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1 Introduction

Let f = (f1, . . . , fm) be m vector fields of class C∞
on IRn. We consider the control system without drift

ẋ =
m∑

k=1

ukfk . (1)

Let Lie(f) be the Lie algebra of vector fields generated
by f . Through all this paper, we assume that, for all
x in IRn\{0},

Lie(f) (x) = {h(x) ; h ∈ Lie(f) } = IRn . (2)

It is well known that (2) implies (and is in fact
equivalent if the vector fields f1, . . . , fm are analytic)
that system (1) is completely controllable on IRn\{0}.
However, it has been proven by R. Brockett in [1] that
(2), even with IRn instead of IRn\{0}, does not imply
that system (1) can be locally asymptotically stabi-
lized by means of a continuous feedback law u = u(x).
In fact, a simple consequence of [1] is (see [7]) :

Proposition 1 If m < n and

Rank { f1(0), . . . , fm(0) } = m (3)

then (1) cannot be locally asymptotically stabilized by
means of a continuous feedback law u = u(x), nor can
it even be locally asymptotically stabilized by means of
a continuous dynamic feedback law u = u(ξ, x), ξ̇ =
g(ξ, x).

C. Samson has suggested in [8] (see also [9]) to
stabilize some systems of the form (1) by means
of a continuous time-varying periodic feedback law
u = u(t, x). He has proved in particular, with propos-
ing an explicit expression for the feedback, that the
system

ẋ1 = u1

ẋ2 = x1u2

ẋ3 = u2 ,
(4)

which satisfies (2) but also (3), can be globally asymp-
totically stabilized by means of a time-varying con-
tinuous feedback law, periodic with respect to time.
He studied some other systems from nonholonomic
robotics, see [9]. This example was also extended by
R. Sépulchre in [10].

Note that the interest of time-varying feedback laws
for stabilization of systems (with a drift) had been
previously shown by E. Sontag and H. Sussmann in
[13].

It turns out that these time-varying stabilizing con-
trol laws exist in general for systems (1) meeting con-
dition (2), and this is proved in [3]. On the other
hand, [7] contains a method to actually design these
laws under a more restrictive assumption than (2).
The purpose of the present paper is to show how the
results contained in [3] may be used to extend the
design method proposed in [7] to the general situa-
tion (2), thus giving a way to design the control laws
whose existence was established in [3].

Next section 2 is an overview of the results pre-
sented in [3] and [7]. Section 3 presents the main
result of this paper and the resulting design method.
Section 4 is a brief conclusion.

2 Two different approaches

The following result, proved in [3], establishes exis-
tence of stabilizing time-varying laws under assump-
tion (2) :

Theorem 2 ([3]) If (2) is met, there exists, for any
positive T , a map u : IR× IRn → IRm such that

u ∈ C∞(IR× IRn, IRm) , (5)
u(t, 0) = 0 ∀t ∈ IR , (6)

u(t + T, x) = u(t, x) ∀t ∈ IR, ∀x ∈ IRn , (7)

and

0 ∈ IRn is a globally assymptotically stable

equilibrium point of ẋ =
m∑

k=1

uk(t, x)fk(x) .


(8)

The proof of this theorem relies on the analysis of
the controllability of the linearized equation around
some selected trajectories of (1). More precisely, for a
given time-varying feedback law u : IRn × IR → IRm,
let φ(u) : IRn × IR → IRn be defined by

∂φ(u)
∂t

(t, x) =
m∑

k=1

uk(t, φ(u)(t, x)) fk(φ(u)(t, x))(9)

φ(u)(0, x) = x , (10)

i.e. t 7→ φ(u)(t, x) is the solution starting from x at
time 0 of the closed-loop system obtained by applying
the time-varying feedback u to (1). The linearized
control system along this trajectory is

ẏ =
∂

∂x

[
m∑

i=1

ui(t, φ(u)(t, x))fi(φ(u)(t, x))

]
y

+
m∑

i=1

wifi(φ(u)(t, x)) (11)

where w = (w1, . . . , wm) is the control and x ∈ IRn

and the law u act as parameters. The main step in
[3] is to prove :

Proposition 3 ([3, Sections 2,3,4]) If system (1)
satisfies (2), there exists u satisfying (5), (6), (7)
such that :∥∥∥∥∥

m∑
k=1

uk(t, x)fk(x)

∥∥∥∥∥ ≤ 1 ∀ (t, x) ∈ IR× IRn(12)

φ(u)(x, T ) = x ∀x ∈ IRn (13)

and

for u = u and for all x in IRn\{0},
the linear system (11) is controllable
with impulsive controls at time t = 3T

4 .

 (14)



For a proper definition of “controllable with impul-
sive controls”, see e.g. T. Kailath [6, p.614]. It fol-
lows easily from a theorem by L.M. Silverman and
H.E. Meadows [11] (see also [6, p.614]) that (14) is
equivalent to

Span
{[
L(u)pf̃k

]
( 3T

4 , x) ;
p ≥ 0 ,
k = 1, . . . ,m

}
= IRn ∀x ∈ IRn\{0}


(15)

where f̃k ∈ C∞(IR× IRn) is defined by :

f̃k(t, x) = fk(x)

and where, for u ∈ C∞(IR×IRn, IRm), L(u) : C∞(IR×
IRn, IRn) → C∞(IR× IRn, IRn) is defined by :

L(u)X =
∂X

∂t
+ [

m∑
k=1

ukfk , X ] (16)

where [ . , . ] denotes the classical Lie bracket and, by
convention, L(u)0 X = X .

In fact, (15) is proved directly in [3], see [3, Equa-
tion (1.15)].

From (13), the control u guarantees that all the
solutions of the closed-loop system are periodic, and
therefore this control does not solve our stabilization
problem. However, controllability of (14) implies that
for any η in C∞(IRn, [0,+∞)), there exists w satisfy-
ing (5), (6) and (7) such that :(

∂φ

∂u
(u).w

)
(x, T ) = − η(x) x ; (17)

hence one may hope that u = u + εw is a solution
of our problem if ε is small enough and η has been
chosen positive on IRn\{0}. This is proven to be true
in [3, Section 5].

In [7], following a different approach, theorem 2 is
proved under the extra assumption that, for all x in
IRn\{0}, for all x ds l’eq ?

Rank
{

ad j
f1

fk(x) , j ≥ 0 , 1 ≤ k ≤ m
}

= n (18)

One of the main interests of [7] is that it provides
a method to design explicitely the control laws, and
leads to very simple expressions in many interesing
cases (for example f1 = ∂

∂x1
). Moreover it has the ad-

vantage to provide also a Lyapunov function. This is
convenient when the system to be stabilized is not (1),
but (1) with pure integrators added, see J. Tsinias [14]
or [3, Section 6]. This is also usefull when analysing
the robustness of the obtained closed-loop stability.

The method used in [7] is the following. Let α in
C∞(IR× IRn, IRm) be such that, for all t in IR and x
in IRn :

α( t + 2π , x ) = α( t , x ) (19)
α(−t , x ) = −α( t , x ) (20)

α( t , 0 ) = 0 (21)
|α(t, x)| ‖f1(x)‖ ≤ K (1 + ‖x‖) (22)

where K is some positive constant. Let u?(α) be
defined by

u?(α)(t, x) = ( α(t, x), 0, . . . , 0 ) , (23)

and the non-negative function V by :

V (t, x) = 1
2

∥∥φ(u?(α))−1(x, t)
∥∥2

. (24)

where φ(u)−1 is defined by φ(u)
(
φ(u)−1(x, t), t

)
= x,

and let the time-varying stabilizing control be defined
by

u1(t, x) = α(t, x) − Lf1V (t, x) (25)
uk(t, x) = −Lfk

V (t, x) ∀k ∈ [2,m] . (26)

Then the following theorem is proved in [7] :

Theorem 4 If system (1) satisfies (18) and α is cho-
sen such that (19), (20), (21) and (22) are met, as
well as (27) :

∂jα
∂tj (t, x) = 0 j ≥ 0

Lfk
V (t, x) = 0 1 ≤ k ≤ m

}
⇒ x = 0 , (27)

then the map u given by (23)-(24) satisfies (5), (6),
(7) and (8). Moreover, the function V is strictly de-
creasing along the nonzero solutions of
ẋ =

∑m
k=1 uk(t, x)fk(x) .

There exists α meeting the required conditions. A
possible choice is

α(t, x) =
‖x‖2

(1 + ‖x‖2) (1 + ‖f1(x)‖2)
sin t . (28)

3 Main result

Although the approaches in [7] and [3] are somehow
different, it is to be noticed that u? = (α, 0, . . . , 0) in
(23) plays exactly the same role as u. Actually, under
the extra assumption (18), one may, in proposition 3,
chose u = u? with u? given by (28); more precisely,
such a u satisfies (12), (13) and (14). Most of the
difficulties in [3] (contained in the proof of proposition
3) therefore disappear if (18) is satisfied. Without
the extra assumption (18), the appraoch in [7] fails,
at least if u? is still restricted to be of the form (23),
and it is no longer sufficient to choose u in proposition
3 with m− 1 zero entries.

The idea of this paper is to take advantage of the
generality [3] and the simplicity of [7]. This is done
by applying the design method coming from [7], but
with u? given by [3], i.e. we allow all the entries of
u? to be nonzero, and take precisely u? = u with u
given by proposition 3. From now on, we no longer
assume (18).

Let u be as in proposition 3, and let V : IR×IRn →
[0,+∞) be defined by :

V (t, x) = 1
2

∥∥φ(u)−1(x, t)
∥∥2

(29)



where φ(u)−1 is defined by φ(u)(φ(u)−1(x, t), t) = x,
as in (24), and let the stabilizing control u be defined
by

uk(t, x) = uk(t, x) − Lfk
V (t, x) ∀k ∈ [1,m] .

(30)
Our result is :

Theorem 5 Under assumption (2), the above con-
structed map u satisfies (5), (6), (7) and (8). More-
over :

V ∈ C∞(IR× IRn, [0,+∞)) (31)

V (t + T, x) = V (t, x) ∀(t, x) ∈ IR× IRn (32)

V (t, x) = 0 ⇔ x = 0 (33)

∀K > 0, {x | ∃t, V (t, x) ≤ K }
is a bounded set

}
(34)

∂V

∂t
+

m∑
k=1

uk Lfk
V = 0 (35)

V is non-increasing along the
solutions of ẋ =

∑m
k=1 uk(t, x)fk(x)

}
(36)

V ( T , φ(u)(x, T ) ) < V ( 0 , φ(u)(x, 0) ) ,
∀(t, x) ∈ IR× IRn\{0}

}
(37)

Proof of theorem 5 : The proof is similar to the one
given in [7]. Since u satisfies (5), (6), (7), (12) and
(13), V given by (29) satisfies (31), (32) and (33),
and u satisfies (5), (6) and (7). Property (34) is a
consequence of relations (29), (32) and the fact that,
thanks to (12), x 7→ φ(u)(t, x) is a homeomorphism
from IRn to IRn. By (29), we have

V ( t , φ(u)(t, x) ) = 1
2‖x‖

2 . (38)

Differentiating (38) with respect to t, we get (35).
From (30) and (35), we have :

d

dt
V (t, φ(u)(x, t)) = −

m∑
k=1

(Lfk
V (t, φ(u)(x, t)))2

(39)
which obviously implies (36). Note that (8) is a
consequence of (7), (32), (33), (34), (36) and (37),
which imply, for instance, asymptotic stability of the
Poincaré map x 7→ φ(u)(x, T ).

The proof of (37) is an adaptation of V. Jurdjevic
and J.-P. Quinn [4] –see also [7]–. Let us fix x in
IRn; for simplicity, we will write φ(t) for φ(u)(x, t)
and φ(t) for φ(u)(x, t). (39) clearly implies

V ( T , φ(u)(x, T ) ) ≤ V ( 0 , φ(u)(x, 0) ) (40)

where the inequality is an equality if and only if

Lfk
V (t, φ(t)) = 0 ∀k = 1, . . . ,m, ∀t ∈ [0, T ] . (41)

We now assume that (40) is an equality. By (41) and
(30),

φ(t) = φ(t) ∀t ∈ [0, T ] . (42)

Let now X be in C∞(IR× IRn, IRn). For any such X,
we have

d

dt

(
LXV (t, φ(t))

)
=

∂LXV

∂t
(t, φ(t)) +

(
L∑m

k=1
ukfk

LXV
)

(t, φ(t))

=
(
LL(u) XV

)
(t, φ(t))

+LX

(
∂V

∂t
+

m∑
k=1

uk Lfk
V

)
(t, φ(t)) .

Hence, from (35),

d

dt

(
LXV (t, φ(t))

)
=

(
LL(u) XV

)
(t, φ(t)) , (43)

and, by induction on p,

dp

dtp
(
LXV (t, φ(t))

)
=

(
LL(u)p XV

)
(t, φ(t)) . (44)

By (44), (42) and (41), we have

(
LL(u)p fk

V
)
(
3T

4
, φ(

3T

4
)) = 0

k = 1, . . . ,m
p ≥ 0 .

(45)
Hence, by (15),

∂V

∂x
(
3T

4
, φ(

3T

4
)) = 0 . (46)

Since φ(u)−1( 3T
4 , .) is a diffeomorphism, (29) implies,

together with (46), that φ( 3T
4 ) = 0 and therefore that

x = 0. This proves (37) and completes the proof of
the theorem.

4 Conclusion

Theorem 5 leads to a design method, made of three
separate parts :

1. Find u meeting (12), (13) and (14). Existence
of such a u is established by proposition 3. The
proof of proposition 3 actually provides a guide
to find a suitable u.

2. Compute V from u according to (29).

3. The control u is then given by (30).

The method proposed in [7] for the case when as-
sumption (18) was met was a particular case of this
one. Finding a suitable u was however, due to the ad-
ditionnal assumption, somehow simpler : it may be
taken of the form (α, 0, . . . , 0) with α explicitly given
by (28).

The method proposed in [3] for the same general
case as here differs from the present one at steps “2”
and “3” above. In [3], these two steps are replaced by
a construction of u from u which relies on the control-
lability by impulsive controls of the time-varying lin-
ear system obtained with u. This construction leads



to much more complicated computations than those
of step 2 and 3, even when the fk’s are simple (e.g.
when assumption (18) is met).

We have therefore been able to derive here a
method keeping most of the advantages of [7], but not
restricted to the simpler case of assumption (18). The
hard part in the design process remains the choice of
a suitable u. It turns out however that, in many prac-
tical cases, not only a suitable u may be exhibited,
but there is a wide choice of possible solutions, and
u may be considered as a “design” parameter. An
interesting subject for future research is therefore to
study the relationship between the choice of u and
the “performances” of the controller.
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