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A Grobman–Hartman Theorem for Control Systems
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We consider the problem of locally linearizing a control system via topo-
logical transformations. According to [2,3], there is no naive generalization
of the classical Grobman–Hartman theorem for ODEs to control systems: a
generic control system, when viewed as a set of under-determined differential
equations parametrized by the control, cannot be linearized using pointwise
transformations on the state and the control values. However, if we allow the
transformations to depend on the control at a functional level (open loop
transformations), we are able to prove a version of the Grobman–Hartman
theorem for control systems.

KEY WORDS: Control systems; linearization; topological equivalence;
Grobman–Hartman theorem.

1. INTRODUCTION

The classical Grobman–Hartman theorem states that, around a hyperbolic
equilibrium, the flow of a nonlinear differential equation is conjugate via
a (not necessarily differentiable) local homeomorphism to the flow of its
tangent approximation [10]. Our point of departure will be a brief review
of this classical result after fixing some notation. Consider the differential
equation

ẋ(t)=f (x(t)), (1.1)

1 INRIA, BP 93, 06902 Sophia Antipolis, France. E-mails: Laurent.Baratchart@sophia.
inria.fr, Jean-Baptiste.Pomet@sophia.inria.fr

2 Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI
96822-2273, USA. E-mail: mchyba@math.hawaii.edu.

3 To whom correspondence should be addressed.

75

1040-7294/07/0300-0075/0 © 2006 Springer Science+Business Media, Inc.



76 Baratchart, Chyba, and Pomet

where f ∈C1(U, IRn) and U is an open subset of IRn. Assume that x0 ∈U
is an equilibrium, i.e. f (x0)= 0. The linearized system associated to (1.1)
near x0 is

ẋ(t)=Ax(t)−Ax0, (1.2)

where A=Df (x0) is the derivative of f at x0. The equilibrium x0 is said
to be hyperbolic if the matrix A has no purely imaginary eigenvalue. Sys-
tems (1.1) and (1.2) are called topologically conjugate at x0 if there exist
neighborhoods V,W of x0 in U and a homeomorphism h:V →W map-
ping the trajectories of (1.1) in V onto the trajectories of (1.2) in W in a
time-preserving manner: for each x ∈V , we should have

h◦φt (x)= eAt
(
h(x)−h(x0)

)+h(x0) (1.3)

provided that φρ(x)∈V for 0 �ρ� t , where φt denotes the flow of (1.1).
The Grobman–Hartman theorem now goes as follows [10]:

Theorem 1.1. (Grobman–Hartman). If x0 is an hyperbolic equilibrium
point, then (1.1) is topologically conjugate to (1.2) at x0.

More general versions and a precise study of Ck-linearizability with finite
k can be found in [4]. See also [14] for a discussion of infinitely differen-
tiable and analytic linearizability. This theorem entails that the only invari-
ant under local topological conjugacy around a hyperbolic equilibrium is
the number of eigenvalues with positive real part in the Jacobian matrix,
counting multiplicity. Indeed, it is well-known (cf [1]) that the linear sys-
tem ẋ = Ax where A has no pure imaginary eigenvalue is topologically
conjugate to the linear system ẋ=DX where D is diagonal with diagonal
entries ±1, the number of occurrences of +1 being the number of eigen-
values of A with positive real part, counting multiplicity.

When trying to extend this result to a control systems ẋ = f (x, u),
with state x ∈ IRn and control u ∈ IRm, one has first to decide what the
meaning of “topologically conjugate” should be, i.e. what kind of map
should play the role of the homeomorphism h in (1.3).

The simplest idea is to ask for a pointwise transformation on the
n+m variables x,u, i.e. a local homeomorphism of IRn+m; this is inves-
tigated in [2,3] where it is shown that no extension of Theorem 1.1 to
control systems may hold with this kind of conjugating homeomorphisms:
unpredictability of future control values forces a rather rigid triangu-
lar structure on conjugating homeomorphisms that ultimately results in
their “almost” smoothness, and hence they would preserve too many spe-
cial features of linear control systems, that are highly nongeneric among
general control systems, see [2] for complete proofs.
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Basically, Theorem 1.1 is about conjugating flows while, since the con-
trol is an arbitrary function of time whose future values are not deter-
mined by past ones, a control system does not generate a flow on IRn+m
or any finite dimensional manifold. The present paper is devoted to a
different point of view on local linearization of control systems, that does
amount to conjugating “flows”. We first establish, in Section 2, an abstract
principle saying that if the controls are generated by a flow (i.e. a one
parameter group of homeomorphism) on some general topological space,
then, under hyperbolicity assumptions, the system can be linearized via
transformations that are continuously parameterized by elements of this
topological space. We then use this general result to derive some ana-
logs to the Grobman–Hartman theorem for control systems in two differ-
ent contexts: either (Section 3.1) when the control is generated by a finite
dimensional dynamical system or (Section 3.2) when one associates to a
control system a flow on a suitable functional space in the style of [7].
This does not contradict the above mentioned “negative” results because
the notion of conjugacy is here much weaker.

Related Bibliography

In [13], dynamics on general abstract spaces are studied to derive
results on the dependence upon various data of solutions of integral
equations; the dynamical issues addressed there are very related to our
Section 2. Let us also mention [9], that states a Hartman Grobman for
“random dynamical systems” where, roughly speaking, the role of the
topological space mentioned above is played by a probability space. As
for the view on control system that we adopt in Section 3, it is very
inspired by [7] (see also the monograph [8]): to a control system, one
associates naturally a flow on a “skew product”; see these references for
many properties of this flow; we allow a slightly more general picture by
not requiring continuity of that flow, thus allowing L∞ topology for the
controls even for nonaffine systems.

2. AN ABSTRACT GROBMAN–HARTMAN THEOREM

We shall prove an abstract result on the linearization of dynamical
systems which implies the local linearizability properties of control sys-
tems stated in Sections 3.1 and 3.2. The proof closely follows that of
the classical Grobman–Hartman theorem for ODEs as given by Hartman
[10, chap. IX, Sect 4, 7, 8, 9], and we tried to stick to his notations as
much as possible. Nevertheless, we provide a detailed argument because
the modifications needed to handle the dynamics of the control are
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not straightforward. Like [10], we state Theorem 2.1 below as a global
linearizability property for a linear equation perturbed by a suitably nor-
malized additive term. In Sections 3.1 and 3.2, we shall use this result to
derive local linearizability results for systems that locally coincide with a
normalized one.

Let us mention in passing that the Grobman–Hartman Theorem for
“random dynamical systems” given in [9] is similar in spirit to Theorem
2.1: there, the set E of control parameters is a probability space instead of
a topological space, and the conjugating transformation H is only required
to be measurable with respect to ζ ∈E but need not be continuous. Both
can be viewed as Grobman–Hartman Theorem “with parameters”.

Consider a topological space E endowed with a one-parameter group
of homeomorphisms (Sτ )τ∈IR. The space E is to be regarded as an abstract
collection of input-producing events for a control system, these events
being themselves subject to the dynamics of the flow Sτ . To describe the
action of such an event on the system we simply let ζ enter as a parameter
in the differential equation describing the evolution of the state variable x:

ẋ = Ax + G(x, ζ, t), (2.1)

where the linear term at the origin Ax was singled out for convenience
(but without loss of generality). Here, G: IRn×E × IR→ IRn is assumed to
be measurable with respect to t for fixed x, ζ , and of class C1 with respect
to x for fixed ζ, t . To ensure the compatibility between the dynamics of ζ
and that of x (see (2.4) below), we also require the condition

G(x,Sτ (ζ ), t)=G(x, ζ, t+ τ) (2.2)

to hold for all (x, ζ, τ, t)∈ IRn × E × IR× IR. Now, if we suppose that to
each (x, ζ )∈ IRn × E there is a locally integrable function φx,ζ : IR→ IR+
satisfying G(x, ζ, t)�φx,ζ (t) for all t ∈ IR, and that to each ζ ∈E there is
a locally integrable function ψζ : IR→ IR+ satisfying ∂G/∂x (x, ζ, t)�ψζ (t)
for all (x, t)∈IRn×IR, then for each ζ ∈E the solution to (2.1) with initial
condition x(0)=x0 ∈ IRn uniquely exists for all t ∈ IR, cf. [17, Theorem 54,
Proposition C.3.4, Proposition C.3.8]. Subsequently, denoting by

x̂(τ, x0, ζ ) (2.3)

the value of this solution at time t= τ , it follows from (2.2) that

x̂(t+ τ, x0, ζ )= x̂(t, x̂(τ, x0, ζ ),Sτ (ζ )) (2.4)

and thus

�̂t (x0, ζ ) = ( x̂(t, x0, ζ ) , St (ζ ) ) (2.5)
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defines a flow on IRn×E , the group property being a consequence of (2.4)
and of the group property of Sτ . We call (�̂t )t∈IR the flow of system (2.1).

We also define the partially linear flow Lt by the formula:

Lt(x0, ζ ) = ( etAx0 , St (ζ ) ); (2.6)

it is the flow of (2.1) when G=0, and the whole point in this subsection is
to give conditions on G for �̂t and Lt to be topologically conjugate over
IRn×E .

We will assume throughout that the n × n matrix A is hyperbolic,
hence it is similar to a block diagonal one:

A ∼
(
Ae 0
0 Al

)
, (2.7)

where Ae and Al are e× e and l × l real matrices, with e+ l = n, whose
eigenvalues have strictly negative and strictly positive real parts respec-
tively. Now, there exists norms on IRe and IRl for which eAe and e−Al
are strict contractions, because their eigenvalues have modulus strictly less
than 1 and any square complex matrix is similar to an upper triangu-
lar one having the eigenvalues of the original matrix as diagonal entries
while the remaining entries are arbitrarily small, see e.g. [1, ch. 3, Sec.
22.4, Lemma 4]. Therefore, combining (2.7) with a suitable linear change
of variable on each factor in IRn= IRe× IRl , we can write

A=E−1
(
P 0
0 Q

)
E, (2.8)

where E is some nonsingular n× n real matrix while P and Q are e× e
and l× l real matrices such that eP and e−Q are strict contractions for the
standard Euclidean norm:

c
	= ‖eP ‖O<1 and

1
d

	= ‖e−Q‖O<1, (2.9)

where ‖.‖O designates the familiar operator norm of a matrix. Subse-
quently, we define the real numbers

b1
	= ‖e−P ‖O + ‖e−Q‖O = 1

d
+ ‖e−P ‖O, (2.10)

c1
	=
∥
∥∥EAE−1

∥
∥∥

O
= max{ ‖P ‖O , ‖Q‖O}. (2.11)

Besides the operator norm, we shall make use of another norm on real
matrices, namely the Frobenius norm ‖.‖F which is the square root of
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the sum of the squares of the entries. Let us record the elementary
inequalities, valid for any two real square matrices M,N :

‖M‖O �‖M‖F, ‖MN‖F �min{‖M‖O‖N‖F,‖M‖F‖N‖O}. (2.12)

As usual, we keep the symbol ‖.‖ to indicate the standard Euclidean norm
on IRj irrespectively of j . Now, our main result is the following:

Theorem 2.1. Let the hyperbolic matrix A and the numbers c, d, b1
and c1 be as in (2.8)–(2.11). Assume that the topological space E , its one-
parameter group of homeomorphisms (Sτ ), and the map G: IRn×E × IR→IRn

satisfy the following conditions:

• Equation (2.2) holds for all (x, ζ, τ, t)∈ IRn×E × IR× IR.
• For fixed ζ ∈E , the map τ �→Sτ (ζ ) is Borel measurable IR→E , that

is to say the inverse image of an open subset of E is measurable in
IR.

• The map x �→G(x, ζ, t) is continuously differentiable IRn → IRn for
fixed (ζ, t)∈ E × IR, the map t �→G(x, ζ, t) is measurable IR→ IRn

for fixed (x, ζ )∈ IRn×E , and to each ζ ∈E there are locally integra-
ble functions φζ ,ψζ : IR→ IR+ such that, for all (x, t)∈ IRn× IR, one
has:

‖G(x, ζ, t)‖ � φζ (t),

∥∥∥∥
∂G

∂x
(x, ζ, t)

∥∥∥∥
F

� ψζ (t). (2.13)

• Defining the flow x̂ of (2.1) as in (2.3), the map (x0, ζ ) �→ x̂(t, x0, ζ )

is continuous IRn×E → IRn for fixed t ∈ IR.
• There are real numbers M>0 and η>0 such that

∀ζ ∈E, ‖φζ‖L1([0,1])�M, (2.14)

‖ψζ‖L1([0,1])�η; (2.15)

Moreover, the number η in (2.15) is so small that, putting

θ
	=η ‖E‖O ‖E−1‖O

and then

α1
	= θec1

(
1+ eθ+c1 (θ + c1)

)
,

one has

0<b1α1<1 and α1(1+1/d)+max(c,1/d)<1. (2.16)



A Grobman–Hartman Theorem 81

Then, there exists a homeomorphism

H: IRn×E → IRn×E

of the form

(x, ζ ) �→ H(x, ζ )= (H(x, ζ ), ζ ),

that conjugates �̂t defined in (2.5) to the partially linear flow (2.6), namely
H◦ �̂t =Lt ◦H or, equivalently,

H(�̂t (x, ζ ) ) = etAH(x, ζ ) (2.17)

for all (t, x, ζ )∈ IR× IRn×E .

To establish Theorem 2.1, we shall rely on two lemmas. The first one
runs parallel to [10, chap. IX, lemma 8.3], and gives us sufficient condi-
tions for perturbations of a map (x, ζ ) �→ (Lx,Sτ (ζ )) to be topologically
conjugate on IRn × E , when τ is fixed and the linear map L: IRn → IRn

is the product of a dilation and a contraction. This lemma is the main-
spring of the proof, in that it will provide us with the desired conjugat-
ing H when applied to the flows (2.5) and (2.6) evaluated at t = 1 (this
arbitrary value comes from the normalization of the constants c and d

through (2.9)). The proof of the lemma is similar to that of [10, chap. IX,
lemma 8.3], except that we need to keep track more carefully of unique-
ness and continuity issues here; it uses the shrinking lemma on Lipschitz-
small perturbations of hyperbolic linear maps, a classical device to build
conjugating homeomorphisms that has many other applications, see [10,
chap. IX, notes]. The reader will notice that the statement of the lemma
redefines the constants c, d, b1, and α1 that were already fixed in the state-
ment of Theorem 2.1. We allow ourself this minor incorrection, because
we feel it helps following the argument since the lemma will be applied
precisely with the previously defined constants.

Lemma 2.2. Let us be given a homeomorphism T : E →E and two non-
singular real matrices C,D of size e × e and l × l respectively, such that
c=‖C‖<1 and 1

d
=‖D−1‖<1.

For i= 1,2, let Yi : IRe × IRl × E → IRe and Zi : IRe × IRl × E → IRl be
two pairs of bounded continuous functions satisfying

max{‖	Yi‖,‖	Zi‖}�α1(‖	y‖+‖	z‖), (2.18)

where 	Yi and 	Zi stand respectively for Yi(y+	y, z+	z, ζ )−Yi(y, z, ζ )
and Zi(y+	y, z+	z, ζ )−Zi(y, z, ζ ), and where α1 is a constant such that,
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if we put a=‖C−1‖ and b1 = a+ 1/d, then 0<b1α1< 1 and α1(1 + 1/d)+
max(c,1/d)<1. If we define for i=1,2 the maps

Ti : IRe× IRl ×E → IRe× IRl ×E
(y, z, ζ ) �→ (Cy+Yi(y, z, ζ ),Dz+Zi(y, z, ζ ),T (ζ )),

then there exists a unique map R0: IRe× IRl ×E → IRe× IRl ×E of the form

R0(y, z, ζ )= (H0(y, z, ζ ), ζ ) (2.19)

such that:

• H0(y, z, ζ )− (y, z) is bounded on IRe× IRl ×E ,
• one has the commuting relation:

R0T1 =T2R0. (2.20)

Moreover, R0 is then necessarily a homeomorphism of IRe× IRl ×E .

The second lemma that we need in order to prove Theorem 2.1 is of tech-
nical nature and ensures that, under the hypotheses stated in that proposi-
tion, we can indeed apply Lemma 2.2 to the flow (2.5) evaluated at t=1.
Recalling from (2.3) the definition of x̂, it will be convenient to define a
map 
 : IR× IRn×E → IRn by the equation:

x̂(t, x0, ζ ) = exp(tA) x0 +
(t, x0, ζ ). (2.21)

Thus the map 
 capsulizes the deviation of the flow of (2.1) from the flow
of the linearized equation ẋ=Ax.

Lemma 2.3. Under the assumptions of Theorem 2.1, the map 


defined by (2.21) is bounded on [0,1]×IRn×E , it is of class C1 with respect
to x0 for fixed t, ζ , and it satisfies, for all (t, x0, ζ ) in [0,1] × IRn × E , the
inequality:

‖ ∂

∂x0

(t, x0, ζ )‖F � η e‖A‖O
(

1+ eη+‖A‖O (η+‖A‖O)
)
. (2.22)

Assuming Lemmas 2.2 and 2.3 for a while, let us proceed immediately
with the proof of Theorem 2.1.

Proof of Theorem 2.1. Performing on IRn the change of variables
x �→E x and taking (2.12) into account, we may assume upon replacing M
by M‖E‖O in (2.14) and η by θ in (2.15) that E= In, the identity matrix
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of size n. Then c1 = ‖A‖O and the right-hand side of (2.22) is just α1.
Moreover (2.8) expresses that A assumes a block-diagonal form, accord-
ing to which we block-decompose the flow �̂t (x0, ζ ) defined by (2.5) into

⎛

⎝
y0
z0
ζ

⎞

⎠ �→
⎛

⎝
etP y0 +Y (t, y0, z0, ζ )

etQz0 +Z(t, y0, z0, ζ )

St (ζ )

⎞

⎠, (2.23)

where (yT0 , z
T
0 )
T is the natural partition of x0 ∈ IRn∼ IRe× IRl , and where

Y and Z are respectively the first e and the last l components of the
map 
 defined in (2.21). Still taking into account the block decomposi-
tion induced by (2.8) where E= In, the partially linear flow Lt defined by
(2.6) in turn splits into

Lt : IRe× IRd ×E → IRe× IRd ×E
(y0, z0, ζ ) �→ (exp(P t) y0, exp(Qt) z0,St (ζ )).

We shall apply Lemma 2.2 with T =S1 to T1 =�̂1 and T2 =L1, that is
to say we choose C=eP , D=eQ, Y2 =0, Z2 =0, and we define Y1 and Z1
by Y1(y, z, ζ )= Y (1, y, z, ζ ) and Z1(y, z, ζ )=Z(1, y, z, ζ ) where Y , Z are
as in (2.23). The hypotheses on C and D are satisfied by (2.9), while the
hypotheses on Y2 and Z2 are trivially met. As to Y1 and Z1, we observe
that:

– their continuity, i.e. the continuity of (x0, ζ ) �→
(1, x0, ζ ), follows
via (2.21) from the continuity of (x0, ζ ) �→ x̂(1, x0, ζ ) which is part
of the hypotheses (see point 4 in the statement of the proposition);

– their boundedness, i.e. the boundedness of (x0, ζ ) �→ 
(1, x0, ζ ),
follows from Lemma 2.3;

– the inequalities on the Lipschitz constants of Y1 and Z1
required in Lemma 2.2 follow from the mean-value theorem
and Lemma 2.3, Eq. (2.22), granted (2.16), (2.12), and the
triangle inequality.

Therefore Lemma 2.2 does apply, providing us with a homeomor-
phism of IRe × IRl × E = IRn × E of the form R0 =H0 × id, which is such
that H0(x, ζ )−x is bounded on IRn×E and, in addition, such that

R0 ◦ �̂1 = L1 ◦R0. (2.24)

Equation (2.24) expresses that H0 conjugates the flow �̂t (x, ζ )) to the
partially linear flow Lt at time t = 1, whereas we want these flows to be
conjugate at any time t . For this, we use the same averaging trick (orig-
inally due to S. Sternberg) as in [10, chap. IX, Sec. 9], namely we define
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H : IRn×E → IRn by the integral formula:

H(x, ζ )=
∫ 1

0
e−rAH0(�̂r (x, ζ ))dr (2.25)

where H0, being the first factor of R0, satisfies by virtue of (2.24):

H0(�̂1(x, ζ )) = eAH0(x, ζ ). (2.26)

We need of course show that (2.25) is well-defined. First, let us check
that the integrand is a measurable function of r. As H0 is continuous
IRn×E → IRn, this reduces to showing that the map

r �→ �̂r (x, ζ )= ( x̂(r, x, ζ ) , Sr (ζ ) ) (2.27)

is measurable IR �→ IRn×E . Now, the map r �→ x̂(r, x, ζ ) is a fortiori mea-
surable since it is absolutely continuous, and the map r �→ Sr (ζ ) is also
measurable by assumption (see point 2 in the statement of the proposi-
tion). Hence the inverse image under (2.27) of an open rectangle is mea-
surable in IR. But any open subset of IRn × E is a countable union of
open rectangles because IRn has a countable basis of open neighborhoods,
and this establishes the measurability of (2.27). Secondly, the integrand in
(2.25) is bounded, for ‖H0(�̂r (x, ζ ))− x̂(r, x, ζ )‖ is majorized uniformly
with respect to r, x, and ζ since H0(x, ζ )−x is bounded on IRn×E by the
properties of R0, while the continuous function r �→ x̂(r, x, ζ ) is bounded
for fixed x and ζ on the compact set [0,1]. Therefore, the integral on the
right-hand side of (2.25) indeed exists.

Observe now that H(x, ζ )−x is also bounded on IRn×E . Indeed, by
definition of �̂r via (2.5) and of 
 via (2.21), we can write

H(x, ζ )−x =
∫ 1

0
e−rA

(
H0( x̂(r, x, ζ ) , Sr (ζ ) )− x̂(r, x, ζ )

)
dr

+
∫ 1

0
e−rA 
(r, x, ζ )dr, (2.28)

and since both integrals on the right-hand side are bounded (the first
because H0(x, ζ ) − x is bounded on IRn × E and the second because

 is bounded on [0,1] × IRn × E by Lemma 2.3), we get the desired
boundedness of H(x, ζ )− x. Next, we claim that (2.17) holds, and once
we have proved this the proposition will follow because, specializing (2.17)
to t = 1, we shall conclude by the uniqueness part of Lemma 2.2 that
H × id =R0 and therefore that R0, which is a homeomorphism of IRn×E
with the desired form, will meet R0 ◦ �̂t =Lt ◦R0, not just for t=1 as we
knew already but in fact for all t . Thus it will be possible to take H=R0.
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To establish the claim, we use the group property of the flow to write

e−tAH( �̂t (x, ζ ) )=
∫ 1

0
e−(t+r)AH0(�̂t+r (x, ζ ) )dr,

and we set t+ r= τ to convert the above integral into
∫ t+1

t

e−τAH0(�̂τ (x, ζ ) )dτ =
∫ 1

t

. . . dτ +
∫ t+1

1
. . . dτ, (2.29)

where the dots indicate that the integrand is repeated in each integral.
Now, putting λ= τ −1, the last integral in the right-hand side becomes

∫ t

0
e−(λ+1)AH0(�̂λ+1(x, ζ ) )dλ=

∫ t

0
e−λAH0(�̂λ(x, ζ ) )dλ,

where we have used the group property of the flow again together with
(2.26). Plugging this into (2.29), we recover back

∫ 1
0 e

−tAH0(�̂t (x, ζ ))dt on
the right-hand side, so that finally e−tAH ◦ �̂t = H as claimed.

Let us now tie the loose ends in the proof of Theorem 2.1 by
establishing Lemmas 2.3 and 2.2.

Proof of Lemma 2.3. From (2.1) and (2.21), we see that
t �→
(t, x0, ζ ) is the solution to

ξ̇ (t)=Aξ(t)+G
(
ξ(t)+ etAx0, ζ, t

)

with initial condition ξ(0)=0. Since ‖G(x, ζ, t)‖ is bounded by φζ (t) with
‖φζ‖L1([0,1])�M by (2.13) and (2.14), we get

‖ξ(t)‖�M+
∫ t

0
‖A‖O‖ξ(s)‖ds, t ∈ [0,1],

and finally, by the Bellman–Gronwall lemma, ‖ξ(t)‖ � M et‖A‖O . This
entails that ξ is bounded on [0,1]; hence 
 is bounded on [0,1]× IRn×E .

To prove (2.22), we consider for fixed x0, ζ the matrix-valued function
R(t) = ∂x̂

∂x0
(t, x0, ζ ), whose existence and continuity with respect to x0 for

fixed t, ζ depend on (2.13), (2.14) and (2.15) (cf Lemma A.3 in the Appen-
dix), inducing in turn the existence and continuity with respect to x0 of
Q(t)= ∂


∂x0
(t, x0, ζ ) via (2.21). The variational equation for ∂x̂

∂x0
(see again

Lemma A.3 in the Appendix A) yields:

Ṙ(t) =
[
A+ ∂G

∂x

(
x̂(t, x0, ζ ), ζ, t

)]
R(t) , R(0) = In,
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and, since R(t)=Q(t)+ etA by (2.21), we have that

Q̇(t)=
[
A+ ∂G

∂x

(
x̂(t, x0, ζ ), ζ, t

)]
Q(t)+ ∂G

∂x

(
x̂(t, x0, ζ ), ζ, t

)
etA, Q(0)=0.

Put ρ(t)= ‖Q(t)‖F. Due to the definition of the Frobenius norm, ρ(t)
is locally absolutely continuous and, by the Cauchy–Schwartz inequality,
one has ρ̇(t)� ‖Q̇(t)‖F. Thus, the differential equation satisfied by Q(t)

together with (2.13) yield:

ρ̇ � (ψζ (t)+‖A‖O) ρ(t) + ψζ (t) e
‖A‖O , ρ(0)=0,

where we have used (2.12) and the elementary fact that ‖etA‖O �e‖A‖O for
all t ∈ [0,1]. Integrating this inequality and applying the Bellman–Gronwall
lemma yields, taking (2.15) into account, that ρ is bounded on [0,1] by
ηe2‖A‖O+η. This implies (2.22) by definition of ρ.

Proof of Lemma 2.2. If we endow IRe×IRl with the norm ‖(y, z)‖=
‖y‖+‖z‖, it follows from (2.18) that, for fixed (y, z, ζ )∈ IRe× IRl ×E , the
map Ty,z,ζ : IRe× IRl → IRe× IRl defined by

Ty,z,ζ (y
′, z′)= (C−1y,D−1z)−

(
C−1Y1(y

′, z′, ζ ) , D−1Z1(y
′, z′, ζ )

)

is a shrinking map with shrinking constant b1α1 < 1, whose fixed point
is the unique (ȳ, z̄)∈ IRe × IRl satisfying T1(ȳ, z̄, ζ )= (y, z,T (ζ )). In addi-
tion, it holds that (ȳ, z̄) = limk→∞ T ky,z,ζ (y

′, z′) for any (y′, z′), and this
classically implies that (ȳ, z̄) is continuous with respect to y, z, and ζ .
Indeed, the continuity of Y1 and Z1 entails that Ty,z,ζ (y′, z′) is continuous
with respect to y, z and ζ for fixed y′, z′. Therefore, if we write ȳ(y, z, ζ ),
z̄(y, z, ζ ) to emphasize the functional dependence, and if we choose y0,
z0, ζ0 together with ε > 0, there is a neighborhood V0 of (y0, z0, ζ0) in
IRe× IRl ×E such that (y, z, ζ )∈V0 implies:

‖Ty,z,ζ (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))− (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))‖
=‖Ty,z,ζ (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))−Ty0,z0,ζ0((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))‖
<ε.

Consequently, for (y, z, ζ )∈V0, we have by the shrinking property that

∥
∥(ȳ(y, z, ζ ), z̄(y, z, ζ )

)− (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0)
)∥∥

=
∥∥
∥∥ lim
k→∞

T ky,z,ζ ((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))− (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))

∥∥
∥∥
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�
∞∑

k=0

∥
∥∥T k+1

y,z,ζ ((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))−T ky,z,ζ ((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))

∥∥
∥

� ε

1−b1α1

which implies the desired continuity. Then, (x, y) �→ (ȳ(y, z, ζ ), z̄(y, z, ζ ))

is, for fixed ζ , the inverse of the concatenation of the first two components
of T1, and it is continuous with respect to (x, y), and to ζ . Moreover, we
see from the definition of Ty,z,ζ and the fixed point property of ȳ, z̄ that

(ȳ, z̄)= (C−1y,D−1z)− (C−1Y1(ȳ, z̄, ζ ) , D
−1Z1(ȳ, z̄, ζ ))

and, since Y1 and Z1 are continuous and bounded, this makes for a
relation of the form

(ȳ(y, z, ζ ), z̄(y, z, ζ ))= (C−1y+ Ŷ1(y, z, ζ ),D
−1z+ Ẑ1(y, z, ζ )),

where Ŷ1, Ẑ1 are in turn continuous and bounded on IRe × IRl × E with
values in IRe and IRl respectively. All this yields the existence of an inverse
for the map T1 itself, namely

T −1
1 (y, z, ζ )= (C−1y+ Ŷ1(y, z,T −1(ζ )),D−1z+ Ẑ1(y, z,T −1(ζ )),T −1(ζ )).

(2.30)

Let us now seek the map H0 in (2.19) in the prescribed form, namely

H0(y, z, ζ )= ( y+�(y, z, ζ ) , z+�(y, z, ζ ) ), (2.31)

where the unknowns are bounded maps � and � with values in IRe and
IRl respectively. Using (2.30), one checks easily that (2.20) is equivalent to
the following pair of equations:

� = C
[
Ŷ1 +�(T −1

1 )
]

+Y2

(
C−1y+ Ŷ1 +�(T −1

1 ),D−1z+ Ẑ1 +�(T −1
1 ),T −1(ζ )

)
, (2.32)

�=D−1[Z1 +�(Cy+Y1,Dz+Z1,T (ζ ))−Z2(y+�,z+�,ζ)], (2.33)

where the argument of �,�,Yi,Zi, Ŷi , Ẑi , T
−1
1 , when omitted, is always

(y, z, ζ ). The existence of � and � will follow from another application
of the shrinking lemma, this time in the space B of bounded functions
IRe × IRl × E → IRe × IRl endowed with a suitable norm. More precisely,
letting (�1,�1) denote an arbitrary member of B acting coordinate-wise
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as (y, z, ζ ) �→ (�1(y, z, ζ ),�1(y, z, ζ )) where �1 and �1 are bounded IRe

and IRl-valued functions respectively, we define its norm to be

|||(�1,�1)|||+ = |||�1|||+ |||�1|||,
where |||.||| indicates the sup norm of a map IRe× IRl ×E → IRk, irrespec-
tively of k; this makes (B, |||.|||+) into a a Banach space. Now, to each
(�1,�1)∈B, we can associate another member (�2,�2) of B where �2:
IRe× IRl ×E → IRe and �2: IRe× IRl ×E → IRl are defined by

�2 =C
[
Ŷ1 +�1(T

−1
1 )

]

+Y2

(
C−1y+ Ŷ1 +�1(T

−1
1 ),D−1z+ Ẑ1 +�1(T

−1
1 ),T −1(ζ )

)
, (2.34)

�2 =D−1
[
Z1 +�1(Cy+Y1,Dz+Z1,T (ζ ))−Z2(y+�1, z+�1, ζ )

]
, (2.35)

the argument (y, z, ζ ) being omitted again for simplicity. The fact that
(�2,�2) is indeed well-defined and belongs to B is a consequence of the
preceding part of the proof. Consistently designating by a subscript 2 the
effect of the right hand-side of (2.34) an (2.35) on some initial map, itself
denoted with a subscript 1, we see from (2.18)) by inspection on (2.34)
and (2.35) that, if (�1,�1) and (�′

1,�
′
1) are two members of B, then

|||�2 −�′
2|||� c |||�1 −�′

1|||+α1|||(�1 −�′
1,�1 −�′

1)|||+, (2.36)

|||�2 −�′
2|||�

1
d

(|||�1 −�′
1|||+α1|||(�1 −�′

1,�1 −�′
1)|||+

)
. (2.37)

Adding up (2.36) and (2.37), we obtain

|||(�2 −�′
2,�2 −�′

2)|||+
� [α1(1+1/d)+max(c,1/d)] |||(�1 −�′

1,�1 −�′
1)|||+

=α |||(�1 −�′
1,�1 −�′

1)|||+
where by assumption α < 1. This means that (�1,�1) �→ (�2,�2) is a
shrinking map on B whose fixed point (�,�) provides us with the unique
bounded solution to (2.32) and (2.33). Equivalently, if H0 is defined
through (2.31) and R0 through (2.19), then R0 is the unique map IRe ×
IRl × E → IRe × IRl × E of the form (H, id), where id is the identity map
on E , such that H − (y, z)∈B and such that the commuting relation (2.20)
holds. It remains for us to show that R0 is a homeomorphism. For this,
notice first that R0 is continuous, because H0 turns out to be continuous:
indeed, iterating the formulas (2.34) and (2.35) starting from any initial
pair (�1,�1) yields a sequence of maps converging to (�,�) in B, and if
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the initial pair is continuous (we may for instance choose the zero map) so
is every member of the sequence hence also the limit since |||.|||+ induces
on B the topology of uniform convergence. Next, if we switch the roles
of T1 and T2, the above argument provides us with a continuous map R′

0 :
IRe×IRl×E →IRe×IRl×E of the form (H ′, id)) with H ′ − (y, z)∈B, satis-
fying R′

0T2 =T1R
′
0. Then, the composed map R=R′

0R0 satisfies RT1 =T1R,
and since it is again of the form (H ′′, id)) with H ′′ − (y, z) ∈ B, we get
R= id by the uniqueness part of the previous proof. Similarly R0R

′
0 = id,

so that finally R0 is invertible with continuous inverse R′
0 hence a homeo-

morphism.

3. GROBMAN–HARTMAN THEOREMS FOR CONTROL SYSTEMS

We consider a control system of the form:

ẋ=f (x, u), x ∈ IRn , u∈ IRm , (3.1)

and we suppose that f (0,0) = 0, i.e. we work around an equilibrium
point that we choose to be the origin without loss of generality. We
assume that f is continuous, and throughout we also make the hypothe-
sis that ∂f/∂x(x, u) exists and is jointly continuous with respect to (x, u).
Subsequently, we single out the linear part of f by consistently setting
A= ∂f

∂x
(0,0), so that (3.1) can be rewritten as

ẋ=Ax + P(x,u) with P(0,0)= ∂P

∂x
(0,0)=0. (3.2)

If in addition f happens to be continuously differentiable with respect to
u as well, we set B= ∂f

∂u
(0,0) and we further expand (3.2) into

ẋ=Ax + Bu + F(x,u) with F(0,0)= ∂F

∂x
(0,0)= ∂F

∂u
(0,0)=0. (3.3)

Since (3.3) is derived under the stronger hypothesis that f is of class
C1 with respect to both x and u, one would expect stronger results to hold
in this case. We want to stress that, deceptively enough, local linearization
of (3.3) will turn out to be a consequence of local linearization of (3.2)
although the latter was derived without differentiability requirement with
respect to u. This is due to the fact that (3.2) will be locally conjugate to
the non controlled system ẋ=Ax, that is to say the influence of the con-
trol can be entirely assigned to the linearizing homeomorphism. Compare
Theorems 3.1 and 3.3, and see also Remark 3.8.



90 Baratchart, Chyba, and Pomet

3.1. Prescribed Dynamics for the Control

We investigate in this subsection the situation where, in system (3.1),
the control function u(t) is itself the output of a dynamical system of the
form:

ζ̇ = g(ζ ),

u = h(ζ ),
(3.4)

where ζ(t)∈ IRq , while g : IRq → IRq is locally Lipschitz continuous and
h:IRq →IRm is continuous with, say, h(0)=0. In particular, u(t) is entirely
determined by the finite-dimensional data ζ(0) and, from the control view-
point, this is a particular instance of feed-forward on system (3.1) by
system (3.4) where the input may only consist of Dirac delta functions.

Assume first that f is of class C1 with respect to x and u so that (3.3)
holds. Plugging (3.4) into the latter yields an ordinary differential equation
in IRn+q :

ẋ = Ax + Bh(ζ ) + F(x,h(ζ )),

ζ̇ = g(ζ ).
(3.5)

To motivate the developments to come, observe that if g is con-
tinuously differentiable with g(0)= 0, if A and ∂g/∂ζ(0) are hyperbolic,
and if h is continuously differentiable, then we can apply the standard
Grobman–Hartman theorem on ordinary differential equations to con-
clude that the flow of (3.5) is topologically conjugate, via a local homeo-
morphism (x, ζ ) �→ (z, ξ) around (0,0), to that of

(
ż

ξ̇

)
=
(
A B ∂h

∂ζ
(0)

0 ∂g
∂ζ
(0)

)(
z

ξ

)
.

However, the hyperbolicity requirement on ∂g/∂ζ(0) is more stringent
than it seems. Indeed, it is often desirable to study nontrivial steady
behaviors, which usually entail oscillatory controls. This is why we rather
seek a transformation of the form (x, ζ ) �→ (H(x, ζ ), ζ ) that linearizes the
first equation in (3.5) but preserves the second one. This can be done, as
asserted by the following result which does not require hyperbolicity nor
even continuous differentiability on g.

Theorem 3.1. Suppose in system (3.5) that g: IRq → IRq is locally Lips-
chitz continuous, that h: IRq → IRm is continuous with h(0)=0, that F : IRn×
IRm→ IRn is continuously differentiable with F(0,0)= ∂F/∂x(0,0)= 0, and
that A is hyperbolic. Then, there exist two neighborhoods V and W of 0 in
IRn and IRq respectively, and a map H :V ×W → IRn with H(0,0)= 0, such
that
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H × Id : V ×W → IRn×W
(x, ζ ) �→ (H(x, ζ ), ζ )

is a homeomorphism from V ×W onto its image that conjugates (3.5) to

ż = Az + Bh(ζ ),

ζ̇ = g(ζ ).
(3.6)

Remark 3.2. In Theorem 3.1 (resp. Theorem 3.3 to come), we assume
for convenience that all the functions involved, namely F (resp. P ), g, and
h, are globally defined. However, since the conclusion is local with respect
to x and ζ , the same holds when these functions are only defined locally
on a neighborhood of the origin, as a partition of unity argument imme-
diately reduces the local version to the present one.

Although it looks natural, the above theorem deserves one word of
caution for the homeomorphism H depends heavily on g and h, and
in a rather intricate manner. In fact, it is possible to entirely incorpo-
rate the influence of the control into the change of variables, so as to
obtain a statement in which the term Bh(ζ ) does not even appear in the
transformed system. This will follow from Theorem 3.3 to come, for which
we no longer assume in (3.1) that f is differentiable with respect to u.
Accordingly, we plug (3.4) into (3.2) rather than (3.3), and we obtain
instead of (3.5) the following ordinary differential equation in IRn+q :

ẋ = Ax + P(x,h(ζ )),

ζ̇ = g(ζ ),
(3.7)

whose flow will be denoted by (t, x0, ζ0) �→ (x(t, x0, ζ0), ζ(t, ζ0)).

Theorem 3.3. Suppose in system (3.7) that g : IRq → IRq is locally
Lipschitz continuous, that h : IRq → IRm is continuous with h(0)= 0, that
P(x,u) is continuous IRn × IRm → IRn with P(0,0)= 0, that ∂P/∂x exists
and is continuous IRn × IRm → IRn×n with ∂P/∂x(0,0)= 0, and that A is
hyperbolic. Then, there exist two neighborhoods V and W of 0 in IRn and
IRq respectively, and a map H :V ×W → IRn with H(0,0)=0, such that

H × Id : V ×W → IRn×W
(x, ζ ) �→ (H(x, ζ ), ζ )

is a homeomorphism from V ×W onto its image that conjugates (3.7) to

ż = Az,

ζ̇ = g(ζ ),
(3.8)
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i.e. for all t, x0, ζ0 such that (x(τ, x0, ζ0), ζ(τ, ζ0))∈V ×W for all τ ∈ [0, t ]
(or [t,0] if t <0), one has

H(x(t, x0, ζ0), ζ(t, ζ0))= etAH(x0, ζ0).

Theorem 3.1 is a consequence of Theorem 3.3 because the latter
implies that (3.5) and (3.6) are both conjugate to (3.8). As to Theorem 3.3
itself, we will show that it is a consequence of Theorem 2.1. This will
require an elementary lemma enabling us to normalize the original control
system. To state the lemma, we fix, once and for all, a smooth function
ρ: [0,+∞)→ [0,1] such that

∀t, |ρ̇(t)|<3,
0� t� 1

2 ⇒ ρ(t)=1,
1
2 <t <1 ⇒ 0<ρ(t)<1,

1� t ⇒ ρ(t)=0,

⎫
⎪⎪⎬

⎪⎪⎭
(3.9)

and we associate to any map β : IRn × IRm → IRn a family of functions
Gs : IRn× IRm→ IRn, indexed by a real number s >0, using the formula:

Gs(x, u)
	=ρ

(
‖x‖2

s2

)

β(x, u). (3.10)

Since the context will always make clear which β is involved, our nota-
tion does not explicitly indicate the dependency of Gs on the map β. The
symbol ‖.‖, in the statement of the lemma, denotes the norm, not only
of a vector, but also of a matrix; the result does not depend on a spe-
cific choice of this norm. Also, B(x, r) stands for the open ball of radius
r, centered at x, in any Euclidean space.

Lemma 3.4. Let β(x, u) be continuous IRn × IRm → IRn and ∂β/∂x

continuously exist IRn × IRm → IRn×n, with β(0,0)= ∂β/∂x(0,0)= 0. Then
Gs(x, u) defined by (3.10) is in turn continuous and continuously differentia-
ble with respect to x for every s >0, and to each η>0 there exist σ >0 and
θ >0 such that

∀(x, u)∈ IRn×B(0, θ), ‖∂Gσ
∂x

(x, u)‖ � η. (3.11)

Proof. For the proof, we use the standard Euclidean norm on IRn,
IRm, and the familiar operator norm on matrices. Clearly Gs is continuous
and continuously differentiable with respect to x for every s > 0, and we
have:
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∂Gs

∂x
(x, u) = ρ

(
‖x‖2

s2

)
∂β

∂x
(x, u) + 2

s2
ρ′
(

‖x‖2

s2

)

β(x, u)xT , (3.12)

where xT is the transpose of x. Since β is continuously differentiable and
∂β/∂x (0,0)= 0, we get for s > 0 small enough that ‖∂β/∂x (x, u)‖<η/14
as soon as ‖x‖,‖u‖<s. Let σ be an s with this property. Since β is con-
tinuous with β(0,0)= 0, we can in turn pick θ with 0<θ � σ such that
‖β(0, u)‖<ησ/12 whenever ‖u‖<θ . Altogether, we get that

‖x‖<σ
‖u‖<θ

}
⇒
{

‖ ∂β
∂x
(x, u)‖< η

14 ,

‖β(0, u)‖< ησ
12 .

(3.13)

Now, we need only check (3.11) when ‖x‖<σ for otherwise Gσ is identi-
cally zero; therefore we restrict ourselves to pairs (x, u) where ‖x‖<σ and
‖u‖<θ . On this domain, we get from (3.13) and the mean value theorem
that

‖β(x, u)‖� η

14
σ + ησ

12
= 13ησ

84
.

Using this together with (3.13) and the inequalities |ρ|�1, ‖ρ′‖�3, as well
as ‖xT ‖<σ , formula (3.12) with s=σ yields:

‖∂Gσ
∂x

(x, u)‖� η

14
+ 6
σ 2

13ησ
84

σ =η.

Proof of Theorems 3.1 and 3.3. We already mentioned that Theorem
3.1 is a consequence of Theorem 3.3. To establish the latter, consider the
following “renormalized” version of (3.7):

ẋ = Ax + ρ
( ‖x‖2

σ 2

)
P
(
x, ρ

( ‖h(ζ )‖
θ

)
h(ζ ))

)
,

ζ̇ = ρ(‖ζ‖) g(ζ ),
(3.14)

where ρ is as in (3.9) and where σ , θ are strictly positive real num-
bers to be adjusted shortly. Because the flows of (3.14) and (3.7) do
coincide as long as ‖x‖<σ/√2, ‖ζ‖< 1/2, ‖h(ζ )‖<θ/2, and since these
inequalities define a neighborhood (0,0) in IRn × IRm by the continuity
of h and the fact that h(0)= 0, it is enough to prove the theorem when
(3.7) gets replaced by (3.14) for some pair of strictly positive σ, θ . To this
effect, we shall apply Theorem 2.1 with E = IRq endowed with the flow
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of ρ(‖ζ‖) g(ζ ), namely Sτ (ζ0) is the value at t = τ of the solution to the
second equation in (3.14) whose value at t=0 is ζ0, and with

G(x, ζ, t)=ρ
(

‖x‖2

σ 2

)

P

(
x, ρ

(‖h(St (ζ ))‖
θ

)
h(St (ζ ))

)
.

We now proceed to check that the assumptions of Theorem 2.1 are ful-
filled if σ and θ are properly chosen. First, since g is locally Lipschitz
continuous while ρ is smooth with compact support on [0,+∞), we see
that ζ �→ ρ(‖ζ‖) g(ζ ) is a bounded Lipschitz continuous vector field on
IRq hence it has a globally defined flow, which is continuous by Lemma
A.1. This tells us that (τ, ζ ) �→ Sτ (ζ ) is continuous IR × IRq → IRq , so
Sτ is indeed a one-parameter group of homeomorphisms on IRq and
τ �→ Sτ (ζ ) is certainly Borel measurable since it is even continuous.
The continuity of (τ, ζ ) �→ Sτ (ζ ) also makes it clear that G(x, ζ, t) is
continuous and continuously differentiable with respect to x granted the
continuity of h, the smoothness of ρ, and the fact that P itself is continu-
ous and continuously differentiable with respect to the first variable. A for-
tiori then, x �→G(x, ζ, t) is continuously differentiable and t �→G(x, ζ, t) is
measurable.

Secondly, observe since ρ is bounded by 1 and vanishes outside [0,1]
that ‖ρ(θ−1‖u‖)u‖<θ for all u∈ IRm, consequently G takes values in the
smallest ball centered at 0 that contains P(B(0, σ ),B(0, θ)); this last set
is relatively compact by the continuity of P hence G is bounded. The
same argument shows that ∂G/∂x is also bounded, in other words we can
choose φζ and ψζ to be suitable constant functions in (2.13), indepen-
dently of ζ . In particular, (2.14) and (2.15) will hold. Moreover, if we set
β(x, u)=P(x,u), we have with the notations of (3.10) that

G(x, ζ, t)=Gσ
(
x, ρ

(‖h(St (ζ ))‖
θ

)
h(St (ζ ))

)
. (3.15)

Since ρ(θ−1‖h(v)‖)h(v) lies in B(0, θ) for all v ∈ IRq so in particular for
v=St (ζ ), we deduce from (3.15) and Lemma 3.4 that ∂G/∂x can be made
uniformly small for suitable σ and θ . That is to say, the number η in (2.15)
can be made arbitrarily small upon choosing σ and θ adequately, in par-
ticular we can meet (2.16).

Thirdly, the condition (2.13) that we just proved to hold (actually
with constant functions φζ and ψζ independent of ζ ) entails that the first
Eq. in (3.14) has a unique solution given initial conditions x(0) and ζ(0)
(cf for instance [17, Theorem 54, Proposition C.3.4, Proposition C.3.8])
and, since the same holds true for the second equation as was pointed
out when we defined Sτ (ζ ), we conclude that the whole vector field in
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the right hand-side of (3.14) has a flow on IRn+q = IRn × IRq , which is
continuous by Lemma A.1. As x̂, defined in (2.3), is nothing but the pro-
jection of this flow onto the first factor IRn, we conclude that (τ, x0, ζ ) �→
x̂(τ, x0, ζ ) is continuous. Finally, notice that (2.2) is immediate from the
group property of Sτ . Having verified all the hypotheses of Theorem 2.1,
we apply the latter to conclude the proof of Theorem 3.3.

3.2. Control Systems Viewed as Flows

In [7], a general way of associating a flow to a control system is pro-
posed, based on the action of the time shift on some functional space of
inputs. Before giving the proper framework for our results, let us first carry
out a few measure-theoretic preliminaries.

For arbitrary exponents p∈ [1,∞], we denote by Lp(IR, IRm), or simply
by Lp for short, the space of measurable functions ϒ : IR→ IRm such that

‖ϒ‖p =
(∫

IR

‖ϒ(t)‖p dt
)1/p

<∞ ifp<∞,

‖ϒ‖∞ = ess. sup
t∈IR

. ‖ϒ(t)‖ <∞ if p=∞.

In the above, measurability and summability were implicitly under-
stood with respect to Lebesgue measure. The same definitions can of
course be made for any positive measure. We only consider measures
defined on the same σ -algebra as Lebesgue measure (namely the comple-
tion of the Borel σ -algebra with respect to sets of Lebesgue measure zero).
We explicitly indicate the dependence on the measure μ of the correspond-
ing functional spaces and norms by writing Lp,μ and ‖.‖p,μ.

Remark 3.5. If μ is a positive measure on IR as above, and if μ
and Lebesgue measure are mutually absolutely continuous, then for any
Lebesgue measurable (hence also μ-measurable) function ϒ it holds that
‖ϒ‖∞ = ‖ϒ‖∞,μ. Indeed, we have that ‖ϒ‖∞ � α if, and only if, the set
Eα of those x∈IR for which ‖ϒ‖(x)>α has Lebesgue measure zero. Since
the latter holds if, and only if, μ(Eα)= 0, it is equivalent to require that
‖ϒ‖∞,μ�α as announced.

For any p∈ [1,∞] and τ ∈ IR, we define the time shift �τ :Lp→Lp by

�τ (ϒ)(t)=ϒ(τ + t). (3.16)

It is well known that, for fixed ϒ ∈Lp, the map τ �→�τ (ϒ) is continuous
IR→Lp if 1 �p<∞ [16, Theorem 9.5]. When p=∞ it is no longer so,
but the map is at least Borel measurable:
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Lemma 3.6. For fixed ϒ ∈L∞, consider the map Tϒ : IR→L∞ defined
by Tϒ(τ)=�τ (ϒ). If V is open in Lp, then T −1

ϒ (V ) is measurable in IR.

Proof. Set for simplicity Tϒ(τ) = ϒτ , and fix arbitrarily v ∈ L∞
together with ε>0. It is enough to show that the set

E={τ ∈ IR; ‖ϒτ −v‖∞>ε}

is measurable. Let μ be the measure on IR such that dμ(t)= dt/(1 + t2).
In view of Remark 3.5, we can replace ‖.‖∞ by ‖.‖∞,μ in the definition of
E. Now, since μ is finite, the functions ϒτ and v belong to L1,μ, which is
to the effect that

lim
p→∞‖ϒτ −v‖p,μ=‖ϒτ −v‖∞,μ, (3.17)

see e.g. [16, Chap. 3, Ex. 4] In particular, if we let

Ep,μ={τ ∈ IR; ‖ϒτ −v‖p,μ >ε},

we deduce from (3.17) that

E=
∞⋂

k=1

∞⋃

j=k
Ej,μ,

where k and j assume integral values, so we are left to prove that Ej,μ is
measurable. But since translating the argument is a continuous operation
IR→Lp,μ when p<∞ [16, Theorem 9.5]4, each Ej,μ is in fact open in IR
thereby proving the lemma.

Endowed with ‖.‖p-balls as neighborhoods of 0, the set Lp is a
topological vector space but it is not Hausdorff; identifying functions that
agree almost everywhere, we obtain the familiar Lebesgue space Lp of
equivalence classes of Lp-functions; it is a Banach space, whose norm,
still denoted by ‖.‖p, is induced by ‖.‖p defined in Lp, and whose topol-
ogy coincides with the quotient topology arising from the canonical map
Lp → Lp. The time shift �τ : Lp → Lp defined by (3.16) induces a well
defined map �τ:Lp →Lp. In what follows, results are stated in terms of
Lp, but we do make use of Lp for the proof because point-wise evalua-
tion makes no sense in Lp.

4The proof is given there for Lebesgue measure only, but it does carry over mutatis mutan-
dis to any complete regular Borel measure on IR, hence in particular to μ.
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Let us now come back to our control system, namely (3.2), which is
obtained from (3.1) by singling out the linear term in x around the equi-
librium (0,0)∈ IRn× IRm. This time, however, we emphasize the functional
dependence on the control by writing

ẋ = Ax + P(x,ϒ(t)), (3.18)

where, as in the preceding subsection, P : IRn × IRm → IRn is continuous
and has continuous derivative with respect to the first argument ∂P

∂x
:

IRn × IRm → IRn×n. We fix some p ∈ [1,∞] and we consider controls
ϒ ∈Lp(IR, IRm). Thus, when p<∞, we shall have to handle unbounded
values for ϒ(t), and this will necessitate an extra assumption. Namely, if
1�p<∞, we assume that to each compact set K⊂ IRn, there are positive
constants c1(K), c2(K) such that

‖P(x,u)‖+‖∂P
∂x
(x, u)‖� c1(K)+ c2(K)‖u‖p, (x, u)∈K× IRm, (3.19)

where we agree, for definiteness, that the norm of a matrix is the operator
norm. Classical results imply (see e.g. [17, Theorem 54, Proposition C.3.4])
that the solution to (3.18) uniquely exists on some maximal time interval
once x(0)=x0 and ϒ ∈Lp are chosen. This solution we denote by

t �→x(t, x0,ϒ) .

This allows one to define a flow on IRn×Lp, or on IRn×Lp, the flow at
time τ being given by

(x0,ϒ) �→ ( x(τ, x0,ϒ) , �τ (ϒ) ). (3.20)

The main result in this subsection is the theorem below. It is of purely
open loop character, that is to say the linearizing transformation (x,ϒ) �→
(z,ϒ) operates at a functional level where z depends not only on x, but
also on the whole input function ϒ : IR �→ IRm. That type of linearization
is intriguing in the authors’ opinion, but its usefulness in control is not
clear unless the structure of the transformation is thoroughly understood.
Unfortunately our method of proof does not reveal much in this direction,
which may deserve further study.

Theorem 3.7. Suppose in (3.18) that P(x,u) is continuous IRn ×
IRm → IRn with P(0,0) = 0, that ∂P/∂x exists and is continuous IRn ×
IRm→ IRn×n with ∂P/∂x(0,0)=0, and that A is hyperbolic. Let p∈ [1,∞],
and, if p<∞, assume that, to each compact set K⊂ IRn, there are positive
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constants c1(K), c2(K) such that (3.19) holds. Then, there exist two neigh-
borhoods V and W of 0 in IRn and Lp(IR, IRm) respectively, and a map
H :V ×W → IRn with H(0,0)=0, such that

H × Id : V ×W → IRn×W
(x,ϒ) �→ (H(x,ϒ),ϒ)

(3.21)

is a homeomorphism from V ×W onto its image that conjugates (3.18) to

ż=Az, (3.22)

i.e. for all (t, x0,ϒ) ∈ IR × IRn × Lp(IR, IRm) such that (x(τ, x0,ϒ),ϒ) ∈
V ×W for all τ ∈ [0, t ] (or [t,0] if t <0) one has

H(x(t, x0,ϒ))= etAH(x0,ϒ). (3.23)

Remark 3.8. The above theorem parallels Theorem 3.3 of Section 3.1,
in that we initially wrote ẋ = f (x, u) in the form (3.2), assuming that f
is continuously differentiable with respect to x, to finally conclude, under
suitable hypotheses, that (3.18) is locally conjugate in some appropriate
sense to the non controlled linear system (3.22). We might as well have
stated an analog to Theorem 3.1 where, assuming this time that f is
of class C1, we write ẋ = f (x, u) in the form (3.3) with hyperbolic A,
assuming in addition if p<∞ that for any compact K⊂ IRn one has

‖F(x,u)‖+‖∂F
∂x
(x, u)‖� c1(K)+ c2(K)‖u‖p, (x, u)∈K× IRm, (3.24)

to conclude that ẋ=Ax+Bϒ(t)+F(x,ϒ(t)) is conjugate via z=H(x,ϒ)
to ż=Az+Bϒ(t), where H × Id is a local homeomorphism at 0 × 0 of
IRn×Lp. Again, although the presence of the control term Bϒ(t) in the
linearized equation makes it look more natural, the result we just sketched
is a logical consequence of Theorem 3.7 just like Theorem 3.1 was a con-
sequence of Theorem 3.3.

To prove Theorem 3.7 we shall again apply Theorem 2.1 to a suitably
normalized version of (3.18), the normalization step depending on the fol-
lowing lemma which stands analogous to Lemma 3.4 in the Lp context.
For convenience, we denote below by BLp (v, r) the ball centered at v of
radius r in Lp, and by L1

loc(IR, IR
m) (or simply L1

loc if no confusion can
arise) the space of locally integrable functions, namely those whose restric-
tion to any compact K⊂ IR belongs to L1(K, IRm).
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Lemma 3.9. Let β(x, u) be continuous IRn × IRm → IRn and ∂β/∂x

continuously exist IRn×IRm→IRn×n, with β(0,0)=∂β/∂x(0,0)=0. Assume
for some p ∈ [1,∞) that, to each compact set K ⊂ IRn, there are positive
constants c1(K), c2(K) such that

‖β(x, u)‖+‖∂β
∂x
(x, u)‖� c1(K)+ c2(K)‖u‖p, (x, u)∈K× IRm. (3.25)

Then, Gs being as in (3.10), it holds that for every s > 0 and any
ϒ ∈ Lp(IR, IRm) we have Gs(x,ϒ) ∈ L1

loc(IR, IR
n) and ∂Gs/∂x(x,ϒ) ∈

L1
loc(IR, IR

n×n) for fixed x ∈ IR. Moreover, to each η > 0 there exist σ > 0
and θ >0 such that Gσ satisfies:

∀ϒ ∈BLp (0, θ) , there exists ψϒ ∈L1
loc(IR, IR) such that

‖ψϒ‖L1[0,1] �η and, ∀x ∈ IRn , ‖ ∂Gσ
∂x
(x,ϒ)‖� ψϒ. (3.26)

Proof. For fixed x∈IR, it is clear from (3.25) that both Gs(x,ϒ) and
∂Gs/∂x(x,ϒ) belong to L1

loc(IR, IR
n) when ϒ ∈Lp(IR, IRm), measurability

being ensured by the continuity of Gs and ∂Gs/∂x. To prove (3.26), first
apply Lemma 3.4 to find σ >0 and θ0>0 such that

∀(x, u)∈ IRn×B(0, θ0) , ‖∂Gσ
∂x

(x, u)‖ � η/2. (3.27)

Next, let c1 = c1(B(0, σ )) and c2 = c2(B(0, σ )) be defined after (3.25), and
observe that

∀(x, u)∈ IRn× IRm, ‖∂Gσ /∂x (x, u)‖� (1+6/σ)(c1 + c2‖u‖p) (3.28)

because when ‖x‖< σ this follows from (3.12), (3.25) and the fact that
|ρ′|<3, whereas Gσ vanishes anyway when ‖x‖�σ . Introduce now the set

Eϒ,θ0 ={t ∈ [0,1], ‖ϒ‖<θ0}. (3.29)

Letting ψϒ(t)= η/2 for t ∈ Eϒ,θ0 and ψϒ(t)= (1 + 6/σ)(c1 + c2‖ϒ(t)‖p)
otherwise, it is clear that ψϒ ∈ L1

loc(IR, IR) and it follows from (3.29),
(3.27), and (3.28) that ‖∂Gσ0/∂x(x,ϒ)‖�ψϒ for any x ∈ IRn. In another
connection, let ν be the measure on IR given by dν(t) = |ϒ(t)|pdt . By
absolute continuity of ν with respect to Lebesgue measure, there is ε > 0
such that

∫

E

‖ϒ‖p dt <
η

4c2(1+6/σ)
as soon as |E|<ε, (3.30)
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where |E| denotes the Lebesgue measure of a measurable set E⊂ IR [16,
Theorem 6.11]. Pick θ >0 so small that

θ

θ0
<max

{
ε,

η

4(1+6/σ)c1

}
. (3.31)

Then, if ‖ϒ‖p <θ , the set [0,1]\Eϒ,θ0 has measure at most θ/θ0 hence, by
definition of ψϒ , we get in view of (3.30) and (3.31) the estimate:

‖ψϒ‖L1[0,1] �
η

2
+ θ

θ0
(1+6/σ)c1 + η

4

which is less that η/2+η/4+η/4=η by (3.31) again, as desired.

We are now in position to establish Theorem 3.7.

Proof of Theorem 3.7. For the proof we can replace Lp by Lp,
because if we find a local homeomorphism of IRn × Lp at 0 × 0, of the
form H̃ × Id, that conjugates (3.18) to (3.22), the fact that x(τ, x0,ϒ)

depends only on the equivalence class of ϒ in Lp implies that the same
holds true for H̃ (x0,ϒ), and therefore H̃ × Id will induce a quotient map
H × Id around 0 × 0 in IRn×Lp that is still a local homeomorphism by
definition of the quotient topology. To prove the Lp version, we consider
the following “re-normalization” of (3.18):

ẋ = Ax + ρ

(
‖x‖2

σ 2

)

P

(
x, ρ

(‖ϒ‖p
θ

)
ϒ

)
, (3.32)

where ρ is as in (3.9) and σ , θ are strictly positive real numbers to be
fixed. Because the right-hand sides of (3.32) and (3.18) agree as long as
‖x‖<σ/√2 and ‖ϒ‖p <θ/2 which defines a neighborhood (0,0) in IRn×
Lp, it is enough to prove the theorem when (3.18) gets replaced by (3.32)
for some pair σ, θ . To this effect, we shall apply Theorem 2.1 with E =
Lp, endowed with the one-parameter group of transformations Sτ =�τ
defined by (3.16), and

G(x, ζ, t)=ρ
(

‖x‖2

σ 2

)

P

(
x, ρ

(‖ζ‖p
θ

)
ζ(t)

)
.

Let us check that the assumptions of Theorem 2.1 are met if σ and θ are
suitably chosen.

First, it is obvious that Sτ is continuous (hence a homeomorphism
since S−1

τ = S−τ ) because it is a linear isometry of Lp. In addition,
τ �→ Sτ (ζ ) is certainly Borel measurable, because it is even continuous
when p<∞ [16, Theorem 9.5] while Lemma 3.6 applies if p=∞.
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Secondly, it follows immediately from the assumptions on P and the
smoothness of ρ that G(x, ζ, t) is continuously differentiable with respect
to x for fixed ζ and t , while the measurability of t �→G(x, ζ, t) follows
from the continuity of P and the measurability of ζ . To prove the exis-
tence of φζ and ψζ in (2.13), we distinguish between p<∞ and p=∞. If
p<∞, by (3.19) and the fact that ρ is bounded by 1 and vanishes outside
[0,1], a valid choice for φζ is

φζ (t)= c1(B(0, σ ) )+ c2(B(0, σ ) ) ρ
p

(‖ζ‖p
θ

)
‖ζ(t)‖p

and, since by the properties of ρ we have that

∥
∥∥ρ
(‖ζ‖p

θ

)
ζ

∥
∥∥
p

� θ ∀ζ ∈Lp, 1�p�∞, (3.33)

it follows that (2.14) is met with

M= c1(B(0, σ ) )+ c2(B(0, σ ) ) θ
p.

As to ψζ , observe if we set β(x, u)=P(x,u) that, with the notations of
(3.10), one has

G(x, ζ, t)=Gσ
(
x, ρ

(‖ζ‖p
θ

)
ζ(t)

)
, (3.34)

so Lemma 3.9 ensures the existence of ψζ and also that the number η in
(2.15) can be made arbitrarily small upon choosing σ and θ adequately;
in particular we can meet (2.16). If p=∞, we let

φζ (t)= sup
x∈B(0,σ )

∥∥∥∥P
(
x, ρ

(‖ζ‖p
θ

)
ζ(t)

)∥∥∥∥

so that the first half of (2.13) holds by the properties of ρ. By (3.33) we
also have that

‖φζ‖∞ � sup
(x,u)∈B(0,σ )×B(0,θ)

‖P(x,u)‖, (3.35)

so that φζ ∈ L∞(IR, IR) hence it is locally summable, and the right-hand
side of (3.35) may serve as M in (2.14). As to ψζ , observe that (3.34) still
holds for p=∞, again with β(x, u)=P(x,u), so we can set

ψζ (t)= sup
x∈B(0,σ )

∥∥
∥∥
∂Gσ

∂x

(
x, ρ

(‖ζ‖∞
θ

)
ζ(t)

)∥∥
∥∥,
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and using (3.33) once more we get

‖ψζ‖∞ � sup
(x,u)∈B(0,σ )×B(0,θ)

∥∥
∥∥
Gσ

∂x
(x, u)

∥
∥∥∥. (3.36)

Thus ψζ ∈L∞(IR, IR) hence it is locally summable, and applying Lemma
3.4 to the right-hand side of (3.36) shows that ‖ψζ‖∞ can be made arbi-
trarily small upon choosing σ and θ adequately. Consequently η in (2.15)
can be as small as we wish and in particular we can meet (2.16).

Thirdly, t �→ x̂(t, x0, ζ ) defined in (2.3) is just the solution to (3.32)
corresponding to ϒ = ζ and x(0)= x0, which uniquely exists for all t by
(2.13), see e.g. [17, Theorem 54, Proposition C.3.4, Proposition C.3.8]. The
continuity IRn × Lp → IRn of (x0, ζ ) �→ x̂(t, x0, ζ ) is now ascertained by
Proposition A.4, once it is observed that F(x,u)=Ax+ρ(‖x‖2/σ 2)P (x, u)

satisfies the hypotheses of that proposition by (3.19) and the properties
of ρ, and also that Ax + G(x, ζ, t) is the composition of F with the
continuous map on IRn × Lp given by (x, ζ ) �→ (x, ρ(‖ζ‖p/θ)ζ ) (Proposi-
tion A.4 was actually proved for Lp controls, but nothing is to be changed
if we work in Lp).

Finally, notice that (2.2) is immediate by the very definition of �τ .
Thus we can apply Theorem 2.1 to conclude the proof of Theorem 3.7.

Remark 3.10. It should be noted that, unlike Theorems 3.1 and 3.3,
Theorem 3.7 cannot be localized with respect to u when p <∞. How-
ever, using a partition of unity argument, the result carries over to the
case where, in (3.18), the map P is only defined on V × IRm where V is
a neighborhood of 0 in IRn.

In [7], particular attention is payed to the weak-* topology on L∞ for the
control space, because it makes the flow τ �→�τ (ϒ) continuous for fixed
ϒ . Subsequently, this reference focuses on systems that are affine in the
control: ẋ=X0(x)+C(x)u, where X0 is a C1 vector field on IRn and C :
IRn→IRn×m a C1 matrix-valued function; the reason for this affine restric-
tion is that it ensures, in the weak-* context, the sequential continuity of
(x0,ϒ) �→ x(τ, x0,ϒ) for fixed τ , whenever the flow makes sense: this is
easily deduced from the Ascoli–Arzela theorem and the fact that weak-*
convergent sequences are norm-bounded [15, Theorem 2.5]. Although the
continuity of the flow � was never a concern to us (only Borel measur-
ability was required), it is natural in this connection to ask what happens
with Theorem 3.7 if we endow L∞ with the weak-* topology inherited
from the (L1,L∞) duality. On the one hand, in case one restricts his atten-
tion, as is done in [7], to a balanced, weak-* compact time-shift invariant
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subset of L∞ containing 0, e.g. a ball B̄L∞(0, r), then the conclusions of
the theorem still hold if we equip the subset in question with the weak-*
topology. Indeed, the weak-* topology is metrizable on any compact set
E because L1 is separable [15, Theorems 3.16] and, since weak-* conver-
gent sequences are norm-bounded, it follows if E is balanced that one can
find a neighborhood of 0 in E which is included in B̄L∞(0, θ) for arbitrary
small θ . In particular we can embed this neighborhood in W of Theorem
3.7, and then it only remains to show that (3.21) remains continuous if W
is equipped with the weak-* topology; this in turn reduces via (3.23) to the
already mentioned fact that (x0,ϒ) �→ x(τ, x0,ϒ) is sequentially continu-
ous for fixed τ when the topology on ϒ is the weak-* one. On the other
hand, working weak-* with unrestricted controls in L∞ raises serious diffi-
culties, for no weak-* neighborhood in L∞ can be norm-bounded. This
results in the fact that, although � is now continuous, the domain of defi-
nition of the flow (3.20) may fail to be open: for instance the equation
ẋ = x + x2ϒ(t) with initial condition x(0)= x0, where x and ϒ are real-
valued, cannot have a solution on a fixed interval [0, t ] for every (x0,ϒ)∈
B(0, r)×W0 if W0 is a weak-* neighborhood of 0 in L∞(IR, IR). There-
fore it is hopeless to build a local homeomorphism by integrating the flow
as is done in the proof of Theorem 2.1, and the authors do not know what
analog to Theorem 3.7 could be carried out in this context.

Remark 3.11. The paper [5] considers transformations IRn ×L∞ →
IRn×L∞, using for the input space a topology on L∞ which is interme-
diate between the weak-* and the strong one. There the structure of con-
jugating homeomorphisms is not (3.21) but rather a triangular form:

(x,ϒ) �→ (H(x) , F (x,ϒ) )

that combines what is called in this reference “topological static state feed-
back equivalence” and “topological state equivalence”[5, Definition 5]. We
refer the interested reader to the original paper for a result on topological
linearization of systems with two states and one control, using this type of
transformation, under some global hypotheses.

APPENDIX A. ON THE FLOW OF ODES

Continuity without Lipschitz Assumption

Let U be an open subset of IRd . We say that a continuous vector
field X:U → IRd has a flow if the Cauchy problem ẋ(t)=X(x(t)) with ini-
tial condition x(0)=x0 has a unique solution, defined for t ∈ (−ε, ε) with
ε= ε(x0) > 0. The flow of X at time t is denoted by Xt , in other words,
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with the preceding notations, Xt(x0) = x(t). It is easy to see that the
domain of definition of (t, x) �→Xt(x) is open in IR×U .

Although there is no clear characterization of the vector fields, or
ODEs, that have a flow, they enjoy special properties, even without
assuming the well known sufficient Lipshitz conditions on the right-hand
side. This is studied for instance in [6, Chapter 2]: Lemma A.1 below is
a special case of [6, Chapter 2, Theorem 4.3] or [10, Chapter V, Theo-
rem 2.1]. Lemma A.2 is an application of [6, Chapter 2, Theorem 4.1]
(that theorem refers to a continuous parameter μ instead of the integer
k: apply it to X(μ,x) piecewise affine with respect to μ and such that
X(0, x)=X(x) and X(± 1

k
, x)=Xk(x)).

Lemma A.1. If X:U →IRd is a continuous vector field that has a flow,
the map (t, x) �→Xt(x) is continuous on the open subset of IR×U where it
is defined.

Lemma A.2. Assume that the sequence of continuous vector fields
Xk : U → IRd converges to X, uniformly on compact subsets of U , and that
all the Xk as well as X itself have a flow. Suppose that Xt(x) is defined
for all (t, x) ∈ [0, T ] ×K with T > 0 and K ⊂ U compact. Then Xkt (x) is
also defined on [0, T ]×K for k large enough, and the sequence of mappings
(t, x) �→Xkt (x) converges to (t, x) �→Xt(x), uniformly on [0, T ]×K.

Differentiability with Measurable Dependence on Time

Consider a differential equation of the form

ẋ=X(x, t) (A.1)

where the time-dependent vector field X: IRn × IR→ IRn satisfies the fol-
lowing properties:

(i) for fixed t ∈ IR, the map x→X(x, t) is continuously differentia-
ble IRn→ IRn;

(ii) for fixed x ∈ IRn, the map t→X(x, t) is measurable IR→ IR;
(iii) for some x1 ∈ IRn there is a measurable and locally integrable

function αx1 : IR→ IR+ such that

‖X(x1, t)‖�αx1(t), for all t ∈ IR;
(iv) there is a measurable and locally integrable function ψ :IR→IR+

satisfying
∥
∥∥∥
∂X

∂x
(x, t)

∥∥
∥∥

O
�ψ(t), for all (x, t)∈ IRn× IR,
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where ‖ ‖O denotes the familiar operator norm on n× n real
matrices.

The choice of the operator norm in (iv) is only for definiteness since
all norms are equivalent on IRn×n. Note also that, using (iv) and the
mean-value theorem, property (iii) immediately strengthens to:

(iii)′ to each x ∈ IRn there is a measurable and locally integrable
function αx : IR→ IR+ such that

‖X(x, t)‖�αx(t), for all t ∈ IR.

Measurability with respect to time and local Lipshitz continuity with
respect to the state (“Caratheodory conditions”) are known to be sufficient
for local existence and uniqueness of solution. Let us state a differentia-
bility result in the not-so-classical case where the dependence on time is
L1 but possibly unbounded. It is proved in [11, Chapter III], where one
can find comprehensive results assuming only measurability with respect to
time.

By (i), (ii), (iii)′, and (iv), the solution to (A.1) with arbitrary initial
condition x(0)=x0 ∈IRn uniquely exists for all t ∈IR (see [11, Theorem 2.1,
Chapter III]), in the sense that there is a unique locally absolutely continu-
ous function x : IR→ IRn satisfying (A.1) for almost every t and such that
x(0)= x0. We shall denote by x̂(τ, x0) the value of this solution at time
t = τ , in other words we let (t, x0) �→ x̂(τ, x0) designate the flow of
(A.1). By definition, the variational equation of (A.1) along the trajectory
t �→ x̂(t, x0) is the linear differential equation:

Ṙ= ∂X

∂x
(̂x(t, x0), t)R (A.2)

in the unknown matrix-valued function R : IR→ IRn×n.

Lemma A.3. (Theorem 6.1, Chapter III in [11]). If X: IRn× IR→ IRn

satisfies properties (i)– (iv) above, and if x̂ is the flow of (A.1), then
x̂(t, x) is continuously differentiable with respect to x and

t �→ ∂x̂

∂x
(t, x) (A.3)

is the unique solution of (A.2) with initial condition R(0)= In, where In is
the identity matrix of size n.
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Continuity with L
p

Controls

Consider a differential equation of the form

ẋ=F(x,ϒ(t)), (A.4)

where x∈IRn while ϒ belongs to Lp(IR, IRm), the familiar Lebesgue space
of (equivalence classes of) functions IR→ IRm whose pth power is inte-
grable in case p<∞ and whose norm is essentially bounded if p = ∞;
we endow Lp with the usual norm, namely ‖ϒ‖p = (

∫
IR

‖ϒ‖pdt)1/p if
p<∞ and ‖ϒ‖∞ = ess.sup.IR‖ϒ‖, where ‖.‖ denotes the Euclidean norm.
Of course, a solution to the differential equation is understood here in the
sense that x(t) is absolutely continuous, and that its derivative is a locally
summable function whose value is given by the right-hand side of (A.4)
for almost every t . Classically, even if F : IRn× IRm→ IRn is very smooth,
the existence of solutions to (A.4) when 1 �p<∞ requires some restric-
tions on the growth of F at infinity. The following continuity property of
the solution with respect to both the initial condition and ϒ ∈Lp holds:

Lemma A.4. (Theorem 3 in [12], with a= 1). Let F(x,u) be contin-
uous IRn × IRm → IRn, and the partial derivative ∂F/∂x exist continuously
IRn× IRm→ IRn×n. Let p∈ [1,∞] and assume if p<∞ that, to each com-
pact K⊂ IRn, there are constants c1(K), c2(K), such that:

‖F(x,u)‖+‖∂F
∂x
(x, u)‖� c1(K)+ c2(K)‖u‖p, (x, u)∈K× IRm. (A.5)

Then, for any ϒ ∈ Lp(IR, IRm), the solution t �→ x(t, x0,ϒ) to (A.4) with
initial condition x(0)= x0 uniquely exists on some maximal time interval
Ix0,ϒ containing 0. Moreover, if K is a compact subinterval of Ix0,ϒ , there is
a neighborhood V of (x0,ϒ) in IRn×Lp(IR, IRm) such that K⊂Ix′

0,ϒ
′ when-

ever (x′
0,ϒ

′)∈V; within this neighborhood, it further holds that

lim
(x′

0,ϒ
′)→(x0,ϒ)

x(t, x′
0,ϒ

′)=x(t, x0,ϒ), (A.6)

uniformly with respect to t ∈K.
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