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ABSTRACT. This note presents a practical stabilization result for discontinuous damping control

(or Jurdjevic-Quinn control), in the case where the bound on controls is small. The motivation

is to estimate, as that bound goes to zero, how the time taken to reach a neighborhood of the

target tends to infinity.

RÉSUMÉ. Sous les hypothèses requises, on étudie une version discontinue des lois de contrôle

dites “amortissantes” ou encore “de Jurdjevic-Quinn”. On présente un résultat de stabilisation

pratique lorsque la borne sur les contrôles est suffisamment petite. La motivation est d’estimer

sa croissance du temps qu’il faut pour atteindre un voisinage donné de la cible quand la susdites

borne tend vers zéro.
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1. Introduction

For smooth control systems whose drift possesses a first integral V which is mini-
mum at some desired configuration (this already makes that configuration Lyapunov-
stable for the system with zero control), a well known strategy to obtain asymptotic
stability, called damping control, or Jurdjevic-Quinn control, consists in using the
control to make V decrease; this strengthens stability of the desired configuration, and
under some non-degeneracy assumptions, yields convergence, i.e. asymptotic stabil-
ity. This is recalled in Section 2.

In general, there is a subset W of the state space where V̇ = 0 for any choice
of the control, and at each point outside W , there is a choice of the control that ren-
ders V̇ negative (more precisely, at any such point, the control space is separated by
a hyperplane; V̇ is positive if the control is chosen on one side of this hyperplane,
negative if it is chosen on the other side, and zero if it lies in the hyperplane). It is
easy to build a smooth feedback that makes V̇ negative outside W . However, to be
continuous, this control must vanish on W ; in other words, if one insists to design
a feedback control that does not tend to zero on W , it must be discontinuous on W .
The closed-loop systems is then an ODE with a discontinuous right-hand side; if one
chooses Filippov solutions as the notion of solution of the closed-loop systems (and
it makes sense because of measurement errors), it is known that this discontinuous
control does not provide asymptotic stability, because at some points of W , solutions
are not unique, and there appears some spurious equilibrium points, i.e. points where
it is possible to “get stuck” instead of converging to the target... these solutions are not
mathematical curiosities, but they can be observed, even on simulations, where they
appear as “chattering solutions”, i.e. very fast oscillations around the position that is
idealized as an equilibrium in the sense of Filippov. This can occur only on the set W ,
but it is usually not confined to a neighborhood of the target.

Here, we study precisely the behavior of these discontinuous closed-loop systems,
in the case where there is a “small” bound on the control. We are not aware of results
in that direction... We prove that, under the usual Jurdjevic-Quinn conditions, we do
get “practical” asymptotic stability, and get closer and closer to asymptotic stability as
the bound goes to zero. More precisely, for any compact set of initial conditions and
any small neighborhood of the target, if the bound on the control is small enough, all
(Filippov) closed-loop solutions with these initial conditions go into the neighborhood
of the target in finite time and stay in it.

The paper is organized as follow. Section 2 presents the classical Jurdjevic-Quinn
method. In Section 3 we introduce a discontinuous feedback, natural in regard of the
Judjevic-Quinn conditions and the constraint of small controls and state Theorem 2,
our main result. Section 4.1 recalls the invariant principle for differential inclusions
due to to A. Bacciotti and F. Ceragioli and Section 4.2 is devoted to the proof of
Theorem 2. Motivations are explained in the conclusion.
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2. Smooth Jurdjevic-Quinn control

We start with a brief survey of the so called Jurdjevic-Quinn method, which gives
sufficient conditions to strengthen the stability property of an affine system which
admits a first integral, hence stable in the sense of Lyapunov. We consider the affine
system (1) on a smooth manifold M :

q̇ = f0(q) +
mX

i=1

uifi(q) , (1)

define the distribution F
j , j 2 N by

F
j(q) = SpanR

�
f0(q), (ad f0)

kfi(q), i 2 [1, 2, ...,m], k 2 [0..j]
 
,

and assume that there exists some integer l,

dimF
l(q) = n, for all q 2 M. (2)

The second assumption is that the drift vector field f0, or rather the ordinary dif-
ferential equation q̇ = f0(q) has a periodic solution t 7! q̄(t), we denote by � the
compact set

� = {q̄(t), t 2 R}. (3)

It is reduced to a point if the periodic solution is an equilibrium.

The third assumption is that f0 has a first integral V : M ! R+ :

Lf0V (q) = 0 for all q 2 M. (4)

with the following two properties: V is proper, i.e.

8� 2 R, V� = {q 2 M,V (q)  �} is compact, (5)

and it has no critical point outside �:

dV (q) = 0 ) q 2 � (6)

Note that these two conditions imply that V reaches its minimum on �. V is constant
on � because it is a first integral of f0.

The following theorem is classical, see [SON 98, JUR 78].

Theorem 1 If the conditions (2), (4), (5) and (6) are satisfied, then the smooth feed-

back uc
i (q) = �LfiV (q) asymptotically stabilizes the orbit �.

Its proof relies on applying LaSalle invariance principle [SON 98] to the closed-loop
system and the Lyapunov function V . It turns out that its time-derivative along solu-
tions is negative except on the set

W = {q 2 M, Lf1V (q) = 0, ..., LfmV (q) = 0} , (7)
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and conditions (2), (4), (5) and (6) imply that � is the only solution of the closed-loop
system that remains in W .

The Jurdjevic-Quinn idea is to study how the stability properties of the drift, con-
tained in the property Lf0V = 0, may be enhanced by the use of a feedback. Since the
original paper [JUR 78] the Jurdjevic Quinn idea has been widely studied and gener-
alized. In particular in [BAC 99] we may find its generalization when the Lyapunov
function is not continuously differentiable.

3. Discontinuous control, main result

Assume now that there is a “small” bound on the control:

kuk =

vuut
mX

i=1

u2
i  ". (8)

By small we mean that we are interested in properties that are true for " small enough.

The time derivative of V is given by V̇ =
Pm

i=1 uiLfiV ; the choice ui = �LfiV
in the Theorem 1 is one of the many possibilities to make V̇ non-positive, and zero
only at the points where all the LfiV ’s vanish. Especially when the control is con-
strained, it is natural to optimize this choice in some way.

A “natural” idea is to chose the feedback u" which maximizes the absolute value
of the time derivative V̇ under the constraint (8).

With the notation |LhV | =
pPm

i=1 LfiV
2, it is well defined, outside the set W

defined in (7), by

u"
i (q) = �"

LfiV

|LhV |
(q), 1  i  m, q 62 W (9)

but it is clearly discontinuous on W . At this stage it is useless to define u"(q) for q
in W . The closed loop system then reads q̇ = h"(q) where the discontinuous vector
field h" is given by

h"(q) = f0(q) +
mX

i=1

u"
i (q)fi(q) . (10)

A Filippov solution of an ordinary differential equation ẋ = f(x) with a discon-
tinuous right-hand side, is defined as a solution of the differential inclusion.

ẋ 2 Kf(x) (11)

with
Kf(x) =

\

⇢>0

\

µ(N)=0

co {f(B(x, ⇢) \N)} , (12)
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where B(x, ⇢) is the ball of center x and radius ⇢, co denotes the convex closure and
µ is the Lebesgue measure in R

n. If the function f is in L1
loc, it is proved that the

multi-valued function Kf is upper-semi-continuous locally bounded with nonempty,
compact, convex values. Hence for each x0 there exists at least one solution of the
Cauchy problem ẋ 2 Kf(x), x(0) = x0 [FIL 88].

There are many arguments against or in favor of this choice of control. It is clearly
the one that causes V to decrease as much as possible at all points. It however has
the drawback that, around points where all the functions LfiV vanish, it relies on the
direction of an almost zero vector... this makes little sense, and it has been noticed
in many places that, in fact, this discontinuous control law does not allow asymptotic
stabilization of � (or of an equilibrium point) because some chattering appears near
the target, causing some trajectories to get stuck on some locus instead of converting
to that target.

As an example, consider the controlled harmonic oscillator.
⇢

ẋ = y
ẏ = �x+ u

, |u|  ".

It admits the classical first integral V = 1
2 (x

2 + y2). The control which maximizes
the derivative of V under the constraint |u|  " is given by u⇤ = �" sgn y. It is
discontinuous on the axis {y = 0} and gives rise to the following closed-loop system:.

⇢
ẋ = y
ẏ = �x� " sgn y

, (13)

In the sense of Filippov, solutions of the system (13) are solutions of the differential
inclusion 8

<

:

ẋ = y,

ẏ 2

⇢
{�x� " sgn y} if y 6= 0
[�x� ",�x+ "] if y = 0

(14)

Hence the equilibrium points of the discontinuous dynamical system (13) are y = 0
and x 2 [�", "] and all trajectories converge to the set of equilibrium points.

These “spurious” equilibrium points cannot be avoided with a discontinuous con-
trol. It is a drawback, but still allows practical stabilization on this example. However,
the set W of discontinuity points of the right hand side is not confined to a neigh-
borhood of the target and it not clear, for more general systems, that the chattering
solutions do not also appear far from it. We prove here that the classical Jurdjevic
Quinn conditions prevent this from happening.

The natural notion (it corresponds to the solutions one observes in simulations or
in reality) of solutions for differential equations with discontinuous right-hand side
is the one of Filippov solutions; it consist in substituting to q̇ = h"(q) a differential
inclusion (its precise definition is recalled below, in section 4.2) that is single valued
at points where h" is continuous but multi-valued on W , i.e. at points where h" is
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discontinuous. This extension of the right-hand side is theoretical process that gives
rise to solutions called “chattering” ones; it introduces solutions that are not only the
“naive” ones, and may defeat stability, or asymptotic stability (convergence).

It is clear that, in the sense of Filippov, the control u" stabilizes the target orbit in
the sense of Lyapunov because, for all ↵ > 0, the set {V  ↵} is invariant. Moreover
although we do not have asymptotic stability, the following result holds (we denote by
O�� the set {q 2 M,d(q,�) < �}):

Theorem 2 Let h"
be defined by (10).

– For any " � 0, the orbit � is stable for the closed-loop system q̇ = h"(q).

– For any compact set K and any neighborhood O�� of the closed curve �, there

is an "0 > 0 such that the closed loop system q̇ = h"(q) has the following property if

"  "0:

Any solution q, in the sense of Filippov, such that q(0) 2 K, enters O�� in finite

time, and remains inside it for large times.

The proof is given in section 4.2 below.

4. Proofs

4.1. Differential inclusions and invariance theorem

We recall in this section a LaSalle invariance principle for differential inclusions
due to A. Bacciotti and F. Ceragioli [BAC 99]. We give a simpler version of the
Theorem 3 for continuously differentiable Lyapunov functions, which is sufficient for
our purpose. To state this theorem we recall some basic definitions, for a general
presentation of the theory of differential inclusion the reader is referred to [FIL 88].

Let F be an upper semi-continuous multivalued map with compact, convex values
and consider the differential inclusion,

ẋ 2 F (x). (15)

A solution of (15) on a non-degenerate interval I ⇢ R is an absolutely continuous
functions in I such that �̇(t) 2 F (�(t)) for almost all t 2 I . We denote by Sx0 the
set of solutions of (15) such that �(0) = x0. We say that a solution is maximal if
I = [0,+1[.

The set-valued derivative of a smooth function V : Rn
! R with respect to (15)

is defined as
V̇ (x) = {dV (x).v, v 2 F (x)} .

Definition 3 A smooth Lyapunov function V for (15) is a positive definite, continu-

ously differentiable function such that

8x 2 Rn, V̇ (x) ⇢]�1, 0]. (16)
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Definition 4 A set W is said to be a weakly invariant set for (15) if through each point

x0 2 W there exists a maximal solution of (15) lying in W .

Theorem 5 [BAC 99, Theorem 3] Let V : M ! R be a continuously differentiable

Lyapunov function for (15). Let � be a solution of (15) starting at x0 2 V↵. Let

W =
n
x 2 Rn, 0 2 V̇ (x)

o
, (17)

and let W be the largest weakly invariant set in W \ V↵. Then d(�(t),W) ! 0 as

t ! +1.

Note that the actual Theorem 3 in [BAC 99] is more powerful because is does not
assume differentiability of V .

4.2. Proof of Theorem 2

Since V is proper (5), take ↵ > 0 such that K ⇢ V↵. We consider the differential
inclusion

q̇ 2 Kh"(q), (18)

with Kh"(q) defined by (12).

Define  " by  "(q) =
Pm

i=1 u
"
i (q)fi(q), so that h" = f0 +  ". Since f0 is

continuous and  " is locally bounded,

Kh"(q) = f0(q) +K( )(q). (19)

We recall W = {q 2 V↵ \ O��, LfiV = dV.fi = 0}. It is a smooth m-dimensional
submanifold of Rn. Let us compute K "(q). For q 2 W ,

K "(q) =
T

⇢2N co {(
Pm

i=1 u
"
ifi)(B(q, 1/⇢) \W )} ,

= {
Pm

i=1 uifi(q),
pPm

i=1 u
2
i  "},

(20)

while, for each point q 62 W ,  "(.) is continuous at q, K "(q) = { "(q)}.

The set value derivative of V with respect to (18) is reduced to a point,

V̇ "(q) =

8
<

:�

vuut
mX

i=1

LfiV (q)2

9
=

; .

Indeed it is obtained by basic calculus if q 62 W and if q 2 W , then by (4) and (20)
for all v 2 Kh"(q), dV (q).v = 0. Hence, the set of discontinuity W (7) of the the
discontinuous vector field (10) and the zero set of the set value derivative W (17) of
the differential inclusion (18) are equal.

By the Theorem 5, if �(0) 2 V↵, then for all t � 0, �(t) 2 V↵, more over the
distance d(�(t),W) tends to zero as t tends to infinity, where W is the largest weakly
invariant set in W \V↵. Then the Theorem 2 is a direct consequence of the Lemma 6.
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Lemma 6 Assume that the conditions (2), (4), (5) and (6) are satisfies, then for any

compact set K, there exists "0 such that for all "  "0, the largest weakly invariant

set of (18) is in O��.

Proof of Lemma 6 If the set W is empty then the lemma is trivial. Assume that W
is not empty. The idea is to partitioned the set V↵ \W \ O�� into subsets on which
the drift f0 is transversal. Note that on the orbit � (3) the differential of V cancels (6).

Let Wk (21) be the subset of V↵ \ O��, where all the Lie bracket of length lower
or equal to k are in the kernel of the differential of V .

Wk =
�
q 2 V↵ \ O��, L(ad f0)sfiV (q) = 0, 0  s  k

 
, (21)

Note that W0 = W \V↵ \O�� and, because of the hypothesis (2), Wl = ?. Then we
define the set W ⌧

k (22) , subsets of Wk, where the vector field f0 is transversal.

W ⌧
k =

�
q 2 Wk, |L(ad f0)k+1fiV (q)| � ⌧

 
. (22)

Since Wl = ?, 9s < l, 9⌧s > 0, W ⌧s
s = Ws and Ws 6= ?.

By induction, for small ", there exists �i � 0, i 2 [0..s] such that, in a finite time
shorter than (�0 + ... + �s), all trajectories of the differential inclusions (18) starting
in W0, goes out of W0. In other word, there is no weakly invariant set in W0. ⇤

Remark that by smoothness of V and fi, there exists M > 0, such that for all
q 2 V↵ \ O��, k 2 [0..l] and i 2 [1..m], |L(ad f0)kfiV (q)|  M . Note that M
becomes bigger and bigger while � tends to zero.

Lemma 7 Let k � 0 and �k�1 = (⌧k � m"M)/2M . Let �(.) be a solution of (18)

starting in W ⌧k
k . If 0 < " < min(⌧k/(Mm), 1/m) then

– 8t 2]0, 2�k�1[, �(t) 62 Wk.

– if k � 1 then 8⌧k�1 2]0,M�2k�1[, 9�k�1 2]0, �k�1[, such that

8t 2 [�k�1, �k�1 � �k�1], either �(t) 62 Wk�1 or �(t) 2 W
⌧k�1

k�1 .

Proof of Lemma 7 We can compute, almost everywhere, the time derivative of the kth

Lie derivative t 7! L(ad f0)kfiV (�(t)),

d

dt
L(ad f0)kfiV (�(t)) 2 {L(ad f0)k+1fiV (�(t)) + dV (�(t)).v, v 2 K (�(t))}, (23)

hence by the equality (19),

|
d

dt
L(ad f0)kfiV (�(t))|  (1 +m")M  2M. (24)

Since �(0) 2 W ⌧k
k , |L(ad f0)k+1fiV (�(0))| � ⌧k and |L(ad f0)kfiV (�(0))| = 0.

Then for all t � 0,
|L(ad f0)k+1fiV (�(t))| � ⌧k � 2Mt, (25)
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in particular for

8t 2 [0, ⌧k/2M [, |L(ad f0)k+1fiV (�(t))| > 0. (26)

More over if k � 1, for all t � 0, | ddtL(ad f0)kfiV (�(t))| � ⌧k � 2Mt � m"M,
hence

|L(ad f0)kfiV (�(t))| � ((⌧k �m"M)�Mt) t,

in particular

8t 2 [�k�1, �k�1 � �k�1], |L(ad f0)kfiV (�(t))| > 0. (27)

⇤

5. Conclusion

To the best of our knowledge, this result (Theorem 2) was not stated in the litera-
ture.

We do not claim that, by itself, it is essential for applications: indeed, in practice,
one prefers continuous feedback laws such as

u"
i (q) = �

"

↵
min(↵, 1/|LhV |)LfiV, (28)

with ↵ > 0 small and |LhV | defined as in (9). In a sense, the control law in (9)
is an idealisation of these; it is also their limit as ↵ ! 0. Note however that this
remark is not a way to prove Theorem 2; indeed, with these continuous control laws,
no solution of the closed-loop differential equation stay in the set W (see (7)) on any
time interval, while when considering the “limit” control law (9), this phenomenon
occurs; the proof of Theorem 2 consists in showing that, except in a neighborhood of
the target orbit, where this is wrong, solutions eventually leave W after “sliding” for
some time. The same behavior for the continuous controls above results in different
behavior depending on the situation for the “limit” discontinuous controls.

The motivation for those discontinuous control laws was rather that they allow
some “homogeneity of degree zero” of the controls. This allows to give estimation on
how the time needed to reach a neighborhood of the target � varies as " goes to zero.

For instance, for low thrust transfer to a circular orbit, one can prove that the time
taken using those discontinuous control laws is or the order of 1/", while it is not clear
when using the continuous controls above. This is used in [BOM 06a]; that estimation
can also be proved using the results in [BOM 06b], without referring to feedback laws.
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