.] of 3P/dx, y, z and, if all three interval
galuations have constant signs (ire,,. > 00rR, ,, < 0),

en sharpng,, My, are obtained by setting the variables to
ixed values. For instance, if > 0, thenmg (M;,) is ob-
Hiined by setting to its lower (upper) bound. Note that other
methods may also be used to determine sharp bounds (see
nMoore 1979; Neumaier 1990; Ratscheck and Rokne 1995).

Hence we have the following properties:

1 :ifevery pointinB is valid; 1. if ms, > 0, then for any point in; the polynomials?
is positive;

Our purpose is to determine the largest regular dextro
workspace that is enclosed in the Cartesian workspace. Fg
given point, we note “valid point” if it is a dextrous point and
“invalid point” otherwise. For that purpose we need to desig
first a procedure, called((B), that takes as input a Cartesia
box B and returns:

—1 :if no point in B is valid;
- N - 2. if My, < 0, then for any point irB; the polynomialP
0 :if neither of the other two conditions could be verified. is negative;

The first step of this procedure consists in considering an 3. if mp, < 0, My, > 0 and the bounds are sharp, then the
arbitrary point of the box (e.g., its center) and to compute polynomial # cancels inB;;

the eigenvalues at this point; either all of them lie in the range
[0min, Omar] IN Which case the center is called “valid” or at
least one of them lies outside this range and the center point

4. if mp, < 0, My, > 0 and the bounds are not sharp,
then we cannot guarantee the sign of the polynorsial

. - within B;.
is denoted “invalid”.

At that point a simple branch-and-bound algorithm is used;
22 1. \alid Center Point the initial box B is bisected until either all the subboxes re-

sulting from the bisection satisfy property 1 (in which case
In that case, if we are able to check that there is no point ime can guarantee that the polynomfahever cancels foB
B such that one of the eigenvalues at this point is equal tnd consequently that all the eigenvaluegdie in the range
Omin OF 0,ax, then we can guarantee that every poinBiis  [0,,,, Omax], Which implies.M(B) = 1) or a subbox resulting
valid. Indeed, we assume that at a given pdinthe lowest from the bisection satisfies property 2 or 3, which means that
eigenvalue is lower tham,,,; this implies that somewhere at some pointirB atleast one of the eigenvalues®fies out-
along the line joining this point to the center of the box theide the rangéo,..,., 0....], which corresponds ta((B) = O.
lowest eigenvalue is exacty,;,. The algorithm may indeed return O for a box that includes

To perform this check we set the unknown in the chara@nly valid points, but the width of this box will be lower than

teristic polynomial® of (JJ")~! to o,,,, (and then tos,..) «/2 (Wherea is an accuracy threshold fixed in advance for
and we obtain a polynomial im, y, z only. We now have to the computation) and hence the final result will be within the
determine if there exist some values for these three Cartesitaterance margin of the calculation. The only case in which
coordinates that cancel the polynomial, it being understodbe calculation will be not guaranteed will occur only when
that these values have to define a point belongimg} tbhis is  is lower than the machine accuracy. However, we may deter-
done by using an interval analysis algorithm from the ALIASnine that we are in such a configuration as the width of the
library (Merlet 2000). The principle of this algorithm is tobox from the machine viewpoint will be 0; if a box of width
calculate first the polynomial value for the center pdaigtof O is processed and the algorithm returns O, then a warning
B. Without lack of generality we may assume that this valumessage will be issued indicating that the calculation is no
is positive. If we are able to determine a poffatin B such longer guaranteed. Note, however, that we may still use the
that the polynomial value at this point is negative, then we caalgorithm by using a multi-precision package such as MPFR
guarantee that there exists a point on the line joigipgo S;  that will allow us to obtain a guaranteed result. Furthermore,
such that the polynomial is exactly 0. The purpose of the aikis doubtful that computing the result with an accuracy better
gorithm is now to determine if such a point exists. NowBgt than the machine precision makes sense.
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2.2.2. Invalid Center Point At that point we may define a proced§éB, w) that takes
Without lack of generality, we may assume that at the center%? inputa boxt and an edge lengti and returns:

the box the largest eigenvalue is greater ihan. Ifthereisno  _1 : there are no points i that may be the center of a
pointin B suchthatone of the eigenvaluesis equaltg, then box By

we can guarantee that for any pointArthe largest eigenvalue

is always greater tham,,, and consequently((B) = —1. 1 : all the points inB may be the center of a bay;

This check is performed by using the same method as in the

previous case. 0 : B contains both points that may be the center of a box

By, and points that cannot.

2.3. A Second Basic Tool: Box Workspace Verification ) o )
2.4. Algorithm for the Determination of a Cubic Dextrous

During the calculation of the dextrous workspace, we considefartesian Workspace

a Cartesian boxB and we have to examine if this box may S ) o
contain a point that is the center of a Cartesian Bgxwith An algorithmis now described for the determination of a cube

edge length, which is fully enclosed in the robot workspace that is enclosed in the Cartesian workspace and aligned with
We assume here that this workspace is defined by a set ofhe coordinate axis, whose edge lengthis @nd such that
inequalitiesF; such that a poink belongs to the workspace there is no other cub_e enclqsed inthe workspace with an edge
if F;(X) < 0forall jin[1,m]. Let B; be a subbox included length of Zw+«). This algorithm can be applied to any 3-DoF

in B, defined by the three ranges, X1, [y:, 311, [z, ;1. Al manipulator. Other shapes for regular dextrous workspace are
the boxes with edge length that have as center a pointi ~ considered in Section 2.5.

are included in the “hull boxH;, defined by the three ranges ~ The first step is to determine the largest cube enclosed
i—w/2, 5+w /2], [vi—w/2, Vi+w/2], [zi—w/2, Zi+w/2]. N the workspace with a center located(@t0, 0). This is

As in the previous section we may use interval analysis f°ne by using theW procedure on the Cartesian bak,;,

compute an interval evaluatiom), , M} ] of all F;(Hy,) with  [—ka, kal, [—ka, kal, [—ka, ka] wherek is an integer ini-
the following properties: tialized to 1. Each time the/ procedure returns 1 faB;,;,

. (which means that the cube with edge length 5 enclosed in
1. if My < Oforall j in [1,m], then any point ofB;  the dextrous workspace) we double the valug.dfthis pro-
may be the center of a box with edge lengthhat is cedure returns-1 for avalue ok larger than 1 this implies that
included in the workspace; the cube with edge lengtt /2 is in the dextrous workspace
. , whereas the cube with edge lengthis not. Hence, ik > 2
2. 'f.me > 0,thenno pomt_ol_?, may be_the center of abox (otherwise no improvement is possible) we restart the process
with edge lengthw that is included in the workspace; with k = (k/2+k)/2. After a failure ak ., the principle is to
3. if my, < 0andM, > 0, then we cannot determine if always choose avalu_elaf/vhich isthe mid-ppint between the
last value, of k for which.M = 1 andk;,; untilk;,; = k,+1.
For example, itM returns 1 fork=1, 2, 4 and returns-1 for
Note also that, if the widths of all the ranges definiBigare &k = 8 we setk to 6. Otherwise we have determined that
lower thanw, any boxBy, contains the four corners of the boxthe cube with edge lengthk@ is enclosed in the dextrous
B;. workspace, whereas the cube with edge lengih2 1)« is
Using a similar branch-and-bound algorithm as in the pretot. The value 2x is hence an initial value fow. Note that
vious section, we may now determine whether all, none d¢ine above procedure may be used whatever the coordinates of
some points o8 may be the center of a bag,,. The initial the center; it is implemented as a general purpose procedure
box B is bisected until all the subboxes resulting from the®(x,, vy, z)) that takes as input the coordinates of a point
bisection satisfy either property 1 (then any pointBofnay M and returns the edge length of the largest cube centered at
be the center of a boRy,) or property 2 (no point oB may M, thatis enclosed in the dextrous workspace.
be the center of a boR,,). If a subbox satisfies property 3  In the algorithm for determining the largest cube enclosed
and the widths of its ranges are lower thanwe check if inthe dextrousworkspace, we manage alist of Cartesian boxes
the corners ofB belong to the workspace; if all the corners.L that are processed by the algorithm in sequence. During the
either belong or do not belong to the workspace we continyggocessing, boxes may be added to a list. At one step of the
the bisection. If we have a mixed situation with some corneidgorithm, we have: boxes in the list. When bok is pro-
belonging to the workspace whereas others do not, we megssed, boxes 0 ie-1 have already been processed and may
state thatB contains both points that may be the center of be discarded whereas boxe® n have to be processed. The
box By, and points that cannot. A similar situation is obtaineélgorithm stops when all the boxes.ihhave been processed.
if we have found at least a subbox that satisfies property 1 aiitie box numberedin the listis denote®; and the maximum
a subbox that satisfies property 2. number of boxes i€ is N.

some point withinB; may be the center aby, .
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At the beginning of the algorithm{ has only one boxB, a lower value fore. Computation times of the largest cube
that contains the workspace (for example, for the Orthoglider various accuracies are given for a specific 3-DoF PKM in
By={[-L, L], [-L, L], [-L, L]}). The algorithm can be Section 4.3.
described by the following six steps.

1. Calculates = C(0, 0, 0). 2.5. Other Regular DextrousWorkspace Shapes

2 Ifi > nEXIT. Clearly, the largest cube may not be appropriate if the stud-
ied PKM has a rectangular or a spherical-shaped workspace.
3. If §(B;,w+a) =—1,thenset toi +1and goto 2. The algorithm can thus be modified. Here are, for example,
the necessary changes that must be taken into account to con-
4. If 4B, w + «) = 1, then calculatew’ = sider the largest sphere. The idea is to use spherical coordi-
C(xs, y5,» 25,) Wherex;,, y;, z5 are the coordinates nates and hence, y, z are substituted by, + r siny siné,
of the center ofB,. If w’ > w, then updatev. Go to  y_ 4 cosy sing, z. +r cosd, withr in [0, R], v, 6 in [0, 277].
step 6. X, Y., Z. are the coordinates of the center of the sphererand
is its radius. Interval analysis allows us to deal with expres-
5. I1§(B;, w +«)=0, then go to step 6. sions involving sine and cosine and hence proceduteg

6. Bisect the variable in the bog; that has the largest can still be used with these new parameters. Similarly pro-
range. For example, if the ba is defined agx;, 5], ceduree(xM, Yyu, Zy) €an be used to determine t_he largest
[vi, 71, [z:, Z:] and the variable has the largest range, radius of the sphere centered(@l,, yu, zy) for which the
the bisection process creates two new boBés= §|genvalues are valid. Hence, with this modlflcat_|on,the algo-
(L, G+ 7)/2), v, 37, [z, 1) and B2 = {[(x; + rithm can calculate the largest sphere enclosed in the dextrous
/2,51, Iy, ), [2:. 51} [ n < N/2, both boxes are Workspace. _ _
stored at the end of the list (and we get+1), other- .Spheres and cubes are defined by the_lr center and one ad-
wise boxB! is stored in£ in place ofB; whereas box ditional parameter, but o_ther shapes may involve more param-
BZis storeld at location - 1 after a shift of the boxes eters; for _example a cyl_lnder needs a cente_r but also_ a height
B:-+1, ...,B, Setnton + 1 and go to step 2. and a radius. We can still p_erform achangeinthe \_/arl_ables SO
that proceduresu, § can still be used. The key point is that
Step 1 allows us to establish an initial value for the maxiprocedureC(x,,, yu, zx) has to be modified as we have now
mal edge length. Step 3 eliminates boxes that cannot cont&iivp optimization parameters. In that case, volume optimiza-
the center of the maximal cube due to the workspace limitéon alone has less meaning; for example, the optimization
Boxes satisfying step 4 are candidates to include the centesult for a cylinder may be a cylinder with a relatively small
of the largest cube; hence, we calculate the largest cube céadius and a large height, which may be of no interest. A cylin-
tered at the box that may allow us to update the current valder of identical radius and height with a lower volume may
of the largest edge. Step 6 is the bisection process that allolgthe most interesting result. A possible way to manage this
us to decrease the size of the box with the effect of a sharg@oblem s to assign arange b]for the ratioR / h whereRr is
calculation for the procedurg. Note also that two storage the cylinder radius andlits height. In that case the procedure
modes are used for adding the boxes resulting from the bisgthas to solve an optimization problem which is to maximize
tion process. The second mode allows for a minimal memotie volume of the cylinder under the constraints that the eigen-
storage but has the drawback of focusing on a given part ¢#lues are valid and the rati®/ s satisfiesa < R/h < b.
the workspace, whereas the center of the largest cube may¥dAS is still able to manage such an optimization procedure.
located in another part. The first mode makes it possible to
explor_e various parts of the workspace WhiCh may result B Approximate Calculation of the DextrousWorkspace
large improvement of the value af but with the drawback
of possibly creating a large number of boxes. The propos&inall modifications in the previous algorithm allow us
storage mode allows us to mix the advantages of both storagedetermine an approximation of the dextrous Cartesian
modes. workspaceWpeous s a ses of three-dimensional (3D) Carte-
This procedure ensures that we can determine a cube witlan boxes such that for any b@&«in § and for any point in
edge lengthw that is enclosed in the workspace and in theé8 the constraints on the eigenvalues are satisfied. The width
dextrous workspace, whereas there is no such cube with edgell the boxes in the set is greater than a given threshold
lengthw + «. €; hence, we obtain only an approximation of the dextrous
Note that an incremental approach is possible. After havin@artesian workspace. However, the algorithm provides the
computedw = w; with a given accuracy it is always possi- volumeV, of the approximation and a volume errgr such
ble to replace the initial value af as calculated in step 1 of that the volumé/, of the dextrous Cartesian workspace satis-
the algorithm by the value; when computing the cube with fiesV, < V, + V,. Decreasing the value efmakes it possible
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toincreasé/, and to decreask.. In this paper, this method is
used to analyze 3D boxes but it can be applied for any mech-
anism withn DoFs, the result being a set mfdimensional
boxes.

Initially V, andV, are setto 0.

1. Ifi > n EXIT.
2. If M(B;)) =—1,thenseitoi +1and goto 1.

3. If M(B;) = 1, then storeB; in § and add its volume to
V,.Setitoi +1andgoto 1.

4, If M(B;)=0, then

(a) ifthe largest width oB; is lower thare, then[(b)]
add its volume td/,, seti toi + 1 and go to 1;
(a) otherwise go to step 5.

Fig. 1. Orthoglide kinematic architecture.
5. Process bisection for bak. Setn ton + 1 and go to 1.

Note that this procedure may be incremental if the boxes ne-
glected at step 4(a) are stored in a fielndeed, a first run
with a givene allows us to obtain initial values fov, and

V.. If the quality of the approximation is not satisfactory, we
may choose a smaller value oef(e.g.¢/2). But instead of
starting with the initialB,, we may use the boxes stored#h
thereby avoiding a repeat computation that has already been
done during the initial run.

3. Description of Orthoglide and UraneSX

The previous interval analysis based design method is now
applied to the comparison of two 3-DoF translational PKMs.
Itis particularly interesting to compare these two mechanisms
because they belong to the same architecture family.

3.1. Orthoglide and UraneSX Architectures i _ ) )
Fig. 2. UraneSX kinematic architecture.

Most existing PKMs can be classified into two main fami-

lies. The PKMs of the first family have fixed foot points and

variable length struts and are generally called “hexapods” or

“tripods”. The PKMs of the second family have variable foot

points and fixed length struts. They are interesting becauseThe output body is connected to the linear joints through

the actuators are fixed and thus the moving masses are loweset of three parallelograms of equal lengths- A; B;, so

than in the hexapods and tripods. that it can move only in translation. Vectogscoincide with
The Orthoglide and the UraneSX mechanisms studied the direction of the'th linear joint. The base points; are

this paper are 3-DoF translational PKMs and belong to tHecated at the middle of the first two revolute joints of ke

second family. Figures 1 and 2 show the general kinematparallelogram, ana®; is at the middle of the last two revolute

architecture of the Orthoglide and of the UraneSX, respepints of theith parallelogram.

tively. Both mechanisms have three parabat Pa R identi- For the Orthoglide mechanism, the first linear joint axis is

cal chains (where?, R, and Pa denote prismatic, revolute, parallel to ther-axis, the second is parallel to tipeaxis, and

and parallelogram joints, respectively). The actuated joints attge third is parallel to the-axis. When each vecteris aligned

the three linear joints. These joints can be actuated by meamish A;B;, the Orthoglide is in an isotropic configuration and

of linear motors or by conventional rotary motors with balthe tool center poinf is located at the intersection of the

screws. three linear joint axes.
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The linear joint axes of the UraneSX mechanism are pathat is, when the pointgl;, By, A,, By, A3, and B; lie in
allel to thez-axis. In Figure 2, pointg\;, A,, andA; are the parallel planes. A particular case occurs when the litks;
vertices of an equilateral triangle whose geometric center ése parallel:

O and such thaD A; = R. Thus, pointsB,, B,, andB; are
the vertices of an equilateral triangle whose geometric center (by—a) || (b,—a,) and
is P, and such thab B, = r. (b, —ay) || (b;—as) and
. . . . . . (bs—as) || (by—ay).
3.2. Kinematic Equations and Singularity Analysis
We recall briefly here the kinematic equations and the sing€"ial singularities arise when the serial Jacobian maitrs
larities of the Orthoglide and of the UraneSX; see Comparf}P longer invertible, i.e., when d&) = 0. At a serial sin-
and Pierrot (2002) and Chablat and Wenger (2003) for mofllarity a direction exists along which no Cartesian velocity

details. can be produced. Equation (5) shows tha{Bgt= 0 when
Let 6, andg: denote the joint angles of the parallelogran{or one legi, (b; —a) L e.. _

about axe$ andj,, respectively (Figures 1 and 2). Let, p», WhenB is not singular, we can write

and p; denote the linear joint variables, and letenote the ) e g .

length of the three legsy; B;. p=J"pwith J==B7A. (7)

For the Orthoglide, the position vectprof the tool cen-

ter point P is defined in a reference frame (®, y, z) cen- 4. Comparison of Orthoglide and UraneSX
tered at the intersection of the three linear joint axes (note that

the reference frame has been translated in Figure 1 for mqfgis section, we calculate the edge length of the largest cube
legibility). - for the Orthoglide and the edge length of the largest square
For the UraneSX, the position vectprof the tool center ¢, the UraneSX, as well as the location of their respective

point P is defined in a reference frame (©, y, z) centered centers, To simplify the problem, the bounds on the velocity
at the geometric center of the poimnts, A,, and As (same  ansmission factors are such that, = 1/
remark as above). ’

Let p be referred to as the vector of actuated joint rates and
p as the velocity vector of poine: 4.1. Regular DextrousWorkspace Shape

p = [p1 2 pal", p=L[xyz. (2) The Orthoglide and the UraneSX are compared according to
o _ ) the size of their largest regular dextrous workspace. Because
p can be written in three different ways by traversing the thregs the symmetrical architecture of the Orthoglide, the Carte-
chainsA; B; P: sian workspace has a fairly regular shape in which it is pos-
p=ep+ @i + i) x (b; —a). 3) sible to include a cubg whose sides are parallel to the planes
xy, yz, andxz, respectively. The Cartesian workspace of the
Here,a; andb; are the position vectors of the pointsandB;,  UraneSX is the intersection of three cylinders whose axes are
respectively, an@, is the direction vector of the linear joints, parallel to thez-axis. Thus, the workspace is unlimited in the

fori =1,2,3. . S ) ) z-direction and the Jacobian matrix does not depend orrthe

We want o eliminate the three idle jointratgandp; from  coordinate. Only the limits on the linear joints define the limits
eg. (3), which we do by dot-product of eq. (3) by— a: of the Cartesian workspace in thalirection. However, it is
(b —a)'p= (b, —a)es. ) possible to include a square in the plane Regular dextrous

workspaces are thus chosen to be a cube for the Orthoglide
Equation (4) can now be cast in vector form, nam&fy = and a square for the UraneSX.
Bp, whereA andB are the parallel and serial Jacobian matri-

ces, respectively: 4.2. Geometric Constraints

_ T
(by al)T m 00 Section 2.1 is suggested to add geometrical constraints so
A= (bz — az) and B = 0 N2 0 (5) . . . .
(s — as)" 0 0 1 as to decrease the computing time and to avoid numerical

problems on singularities. Here, polynomgis defined only

withn; = (b, —a,)"e fori =1, 2, 3. for the points within the intersectioh of the three cylinders
Parallel singularities occur when the determinant of thdefined by

matrixA vanishes, i.e., when dgt) = 0. Equation (5) shows

that the parallel singularities occur when x4y <L x4+ <L? yY+77<L? (8)

(by — &) = a(b, — &) + A(bs — &), (6)  for the Orthoglide, and
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Table 1. Computation Time of the Largest Cube Enclosed in the Dextrous Wor kspace for Various Accuracies

Accuracya (mm) 0.01 0.001 0.0001 0.00001
Computation time (s) 360 150 504 900

Table 2. Variations of the Edge Length of the Square
Wor kspace for the UraneSX M echanism

(x—R4+r?+y* < L? A Center Lorkspace

1\2 3\’ , 0.00 (-0.0178 —0.0045) 0510

(x - (R- ”5) tly-R=nN—>) < L 0.05 (-0.0179 —0.0022)  0.470
i 0.10 (-0.0225 —0.0031)  0.420

1\2 V3 , 0.15 (-0.0245 —0.0018)  0.370

(x —(R- ’)§> t\y+tR=-nN—1] < L 0.20 (-0.0211 —0.0033)  0.320

for the UraneSX. With these constraints, matBxs never
singular and thu§ can be always inverted. To solve numerica %nction. To produce the motion in thedirection, the range
the above equations and to compare the two mechanisms, !

e : g .
length of the legs is normalized, i.e., we get 1. mits of the linear joints are set such that the constraints on

the velocity amplification factors are not satisfied throughout
the Cartesian workspace.

The range limitsAp,; of each prismatic joint can be de-
To compare the two mechanisms studied, the leg lengh composed into two parts. For the Orthoglide and the UraneSX
set to 1 and the bounds on the velocity factor amplificatioffSPectively, the first par f; makes it possible to move the
are settay = [0.5 2], with @ = 0.001. For the UraneSX, itis mobile platform throughout the face of the prescribed cube
necessary to define two additional lengthandR. However, and prescribed square, respectively, which is perpendicular to
the edge length of the workspace depends onlgonr. the considered prismatic joint axis. The second part is equal

For the Orthoglide, it is found that the largest cube has if9 the €dge length of the cubic workspaag e The equa-
center located 40.086, 0.086, 0.086), and that the cube edge tions of the inverse kinematic model allow us to comptife
length iS Luoigpace = 0.644. Also, using the incremental ap-for the two mechanisms. - _
proach described in Section 2.4, we obtain for the Orthoglide FOr the Orthoglide, the position and the size of the pre-
the computation time of Table 1 on a Sun Blade workstatio¢"ibed CUb? define three range limits for #ke— platform

For the UraneSX, the design parameters are those defirR@prdinates:
ir? Co[i‘npa{]y_ and Pi%r/rgg(ZO((j)I?), W;}Tg V‘|\{e have norrtr;]alitzvtvad to x = [-0.322+ 0.085 0.322+ 0.085] (9a)

avelL = 1,i.e.r = andr = . To compare the two
mechanisms, we increase the valu®afuch thalR’ = R+ = [-0.322+0.085 0.322+ 0.089 (9b)
with A = [0.0,0.2]. For R < 7/13, the constraints on the z = [-0.322+0.085 0.322+0.085.  (9¢)

velocity amplification factors are not satisfied. . . i
The optimal value ofR’ is obtained for. = 0, i.e., for For the UraneSX, the position and the size of the pre

the design parameters defined in Company and Pierrot (Zoiglbed square define two range limits for they platform

for an industrial application (see Table 2). To expand this ordinates:

square workspace in thedirection, the range limits must be x =[-0.255—0.018 0.255— 0.018] (9d)

equal to the edge length of the square plus t_he range variations y =[—0.255 0.255]. (%e)

necessary to move throughout the square intheplane.
The constraints on the velocity amplification factors useBor the Orthoglide, alA f; are equal due to the symmetrical

for the design of the Orthoglide are close to those used for taechitecture. Forthe UraneSX, we takg = Max(Af;). The

design of the UraneSX which is an industrial machine tootesults areAf = 0.181 andAp = 0.825 for the Orthoglide

For the same length of the legs, the size of the cubic workspaaed Af = 0.353 andAp = 0.863 for the UraneSX. This

is larger for the Orthoglide than for the UraneSX. means that the range limits are quite similar for the same leg
For the Orthoglide, the optimization puts the serial antkngth. To calculate the volume of the Cartesian workspace

parallel singularities far away from the Cartesian workspaa# the two mechanisms for the previous range limits, we have

(Chablat and Wenger 2003). The UraneSX has no parallel simsed a CAD system. Results are given in Table 3.

gularities due to the design parametets{(r < L), but serial To help understand these results, Figures 3 and 4 show the

singularities cannot be avoided with the previous optimizatiolecation of the largest cubic workspace inside the Cartesian

4.3. Comparison Results
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Table 3. Workspace Volumes of the Two M echanisms

Cartesian Workspace Volume Cubic Dextrous Ratio
With Optimized Ranges Limits Workspace Volume
Orthoglide 0.566 0.265 46.8%
UraneSX 0.544 0.132 24.3%

Fig. 3. Cartesian workspace and dextrous workspace for the )
Orthoglide mechanism with optimized range limits. Fig. 4. Cartesian workspace and dextrous workspace for the

UraneSX mechanism with optimized range limits.

workspace. As the Cartesian workspace of the Orthoglide @ spherical coordinates to have the largest cylinder or sphere
regular and admits a quasi-cubic shape, the ratio between thgpectively, even if these shapes are generally less relevant
cubic workspace and the Cartesian workspace is better thfan milling applications.
for the UraneSX.

In Table 4, Fhe design parameters are compared to aCh'QB'.eConclusi ons
the same cubic dextrous workspace Witfyspace = 1. The
leg length is directly connected to the dynamic propertids this paper we introduce an interval analysis based study
of the mechanism. The range limits and the leg length afer the design and the comparison of a 3-DoF PKM. Two
important parameters in the determination of the total sizeasic tools and an algorithm are described to determine the
of the mechanism and in its global cost. The volume of thiargest regular dextrous workspace enclosed in the Cartesian
Cartesian workspace allows us to characterize the shape aatkspace. The dextrous workspace is part of the Cartesian
the volume of motion of the tool with regard to the usefulvorkspace in which the velocity amplification factors remain
Cartesian workspace dedicated to manufacturing tasks (cukitthin a predefined range. This means that throughout the
workspace). dextrous workspace, milling tool paths are available because

These criteria allow us to optimize some geometric pahe variations of the kinematic performances index remain un-
rameters to design a machine tool for milling applicationsler reasonable values. The regular dextrous workspace shape
Although in this approach the kinetostatic properties of this a cube for the Orthoglide and a square for the UraneSX.
Orthoglide are better than those of UraneSX, we cannot aBhis general method is coupled with geometric constraints
sertthatthe Orthoglide is better than the UraneSX. One reasassociated with the mechanisms studied to avoid numerical
is that these two PKMs are not aimed at identical manufactysroblems at singular configurations. The shape of the dex-
ing tasks. The main applications of the UraneSX are drillingrous workspace was chosen for milling applications but it
facing, and tapping whereas the Orthoglide is more universahn be different for other applications. The range limits and

Other shapes of regular dextrous workspaces can be cotime volume of the Cartesian workspace were calculated to
puted for the Orthoglide and the UraneSX by using cylindricalompare the two mechanisms.
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Table 4. Synthesis of the Compar ative Study For the Same Cubic Cartesian Wor kspace

\olume of the

Leg Length Range Limits Cartesian Workspace
Orthoglide 1.55 1.28 2.13
UraneSX 1.96 1.69 412
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