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Management of open-channel flow systems requires accurate models of flow transfer. This article
presents a simple nonlinear model representative of the flow transfer in a river reach. The model is
obtained through linearization of a physical model, simplification using the cumulant matching method
and analytic identification of a nonlinear model coinciding with the linear model around equilibrium
points, corresponding to the hydraulic permanent regimes. The methodology is illustrated on the
diffusive wave equation and the Saint-Venant equations. The obtained nonlinear models are compared in
simulation to the initial models. The nonlinear model is shown to ensure mass conservation, despite the
variable delay element of the model. The proposed model can reproduce the nonlinear behavior of the
time-delay with discharge variations. It is well-suited for fast simulations, flow forecasting, and for
controller design.
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1. Introduction

The management of a watershed usually relies on accurate
modeling for forecasting purposes, or for operational management.
However, in choosing such models, there is a classical trade-off
between simplicity and precision in terms of time delay, diffusion and
volume transited. Complex models are difficult to use for real-time
management, and they require long computational time, while
simplified models are less accurate but more amenable to be used
either for management purposes, operational control, or quick
forecasting.

Complex models have the advantage of accuracy, provided
parameters are correctly tuned; given the uncertainty of data used
for identification, huge models clearly have to be avoided for they
generate identification problems following fromover-parametrization
[7]. It is also interesting to use parameters with a physical meaning, to
have an additional validation of identification results. A simple model
requires less computational time than a complex one and can
therefore more easily be used for real-time forecasting and managing
purposes.

This is why a lot of research effort has been spent into finding
appropriate simplified models for flow routing [27]. Different linear
models, such as the Hayami model [13,24], or Muskingum model
[10], or stock models have been developed. Their main limitation is
their narrow domain of validity; used to represent a nonlinear
phenomenon, these linear models are only valid if the discharge
remains near to the point of linearization.

To alleviate this point, some simplified nonlinear models were
developed to replicate the nonlinear feature of flow transfer in a reach
[5]. However, these models do not accurately represent the time delay
variation, which is an important characteristic of the flow transfer for
low discharges.

Amultilinear approachwas used by [8] to develop amodel for flow
routing that reproduces the nonlinear variation of the time delay with
the flow. Unfortunately, as shown by [26], their multilinear discrete
lag-cascade model can sometimes present abrupt falls or disconti-
nuities in the routed hydrograph. As a remedy to this deficiency, [26]
proposed to constrain the lag to a fixed value, but this also removes
most of the interest of the multilinear model, since in that case the
delay does not change with the flow. The model is then closer to the
quadratic lag and route model proposed in [5], which has a fixed
delay.

The objective of the present article is to obtain a simple
nonlinear model for the discharge transfer in a reach from a
knowledge-based model, in order to keep parameters with a
physical meaning. In particular, this model should be adapted to
the case of rivers with low flows, where the reproduction of the
variations of the delay according to the discharge is required. We
analyze the nonlinear model, and give conditions under which it is
conservative and does not present discontinuities in the routed
hydrograph.
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In more mathematical terms, the proposed model is obtained
following a methodology to reduce a nonlinear Partial Differential
Equation (PDE) to a nonlinear Delay Differential Equation (DDE):

1. First the nonlinear PDE is linearized around a steady flow
discharge,

2. The Laplace transform is used to derive the inflow/outflow transfer
function,

3. The cumulant matching method is used to approximate this
transfer function by the transfer function of a Delay Differential
Equation (here a first order transfer function with delay),

4. We then derive a nonlinear DDE which coincides with the linear
DDE for every steady flow discharge.

The proposed methodology can be applied to any flow transfer
model, since the key element in the proof is that the linearized system
should only depend on a scalar variable, here the steady flow
discharge. The methodology is here presented, first for the diffusive
wave equation, which is a parabolic PDE, and then for the Saint-
Venant equations, which are hyperbolic equations. The simplified
model is in both cases a nonlinear first order model with delay. The
method is nonetheless detailed for the general case of a finite order
model with delay.

2. Proposed methodology for simplified nonlinear modeling of
river flow routing

2.1. Obtaining a family of linear DDEs from a nonlinear PDE

In this section, we develop the first three steps of the proposed
methodology. We first develop the methodology for the diffusive
wave equation. However, the proposed methodology can be applied
to any flow model, provided the nonlinearity can be linked to a scalar
variable. In most applications, the base flow can be used for this
purpose. To show that our approach can be used with other flow
models, we also study the Saint-Venant equations in a subsequent
section.

2.1.1. The nonlinear PDE: diffusive wave model
The diffusive wave equation is a partial differential equation

obtained by simplification of Saint-Venant model [18]:

∂Q
∂t + ΘðQÞ ∂Q∂x −EðQÞ ∂

2Q
∂x2

= 0 ð1Þ

with x the abscissa, Q(x, t) the discharge (m3/s), Θ(Q) the celerity (m/s)
and E(Q) the diffusion coefficient (m2/s).

The boundary conditions are given by Q(0, t)= u(t),
limx→∞

∂Qðx; tÞ
∂x = 0. The output is w(t)=Q(L, t), where L is the length

of the river stretch.
Θ(Q) and E(Q) have relatively complex expressions in the general

case, but simpler expressions are available for specific river geometry.
Assuming a uniform geometry, and neglecting the effect of backwater
curves, Θ and E can be expressed as functions of the discharge Q. In
particular for a wide, rectangular channel (slope Sb, widthW, Manning
friction coefficient n), Θ and E are given by:

ΘðQÞ = 5S0:3b Q0:4

3W0:4n0:6 ð2Þ

EðQÞ =
Q

2WSb
ð3Þ

The above expressions can be replaced by more complicated
functions of Q (for example functions obtained by identification in
case of amore realistic geometry [15]), withoutmodifying themethod
exposed below.
2.1.2. The linear PDE: Hayami model
Linearizing Eq. (1) around a constant reference discharge Q0≠0

(Q=Q0+q) gives the Hayami equation:

∂q
∂t + Θ0

∂q
∂x−E0

∂2q
∂x2

= 0 ð4Þ

with Θ0=Θ(Q0) and E0=E(Q0).
Considering the boundary conditions u(t)= q(0, t) and

limx→∞
∂q
∂x = 0, and the measured output w(t)=q(L, t), the linear PDE

(4) can be represented by an irrational transfer function in the Laplace
domain (see Appendix A for details), relating upstream and
downstream discharge variations:

ŵðsÞ = FHayamiðsÞ ûðsÞ;

where f̂ ðsÞ denotes the Laplace transform of function f(t), s is the
Laplace variable (s−1), and FHayami(s) is the Hayami transfer function:

FHayamiðsÞ = e

Θ0−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2

0 + 4E0s
q

2E0
L
: ð5Þ

2.1.3. Approximation of the linear PDE by a linear DDE
The flow routing in a river reach can be approximated by a rational

model of first order with delay:

K v̇ðtÞ + vðtÞ = uðtÞ
wðtÞ = Gvðt−τÞ ð6Þ

where G is the gain, K is the first order time constant, τ the time delay,
and v is the state of the system.

However, it is not so easy to compute correct values for G, K and τ
so that the output of the rational model fits the one of the Hayami
model. One way to do this is to use the cumulant matching method
[14].

2.1.3.1. Cumulant matching method. Consider a transfer function f̂ ðsÞ.
The Taylor–Lagrange development of logð f̂ ðsÞÞ around s=0 at order 2
reads:

logð f̂ ðsÞÞ = M0−M1s + M2
s2

2
+ oðsÞ2; ð7Þ

where o(s) is a function of s such that lims→0
oðsÞ
s

= 0, and the functions
Mn

Mn = ð−1Þnd
nlogð f̂ ðsÞÞ

dsn
ð0Þ: ð8Þ

are the cumulants of f̂ ðsÞ.
The cumulant matching method [14] provides a rationale for

reproducing the behavior of a given transfer function in the low
frequency range (obviously the only one that matters in natural
systems of our kind), by equating the low order cumulants of two
different models and, for instance, construct a rational model that has
the same ones as a given irrational transfer function.

2.1.3.2. Application to the Hayami transfer function. In the following, we
use the cumulant matching method to fit the frequency response of
the Hayami transfer function (5) to that of the first order model with
delay (6), which possesses the following transfer function:

F1rðsÞ =
Ge−sτ

1 + Ks
: ð9Þ
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Equating the three cumulants of the two models leads to:

logG = 0 ð10Þ

τ + K =
L
Θ0

ð11Þ

K2 =
2LE0
Θ3

0

ð12Þ

Solving for the unknowns G, K and τ leads to:

G = 1; ð13Þ

τ =
L
Θ0

−K; ð14Þ

K =

ffiffiffiffiffiffiffiffiffiffi
2LE0
Θ3

0

s
: ð15Þ

This identification is valid as long as τN0, which is equivalent to
LΘ0/(2E0)N1, or χ=3LΘ0/(10E0)N0.6, where χ is a dimensionless
coefficient first introduced by [4] to characterize the dynamics of
open-channel flow. It is also possible to extend the application of the
model in cases when χ≤0.6, by forcing the time constant K to zero. In
that case, we have a pure delay system with τ=L /Θ0.

For larger values of dimensionless parameter χ, it is possible to
identify a second order model with delay (see e.g. [22]). The obtained
DDE model is then a better approximation of the original PDE.
However, the second order model may become unstable if χ becomes
smaller than 1.35, which may occur for large values of Q0. Therefore,
we develop in the article the case of a first order model with delay,
which is often sufficient for practical purposes. The proposed
methodology can nonetheless be applied on larger order models
such as the second order model with delay (see [21]).

2.2. Obtaining a nonlinear DDE from a family of linear DDEs

We are now in the situation where we have a family of linear
models, indexed by the value Q0 of the (constant) discharge around
which they are valid. A natural question to ask is whether it is possible
to find a single nonlinear system that would have these linear systems
as linear approximations at a suitable family of operating points.

The problem can be posed slightly more generally as follows. We
consider a family of linear delay differential systems (ΣLλ)λ∈ℝ

indexed by a scalar parameter λ:

ΣLλ
v̇ðtÞ = AðλÞvðtÞ + BðλÞuðtÞ
wðtÞ = CðλÞvðt−τðλÞÞ;

�
ð16Þ

whereA∈ℝn�n,B∈ℝn�nu andC∈ℝny�n are realmatrices, and v(t)∈ℝn

is the state of the system. n, nu and ny are integers denoting re-
spectively the state dimension, the input dimension and the output
dimension.

The question at hand now becomes: Given the family of linear
systems (Eq. (16)), does there exist a nonlinear system

ν̇ðtÞ = f ðνðtÞ;uðtÞÞ
ωðtÞ = hðνðt−σðνÞÞÞ; ð17Þ

and a curve λ↦ν0
λ of equilibria, i.e.

f ðνλ
0 ;u

λ
0Þ = 0 ð18Þ

such that each system ΣLλ be the linearized system of Eq. (17) around
(ν0λ,u0λ)?
The following lemma expresses the linearization of the delay
differential system (17) around an equilibrium point, i.e., around
ð ν̄; ūÞ with f ð ν̄; ūÞ = 0.

Lemma 1. Consider an equilibrium point f ð ν̄; ūÞ = 0 and the stable
time invariant linear system with delay

δν̇ðtÞ = AδνðtÞ + BδuðtÞ
δωðtÞ = Cδνðt−σð ν̄ÞÞ; ð19Þ

with

A =
∂f
∂v ð ν̄; ūÞ;B =

∂f
∂u ð ν̄; ūÞ;C =

∂h
∂v ð ν̄Þ:

Then the output ω(t) of the nonlinear system (17) starting at
νð0Þ = ν with input t↦ū+δu(t) is given by

ωðtÞ = hðν̄Þ + δωðtÞ + εðδν; δuÞ; ð20Þ

where δω(t) is the output of the linear system (19) starting at δν(0)=0
with input δu(t), and where ε vanishes at order 1 with respect to its two
arguments.

Applying Lemma 1 to the above question, we can find a nonlinear
system (17) if we solve the following relations for f, h and (ν0λ,u0λ)

AðλÞ = ∂f
∂v ðν

λ
0 ;u

λ
0Þ;

BðλÞ = ∂f
∂u ðν

λ
0 ;u

λ
0Þ;

CðλÞ = ∂h
∂v ðν

λ
0Þ;

τðλÞ = σðνλ
0 Þ;

with the additional constraint (18).
It is clear that there are infinitely many solutions, i.e. functions f, h,

σ and (ν0
λ,u0λ) satisfying these relations in particular because one has

constraints on f, h and σ only along the curve λ↦(ν0
λ,u0λ).

Basically, one may choose a curve λ↦(ν0λ,u0λ) such that

AðλÞ ∂ν
λ
0

∂λ + BðλÞ ∂u
λ
0

∂λ = 0

and then choose for f a function that is zero along this curve and has
the prescribed Jacobian at points on this curve. Any continuous
extension away from the curve that satisfies this first order initial data
is valid. h is defined up to an additive constant on that curve and can
be continuously extended in the same way.

In the sequel, the curve is a straight line andwe choose a quasi-linear
model as the most natural continuous extension of the linear system.

2.3. Application to the family of linear models obtained in Section 2.1.3

The model obtained by the cumulant matching method from the
model of Hayami has parameters that depend explicitly on the
reference discharge Q0, since Θ0 and E0 depend on Q0. We can
therefore apply the results of Section 2.2.

The flow transfer in the river is now represented by a first order
transfer function with delay F1rðsÞ = e−τs

1 + Ks
with τ and K given by the

Eqs. (11) and (12). Choosing δv=δy as a state variable for the system
without delay, this linear system can be represented in state space by:

δ̇vðtÞ = AðλÞδvðtÞ + BðλÞδuðtÞ
δwðtÞ = CðλÞδvðt−τðλÞÞ

�
ð21Þ

with λ=Q0, ν0λ=λ, u0λ=λ, AðλÞ = − 1
KðλÞ, BðλÞ = 1

KðλÞ, CðλÞ = 1.
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Consider now the nonlinear system described by

v̇ðtÞ = 1
KðvðtÞÞ ðuðtÞ−vðtÞÞ

wðtÞ = vðt−τðwðtÞÞÞ

8><
>: ð22Þ

with

τðwÞ = L
ΘðwÞ−KðwÞ;

KðvÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LEðvÞ
ΘðvÞ3

s
;

where Θ(v) and E(v) are given by Eqs. (2) and (3), the initial state
given by v0(t)=Q(0, t), for t∈ [−τmax,0], where τmax is the maximum
value of the delay, obtained in our case for the minimum value of the
input discharge.

Then each linearization of Eq. (22) around an equilibrium
trajectory u0=v0=Q0 coincides with the linear system Eq. (21)
where λ=Q0.

Indeed, the linearization of Eq. (22) around (v0,u0) leads to:

∂f
∂v ðv0;u0Þ = − 1

Kðv0Þ
+ ðu0−v0Þ

K ′ðv0Þ
K2ðv0Þ

:

Since u0=v0, we recover the expression (21) for v0=λ. We also
have:

∂f
∂u ðv0;u0Þ =

1
Kðv0Þ

;

and the other terms are obtained in the same way.

Remark 1. This model is only valid for slow variations of the state v. It
is also an underlying hypothesis for the diffusive wave model. If the
discharge varies very quickly, the celerity and the diffusion depending
on the discharge would certainly give results different from physical
observations. Indeed, the diffusive wave equation is obtained by
neglecting inertia terms in the dynamic equation of Saint-Venant's
model [23]. These inertia terms contain ∂Q

∂t , which is not negligible if
the discharge varies quickly.

3. Application of the methodology to the Saint-Venant equations

We now show that the proposed methodology can be applied on
the Saint-Venant equations, a set of hyperbolic nonlinear conserva-
tion laws. The proposed approach is developed along the following
steps: linearization of the equations around a steady flow regime,
Laplace transform and cumulant matching method to obtain a family
of first order linear systems with delay indexed by the reference flow,
and derivation of the nonlinear model.

3.1. Saint-Venant equations

The Saint-Venant equations are classically used to describe the
shallow water flow dynamics in an open-channel. The equations are
given by:

∂Aðx; tÞ
∂t +

∂Qðx; tÞ
∂x = 0;

∂Qðx; tÞ
∂t +

∂
∂x

Q2ðx; tÞ
Aðx; tÞ

" #
+ gAðx; tÞ ∂Yðx; tÞ

∂x + Sf ðx; tÞ−Sb

� �
= 0:

where Sb (m/m) is the bottom slope, A(x, t) (m2) is the wetted area,
and g (m/s2) is the gravitational acceleration.
The friction slope Sf is modeled with the classical Manning
formula [9]:

Sf =
Q2n2

A2R4=3 ; ð23Þ

with n the Manning coefficient (sm−1/3) and R the hydraulic radius
(m), defined by R=A /P, where P is the wetted perimeter (m).

The linearized Saint-Venant equations around a uniform steady
flow are given by:

W0
∂y
∂t +

∂q
∂x = 0; ð24aÞ

∂q
∂t + 2V0

∂q
∂x + ðC2

0−V2
0 ÞW0

∂y
∂x +

2gSb
V0

q−gW0ð1 + κÞSby = 0: ð24bÞ

where q(x, t) and y(x, t) are the deviations from the uniform steady
state values Q0 and Y0, and

κ =
7
3
− 4A0

3W0P0

∂P0
∂Y :

C0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gA0 =W0

p
is the wave celerity, V0=Q0/A0 the flow velocity,

and W0 is the top width.

3.2. Saint-Venant transfer function

In the case of a semi-infinite channel, the Saint-Venant transfer
function is given by (see Appendix B for details):

q̂ðx; sÞ = eλSV ðsÞx q̂ð0; sÞ;

where

λSV ðsÞ = ðas + b−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs2 + ds + b2

p
Þ;

and

a =
F0

C0ð1−F20 Þ
ð25aÞ

b =
ð1 + κÞW0Sb
2A0ð1−F20 Þ

ð25bÞ

c =
1

C2
0ð1−F20 Þ2

ð25cÞ

d =
SbW0

V0A0

ð2 + ðκ−1ÞF20 Þ
ð1−F20 Þ2

ð25dÞ

and F0=V0/C0 is the Froude number for the equilibrium regime.
We now use the cumulant matching method to identify a first

order model with delay that approximates this transfer function for
low frequencies. A similar approach was used by [12], to identify a
model of a fractional order.

3.3. Cumulant matching

The cumulants of eλSV(s)L can be computed using Eq. (7). Indeed, the
Taylor series development of λSV(s) around s=0 is given by:

λSV ðsÞ = − 2
ð1 + κÞV0

s +
ð4−ðκ−1Þ2F20 Þ
gSbð1 + κÞ3F20

s2 + oðs2Þ:

Therefore, the cumulants of the input–output Saint-Venant
transfer function are easily obtained. Following the same approach
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as the one developed on the Hayami transfer function, the cumulant
matching method applied to the Saint-Venant transfer function and a
first order system with delay leads to:

logG = 0

τ + K =
2L

ð1 + κÞV0

K2 =
2½4−ðκ−1Þ2F20 �L
gSbð1 + κÞ3F20

:

Solving for the unknowns G, K and τ:

G = 1;

τ =
2L

ð1 + κÞV0
−K;

K =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½4−ðκ−1Þ2F20 �L
gSbð1 + κÞ3F20

s
:

In the general case, it is not straightforward to express the model
parameters as functions of the discharge Q0. However, in the wide
rectangular case, we can express the water depth Y0 as a function of
Q0:

Y0 =
Q0:6
0 n0:6

W0:6
0 S0:3b

:

Finally the model parameters can be expressed explicitly as
functions of Q0:

τ =
3LW0:4

0 n0:6

5Q0:4
0 S0:3b

−K;

K =

ffiffiffiffiffiffiffiffiffi
3

125

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9−4F20 ÞL
gSbF

2
0

s
;

with F20 = Q0:2
0 S0:9b

gn1:8W0:2
0

, and where we replaced κ by 7/3 (wide rectangular

approximation).

3.4. Nonlinear model

With the cumulantmatchingmethod, we have obtained a family of
linear DDEs indexed by the value of the reference discharge Q0, that
are low frequency approximations of the Saint-Venant transfer
function. Following the same approach as detailed above, we obtain
a nonlinear model of first order with delay:

v̇ðtÞ = 1
KðvðtÞÞ ðuðtÞ−vðtÞÞ

wðtÞ = vðt−τðwðtÞÞÞ

8><
>: ð26Þ

with u(t)=Q(0, t), w(t)=Q(L, t),

τðwÞ = 3LW0:4
0 n0:6

5w0:4S0:3b

−KðwÞ;

KðvÞ =
ffiffiffiffiffiffiffiffiffi
3

125

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9−4F0ðvÞ2ÞL
gSbF0ðvÞ2

s
;

and F0ðvÞ2 = v0:2S0:9b

gn1:8W0:2
0

.

This nonlinear delay-differential model is a low frequency
approximation of the nonlinear Saint-Venant equations in the case
of a semi-infinite wide rectangular channel.
4. Analysis of the nonlinear delay differential model

The nonlinear model with delay obtained is not a standard one,
since the delay depends on the output of the system. We first give the
conditions on τ such that the system is well-posed, and then study its
mass conservation properties.

4.1. Well-posedness

The observation equation of the nonlinear system with delay Eq.
(22) is well-posed if and only if

τðwðtÞÞbt

which implies

d
dt

τðwðtÞÞb1:

This can be written

ẇðtÞτ′ðwðtÞÞb1 ð27Þ

where τ′ = dτðwÞ
dw

.

The condition (27) can be checked at each time t. The well-
posedness is in this case related to the fact that no shocks are present
in the system. Similar conditions arise in the case of nonlinear
kinematic wave equation (see the discussion in [20]).

4.2. Mass conservation

An important issue when dealing with nonlinear models of flow
routing is the mass conservation: does the model correctly reproduce
this important physical conservation law?

For an open-channel system, mass conservation is guaranteed if
the following equality holds for all (x1,x2, t1, t2):

∫x2

x1
½Aðx; t2Þ−Aðx; t1Þ�dx = ∫t2

t1
½Qðx1; tÞ−Qðx2; tÞ�dt ð28Þ

where A and Q are the cross-sectional area and the discharge
respectively. Taking x1=0 and x2=L yields the following, particular
condition in u andw for all (t1, t2) (remember that u(t)=Q(0, t) andw
(t)=Q(L, t)):

∫
L

0
½Aðx; t2Þ−Aðx; t1Þ�dx = ∫t2

t1
½Qð0; tÞ−QðL; tÞ�dt ð29Þ

= ∫t2

t1
½uðtÞ−wðtÞ�dt ð30Þ

When t2 tends to t1, Eq. (30) becomes equivalent to

∂S
∂t = uðtÞ−wðtÞ ð31Þ

where S is the total volume of water stored in the reach [0,L]. The limit
expression of (28) when t2→ t1 and x2→x1 is

∂A
∂t +

∂Q
∂x = 0 ð32Þ

Any conservation law in the form Eq. (31) is conservative, that is, it
verifies Eq. (28) and the particular case Eq. (30).

Consider now the flow model (31), with Q defined as follows:

Q = QðA;ϕðxÞÞ∀ðx; tÞ; x∈ð0; L� ð33aÞ
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∂Q
∂t ð0

þ
; tÞ = 1

KðQð0; tÞÞ
∂Sðt−τÞ

∂t ð33bÞ

where ϕ(x) is a vector containing all the parameters on which Q
locally depends (e.g. Manning's friction coefficient, the bed slope of
the channel, etc.). The parameter vectorϕ is constant in time. The flow
model Eqs. (31–33) corresponds to a kinematic wave routing model
over the reach (0,L], with the point x=0 serving as a controlled
storage tank (see Fig. 1).

The input discharge to the tank (at x=0−) is given by u(t), while
the output discharge of the tank v(t) at x=0+ is given by Eq. (33b).
The discharge wave travels into the channel (x∈(0,L]) according to a
kinematic wave approximation (Eqs. (32), (33a)). Although the
discharge law Eq. (36) is discontinuous, the system Eqs. (32–33) is
conservative because it verifies Eq. (28) and no particular assumption
needs to be made about the continuous character of A and Q in the
calculation of the integrals in Eq. (28). Note that S, as defined in Eq.
(31), includes not only the volume of water stored within the reach
(0,L] but also the volume of water present in the controlled storage
tank.

The total volume of water stored in the reach [0,L] is given by

S = ∫
L

0
ðAðx; tÞ + δðxÞS0ðtÞÞdx = S0ðtÞ + ∫

L

0
Aðx; tÞdx

where δ(x) is Dirac's distribution and S0(t) is the volume of water
stored in the tank.

The characteristic form of Eqs. (32)–(33a) is known to be [11]

dQ
dt

= 0 for
dx
dt

= μ ð34aÞ

μ =
∂Q
∂A ð34bÞ

where μ is the propagation speed of the wave. Applying Eq. (34a)
between x=0+ and x=L yields

QðL; tÞ = Qð0þ
; t−τÞ; ð35Þ

where τ is the travel time of the wave between x=0+ and x=L. Since
there is aone-to-one relationshipbetweenQ andAat all points,μdepends
only onQ and τ is a function ofQ alone. Consequently, τ is a function ofw.
Noticing that Q(0,t)=u(t), v(t)=Q(0+,t) and Q(L,t)=w(t), Eqs. (33b)
and (35) become

dv
dt

=
1
K
ðuðtÞ−vðtÞÞ ð36aÞ

wðtÞ = vðt−τÞ ð36bÞ
Fig. 1. Conceptual representation of the model (Eqs. (32)–(33)).
which is precisely the nonlinear model with delay Eq. (22). Since the
model (31–33) is conservative, thenonlinearmodelwithdelay Eq. (22) is
also conservative.

We now compare the obtained simplified models to the original
PDE models using simulated and real data.

5. Applications of the nonlinear models

We first perform simulations with the model derived based on the
diffusive wave equation. Then, we test the model based on the Saint-
Venant equations on real data.

The nonlinear system being composed of a nonlinear system with
a delay in output, the nonlinear system without delay is first solved
with a Runge–Kutta method of order 4, and the delayed output is
computed in a second step.

5.1. Nonlinear model simulations

We consider a river of length L=10 km, width W=8 m, Manning
coefficient n=0.05, slope Sb=0.0004. The parameters K and τ of the
nonlinear model can be computed as functions of the discharge Q
using Eqs. (14), (15) and (2), (3). The results are depicted in Fig. 2. We
see that the time delay τ varies between 204 min and 5 min when the
discharge varies between 1 m3/s and 100 m3/s, while the time
constant K varies between 58 min and 36 min.

These model parameters are used to compute the output of the
simplified model given by Eq. (22). Validation is done by comparing
the output of the proposed nonlinear model with that of the diffusive
wave model (1) for the same input data. The diffusive wave Eq. (1) is
solved using a semi-implicit finite difference scheme (Crank–
Nicholson scheme). We also compare the output of the proposed
model Eq. (22) with that given by the linear Hayami model obtained
by linearization around the initial discharge u(0). The simulation
results are depicted in Fig. 3.

The nonlinear model with delay reproduces well the behavior of
the river, and is very close to the diffusive wave model. One notices
that the main characteristic of these rivers for low flows, i.e. the
variation of the delay with the discharge, is taken well into account by
the nonlinear model with delay, whereas this is not the case for the
linear model.

5.2. Comparison with real data

We now test the simplified model Eq. (26) based on the linearized
Saint-Venant equations. To this end, we use the set of real data used
by Baptista and Michel to evaluate the performance of the quadratic
Fig. 2. Values of parameters K and τ as functions of Q.
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Fig. 3. Comparison between the diffusive wave model (DW—), the nonlinear model of first order with delay (NL – –) and the linear Hayami model obtained for Q0=Q(0) (Lin –·–).
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lag and route model [3]. This data consists of propagation of dam
releases on the Jacui river in Brazil between Itauba and Volta Grande,
recorded at a time step of 30 min [2].

The geometry of the river reaches is detailed in Table 1. The
downstream flow is computed by using a cascade of nonlinear models,
one for each reach. The input of the first reach is the upstream flow, and
the computeddownstreamflow is used as an input for thenext reach. The
computation is done for the five reaches in series, and only the
downstream flow of the last reach is depicted in the graphical results.

Simulation results are depicted in Fig. 4. Themodel only uses the data
given in Table 1 and the upstreamflow to compute the downstreamflow.
The Nash–Sutcliffe coefficient is equal to 0.91, which is rather good. We
also depict on the same graph the simulation results obtained with a full
nonlinear Saint-Venant model, which also uses the geometry of the five
reaches in series to compute the downstream flow. A uniform depth
boundary condition is used at the downstream end.

The simplified nonlinear model leads to almost identical results as
those obtained with the Saint-Venant equations, which explains why
the two curves are indistinguishable. This shows that a simplified
nonlinear model can efficiently reproduce the flow transfer described
by the full Saint-Venant equations in this case.

5.3. Model calibration

From the simulation results in Fig. 4, it seems that the model leads
to a larger attenuation than in reality, i.e. the time constant K is too
large. This could come from a bad calibration of the Manning
coefficient, or a bad estimation of the geometry of the river reaches.
Table 1
Physical characteristics of the Jacui river reaches.

Reach L W Sb n

1 3000 50 0.00169 0.07
2 12600 60 0.00067 0.07
3 3600 70 0.00194 0.07
4 10400 80 0.00056 0.07
To illustrate a possible application of the model, we now consider the
river as a single reach, and try to identify physical parameters based
on the input–output behavior of the system. To this end, we fix the
length of the river reach L=29,600 m and the Manning coefficient
n=0.07, and we identify an average geometry (width B and slope Sb)
by minimizing the sum of the quadratic error between the measured
and the computed downstream flows.

The optimization resulted in an average width B=55.6 m and an
average slope Sb=0.00089. The Nash coefficient is then equal to 0.95
instead of 0.91 for the simulation case without calibration (see the
simulation results in Fig. 5).This example illustrates a possible use of
the model for parameter estimation. However, the analysis of the
calibration of a model in the case of partially known or simplified
geometry is out of the scope of this paper. This subject would require a
more in depth study. This simple example is just here to show a
possible application of the proposed simplified model.

6. Conclusion

We described in this paper a way to obtain a simple DDE nonlinear
model from a quasilinear PDE. After linearization around a reference
regime, the cumulant matching method is applied to the linear PDE in
order to get an approximation of its irrational transfer function. Then a
single nonlinear model is obtained from the family of linear ones
indexed by the value of the discharge around which they were
linearized. This methodology was applied on two different nonlinear
PDEs: the diffusive wave equation and the Saint-Venant equations. A
first order nonlinear model with delay is obtained as an approxima-
tion of the nonlinear PDE.

The simplified nonlinear model has the advantage to be directly
related to physical parameters, as the length of the river stretch L, the
slope Sb, Manning coefficient n and the width W. This model can be
used for many different purposes:

• For quick simulation purposes, as it is easier to implement than a
complete numerical resolution of the initial partial differential
equation,

image of Fig.�3


Fig. 4. Simulation on real data from the Jacui river. Measured upstream flow (–△–), measured downstream flow (–△–), downstream flow simulated by the nonlinear model (—) and
by the Saint-Venant equations (– –).
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• For identification purposes: a model-based identification usually
requires numerous simulations of the model, which is time-
consuming. A simpler model can be simulated more quickly,

• For controller design, as some dams located upstream can be used to
control the discharge downstream of the river (see e.g. [6,19,21]).

Finally, the proposed approach can be generalized to various other
cases, such as the model of first order with delay derived by [25] for
rivers or canals with a backwater curve. The proposed method
provides a rigorous way to derive a nonlinear model from a set of
linear models, which can prove very useful in the hydrological
context.
Fig. 5. Calibration of the simplified nonlinear model on real data from the Jacui river.
Measured downstream flow (–△–) and downstream flow simulated by the nonlinear
model (—).
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Appendix A. Derivation of the Hayami transfer function

The linear partial differential Eq. (4) has an analytical solution for
simple inputs (steps or ramps) (see e.g. [24]). Using Laplace
transform, one can express the input–output relations as a transfer
function [1]. Given a function f(x, t), t≥0, its temporal Laplace
transform, denoted L(f(x, t)), or f̂ ðx; sÞ is given by:

Lðf ðx; tÞÞ = f̂ ðx; sÞ = ∫
∞

0
e−st f ðx; tÞdt:

We then have:

L ∂f ðx; tÞ
∂t

� �
= s f̂ ðx; sÞ−f ðx;0Þ;

and

L ∂f ðx; tÞ
∂x

� �
=

∂ f̂ ðx; sÞ
∂x ;

and

L ∂2f ðx; tÞ
∂x2

 !
=

∂2 f̂ ðx; sÞ
∂x2

:

Applying Laplace transform to the system Eq. (4) leads to:

E0
∂2 q̂ðx; sÞ

∂x2
−Θ0

∂ q̂ðx; sÞ
∂x −s q̂ðx; sÞ = qðx;0Þ:
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This is in fact an ordinary differential equation in the variable x,
whose characteristic equation

E0λ
2−Θ0λ−s = 0

has two solutions if E0≠0.
With the hypothesis q(x,0)=0, the solution q̂ðx; sÞ is of the

following form:

q̂ðx; sÞ = A1ðsÞeλ1ðsÞx + A2ðsÞeλ2ðsÞx;

with

λ1ðsÞ =
Θ0−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2

0 + 4E0s
q
2E0

;

λ2ðsÞ =
Θ0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2

0 + 4E0s
q
2E0

:

The boundary conditions can now be used to specify variables A1

(s) and A2(s). The downstream boundary condition leads to A2(s)=0,
sinceℜ(λ2(s))N0 forℜ(s)N0. The upstream boundary condition leads
to A1ðsÞ = q̂ð0; sÞ. Finally, the Hayami transfer function is obtained as
follows:

q̂ðx; sÞ = FHayamiðx; sÞ q̂ð0; sÞ

with

FHayamiðx; sÞ = e

Θ0−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2

0 + 4E0s
q

2E0
x
:

Appendix B. Derivation of the Saint-Venant transfer function

Following the approach developed by [16,17], the Saint-Venant
transfer function can be computed based on the linearized equations.
Applying Laplace transform to Eqs. (24), and assuming zero initial
conditions leads to:

∂
∂x

q̂
ŷ

� �
= As

q̂
ŷ

� �

with As =
0 −W0s

2gSb−V0s
W0V0C2

0ð1−F20 Þ
2V0s + gð1 + κÞSb

C2
0ð1−F20 Þ

0
@

1
A.

Matrix As has two eigenvalues, given by:

λðsÞ = as + bF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs2 + ds + b2

p
;

with a, b, c and d given by Eq. (25).
Assuming a semi-infinite channel leads to:

q̂ðx; sÞ = eλSV ðsÞx q̂ð0; sÞ

with λSV ðsÞ = as + b−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs2 + ds + b2

p
.
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