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Avant-propos

Pour garder une certaine unité a ce mémoire, on s’est cantonné a un seul sujet : les trans-
formations et I’équivalence des systéemes de controle.

Une liste et une bréve notice scientifique de ’ensemble des travaux de 'auteur et candidat
ont tout de méme été insérées en annexe au chapitre 1 (page 21), totalement indépendante du
reste du mémoire ; la bibliographie de fin de mémoire ne reprend que les publications nécessaires
au texte.

Huit articles publiés sont reproduits aux chapitres 2 a 9, avec seulement quelques modifica-
tions pour améliorer la maniere dont ils se référencent les uns les autres. Ils sont précédés d’un
chapitre 1 — le seul original — dont le but est de présenter de maniere unifiée les résultats et la
problématique de ces articles.






Chapitre 1

Un tour d’horizon des problemes
d’équivalence en controle

On cherche ici a énoncer de maniére unifiée et synthétique les résultats contenus
dans les articles reproduits auz chapitres suivants. C’est aussi le prétexte a une
présentation —en partie originale— des différentes notions d’équivalence des systémes
de contrdle, qui peut étre instructive pour le lecteur, mais qui ne prétend pas a ’ex-
haustivité : ce chapitre n'est pas un « survey' » des résultats sur le sujet; la biblio-
graphie est trés partielle.

Les résultats donnés comme théorémes sont des énoncés simplifiés de résultats conte-
nus dans les articles reproduits auz chapitres 2 a 9; la référence est a chaque fois
indiquée.

1.1 Introduction

On s’intéresse aux systémes donnés par une équation de la forme
&= f(z,u), zeR", ueR™. (1.1)

Le point désigne la dérivée par rapport a une variable indépendante ¢ que 1’on appelle le temps;
x est U'état et u le contréle ou la commande, ou U'entrée. C’est ’équation d’un systeme de
contrdle en temps continu et & m controles scalaires u = (u1,...,u;,) en représentation d’état
de dimension finie n. Le diagramme

LN i= f(z,u) . (1.2)

indique que l'entrée est une quantité libre, décidée par un utilisateur ou un dispositif de com-
mande, et que le systéme produit un comportement, c’est-a-dire une évolution des variables
d’état, qui dépend de cette entrée.

Le probleme qui nous intéresse ici est de savoir déterminer si deux systémes de ce type se
ressemblent. Cela est bien vague et doit étre précisé. Bien str 'idéal serait une classification
pour une relation d’équivalence pertinente, et le plus souvent, une telle relation d’équivalence
est définie par une classe de transformations sur les systemes, deux systemes étant équivalents
si ils sont transformés I'un en ’autre par une transformation de la classe.

On s’intéresse aux différentes notions d’équivalence, et on fait quelques contributions sur
leurs significations pour le controle, les conditions d’équivalence, et en particulier les conditions
de linéarisation (équivalence a un systeme linéaire).

!Le lecteur aura noté que ce chapitre est rédigé en francais, et il se rendra compte par la suite que les autres
le sont en anglais. Les mots anglais dans le texte frangais n’ont d’autre but que de ’accoutumer un peu.



4 CHAPITRE 1. EQUIVALENCE EN CONTROLE : TOUR D’HORIZON

Motivations. Il est tout d’abord tres naturel, une fois définie un classe d’objets, de vouloir les
« classifier ». Ce n’est pas seulement une manie de mathématicien, c’est aussi une appréhension
de la connaissance.

Point de vue du contréole. Savoir qu’un systeme est équivalent a un autre, plus simple ou
pour lequel un probleme a déja été résolu, peut permettre de transposer la solution du probleme
pour 'un en solution pour l'autre, qu’il s’agisse de stabiliser un point d’équilibre, de rejeter
des perturbations ou de commande optimale. On ne s’intéresse ici a aucun de ces problemes de
controle par eux-mémes, mais exclusivement a leurs transformations.

Point de vue modélisation / identification. On a appelé (1.1) un systéme, mais c’est plutot
un modele mathématique qu’'un systeme physique. C’est ’équation dont on espere qu’elle repro-
duit les comportements du systeme physique, et sur la base duquel on va chercher a construire
des lois de controle. Il serait plus juste de dire qu'un classification des équations de type (1.1)
est une classification des modéles. Ce point de vue est tres important, et une telle classification,
méme sommaire, sous-tend toute théorie de « l'identification non-linéaire » cohérente, si cela
peut exister un jour. Le succes de 'identification linéaire, véritable corps de doctrine, est bati
sur une solide compréhension de la structure des systemes linéaires.

Qu’est-ce qu’un systeme ? Il y a de trés nombreuses réponses a cette question. Le point de
vue entrée-sortie a longtemps prévalu en controle linéaire et correspond a une réalité (domaine
fréquentiel, fonction de transfert). L’équation (1.1) est déja une représentation d’état et on
pourrait objecter (surtout au vu du « point de vue modélisation / identification ») que ce n’est
peut-étre pas le bon choix; en tout cas il y en aurait siirement d’autres.

Pour se cantonner & I’équation (1.1), on peut encore la voir de plusieurs manieres.

— C’est, pour chaque ¢ — u(t) donné, une équation différentielle instationnaire, qui produit
une solution ¢ — z(t) deés que ’on se donne une condition initiale z(0). Sorte de point de vue
entrée-sortie, ou plutot entrée-état, adopté parfois en controle optimal ou commandabilité.

— C’est un poly-systeme dynamique, ou une famille de champs de vecteurs, obtenus par
exemple en prenant différentes valeurs de u constant. Point de vue fécond pour la com-
mandabilité, a cause du sens géométrique des champs et de leurs flots.

— C’est une équation différentielle sous-déterminée qui lie les fonctions du temps t — (z(t), u(t))
(n équations scalaires liant n + m fonctions du temps).

— (C’est I’ensemble des solutions de cette équation différentielle sous-déterminée.

Nous adoptons les deux derniers points de vue. Le point de vue de J. Willems [109] est le
dernier puisque, dans sa « behavioral approach », il définit ’ensemble des solutions par une série
d’axiomes, sans recourir a priori & une équation; le point de vue de M. Fliess [33], qui utilise
I’algebre différentielle pour définir et étudier cela, est également centré sur les deux derniers.

Poursuivons maintenant, en développant un point de vue forcément partial, et des résultats
obtenus ces derniéres années.

1.2 Systemes

1.2.1 Le cas « sans controle »

Si m = 0, équation (1.1) devient & = f(x), équation différentielle ordinaire déterminée,
ou systeme dynamique différentiable. Une solution est une application ¢ — x(t) qui satisfait
I’équation pour (presque) tout temps.

Il est connu que la solution est entierement déterminée par sa condition initiale, et qu’étre
solution force une certaine régularité : méme si 'on admet a priori comme solution des ob-
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jets peu différentiables en prenant la dérivée en un sens généralisé, une solution est forcément
aussi différentiable que f elleeméme. On peut définir un flot a chaque temps t qui est un
difféomorphisme, associant a une condition initiale la valeur au temps t de la solution cor-
respondante.

Les véritables systemes de contréle sont ceux pour lesquels m n’est pas nul; on suppose
maintenant m > 1.

1.2.2 Systémes de controle et équations différentielles sous-déterminées.

Revenons a ’équation (1.1), qui représente les systémes que nous étudions ici. On peut
voir (1.1) comme un systéeme de n équations différentielles liant n + m fonctions du temps, les
coordonnées de t — (x(t),u(t)). Par solution de (1.1) on entend une application I — R™*™ (T
un intervalle de temps)

t— (z(t), ult)), (1.3)

qui satisfasse ’équation (1.1) pour tout temps, ou presque tout temps. C’est un systeme d’équa-
tions différentielles sous-déterminé car sa « solution générale » dépend d’au moins une fonction
arbitraire du temps, ici m fonctions arbitraires du temps. Avec cette définition —imprécise a plus
d’un titre— des solutions,

on appelle B I'ensemble des solutions de (1.1). (1.4)

Notons que B est la premiere lettre de behavior, en référence sans doute a [109]; le lecteur
soucieux de la préservation et du rayonnement de la langue francaise sera rassuré en trouvant en
(1.11) un second systeme dont ’ensemble des solutions s’appellera €, comme « comportement ».

Si lon choisit m fonctions du temps et n constantes, c¢’est-a-dire ¢ — w(t) mesurable, voire
lisse (voir section 1.2.2.2) pour la régularité et x(0), on définit une unique solution z(t). L’en-
semble des solutions est donc beaucoup plus « gros » que pour les systemes sans controle, ou il
était de dimension finie.

On n’a précisé ni la régularité des solutions, ni leur intervalle de définition. Les articles
reproduits plus loin sont beaucoup plus rigoureux sur ces points. Les remarques ci-dessous
reviennent sur ces deux points, et d’autres; leur but est surtout de nous débarrasser de tout
scrupule et de pouvoir énoncer les résultats sans donner tous les détails.

1.2.2.1 Régularité et caractére local pour le systéme

Vu que l'on ne s’intéresse en général qu’a des propriétés locales, il n’y a pas de raisons de
s’embarrasser de variétés différentiables : tout sera énoncé dans R™.

Dans tout ce chapitre, f est supposée analytique réelle (C¥) pour simplifier et ne plus se
soucier de sa régularité. L’application f pourrait n’étre définie que sur un voisinage du point
(Z,u) autour duquel est menée I’étude locale, et en tout état de cause, seule sa restriction & un
tel voisinage arbitrairement petit importera; on pourrait parler de germes de systémes [43].

1.2.2.2 Remarques sur la régularité des solutions

11 faut bien str suffisamment de régularité pour donner un sens a z(t), (t) et u(t), au moins
presque partout, dans 1’équation (1.1). Rappelons que, pour ce qui est de 1’équation elle-méme,
on a supposé f lisse. Le minimum habituellement requis est d’exiger que u(.) soit mesurable en
donnant a ’équation (1.1) le sens suivant : pour tous t1,ts dans I,

2(ts) —x(tr) = [ f(a(r),u(r)dr: (1.5)

t1



6 CHAPITRE 1. EQUIVALENCE EN CONTROLE : TOUR D’HORIZON

x(.) est alors forcément absolument continue. On est loin du cas « sans contrdle » de la sec-
tion 1.2.1 ou toutes les solutions sont au moins aussi différentiables que 1’équation ; ici aucune
régularité de u(.) n’est imposée par ’équation, on choisit seulement un classe qui permette de
donner un sens & 1’équation, et z(.) est forcément un peu plus différentiable que u(.).

Dans la suite, on ne demande pas toujours la méme régularité aux éléments de B. f étant
supposée lisse, on peut par exemple ne s’intéresser qu’aux solutions lisses, c¢’est-a-dire celles pour
lesquelles t — (z(t), u(t)) est infiniment différentiable; c’est le cas a la section 1.5.

On ne s’intéresse absolument pas a la régularité minimum pour donner un sens a I’équation,
mais plutot a mettre dans B une classe assez riche pour caractériser le systéeme et pour étre stable
par les transformations envisagées plus tard. Par exemple, si on choisit que B ne contienne que
les solutions lisses, on laisse clairement de c6té un grand nombre de controles possibles, ce qui
serait préjudiciable si B devait étre utilisé comme un vivier dans lequel puiser la solution d’un
probleme de controle, mais nous sera tout-a-fait suffisant, pour peu que les transformations
envisagées préservent cette lissité, car deux systemes lisses qui ont les mémes solutions lisses
sont identiques, par exemple parce que les controles lisses approchent suffisamment bien les
controles mesurables. On précisera a chaque fois, implicitement ou explicitement, la régularité
des « solutions » que 'on admet dans B.

1.2.2.3 Remarques sur l’intervalle de définition des solutions.

Une autre question est celle de l'intervalle de définition (en temps) des solutions. On ne peut
pas toujours prendre R tout entier car certaines solutions explosent en temps fini. En toute
rigueur un élément de B devrait étre défini par 'intervalle I et I'application (z(.),u(.)). I n’y a
pas de raison de considérer la restriction d’une solution & un sous-intervalle comme une solution
différente ; on pourrait donc au moins se contenter des solutions sur leur intervalle de définition
maximal... Se souvenant que ’on cherche surtout a mettre dans B une classe qui « représente »
le systeme, on se contentera presque toujours de solutions sur des « petits » intervalles autour de
zéro (comme nos systeémes ne dépendent pas explicitement du temps, on peut toujours appeller
0 linstant initial).

Au Chapitre 9, on formalise cela en considérant que B est formé de germes en t = 0 de
solutions ; cela consiste a identifier deux solutions qui coincident sur un voisinage de 0, voir
par exemple [43] pour une définitions précise. Au Chapitre 2, au contraire, on considere des
solutions définies sur tout R, mais avec 1’habituel subterfuge d’annuler la dynamique en dehors
d’un compact.

Les intervalles ne sont donc pas précisés dans ce chapitre, pour rendre I’exposé plus fluide ;
les articles reproduits aux chapitres 2 & 7 contiennent & chaque fois les précisions nécessaires.

1.2.2.4 Le controle fait partie de la solution

On peut considérer, par exemple au vu du diagramme (1.2), que la commande est un signal
exogene et que c’est la variable d’état x qui décrit le systeme... on est tenté alors de dire
qu'une « solution » est plutot un xz(t) possible quun (x(t),u(t)) possible comme on 'a fait en
(1.3). L’ensemble des solutions serait alors la projection de I’ensemble B défini plus haut sur la
composante x. Cela est discuté plus avant dans la sous-section 3.3.5.2.

Pour la plupart des systémes, la commande produisant un ¢t — x(t) possible est unique
(inversibilité) et on peut « reconstituer » u(.) & partir de x(.) si bien que la projection de B est
aussi riche que B lui-méme, et les deux choix s’équivalent. Pour les systémes ne possédant pas
cette propriété d’inversibilité, il n’en est pas ainsi; par exemple, pour le systeme & = u; + uo
(x,u1, ug scalaires), le points de vue (1.3) consideére comme deux solutions distinctes (constantes)
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(x,u1,u2) = (0,0,0) et (z,u1,us) = (0,1, —1) alors que l'autre point de vue ne les distingue pas;
de ce méme autre point de vue qui « oublie la commande », ’ensemble des solutions de ce systeme
est le méme que celui du systéeme a un seul contréle & = u, ce que nous voulons éviter.

Insistons donc sur le fait que B est fait de fonctions t — (z(t),u(t)) et non ¢t — x(t). Un
systeme est ’ensemble des évolutions commande-état possibles.

1.2.2.5 Systemes différentiels sous-déterminés plus généraux.

Bien stir, (1.1) n’est pas la forme la plus générale d’équation différentielle sous-déterminée.

Le fait qu’elle soit d’ordre 1 ne nuit pas a la généralité : on se rameéne de 'ordre £ > 1
a lordre 1 en rajoutant de nouvelles variables, les dérivées d’ordre 1 a k — 1, et de nouvelles
équations qui disent que ces variables sont les dérivées les unes des autres.

En revanche, la forme (1.1) a ceci de particulier qu’elle est explicite : elle exprime les
dérivées de certaines variables (z) en fonction des variables non dérivées. Un systeme d’équations
différentielles général F(X (t), X (t)) = 0 se ramene, localement et en dehors de certaines singu-
larités (la ou le rang du Jacobien partiel de F' par rapport aux variables X est égal au nombre
d’équations), a la forme (1.1) grace au théoreme des fonctions implicites, et par un changement
de coordonnées sur X suivi d’'une partition des nouvelles variables en deux groupes z et u.

Toutefois, autour d’un point ou le rang du dit jacobien chute, on peut avoir affaire & un
systéme singulier qui ne se rameéne pas & (1.1), et si le rang de ce jacobien est constant mais
inférieur au nombre d’équations, le systéme F(X(t),X(t)) = 0 dissimule des équations non
différentielles et ne se raméne pas non plus, ou pas immédiatement, a un systéme explicite de
type (1.1). Ceci est abordé a la section 5.3.1, page 116. Dans la suite, on ne considere que des

systeme de controle (1.1).

1.2.3 Systémes linéaires
Le systeme (1.1) est dit linéaire si il est de la forme
& = Az + Bu (1.6)

ou A est une matrice n x n, B une matrice n X m, u un vecteur colonne de taille m. Bien str la
structure linéaire de R™ importe ici; la propriété d’étre un systeme linéaire n’est pas préservée
par changement de coordonnées arbitraire.

Donnons un bref apergu de classification des systeémes linéaires (formes normales de Bru-
novsky [17]); on trouvera plus de détails a la section 3.4 ou dans des manuels comme [61]. On
définit le rang de commandabilité

r = rank{B, AB,..., A" B} (1.7)

(rang de la collection des colonnes de ces matrices). Considérons d’abord le cas « mono-entrée »
ou, dans (1.6), u est scalaire (et B est un vecteur colonne de taille n) :

Proposition (m = 1). Il existe un changement de coordonnées linéaire z = Px et un change-
ment de controle v = Kx + qu, avec K un vecteur ligne, q un scalaire non nul et P une matrice
inversible, tel que le systéeme linéaire mono-entrée (1.6) s’écrive

i’l = X2
Zr41
Tr—1 = I ou ZII = (1 8)
Tr = U Zn

i = AZp
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avec A une matrice constante (n —r) x (n —r).

Si r < n, le systéme contient une partie qui est en elle-méme une équation différentielle
autonome, dont 1’évolution est indépendante du controle; on dit qu’il n’est pas commandable.
Sir =mn, il n’y a pas de partie « autonome » et le systéme dit simplement que les coordonnées
de z sont les dérivées les unes des autres et que (z1)™ = v.

Pour les systemes a plus d’une entrée, on a la méme partie « autonome » de dimension n —r
que ci-dessus si 7 < n; on suppose 7 = n (commandabilité) pour simplifier 'enoncé suivant :

Proposition. Pour un systéme linéaire (1.6) a m entrées avec r = n, il existe des entiers
T1,...,Tm, un changement de coordonnées linéaire z = Px et un changement de contréle v =
Kz + Qu, avec K une matrice n x m et P et QQ des matrices carrées inversibles, tels que le
systéme s’écrive

Zsitl = Zs;42
. 1<i<m (1.9)
Rsitri=l T Zsitry
Zsitry = Ui
ot s1=0,8 =711, ..., 8 =r1+ -+1ri_1.

Trivialité des systémes linéaires commandables. On vient de voir que, sauf si il contient
une partie non commandable, un systéme linéaire est « trivial » : aprés un changement de
variables linéaire, il dit simplement que les variables en présence sont les dérivées les unes des
autres ; les solutions au sens de (1.3) sont faciles & décrire : les variables x,+1 sont des fonctions
arbitraires du temps et les autres variables en sont des dérivées.

On peut considérer que les auteurs de [37], en introduisant la notion de platitude, ont reconnu
cette « trivialité » des systémes linéaires commandables comme une propriété plus importante
que la linéarité elle-méme. Voir un peu plus loin, section 1.5.2.
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1.3 Equivalence

1.3.1 Cadre général

Dans [19], Elie Cartan se pose la question de la notion la plus générale ou naturelle d’équivalence
entre deux systémes d’équations différentielles sous-déterminés? et écrit (page 17) :

La premiére idée qui vient & 'esprit, et
qu’il s’agira de préciser, est la suivante : deux systemes seront
dits « absolument équivalents » lorsqu’on pourra établir une (1.10)
correspondance univoque (au moins dans un champ fonctionnel
suffisamment petit) entre les solutions de ces deux systémes.

Adoptons ce point de vue, et discutons des différents champs fonctionnels dans lesquels on peut
choisir cette correspondance. Pour étre plus spécifiques, considérons deux systemes ¥ et Y’

(X)) = f(z,u), a:e]R"/, uG]Rm,/ (1.11)
X z2=g(zv), zeR" veR™, ’
candidats a étre «équivalents».

Comme en (1.4), appelons B et € I'ensemble des solutions de X et X' respectivement, voir a
la section 1.2.2 des remarques sur la définition de cet ensemble de solutions. Pour que ¥ et X’
soient équivalents, il faut donc qu’il existe, au minimum, une bijection & :

B 2. (1.12)

Si I’on se contente d’une bijection, sans autre propriété, son existence équivaut a ce que B et
C aient le méme cardinal. A cette aune, tous les systémes avec controle (m > 0) sont équivalents,
mais les équations différentielles ordinaires (m = 0) ne sont pas équivalentes aux systémes avec
controle ; en effet, dans le cas sans controle, ’ensemble des solutions a le cardinal de R™, et dans
le cas avec controle le cardinal de (R™)%".

Cette remarque n’est pas tres profonde. Elle nous convainc que les systemes dynamiques
« déterminés » ne sont pas des cas particuliers de systemes de contréle, mais sont d’une autre
nature, et qu’en tout cas dans n’importe quelle étude d’équivalence, ils doivent étre étudiés a
part. Elle nous convainc aussi qu’il est effectivement judicieux de restreindre quelque peu le
« champ fonctionnel » dans (1.10) si 'on veut sortir des trivialités.

Un grand champ fonctionnel (on vient d’essayer le plus grand possible) donne de grandes
classes d’équivalences et I'espoir d’une classification simple, mais a l'inconvénient que deux
systemes déclarés équivalents risquent de peu se ressembler ; le paragraphe précédent illustre cela
jusqu’a la caricature. A I'inverse, il est clair qu’un champ fonctionnel petit et constitué de trans-
formations tres bien identifiées fera que deux systemes équivalents se ressemblent réellement, et
que les transformations permettent sans doute de traduire un loi de controle élaborée pour I'un
en une loi de controle pour 'autre, mais aura 'inconvénient d’un tres grand nombre de classes
d’équivalence, donc d’invariants.

2 Elie Cartan ne parle pas de controle, et représente les systémes différentiels sous-déterminés par des systémes
de Pfaff, les solution étant les courbes qui annulent ce systeme de Pfaff. On a vu a la section 1.2.2.5 que les systemes
de controle sont des systemes sous-déterminés un peu particuliers en ce qu’ils sont « explicites », c’est-a-dire que
lon particularise des variables dont la dérivée est exprimée par I’équation. Le systéeme F(X X ) = 0 est plus
général car les variables dépendantes sont indifférenciées, mais on a fixé la variable indépendante, qu’on appelle
le temps, alors que dans le point de vue des systémes de Pfaff, dans [19], elle n’est pas fixée a priori. L’ensemble
des solutions est donc plus riche dans [19] qu’ici, mais le principe demeure, voir la prochaine note de bas de page.
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On va donc exiger que @ soit beaucoup plus qu’une bijection au sens ensembliste. En particu-
lier, on aimerait que cette transformation, a priori définie sur des ensembles de fonctions, dérive
en réalité de transformations sur des ensembles plus petit, idéalement d’une transformation
ponctuelle sur un espace de dimension finie.

Ces remarques sont sans objet pour les systémes sans controle, dont ’ensemble de solutions
est déja de dimension finie.

1.3.2 Cas des systemes sans controle

On vient de voir que les systemes sans contréle ne sont jamais équivalents aux systémes avec
controle, tout-au-moins pas pour une notion d’équivalence conforme a (1.10) et & la définition
de solution que nous avons donnée. Cela justifie de les traiter & part!

Habituellement, la conjugaison entre deux systémes dynamiques (X et ¥/ avec m = m/ = 0)
provient d’une transformation ponctuelle z = ¢(x) et on dit que deux systémes sont conjugués
par ¢ si les solutions t +— z(t) de ¥’ sont exactement données par z(t) = ¢(z(t)) ot x(.) décrit
toutes les solutions de X, et vice-versa. Dans le langage de (1.10)-(1.12), on cherche ® de la
forme (naturelle) d’une composition & gauche par une transformation ¢ : R — R" (notons que
si ¢ est bi-continue, ce qui est le moins que l'on exige, on doit avoir n =n’) :

O(z()) = ¢ o x(.).

Autrement dit ¢ « dérive » d’une transformation ponctuelle ¢ : R — R™ ; plus savamment, le

diagramme suivant commute
®

B — C
m | lme (1.13)
R" i> Rn’

dans lequel les projections m; consistent a prendre la valeur au temps ¢ d’une solution. Le
diagramme commute pour tout ¢ avec le méme ¢, bien sir.

C’est une notion d’équivalence tres naturelle : si un tel ¢ existe, le portrait de phase d’un
systeme est 'image du portrait de phase de 'autre par ¢, et il est clair que le comportement
qualitatif des deux systemes est similaire. Si ¢ est différentiable, la conjugaison se traduit par

la formule : g(¢(x)) = ¢'(z) f(x).

Cette classification des systémes dynamique a été tres étudiée. On en donne section 3.2 un
résumé tres bref et orienté : elle ne concerne que la classification locale et prépare le terrain pour
I’étude des systemes de controle. En bref :

— Localement autour de points ou f et g ne s’annulent pas, il existe toujours un ¢, difféo-

morphisme de la méme classe de différentiabilité que les systemes, qui les conjugue.

— Autour d’'un point d’équilibre, tout difféomorphisme préserve le spectre du linéarisé ; on

se pose la question de I’équivalence entre le systeme et son linéarisé; cette question, qui
a occupé de grands esprits depuis le début du vingtieme siecle, est tres difficile et sub-
tile (résonances, convergence des séries formelles qui conjuguent...), mais le théoréme de
Grobman-Hartman —voir Théoréme 2.1.1- donne une réponse simple si 'on accepte de
relacher la différentiabilité : tous les systemes sont conjugués leur linéarisé aux point hy-
perboliques quand on se contente d’'un homéomorphisme, et d’ailleurs les spectres ne sont
pas conservés mais seulement le signe des parties réelles des valeurs propres (c’est-a-dire
le nombre de directions stables et instables autour du point d’équilibre hyperbolique.
Ces deux items sont disjoints car ¢ préserve les points d’équilibre c’est-a-dire doit envoyer un
zéro de f sur un zéro de g.
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1.3.3 Différentes équivalences pour les systemes de controle

Donnons ici différentes classes possibles de « correspondances » (cf. (1.10))3, qui donnent
lieu & des équivalences tres différentes. Ces classes ne se distinguent pas pour les équations
différentielles sans controle du fait de la dimension finie des ensembles de solutions. Les résultats
concernant ces équivalences sont énoncés ensuite, sections 1.4 et 1.5.

1.3.3.1 Transformations ponctuelles naturelles, feedback statique.

Si I'on reprend la méme idée que dans le cas sans controle, et que I'on recopie la notion
d’équivalence tres naturelle dont on vient de parler, on est amené a faire « dériver » les trans-
formations ® du schéma (1.10)-(1.12) d’une transformations ¢ : R"*™ — R*+™ telle que le
méme diagramme commute pour tout temps ¢ :

3 2 e

Tt l l Tt y (114)
R+m i> Rn’+m’

ou les projections 7 sont toujours celles qui associent une solution sa valeur au temps ¢ :
m((2(.), u(.)) = (2(t), u(?)).

En d’autres termes, les systemes X et ¥’ sont équivalents si il existe une transformation
¢ : R — RV tel que I'ensemble des solutions ¢ — (z(t),v(t)) soit exactement donné par
(z(t),v(t)) = (x(t),u(t)) ou (z(.),u(.)) décrit 'ensemble des solutions de ¥ et vice-versa.

On dit qu’ils sont conjugués par ¢.

On requiert au minimum que ¢ soit bi-continue —un homéomorphisme— et on dit que les
systemes sont topologiquement équivalents s’il existe un tel ¢. On peut requérir que ¢ soit un
difféomorphisme C*° ou analytique, les systemes sont alors différentiablement équivalents.

Théoréme 1.1 (Proposition 3.3.6). Si ¢ est un homéomorphisme qui conjugue 3 a X', alors
~-n=n,m=m et
— ¢ a nécessairement une structure triangulaire, c’est dire que (z,v) = ¢(x,u) s’écrit

z=¢1(x), v=dnp(z,u). (1.15)

Cette structure triangulaire fait de ¢ ce que ’on appelle habituellement une transformation
par feedback statique, illustrée sur le schéma suivant.

Du point de vue du controéle, si les systéemes sont conjugués par un tel ¢, on peut obtenir I'un en
appliquant un pré-compensateur —feedback prenant une nouvelle entrée v et la mesure de 1’état
pour construire u— a ’autre.

Des que ¢ est différentiable, la conjugaison se traduit par la formule

o'(@)f(z,u) = g(ér(@), du(z,u)) .

3 Dans [19], la variable indépendante n’est pas spécifiée & avance, voir la note 2 au bas de la page 9, et les
transformations sont aussi plus générales qu’ici; ceci est par exemple étudié dans [104]. Il n’est pas difficile de
voir qu’on se restreint ici, par rapport a [19], aux transformations « qui préservent la variable indépendante »,
c’est-a-dire le temps.
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L’étude de cette équivalence a suscité de tres nombreux travaux en controle, que nous n’avons
pas ambition de passer en revue ici. Notons que les invariants sont de grande dimension (la
« codimension » des classes d’équivalence est trés grande, en tout cas infinie la plupart du temps),
et notons aussi que la classe des systemes équivalents a des systemes linéaires commandables est
parfaitement identifiée depuis [57, 50, 103], voir la section 3.5.2.

Nos résultats concernant cette notion d’équivalence sont donnés a la section 1.4 ci-dessous.

1.3.3.2 Transformations fonctionnelles.

On vient de dire que « peu » de systémes sont équivalents au sens ci-dessus. .. d’ou I'envie
d’élargir la classe des transformations ®. On s’est déja prété au jeu des transformations tres
générales juste apres (1.12) en demandant seulement que ® soit une bijection. On peut et doit
bien sur étre un peu plus exigeant.

On a a priori affaire a des transformations fonctionnelles, c’est-a-dire telles que l'image
O((x(.),u(.))) delasolution (z(.),u(.)) de ¥ dépende des valeurs passées et futures de (x(.), u(.)).
B et € sont des ensembles de fonctions (dont on peut préciser la nature, voir section 1.2.2.2),
des parties d’espaces fonctionnels sur lesquels il y a au moins une topologie, parfois une no-
tion de différentiabilité. La continuité ne suffit pas a obtenir une relation d’équivalence tres
discriminante, comme on le voit sur I’exemple suivant.

Exemple?. On peut toujours batir un ® bi-continu qui conjugue ¥ et ¥’ dés que n = n’ et
m =m’ : il suffit d’associer une solution (x(.),u(.)) de ¥ I'unique solution (z(.),v(.)) de X’ telle
que v(t) = u(t) pour tout t et z(0) = z(0).

Ici, on n’a & nouveau pas assez restreint le champ fonctionnel évoqué en (1.10)!

On voit qu’il est difficile de manipuler ce type de transformations sans tomber dans des
tautologies. Il y a peut-étre des choses intéressantes de ce type a faire, mais, comme le disait
E. Cartan il y a bientot un siecle dans le méme article [19], un peu plus bas que (1.10), cela
reste une « notion tres large qu’il est difficile de soumettre telle quelle aux recherches dans l’état
actuel de I’Analyse »...

1.3.3.3 Transformations fonctionnelles restreintes

On peut revenir a un schéma du type (1.14), qui avait Pavantage de décrire les transforma-
tions ® au travers de simples transformations ponctuelles en dimension finie, et chercher a le
« généraliser » :

5 20
I | [P (1.17)
x %y

Ici, les II; projettent une information « au temps ¢ » sur la solution, plus générale que sa simple
valeur au temps t, et X et ) sont des espaces de dimension plus petite que B et C, idéalement
de dimension finie. On va voir deux occurrences de ceci.

A la section 1.4.2, les X et ) ne sont pas de dimension finie, mais sont un espace sur lequel
le systeme de controle donne lieu & un flot, voir (1.20), et on a établi (article reproduit au
chapitre 2) une sorte de théoreme de Grobman-Hartman dans ce contexte.

A la section 1.5, on définit des transformations —celles utilisées par E. Cartan dans [19], & la
restriction pres des notes 2 et 3 au bas des page 9 et 11— qui sont réellement descriptibles avec
des X et Q) de dimension finies et sont en méme temps plus générales que (1.14) : les X et 9

4Ceci est aussi valable pour les systémes sans contrdle et revient & composer un flot par Iinverse de 'autre ;
tous les flots de la méme dimension sont alors conjugués par de telles transformations (qui dépendent du temps).
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sont des espaces de jets, et les projections retiennent un certain nombre de dérivées a I'instant
t, mais on ne peut pas réaliser ® et ®~! avec les mémes ¢, X et Q) ; voir (1.21).

1.4 Autour d’un théoreme de Grobman-Hartman pour les
systemes de controle

On expose ici les résultats des articles reproduits aux chapitres 3 et 2. Celui reproduit au
chapitre 4 en est une breve discussion.

On suppose toujours les deux systémes X et ¥’ dans (1.11) analytiques; le cas C* est aussi
traité dans les articles.

La motivation et le point de départ était une question de modélisation, ou d’identification
non-linéaire, exposée a la section 4.1. Si I’on considere un systeme de controle (1.1), par exemple
autour d’un point d’équilibre (f(0,0) =0) :

&= f(x,u) = Ax + Bu + p(z,u) (1.18)

ou la fonction p est d’ordre 2 en zéro, et si I’'on suppose que les matrices A et B sont telles que
le systeme linéaire

2= Az+ Bv (1.19)

soit commandable, ce dernier systeme linéaire est-il un modele suffisant de (1.18) pour tout ce
qui est local autour de (0,0)7

La réponse semble étre positive du point de vue de la conception des lois de controle, qui
se fondent sur le modele (1.19) s’il est commandable, si bien que les systeémes (1.18) et (1.19)
se ressemblent énormément, et on est tenté de croire a affirmation (4.2). On est aussi tenté
de formaliser cette croyance, et d’essayer d’établir une conjugaison entre les deux; on sait que
la conjugaison différentiable est rare —on connait bien les conditions sur f pour qu’il y ait
conjugaison différentiable, voir section 1.3.3 (ou 3.5.2 pour plus de détails)— mais il est tentant
d’essayer d’établir un résultat « mou » comme le théoreme de Grobman-Hartman pour les
équations différentielles sans controle.

1.4.1 Linéarisation par transformations ponctuelles

On s’intéresse ici & une conjugaison possible par les transformations décrites a la sec-
tion 1.3.3.1.

Les systemes (1.18) et (1.19) sont-ils toujours conjugués au moins par un homéomorphisme
¢ au sens de (1.14) des que le second est controlable 7 Les auteurs de [9, 10] ont posé la question
autour d’eux, en 1998 ou 1999, et ont obtenu davantage d’avis « évidement oui » que « évidement
non »°. La réponse est en réalité négative d’apres le Théoreme 3.5.2, et trés fortement puisque,
contrairement au cas des équations sans controle, on ne gagne a peu pres rien a relacher la
différentiabilité de la transformation qui conjugue.

Théoréme 1.2 (Théoreme 3.5.2). Supposons que (1.18) et (1.19) soient topologiquement équin-
valents localement autour de l'origine. Si le rang de Of /Ou est localement constant, les systémes
sont aussi conjugués par un difféeomorphisme analytique ; sinon, ils sont conjugués par un ¢ tel
que @1 (voir (1.15)) soit un difféomorphisme analytique.

5Sondage non officiel réalisé informellement aupres d’un échantillon partial et non représentatif. Peut-étre
Pauteur s’est-il compté trois fois ?...
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La cas ou le rang de 0f/0u n’est pas localement constant est entierement précisé dans le
Théoreme 3.5.2 énoncé au chapitre 3, et discuté abondamment a la section 3.5 ainsi que dans
le chapitre 4. Savoir si I'on peut toujours prendre ¢ analytique, voire C*, pose une question
ouverte intéressante de topologie différentielle, voir la section 3.5.1 page 74 et la section 4.4.

Ce résultat ne clot pas la question posée autour de (1.18) et (1.19), et laisse ouverte la
question de phénomenes qualitatifs et locaux autour de l'origine qui distingueraient ces deux
systemes.

Par ailleurs, la preuve de ce théoreme exploite beaucoup la structure linéaire controlable du
second systeme. Est-il vrai que si deux systemes quelconques® sont topologiquement équivalents,
ils sont aussi conjugués par un difféomorphisme analytique, ou au moins un homéomorphisme
¢ tel que ¢1 soit un difféomorphisme analytique ? Cela reste ouvert.

1.4.2 Associer un flot a un systéme de controle...

Le théoreme de Grobman-Hartman est un théoreme de conjugaison de flots, et toute tentative
de « généraliser » sa preuve aux systemes de controle est vaine si 'on ne dispose pas de ce flot.
On peut imaginer deux cadres qui associent un flot & un systeme de controle.

1. Si le contrdle est généré par un systeme dynamique de dimension finie (2.4) : ¢ = g(¢),
u = h(¢) (¢ € R?), le systéme combiné génere évidemment un flot dans R"*9. Bien siir on a
un peu triché en restreignant énormément les controles possibles : I’ensemble des solutions
de ce systeme est beaucoup plus petit que ’ensemble B initial.

Ce générateur de controle pourrait étre un oscillateur ou un autre générateur de signaux
tests pour une sorte d’identification fréquentielle généralisée.

2. Dans [25] ou [26, section 4.3], Colonius et Kliemann associent a un systéme de contrdle
(1.1) un flot sur le produit R™ x U ou U est I'espace fonctionnel des controles, par exemple
lensemble des fonctions mesurables R — R™. Le flot au temps ¢ associe & x(0) et un
contrdle (fonction du temps définie sur tout R), la valeur de x(t) si I’on applique ce controle
et le méme controle avec un argument (temps) décalé de ¢ (la dynamique sur U est le
« time-shift »). Ceci est précisé a la section 2.3.2.

On établit dans D'article reproduit au chapitre 2 des « théoremes de Grobman-Hartman »
dans chacun de ces deux cas. Dans le premier, Le Théoreme 2.3.1 nous dit que I’on peut conjuguer
les deux équation différentielles & = f(x, h(¢)), ¢ = g(¢) et & = Az + Bh(¢)), ¢ = g(¢) par un
homéomorphisme qui préserve la variable et ’équation qui génere le controle.

Développons davantage le second cas, car il ne restreint pas les solutions et rentre dans le
programme (1.10)-(1.12). On cherche précisément, pour deux systemes (1.11) —on oublie pour
un moment que 'un des deux est le linéarisé de 'autre— et leurs flots associés sur R™ x U et
R" x V, a les conjuguer par une transformation ¢ : R” x U — R™ x V, cest-a-dire que l'on
cherche une transformation ® qui fasse commuter le diagramme

3 2 e

] 1 ; (1.20)

R*xU -2 R xV
ou les projections m; consistent a prendre la valeur de z(.) au temps ¢ et a retenir tout le controle
u(.), mais en décalant le temps de telle facon que le temps ¢ en haut corresponde au temps 0

50n a tout de méme besoin de commandabilité : si les deux systémes ont des parties non commandables, ces
parties auront, autour d’un point d’équilibre, des invariants différentiels (valeurs propres, résonances...) qui ne se
voient pas topologiquement a cause du théoreme de Grobman-Hartman classique.
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en bas. Pour ce qui nous intéresse, n = n’, U = V), et le second systéme est le linéarisé du
premier. On prend U = LP(R,R™), p € [1,00]. On a le théoréme suivant, énoncé de maniere
approximative, voir le Chapitre 2 pour la version techniquement correcte.

Théoréme 1.3 (Théoreme 2.3.7). si A est hyperbolique, il existe un homéomorphisme ¢ :
R"xU — R™ xU qui conjugue (1.18) et (1.19) localement. De plus il préserve la composante sur
U, c’est-a-dire que ¢(x,u(.)) = (H(z,u(.)), u(.)) pour une certaine application H : R"xU — R".

Cette conjugaison dit-elle que les deux systeémes se ressemblent ? Il est un peu hasardeux de
I’affirmer, ce d’autant plus que 'on peut aussi, par ce type de transformation, faire disparaitre
le terme Bu et conjuguer (1.18) & & = Ax : leffet du controle est alors tout entier rejeté dans
les transformations. Le résultat n’est pas pour autant une tautologie et a une incidence sur la
théorie des systemes telle que vue par [26].

1.5 Résultats sur I’équivalence et la linéarisation dynamique

1.5.1 Les transformations dynamiques

Les transformations dynamiques, ou par feedback dynamique endogéne, sont a mi-chemin
entre les transformations « statiques » de la section 1.3.3.1, dont on a vu que méme en ne de-
mandant pas de différentiabilité, elles donnent une équivalence tres rigide, et les transformations
fonctionnelles tres générales qui donnent une équivalence difficilement exploitable.

Continuons ce que 'on a ébauché en (1.17). Les transformations que I'on va définir consistent
effectivement a définir la correspondance ® en projetant a chaque instant ¢ une information de
dimension finie et en faisant porter la transformation —stationnaire— sur cette donnée de dimen-
sion finie. Il n’est cependant pas vrai que l'on ait, comme suggéré en (1.17), une transformation
inversible en dimension finie ¢. Le véritable schéma est le suivant (J K ot 75 sont notés JE (M)
et JE'(M’) dans Darticle reproduit au chapitre 5) :

g 2 e g & e
I | L : ™l |k (1.21)
JE 2, R xR™ R" x R™ 2 K

oll ¢ et Y ne sont pas inversibles en général. Les projections envoient les solutions dans des
espaces de jets d’ordre K ou K’ en prenant simplement les K ou K’ premieres dérivées au
temps ¢ (les dérivées de x ou z ne sont pas nécessaires car elles sont exprimées par (1.11)). Cette
notion d’équivalence est exactement celle de la Définition 5.3.8 du chapitre 5, a ceci pres que

- la définition 5.3.8 est plus précise et donne une notion locale,

- les notations sont différentes : ce qui est noté ici ¢ est noté ® au chapitre 5, et ce qui est noté
ici ®@ est noté ’Dg au chapitre 5.

Ces transformations demandent de dériver les solutions un nombre de fois non défini a
I’avance, et il faut donc, ici, nécessairement exiger que les élément de B et C, « les solutions »
par définition, soient infiniment différentiables. Cela n’est pas une difficulté puisque, comme on
I’a remarqué a la section 1.2.2.2; un systeme est entierement caractérisé par ses solutions lisses.

Bien siir, les entiers K et K’ ne sont pas connus, ou majorés, a I’avance, si bien que ces
schémas sont en fait potentiellement infinis. Un point de vue tres légérement différent sur ces
transformations, peut-étre formellement plus élégant mais rigoureusement équivalent, consiste
a utiliser des espaces de jets infinis, au lieu des espaces finis ci-dessus. C’est ce que 1'on expose
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dans l’article reproduit au chapitre 6. C’est le point de vue des « diffiétés », pour reprendre un
terme introduit en controle dans [38, 41]. On a alors un schéma du type

3 2 e

= | L, (1.22)
joo ¢_> j/oo

au lieu de (1.21). L’application ¢> est inversible, c’est méme un difféomorphisme, entre espaces
de jets infinis; ces espaces ont une structure de variété « de dimension infinie » qui fait que les
applications différentiables dépendent nécessairement d’un nombre fini de variable, ce qui est
exactement traduit par les deux diagrammes (1.21).

1.5.2 Feedback dynamique, linéarisation, platitude et paramétrisabilité

Historiquement [53, 22], la notion de linéarisation dynamique consistait a généraliser le
schéma (1.16) en s’autorisant, au lieu de la boite « statique » qui donne u en fonction du
nouveau controle v et de I’état x par une simple formule, un systéme dynamique —ayant son
propre état— avec ces mémes entrées, et en autorisant la boite de sortie a utiliser aussi cet état
du pré-compensateur.

Le traduire en termes de transformations utilisant des dérivées revient a [68, 37]. En réalité,
cette notion de linéarisation par feedback dynamique n’entraine pas ’existence d’une transfor-
mation ® inversible, mais d’une application ® du type suivant :

L 2 o3

Iy | L : (1.23)
JEK 2, RrxRm

ou L est I’ensemble des solutions d’un systeéme linéaire commandable A, mais ® n’est pas
forcément inversible; on demande seulement qu’elle soit surjective (elle atteint toutes les so-
lutions de ) et que les fibres soient de dimension finies, c’est-a-dire que fixer une solution
de X et chercher ses antécédents revient a résoudre une équation différentielle dont la solution
générale ne dépend que d’un nombre fini de constantes. On appelle aussi ¢ une « paramétrisation
de Monge » ; pour une définition tres précise, voir la Définition 9.2.2 dans l’article reproduit au
chapitre 9 ; cette définition est donnée seulement pour les systemes a deux états et trois entrées
(n=3,m =2 dans (1.1)) mais n’est pas spécifique & ces dimensions.

Parmi ces feedbacks dynamiques, ou paramétrisations de Monge, on distingue, a la suite de
[37, 68, 40], ceux qui se traduisent par une application (1.23) qui soit en réalité inversible comme
en (1.21) en les qualifiant d’endogénes. Un systeme conjugué a un systeme linéaire commandable
par une telle transformation est dit linéarisable par feedback dynamique endogéne ou encore plat,
ou simplement dynamiquement linéarisable.

Il est a noter que les feedback non nécessairement endogenes ne définissent ni une classe de
transformations ni une notion d’équivalence convenable sur les systemes.

Ordre d’une paramétrisation. Dans (1.23), on peut supposer le systéme linéaire « tri-
vial » de gauche sous forme canonique —voir section 1.2.3— et on appellera ordre de la pa-
ramétrisation ¢ le nombre de fois que les fonctions arbitraires du temps (les coordonnées
numéro s; + 1, 1 < i < m, dans la forme (1.9)) sont dérivées apres avoir tout exprimé en fonc-
tion de ces dernieres ; ce n’est pas forcément le K du schéma car les variables du systeme linéaire
peuvent déja contenir des dérivées de ces fonctions arbitraires du temps. Au chapitre 9, on raffine
cet ordre en indiquant par un m-uplet d’entiers combien de fois chaque fonctions arbitraires est
dérivé, et pas seulement le maximum.
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Sorties plates. Quand un systéme est plat, c’est-a-dire si ® dans (1.23) peut étre inversé
comme dans (1.21), l'inverse de ® est donné par un ¢ dont les coordonnées numéro s; + 1,
1 < ¢ < m —on suppose & nouveau le systeme linéaire sous la forme (1.9))— forment un m-uplet
de fonctions de z,u, 1, . ..,u™") que l'on appelle une sortie plate (dans l'article reproduit au
chapitre 8, on disait linéarisantes au lieu de plates). Il se peut qu’elles dépendent de moins de
dérivées que cela. On dit que le systeme est x-plat si il existe une sorties plates qui ne dépend
que de x, (x, u)-plat si il existe une sortie plate qui ne dépend que de = et ... et ainsi de suite.

1.5.3 Conditions de platitude, de paramétrisabilité ou d’équivalence
dynamique

Etant donné un systeme, comment décider si il est plat ? si il admet une paramétrisation de
Monge ?
Etant donnés deux systemes, comment décider si ils sont dynamiquement équivalents ?

L’article reproduit au chapitre 7 donne une re-formulation de la premiere question ci-dessus :
un systeme est plat si et seulement si un certain systeme de formes différentielles, dont la
construction est tout-a-fait explicite, peut étre rendu exact & I'aide d’un « facteur intégrant »
qui n’est pas une simple matrice inversible & coefficients fonctions scalaires mais un opérateur
différentiel inversible, dont l'ordre joue le méme role que les entiers K et K’ de la section
précédente. Insistons sur le fait qu’il ne s’agit pas d’une solution du probleme de platitude,
mais d’une simple re-formulation, utilisée dans l’article reproduit au chapitre 8, et discuté en
section 1.5.5.

Revenons aux deux question initiales.

— Exhiber la transformation ¢ qui remplit les conditions prouve évidement que les systemes
sont plats, ou équivalents, et cette information, ainsi que la transformation explicite, peut
se révéler tres utile pour résoudre des problemes de controle.

— En revanche, prouver qu'un systéme n’est pas plat, ou que deux systémes ne sont pas
équivalents est une tache tres difficile. Par exemple nul ne sait si le systeme (9.14), qui
s’écrit aussi, pour ressembler davantage a (1.1) :

1"1 = U
To = ug+T3Up (124)
i3 = X9+ upug?

est plat ou non. La difficulté est précisément, pour cet exemple comme en général, que les
entiers K ou K’ ne sont pas connus & I’avance. On peut en principe prouver qu’il n’existe
pas transformations avec K fixé, mais tant que 'on n’a pas de moyen de majorer K a
priori, on n’a pas de moyen de preuve fini.

1.5.4 Conditions nécessaires pour ’équivalence dynamique

Un premier invariant est le nombre d’entrées m ; cela peut se prouver de bien des manieres;
ce nombre est par exemple, dans le langage de [33], le degré de transcendance différentielle. Le
résultat est prouvé de maniére élémentaire au chapitre 6.

Théoréme 1.4 (Théoreme 6.2). Si les deux systémes (1.11) sont dynamiquement équivalents,
alors m =m/.

Systémes mono-entrée (m = m’ = 1). Il est prouvé dans [23] qu'un systéme & une seule
entrée qui est linéarisable par feedback dynamique (ou admet une paramétrisation de Monge,
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cf. section 1.5.2) est nécessairement linéarisable par feedback statique. Cela se généralise a
I’équivalence de systemes quelconques, si bien que, pour les systemes mono-entrée, ’équivalence
dynamique n’est pas plus riche que 1’équivalence statique :

Théoréme 1.5 (Théoréme 6.3). Sim =m' =1 et si les deux systémes (1.11) sont dynamique-
ment équivalents, alors ils sont statiquement équivalents.

Critére de variété réglée. La seule condition nécessaire générale de platitude connue a
I’heure actuelle est la suivante : un systéme plat est réglé (Théoreme 5.4.1).
La condition est aussi nécessaire pour ’existence d’une paramétrisation de Monge. Le résultat
est prouvé par Rouchon dans [88] (ot il est aussi utilisé pour montrer que la platitude n’est pas
générique, ce qui montre sa généralité) et indépendamment, mais avec une notion plus restrictive
de la platitude (la classe des transformations ® est réduite), par Sluis dans [96].

Rappelons qu’'un systéeme (1.1) est réglé si, pour tout x, ’ensemble décrit en faisant varier
u est une sous-variété réglée de 'espace affine T,R™ (qui n’est autre que R™ bien sur, mais on
note T, R™ pour souligner que sa structure d’espace affine (et méme linéaire) est préservée par
changement de coordonnées et demeure si on travaille sur une variété).

La condition suivante, prouvée au chapitre 5, est en quelque sorte une extension de ce critere
a I'équivalence entre systemes généraux.

Théoréme 1.6 (Théoreme 5.4.2). Si les deux systémes (1.11), supposés analytiques, sont dy-
namiquement équivalents, alors

-sin < n/, Y est réglé,

-sin=mn’/, soit X et Y sont réglés tous les deux soit ils sont statiquement équivalents.

1.5.5 Des résultats pour les systemes de petite dimension

On a étudié la plus petite dimension ol le probleme de déterminer quels systeémes sont plats,
ou paramétrables, ne soit pas résolue simplement. Il faut pour cela au moins deux entrées d’apres
le Théoreme 1.5 ci-dessus, et un état de plus pour que le systéme ne soit pas trivial. On est donc
ramené aux systemes a trois états et deux entrées que nous étudions dans I’article reproduit au
chapitre 9; le Théoreme 1.6 indique que seuls les systemes réglés sont susceptibles d’étre plats, et
cette propriété permet de se ramener aux systémes définis par trois champs de vecteurs dans R,
c’est-a-dire les systemes a quatre états et deux entrées qui ont la particularité que la dépendance
en u du membre de gauche dans (1.1) est affine; ces systemes sont 1'objet de I'article reproduit
au chapitre 8.

On passe d'un systeme réglé a trois états a un systeme affine a quatre états en « ajoutant
un intégrateur »; il y a en revanche plusieurs fagons de « couper un intégrateur » pour passer
d’un systeme affine & quatre états a un systeme réglé a trois états. Cela est bien expliqué, par
exemple, dans la these [7].

L’article du chapitre 8 est le plus ancien. Il utilise la re-formulation du chapitre 7 dont
on parle plus haut, et une décomposition des opérateurs différentiels inversibles en opérateurs
élémentaires. Le résultat principal caractérise les systemes « (x,u)-plats » (voir la section 1.5.2)
de ces dimension, ce qui est déja tres difficile et calculatoire. L’article est long et les preuves
trés techniques; par exemple, certaines simplifications sont obtenues sur des formes normales
en coordonnées en utilisant Maple. Comme on ’a indiqué a la section 1.5.3, il est tres difficile
de montrer qu’'un systeme n’est pas plat. L’article montre que toute une classe de systemes
de cette dimension ne sont pas « (x,u)-plats ». Mais certains d’entre eux sont-ils par exemple
(x,u,u)-plats ? Aucune réponse n’est donnée, mais on est amené a faire la conjecture suivante.
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Conjecture. Aucun des systémes dont on montre au chapitre 8 qu’ils ne sont pas (xz,u)-plats
n’est plat.

L’étude du chapitre 9 est plus récente, et n’utilise pas du tout les mémes outils. Elle retrouve

les mémes résultats, et en montre de plus généraux pour trois raisons :

— On y étudie la paramétrisabilité plutot que la platitude, ce qui est a priori plus général.

— On va un peu plus loin en termes d’ordre de dérivation, quoi que les comparaisons ne
soient pas aisées vues les représentations différentes; les relations entre les deux sont
décrites a la section 9.7. Les systémes (z, u)-plats du chapitre 8 admettent, au chapitre 9
une paramétrisation d’ordre (1,2), et on peut montrer que les autres n’admettent ni pa-
ramétrisation d’ordre (2, k) pour k arbitraire, ni paramétrisation d’ordre (3,3).

— Le chapitre 9 ne reste pas muet sur les ordres supérieurs et donne, pour toute paire (k, )
un systeme d’équations aux dérivées partielles qui a des solutions si et seulement si le
systeme admet une paramétrisation d’ordre (k, ).

De plus, les techniques du chapitre sont beaucoup plus élémentaires et les preuves lisibles.

Ce chapitre ne sait toutefois ni infirmer ni confirmer la conjecture suivante, Conjecture 9.5.3
au chapitre 9, et qui n’est pas tres loin de la précédente :

Conjecture. Aucun des systéemes dont on montre au chapitre 9 qu’ils n’admettent pas de pa-
ramétrisation d’ordre (1,2) n’admet de paramétrisation de quelque ordre que ce soit.
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Notice des travaux scientifiques

Travail antérieur a la these. La publication [1] étudie la solution radiale d’une EDP elliptique sur
un anneau fin et donne une estimation —en fonction de I’épaisseur de cet anneau— de son indice en tant
que point critique d’une certaine fonctionnelle. La motivation de cette estimation était de distinguer cette
solution radiale évidente d’autres solutions mises en évidence par des méthodes variationnelles.

La suite de mes travaux n’a pas de rapport direct avec cette contribution a I’analyse des EDP.

Rappel succinct du sujet de theése et des résultats obtenus.
Titre : Sur la commande adaptative des systemes non-linéaires. Soutenue en septembre 1989.

Son sujet était, en bref : si on a une famille de systemes controlés & = f(p,z,u), ol p est un
parametre de dimension finie (en pratique on se trouve devant I'un de ces systemes mais la valeur de p
n’est pas connue), et si I’on connait, pour chaque valeur du parametre, une loi de commande stabilisante,
peut-on (et comment) construire un controleur stabilisant valable pour fous les systemes de la famille.
Ce probleme avait déja été étudié lorsque chaque systeme peut €tre rendu linéaire par un feedback bien
choisi, puis stabilisé par des méthodes linéaires ; on est sorti de ce cadre en ne faisant pas d’hypothése
a priori sur le type de contrdle utilisé « a parameétres connus ». On suppose en général une dépendance
affine en les parametres.

Les résultats sont publies dans les articles [2, 3, 1, ii, 4, 5] ; ils sont décrits et mis en perspective a la
section 1.1 ci-dessous et dans une moindre mesure a la section 2.1.

1 Problemes de controle, feedback, stabilisation

On consideére des systémes contrdlés & = f(x,u), ou z est I’état, ici de dimension finie, et u le
contrdle, la fonction f décrivant la dynamique supposée suffisamment lisse.

Cette fonction f peut étre mal connue, elle est en elle-m&me un parameétre du probléme ; on peut
mettre en évidence une incertitude de plus petite dimension en écrivant @ = f(p,z,u), ol p est un
parametre (constant, en général de dimension finie).

Si une partie seulement de 1’état est mesurée, on écrit y = h(x), ol y représente la sortie mesurée.

Le probleme de contrdle auquel on s’intéresse est essentiellement la stabilisation, c’est-a-dire a
la construction de contrdles, dépendant de 1’état entier, ou de la sortie, qui rendent stable un point
d’équilibre ou une trajectoire, et permettent de les rallier asymptotiquement, ou en temps fini. Le probléme
est ’existence et la construction de contréleurs, qui peuvent étre eux-mémes des systemes dynamiques,
réalisant cet objectif.

1.1 Commande adaptative

On se demande ici si il est possible de construire de tels contrdleurs sans une connaissance totale de
la dynamique f, c’est-a-dire un contréleur indépendant du parametre p qui fonctionne pour “toutes” les
valeurs de p. On suppose pour cela donnée —sauf dans le premier paragraphe— une famille de contr6leurs,
dépendant de p, telle que chaque contrdleur stabilise le systeéme correspondant.

Le travail [3] concerne plutot la commande adaptative “linéaire”, c’est-a dire que les systémes sont
linéaires (en les états et les entrées) ; les contrdleurs adaptatifs pour de tels cas sont assez bien connus,
mais non-linéaires en général. Dans cet article, on n’est pas tout-a fait dans le cadre ci-dessus en ce sens
que I’on applique ce contrOleur a un systéme qui n’appartient pas a la famille paramétrée par p : on a
étudié I’effet d’un controleur adaptatif linéaire appliqué a un systeme d’ordre plus grand que le controleur
ne le prévoit. Le systéme bouclé est alors un systeéme dynamique non linéaire qui, en général, peut avoir
des comportements a peu prés quelconques, cf. une littérature assez abondante. On montre ici que 1’on
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peut malgré tout prédire, si I’on désire suivre un signal périodique en sortie, I’existence d’une solution
périodique stable pour le systeme bouclé. L’article [2], lui, étudie la (non)-robustesse de la propriété
« toute trajectoire est bornée et rentre en temps fini dans un compact ».

Ces deux résultats sont des préliminaires qui ne figurent pas explicitement dans la these.

On décrit dans [4] un apport important de cette these, qui consiste a utiliser explicitement dans
I’algorithme d’estimation des parametres une fonction de Lyapunov correspondant aux systemes bouclés
« a parametres connus ». On montre que cela fournit une pondération des I’estimation tres adaptée a la
stabilisation et fournit, sous certaines conditions, des résultats globaux. On obtient ainsi « aussi bien »
que les résultats précédemment connus quand on peut employer des commandes linéarisantes. Cette
publication contient aussi une méthode de projection des parametres qui a beaucoup été utilisée par la
suite. L’article [5] est un survey qui reprend et développe toute cette partie de la these.

On a aussi étudié la structure des familles de systemes paramétrées; on peut trouver dans [4], et
surtout dans [ii], des résultats beaucoup plus forts lorsque 1’on a des restrictions, en quelque sorte, sur
les directions dans lesquelles la dynamique dépend des parameétres, ce qui permet de compenser ces
effets par un contrdle. La formulation de ces restrictions est toutefois treés implicite a priori ; une étude
structurelle des familles de systemes a permis une caractérisation géométrique, [7, iii], sur lesquels nous
reviendrons a la section 2.1.

Controleur universel. Dans [iv], on s’intéresse a la question de 1’information suffisante sur un systéme
pour le stabiliser, ou le probleme du “contréleur universel”. Existe-t-il un contréleur qui stabilise “tous”
les systemes ? Cette référence donne une construction de recherche dense, déja utilisée en contrdle
linéaire, qui n’a pas d’intéret pratique mais pousse a se demander si il y a vraiment des conditions
nécessaires pour qu’une famille de systéme soit stabilisable par un méme contrdleur sans restriction sur
celui-ci.

1.2 Controle de sortie / observateurs

Avec des techniques proches, de [4] et de la these, j’ai obtenu des résultats de stabilisation par retour
de sortie, ou 1’on ne dispose que de mesures partielles [6].

1.3 Stabilisation instationnaire

Certains systemes non linéaires, disons & = f(x, u) avec f(0,0) = 0, quoique contr6lables, ont des
points d’équilibre (ici z = 0) qui ne peuvent &tre stabilisés par un contrdle qui dépende continiiment de
I’état ; c’est-a-dire qu’il y a une obstruction de nature topologique' 2 I’existence de o continu tel que le
point d’équilibre O pour & = f(z, «(x)) soit asymptotiquement stable.

De nombreux systemes mécaniques contr6lés, en robotique mobile (contraintes non-holonomes),
sont dans ce cas ; cela avait été noté, et il avait été proposé?, pour deux cas de tels systémes mécaniques,
d’utiliser des contrdles qui dépendent non seulement de 1’état, mais aussi du temps (périodiquement).
Dans [8], il est montré que ce moyen de contourner I’obstruction a la stabilisation par une retour continu
d’état «pur» fonctionne pour une classe générale de systemes présentant ladite obstruction, et une construc-
tion treés explicite est donnée. Dans [v], on a donné un exemple de synthese de telles lois sur un systeme
simple de robotique mobile déja étudié dans la référence mentionnéee ci-dessus, mais ou I’on laisse plus
de libertés dans la loi de commande pour satisfaire, en plus, certains criteres.

'R. W. Brockett, « Asymptotic Stability and Feedback Stabilizationy, in Differential geometric control theory, Birkiuser,
1983, p. 181-191.

2C. Samson, «Velocity and torque feedback control of a nonholonomic cart, in Proc. in Advanced Robot Control, vol. 162,
Springer-Verlag, 1991.
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L article [8] fut, avec [J.-M. Coron, 1992]3, le départ d’une nombreuse littérature sur la stabilisation
instationnaire : stabilisation de systémes généraux, application a des systémes concrets, études de robus-
tesse, méthodes explicites de synthese. Ce fut I’objet d’un exposé plénier [ix] a la Conférence Européenne
de Contrdle en 1998. Dans [13], on donne une loi stabilisante pour le contrdle de I’attitude d’un satellite
en mode dégradé. Ce systeme n’appartient pas a la classe de systémes traités dans [8] et la construction
du contrdle fait appel a une technique différente. Dans [14], on donne une méthode constructive (mais
complexe) tres générale utilisant 1’idée classique d’approximer un déplacement selon le crochet de Lie
de 2 champs de vecteurs par une oscillation entre les deux champs.

1.4 Control Lyapunov functions, Robustesse

Les fonctions de Lyapunov contrdlées (CLF) sont non seulement un outil d’analyse, comme les
fonctions de Lyapunov pour la stabilité des équations différentielles, mais aussi un puissant outil de
synthése de contrdleurs pour la stabilisation des systeémes controlés. Elles sont utilisées dans la plupart
des travaux décrits ci-dessus, mais un sujet d’intérét* est de systématiser la construction de CLF. Nous
avons proposé [16, 15, xi], [these de L. Faubourg] des méthodes en ce sens. [16] construit des CLF
(voir §1.b) pour des systemes qui sont stabilisables par la méthode «de Jurdjevic-Quinn» (aussi appelée
damping control). Voir aussi [15], ou I’on donne un grand nombre d’exemples.

1.5 Controle en poussée faible, moyennation

Pour un systeme conservatif avec un “petit” contrdle, il y a naturellement des variables lentes (les
intégrales premicres de la dérive) et des variables rapides. C’est le cas par exemple d’un satellite en
orbite autour d’un corps central muni d’un moteur a poussée faible. Il y a longtemps que des techniques
de moyennation (averaging en anglais) sont utilisées dans ce genre de situations, y compris en contrdle
optimal en moyennant les équations données par le Principe du Maximum de Pontryagin.

L originalité de [xii] est de proposer un systeme de contréle moyen, c’est-a-dire de faire la moyenna-
tion avant de décider du type de controle utilisé. Cela a un intérét conceptuel certain, et permet aussi, par
exemple, de montrer une conjecture sur le développement asymptotique du temps minimum de transfert
en fonction de la tres faible poussée, voir [23].

2 Etude structurelle, transformations, classification

D’un point de vue mathématique, les systemes contrdlés sont des systemes sous-déterminés d’équations
différentielles ordinaires, ¢’est-a-dire dont la solution générale dépend non seulement d’un certain nombre
de conditions initiales mais aussi de fonctions arbitraires du temps. La notions d’équivalence entre deux
tels systémes peut résulter, comme pour les équations différentielles déterminées de la conjugaison des
solutions par une transformation sur un espace de dimension finie, mais aussi, vue la présence d’au moins
une fonction du temps arbitraire, par une transformation dépendant fonctionnellement des solutions, par
exemple via un certain nombre de dérivées.

Du point de vue du contrdle, les transformation du premier type sont les transformations par “feed-
back statique”, qui outre un changement de coordonnées sur 1’espace d’état, re-parametrent les controles
via une transformation ponctuelle dépendant aussi de I’ état, et celles du second type, lorsque la dépendance
fonctionnelle se fait au travers d’un nombre fini de dérivées, sont les transformations par “feedback
dynamique”, ol ce ce re-paramétrage se fait au travers d’un systeéme dynamique, qui fait partie de la
transformation.

3 Math. of Control, Signals and Systems, vol. 5 (1992), p.295-312. Voir [vi] pour une comparaison entre ce travail et [8], et
une maniere de marier les deux techniques.
*Ceci est développé dans Iintroduction de [15], par exemple
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On s’intéresse a 1’action sur les systemes controlés de ces diverses transformations. L’intérét est
double : d’une part les feedbacks statiques ou dynamiques peuvent étre “implémentés”, ¢’est-a-dire que
la solution d’un probléme de contrdle pour un systeéme produit automatiquement une solution pour le
systeme transformé, donc une stratégie de contrdle peut étre étendue d’un systeme a tous les systemes
équivalents ; d’autre part, si I’on voit —et c’est le bon point de vue— les systéme mathématiques comme
des modeles de vrais systemes physiques, cette classification des modeles est presque un pré-requis a
une théorie de la modélisation qui serait fondée non pas sur des modeles de connaissance mais sur des
observations.

2.1 Equivalence par feedback statique

Familles paramétrées Considérant une famille paramétrée de systemes contrdlés, [7] donne une condi-
tion géométrique pour qu’ils soient tous équivalents par feedback statique, via une transformation qui,
bien siir, dépend du parametre. On caractérise aussi (et méme beaucoup plus explicitement) les familles
telles que ces transformations satisfassent des conditions sous lesquelles les algorithmes de stabilisa-
tion adaptative donnent les meilleurs résultats, cf. section 1.1. Dans [iii], on donne des conditions sous
lesquelles ces transformations s’étendent globalement.

Forme de contact partielle, forme chainée On trouve dans [vii] une caractérisation de 1’équivalence
par feedback statique a une forme particuliere de systeme : «chain form» étendue (motivation : robo-
tique mobile), qui revient a la conjugaison d’un systeme de Pfaff a un systeme de contact “partiellement

£99

prolongé”. La caractérisation a été obtenue indépendamment par d’autres auteurs>.

Linéarisation topologique. On s’est posé la question suivante : y a-t-il, pour les systémes contrdlés, un
équivalent du théoreme de Grobman-Hartman ? Est-il vrai que, localement autour d’un point d’équilibre
pas trop dégénéré, un systeéme contrdlé soit conjugué a un systeme linéaire, par exemple son approxima-
tion linéaire ?

11 se trouve que le théoreme de Grobman-Hartman démontre une conjugaison de flots, et c’est donc
dans un contexte ol un systeme contrdlé admet un flot qu’il est naturel —cela parait tout-au-moins naturel
a posteriori '— de le généraliser : dans [22] on montre, via un théoréme de point fixe, que le flot engendré
par un systeme de contrdle sur un produit de 1’espace d’état par I’espace fonctionnel des contrdles, avec
le décalage en temps comme dynamique, est bien localement conjugué au flot d’un systéme linéaire, via
une transformation sur un espace fonctionnel. Cela ne revét peut-étre qu’une signification pratique assez
limitée, vu que la transformation dépend de tout I’histoire passée et future.

Si en revanche on cherche a conjuguer un systeme contrdlé lisse (resp. analytique) a un systéme
linéaire commandable via un homéomorphisme sur un espace de dimension finie, alors on montre dans
[xiv, 18] que la conjugaison via un tel homéomorphisme implique la conjugaison via un difféomorphisme
lisse (resp. analytique), ce qui est connu pour étre tres rare.

2.2 Equivalence par feedback dynamique, platitude

Deux systemes peuvent étre équivalents pas feedback dynamique sans 1’étre par feedback statique ;
les transformations par feedback statique sont un cas particulier de transformations par feedback dyna-
mique. La notion d’équivalence elle-mé&me n’est pas évidente dans le cas du feedback dynamique car
le fait d’appliquer un compensateur dynamique donne un systeme bouclé de dimension strictement plus
grande (sauf s’il est statique).

>W. Pasillas-Lépine, W. Respondek, «Contact systems and corank one involutive subdistributions», Acta Appl. Math., vol.
69 (2001), pp. 105-128.
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On a proposé dans [9] un cadre géométrique qui fait apparaitre ces transformations comme des
sortes de difféomorphismes dans des espaces de jets infinis. Ces transformations sont aussi appelées Lie-
Bicklund dans le cas des EDP. On retrouve une approche similaire indépendante par d’autres auteurs®.
Deux systemes sont équivalents si ils sont conjugués par une transformation ou les nouveaux états et
contrdle s’expriment en fonction des anciens et d’un nombre fini K de leurs dérivées par rapport au
temps et réciproquement. Pour décider si deux systemes donnés sont équivalents, la grande difficulté
est que 1’on ne connait pas de borne a priori pour cet entier K, c’est-a-dire le nombre de dérivées qui
interviennent dans la transformation.

Intéressons-nous désormais a la platitude, c¢’est-a-dire la propriété pour un systeme d’€tre équivalent
a un systéme linéaire commandable. Décider si un systeme est plat présente bien siir la méme difficulté.
C’est une version théorie des systémes du “probleme de Monge”, posé il y a plus d’un siécle, qui consiste
a décider si la solution générale d’un systeme différentiel donné peut s’exprimer en fonction d’un cer-
tain nombre de fonctions du temps arbitraires et de leur dérivées jusqu’a un certain ordre. La platitude
demande de surcroit que ces fonctions arbitraires correspondent chacune a une et une seule solution.

On a proposé dans [10, 11] une reformulation du probléme, qui consiste a rechercher une sorte
d’opérateur différentiel inversible intégrant (par analogie a “facteur intégrant”) pour un systéme de
formes différentielles que 1’on peut construire explicitement. Cela n’évite pas la majoration de 1’en-
tier ' mentionné ci-dessus ; il est en quelque sorte remplacé par 1’ordre de I’opérateur différentiel en
question.

Les systemes a 4 états et 2 controles, affines en ces controles, ou 3 états et 2 contrdles non affines,
sont les plus «petits» pour lesquels le probleme de la platitude ne soit pas résolu. L’article [12] donne une
description tres explicite des systeémes qui ont cette propriété (platitude), mais en bornant artificiellement
K. En jargon : on ne donne pas une condition pour que ces systemes soient plats, mais pour qu’ils soient
«(z, u)-plats», alors qu’un systeme plat général serait (x, u, u, i, . . . ,u(L))—plat pour un certain L non
nécessairement nul (les entiers L et K ne sont pas les mémes mais sont une fonction croissante 1’un
de I'autre). On conjecture que tous les systemes plats de cette dimension sont en réalité (x, u)-plats.
L article [12], qui utilise la formulation donnéee dans [10, 11], est long (80 pages) et technique, et la
preuve du résultat principal a nécessité le recours au calcul formel, ceci est détaillé dans [viii].

Plus récemment, la theése de D. Avanessoft a porté sur ce difficile probleéme. Dans [21], on regarde
a nouveau les systemes de la méme petite dimension, mais on étudie le probleme de Monge stricto
sensu, et des résultats plus forts que dans [12] sont donnés, avec des preuves beaucoup plus élémentaires
(en tout cas lisibles par un humain sans recourir au calcul formel !). Mentionnons enfin une tentative
de s’affranchir de la connaissance a priori de ’entier K en essayant de mettre sur pied un théorie de
Iintégrabilité formelle “a une infinité de variables™ adaptée a ce probleme ; cela est relaté dans [xiii].

2.3 Structure of trajectories, controllability

Une étude topologique de 1’espace des trajectoires [17] caractérise les courbes qui peuvent étre ap-
prochées par des trajectoires admissibles d’un yssteme affine. Cela a des répercussions en trajectographie,
et en calcul stochastique via le théoreme du support (Strook et Varadhan) d’une diffusion.

®M. Fliess, J. Lévine, P. Martin, P. Rouchon, «A Lie-Bicklund approach to equivalence and flatness of nonlinear systems»,
IEEE Trans. Automat. Control, vol. 44, 1999, p. 922-937.
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Chapitre 2

Reproduction de I’article:

L. Baratchart, M. Chyba et J.-B. Pomet,
“A Grobman-Hartman theorem for control systems”

J. Dynamics & Differ. Equ., vol. 19, pp. 75-107, 2007.

Abstract. We consider the problem of locally linearizing a control system via topo-
logical transformations. According to chapter 3, a generic control system cannot be
linearized using pointwise transformations on the state and the control values. Allo-
wing the transformations to depend on the control at a functional level, we prove a
version of the Grobman-Hartman theorem for control systems.

2.1 Introduction

Our point of departure will be a brief review of the classical Grobman-Hartman theorem,
following for instance [47]. Consider the differential equation

B(t) = f(x(t)), (2.1)

where f € C1(U,R") and U is an open subset of R™. Assume that o € U is an equilibrium, i.e.
f(zo) = 0. The linearized system associated to (2.1) near xg is

#(t) = Az(t) — Azq (2.2)

where A = D f(x¢) is the derivative of f at xy. The equilibrium zg is said to be hyperbolic if the
matrix A has no purely imaginary eigenvalue. Systems (2.1) and (2.2) are called topologically
conjugate at xg if there exist neighborhoods V, W of x¢ in U and a homeomorphism h: V — W
mapping the trajectories of (2.1) in V onto the trajectories of (2.2) in W in a time-preserving
manner : for each z € V, we should have

ho ¢i(z) = e (h(x) — h(zo)) + h(wo) (2.3)

provided that ¢,(x) € V for 0 < p < t, where ¢; denotes the flow of (2.1). The Grobman-
Hartman theorem now goes as follows [47] :

Theorem 2.1.1 (Grobman-Hartman). If xg is an hyperbolic equilibrium point, then (2.1) is
topologically conjugate to (2.2) at xg.

More general versions and a precise study of C*-linearizability with finite k can be found
n [16]. See also [89] for a discussion of infinitely differentiable and analytic linearizability. This
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theorem entails that the only invariant under local topological conjugacy around a hyperbolic
equilibrium is the number of eigenvalues with positive real part in the Jacobian matrix, counting
multiplicity. Indeed, it is well-known (cf [5]) that the linear system & = Az where A has no
pure imaginary eigenvalue is topologically conjugate to the linear system & = DX where D
is diagonal with diagonal entries +1, the number of occurrences of +1 being the number of
eigenvalues of A with positive real part, counting multiplicity.

When trying to extend this result to a control systems & = f(z,u), with state z € R™ and
control u € R™, one has first to decide what the meaning of “topologically conjugate” should be,
i.e. what kind of map should play the role of the homeomorphism A in (2.3). The simplest idea
is to ask for a pointwise transformation on the n 4+ m variables x, u, i.e. a local homeomorphism
of R™™ : this is investigated in Chapter 3 where it is shown that no extension of Theorem 2.1.1
to control systems may hold with this kind of conjugating homeomorphisms : unpredictability of
future control values forces a rather rigid triangular structure on conjugating homeomorphisms
that ultimately results in their “almost” smoothness, and hence they would preserve too many
special features of linear control systems, that are highly non-generic among control systems.

Theorem 2.1.1 is about conjugating flows while, since the control is an arbitrary function of
time whose future values are not determined by past ones, a control system does not generate
a flow on R™™™ or any finite dimensional manifold. The present paper is devoted to notions
of local linearization of control systems that do amount to conjugating “flows”. Analogs to
the Grobman-Hartman theorem for control systems are derived in two different contexts : either
(section 2.3.1) when the control is generated by a finite dimensional dynamical system or (section
2.3.2) when one associates to a control system a flow on a suitable functional space in the style of
[25]. These results do not contradict these of Chapter 3 because the notion of conjugacy is here
much weaker ; they are consequences of an abstract principle, established in Section 2.2, saying
that if the controls are generated by a one parameter group of homeomorphism (flow) on some
general topological space, then, under hyperbolicity assumptions, the system can be linearized
via transformations that are continuously parameterized by elements of this topological space.

Related bibliography. In [76], dynamics on general abstract spaces are studied to derive
results on the dependence upon various data of solutions of integral equations; the dynamical
issues addressed there are very related to our section 2.2. Let us also mention [27], that states
a Hartman Grobman for “random dynamical systems” where, roughly speaking, the role of the
topological space mentioned above is played by a probability space. As for the view on control
system that we adopt in Section 2.3, it is very inspired by [25] (see also the monograph [26]) : to
a control system, one associates naturally a flow on a “skew product” ; see these references for
many properties of this flow ; we allow a slightly more general picture by not requiring continuity
of that flow, thus allowing L topology for the controls even for non-affine systems.

2.2 An abstract Grobman-Hartman Theorem

We shall prove an abstract result on the linearization of dynamical systems which implies the
local linearizability properties of control systems stated in sections 2.3.1 and 2.3.2. The proof
closely follows that of the classical Grobman-Hartman theorem for ODEs as given by Hartman
in [47, chap. IX, sect. 4, 7, 8, 9], and we tried to stick to his notations as much as possible.
Nevertheless, we provide a detailed argument because the modifications needed to handle the
dynamics of the control are not straightforward. Like [47], we state Theorem 2.2.1 below as a
global linearizability property for a linear equation perturbed by a suitably normalized additive
term. In sections 2.3.1 and 2.3.2, we shall use this result to derive local linearizability results for
systems that locally coincide with a normalized one.
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Let us mention in passing that the Grobman-Hartman Theorem for “random dynamical
systems” given in [27] is similar in spirit to Theorem 2.2.1 : there, the set £ of control parameters
is a probability space instead of a topological space, and the conjugating transformation H is
only required to be measurable with respect to ( € £ but need not be continuous. Both can be
viewed as Grobman-Hartman Theorem “with parameters”.

Consider a topological space £ endowed with a one-parameter group of homeomorphisms
(S7)rer- The space € is to be regarded as an abstract collection of input-producing events for a
control system, these events being themselves subject to the dynamics of the flow S;. To describe
the action of such an event on the system we simply let { enter as a parameter in the differential
equation describing the evolution of the state variable x :

t = Az + G(z,(,t), (2.4)

where the linear term at the origin Az was singled out for convenience (but without loss of
generality). Here, G : R" x £ x R — R" is assumed to be measurable with respect to ¢ for fixed
x,¢, and of class C' with respect to x for fixed (,t. To ensure the compatibility between the
dynamics of ¢ and that of x (see (2.7) below), we also require the condition

G(x,8:(¢),t) = G(x,(,t + 1) (2.5)

to hold for all (z,(,7,t) € R" x £ x R x R. Now, if we suppose that to each (z,() € R" x & there
is a locally integrable function ¢, : R — R* satisfying G(z,(,t) < ¢, ¢(t) for all t € R, and
that to each ¢ € & there is a locally integrable function ¢; : R — R satisfying 0G/dz (z,¢,t) <
e(t) for all (z,t) € R® x R, then for each ¢ € £ the solution to (2.4) with initial condition
x(0) = zg € R™ uniquely exists for all ¢ € R, ¢f. [98, Theorem 54, Proposition C.3.4, Proposition
C.3.8]. Subsequently, denoting by

5:\(7_> Zo, C) (26)
the value of this solution at time ¢ = 7, it follows from (2.5) that

Z(t + 7, 20, ) = T(t, (7, 20, (), S-(C)) (2.7)

and thus

®i(20,¢) = (&(t,20,¢), S:(C)) (2.8)

defines a flow on R" x &, the group property being a consequence of (2.7) and of the group
property of S;. We call (®¢):cr the flow of system (2.4).
We also define the partially linear flow L; by the formula :

Li(z0,¢) = (ez0,S8(Q)); (2.9)

it is the flow of (2.4) when G = 0, and the whole point in this subsection is to give conditions
on G for ®; and L; to be topologically conjugate over R™ x £.
We will assume throughout that the n x n matrix A is hyperbolic, hence it is similar to a

block diagonal one :
A, O
A~ < 0 A > (2.10)

where A, and A; are e X e and [ x [ real matrices, with e + [ = n, whose eigenvalues have
strictly negative and strictly positive real parts respectively. Now, there exist Euclidean norms
on R¢ and R! for which e?c and e~! are strict contractions, because their eigenvalues have
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modulus strictly less than 1 and any square complex matrix is similar to an upper triangular
one having the eigenvalues of the original matrix as diagonal entries while the remaining entries
are arbitrarily small, see e.g. [5, ch.3, sec.22.4, Lemma 4]. Therefore, combining (2.10) with a
suitable linear change of variable on each factor in R” = R¢ x R/, we can write

(P 0
A:E1(0 Q)E, (2.11)

where F is some nonsingular n X n real matrix while P and @ are e x e and [ X [ real matrices

such that e’ and e~ @ are strict contractions for the standard Euclidean norm :
1
¢ 2 leflo<1 and y 2 e Qo <1, (2.12)

where ||.|[o designates the familiar operator norm of a matrix. Subsequently, we define the real
numbers

A _ _ 1 _

b = e o+ le o = gt le™Fllo, (2.13)
A _

a = |BAET, = max{|[P]o, [Qlo}. (2.14)

Besides the operator norm, we shall make use of another norm on real matrices, namely the
Frobenius norm ||.||p which is the square root of the sum of the squares of the entries. Let us
record the elementary inequalities, valid for any two real square matrices M, N :

IMllo < [[M]lg, [MN[p <min{[[M]o| N, [M][[r|No}- (2.15)

As usual, we keep the symbol ||.|| to indicate the standard Euclidean norm on R/ irrespectively
of j. Now, our main result is the following :

Theorem 2.2.1. Let the hyperbolic matriz A and the numbers c, d, by and ¢ be as in (2.11),
(2.12), (2.13) and (2.14). Assume that the topological space &, its one-parameter group of ho-
meomorphisms (S;), and the map G : R™ x £ x R — R"™ satisfy the following conditions :
— Equation (2.5) holds for all (z,(,7,t) € R" x € x R x R.
— For fized ¢ € €, the map T — S;(C) is Borel measurable R — &£, that is to say the inverse
image of an open subset of £ is measurable in R.
— The map  — G(z,(,t) is continuously differentiable R™ — R™ for fized ({,t) € € x R,
the map t — G(z,(,t) is measurable R — R"™ for fized (z,() € R™ x &, and to each ( € £
there are locally integrable functions ¢¢, ¢ : R — RT such that, for all (z,t) € R™ x R,
one has :

Gz, GOl < ¢c(t) Hgf(%CyﬂHF < Ye(t) - (2.16)

— Defining the flow T of (2.4) as in (2.6), the map (xo, () — Z(t,x0,() is continuous R™ x
E — R" for fized t € R.
— There are real numbers M >0 and n > 0 such that
veeé ey < M, (2.17)
lellqoay < m5

Moreover, the number n in (2.18) is so small that, putting

A _
0=n|ElollE o

and then

a1 2 geor (1 +efter (g + cl)> ,

one has
0<biar <1 and aq(1+1/d)+ max(c,1/d) <1. (2.19)
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Then, there exists a homeomorphism
H: R"xE—-R"xE

of the form
(,¢Q) = H(z,¢) = (H(=,(),(),

that conjugates ®; defined in (2.8) to the partially linear flow (2.9), namely H o &, = LioH or,
equivalently,
H(®y(2,¢)) = e H () (2:20)

for all (t,x,{) e RxR" x .

To establish Theorem 2.2.1, we shall rely on two lemmas. The first one runs parallel to [47,
chap. IX, lemma 8.3], and gives us sufficient conditions for perturbations of a map (z,() —
(Lz,8-(¢)) to be topologically conjugate on R™ x £, when 7 is fixed and the linear map L :
R™ — R™ is the product of a dilation and a contraction. This lemma is the mainspring of the
proof, in that it will provide us with the desired conjugating H when applied to the flows (2.8)
and (2.9) evaluated at ¢ = 1 (this arbitrary value comes from the normalization of the constants
c and d through (2.12)). The proof of the lemma is similar to that of [47, chap. IX, lemma 8.3],
except that we need to keep track more carefully of uniqueness and continuity issues here; it
uses the shrinking lemma on Lipschitz-small perturbations of hyperbolic linear maps, a classical
device to build conjugating homeomorphisms that has many other applications, see [47, chap.
IX, notes]. The reader will notice that the statement of the lemma redefines the constants ¢, d,
b1, and a; that were already fixed in the statement of Theorem 2.2.1. We allow ourself this minor
incorrection, because we feel it helps following the argument since the lemma will be applied
precisely with the previously defined constants.

Lemma 2.2.2. Let us be given a homeomorphism T : € — & and two non-singular real matrices
C,D of size e x e and | x | respectively, such that c = ||C|| <1 and § = |[D7!|| < 1.

Fori=1,2,1letY; : RE xR x &€ - R® and Z; : R x Rl x & — R! be two pairs of bounded
continuous functions satisfying

max{[|AYi, [[AZi]|} < ar([[Ayll + [|Az]), (2.21)

where AY; and AZ; stand respectively for Yi(y + Ay, z + Az, () — Yi(y, 2,¢) and Z;i(y + Ay, z +
Az, ) —Zi(y, 2,C), and where oy is a constant such that, if we put a = ||[C7|| and by = a+1/d,
then 0 < by < 1 and a1(1 4+ 1/d) + max(c,1/d) < 1. If we define fori = 1,2 the maps
T;: RExRIxE — RexRIxE
(v,2.¢) = (Cy+Yi(y,20),Dz+ Zi(y, (), T(C)),

then there exists a unique map Ry : R x Rt x &€ — R¢ x Rl x £ of the form

RO(yaz7C) = (HO(y727C)7C) (222)

such that :
~ Hy(y,2,¢) — (y,2) is bounded on R® x R! x &,
— one has the commuting relation :

RoTy = Ty Ry. (2.23)

Moreover, Ry is then necessarily a homeomorphism of R¢ x R! x &.
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The second lemma that we need in order to prove Theorem 2.2.1 is of technical nature and
ensures that, under the hypotheses stated in that proposition, we can indeed apply Lemma 2.2.2
to the flow (2.8) evaluated at ¢ = 1. Recalling from (2.6) the definition of Z, it will be convenient
to define a map = : R x R"® x £ — R"™ by the equation :

/‘T\(t7 xo, C) = exp(tA) Zo + E(t’ o, () . (224)

Thus the map = capsulizes the deviation of the flow of (2.4) from the flow of the linearized
equation & = Ax.

Lemma 2.2.3. Under the assumptions of Theorem 2.2.1, the map = defined by (2.24) is bounded
on [0, 1] x R" x &, it is of class C with respect to xq for fived t,(, and it satisfies, for all (t,x, ()
in [0,1] x R™ x &, the inequality :
0=
o
Zo
Assuming Lemma 2.2.2 and Lemma 2.2.3 for a while, let us proceed immediately with the
proof of Theorem 2.2.1.

Lo, Olle < neldlo (14 emt4lo (g + 1 4]0)) (2.25)

Proof. Proof of Theorem 2.2.1. Performing on R™ the change of variables x — EF x and taking
(2.15) into account, we may assume upon replacing M by M||E||o in (2.17) and 7 by 0 in (2.18)
that £ = I, the identity matrix of size n. Then ¢; = ||A||o and the right-hand side of (2.25)
is just a1. Moreover (2.11) expresses that A assumes a block-diagonal form, according to which
we block-decompose the flow @t(ajo, () defined by (2.8) into

Yo ePyo + Y (¢, yo, 20, €)
20 | = | %20+ Z(t,y0,20,) (2.26)
¢ St(€)

where (yd, 28)7 is the natural partition of zy € R" ~ R® xR, and where Y and Z are respectively
the first e and the last I components of the map = defined in (2.24). Still taking into account
the block decomposition induced by (2.11) where E = I,,, the partially linear flow L; defined by
(2.9) in turn splits into

Li: RExRIxE — R x R4 x &
(Y0,20,¢)  + (exp(Pt)yo, exp(Qt) 2o, S(())-

We shall apply Lemma 2.2.2 with 7 = &1 to T} = 61 and 75 = Lj, that is to say we choose
C=¢el,D=¢e9 Yy =0, Zy =0, and we define ¥; and Z; by Yi(y,2,¢) = Y(1,y,2,¢) and
Z1(y,2,() = Z(1,y,2,() where Y, Z are as in (2.26). The hypotheses on C' and D are satisfied
by (2.12), while the hypotheses on Y2 and Z, are trivially met. As to Y7 and Z;, we observe
that :

- their continuity, i.e. the continuity of (zg, () — Z(1, o, (), follows via (2.24) from the continuity
of (zo,() — =(1,x0,¢) which is part of the hypotheses (see point 4 in the statement of the
proposition) ;

- their boundedness, i.e. the boundedness of (g, () — Z(1, 29, (), follows from Lemma 2.2.3;

- the inequalities on the Lipschitz constants of Y7 and Z; required in Lemma 2.2.2 follow from the
mean-value theorem and Lemma 2.2.3, equation (2.25), granted (2.19), (2.15), and the triangle
inequality.

Therefore Lemma 2.2.2 does apply, providing us with a homeomorphism of R¢ x Rl x £ =
R™ x & of the form Ry = Hy x id, which is such that Hy(z,() —  is bounded on R” x £ and, in
addition, such that

Roo®; = LjoRp. (2.27)
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Equation (2.27) expresses that Hy conjugates the flow @t(a:, ()) to the partially linear flow L; at
time ¢ = 1, whereas we want these flows to be conjugate at any time t. For this, we use the same
averaging trick (originally due to S. Sternberg) as in [47, chap. IX, sec. 9], namely we define
H :R™ x & — R" by the integral formula :

1
H(z, () = /O A Ho(®(2, 0)) dr (2.28)

where Hy, being the first factor of Ry, satisfies by virtue of (2.27) :
Ho(®1(2,¢)) = e Ho(z,0). (2.29)

We need of course show that (2.28) is well-defined. Firstly, let us check that the integrand is a
measurable function of r. As Hy is continuous R" x & — R", this reduces to showing that the
map

r (2, 0) = (2(r,2,0), S:(C)) (2.30)

is measurable R — R"™ x €. Now, the map r — Z(r,z,() is a fortiori measurable since it is
absolutely continuous, and the map r — S,(() is also measurable by assumption (see point 2
in the statement of the proposition). Hence the inverse image under (2.30) of an open rectangle
is measurable in R. But any open subset of R" x £ is a countable union of open rectangles
because R™ has a countable basis of open neighborhoods, and this establishes the measurability
of (2.30). Secondly, the integrand in (2.28) is bounded, for || Ho(®,(z, ¢))—Z(r, z, ¢)|| is majorized
uniformly with respect to r, z, and ¢ since Hy(z, () — x is bounded on R™ x £ by the properties
of Ry, while the continuous function r +— Z(r, z, () is bounded for fixed z and ¢ on the compact
set [0, 1]. Therefore, the integral on the right-hand side of (2.28) indeed exists.

Observe now that H(z,() — z is also bounded on R™ x £. Indeed, by definition of d, via (2.8)
and of = via (2.24), we can write

1
H(z,()—z = /0e_TA(Ho(fE(r,m,C),S,,(C))—f(r,x,o)dr

1
+ /B_TAE(T,SU,C)dT‘, (2.31)
0

and since both integrals on the right-hand side are bounded (the first because Hy(z,() — = is
bounded on R™ x £ and the second because = is bounded on [0, 1] x R” x £ by Lemma 2.2.3), we
get the desired boundedness of H(z,() — x. Next, we claim that (2.20) holds, and once we have
proved this the proposition will follow because, specializing (2.20) to ¢ = 1, we shall conclude
by the uniqueness part of Lemma 2.2.2 that H x id = Ry and therefore that Ry, which is a
homeomorphism of R™ x £ with the desired form, will meet Ry o EI\Dt = L; o Ry, not just for ¢t =1
as we knew already but in fact for all . Thus it will be possible to take H = Ry.
To establish the claim, we use the group property of the flow to write

e_tAH( &;t(xv C;) ) = /01 6_(t+r)AHO(&\)t+T(xv C) ) d?“,

and we set t +r = 7 to convert the above integral into

t+1 N 1 t+1
/ e TTAHY (P (2,¢) ) dr = / dT+/ ... dr, (2.32)
t t 1

where the dots indicate that the integrand is repeated in each integral. Now, putting A =7 — 1,
the last integral in the right-hand side becomes

t t
[ e @@ o) dn = [ M@ ,0)) i
0 0
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where we have used the group property of the flow again together with (2.29). Plugging this into
(2.32), we recover back fol e M Hy(®4(z,¢) )dt on the right-hand side, so that finally e 4 H o

~

®; = H as claimed. O ]

Let us now tie the loose ends in the proof of Theorem 2.2.1 by establishing Lemma 2.2.3 and
Lemma 2.2.2.

Proof. Proof of Lemma 2.2.3 From (2.4) and (2.24), we see that ¢ — Z(¢, x0, () is the solution
to

E(t) = AE(t) + G (£(t) + eag, ¢, t)

with initial condition £(0) = 0. Since ||G(z, ¢, t)|| is bounded by ¢¢(t) with [[¢¢l[z1(0,1)) < M by
(2.16) and (2.17), we get

IE@I < M+/0 IAloll€(s)llds, — t € [0,1],

and finally, by the Bellman-Gronwall lemma, ||£(¢)|| < M e'l4llo. This entails that ¢ is bounded
on [0,1]; hence Z is bounded on [0, 1] x R™ x &.

To prove (2.25), we consider for fixed zg,( the matrix-valued function R(t) = g—fo(t, zo, (),
whose existence and continuity with respect to xg for fixed ¢,{ depend on (2.16), (2.17) and
(2.18) (¢f Lemma 2.4.3), inducing in turn the existence and continuity with respect to xq of
Qt) = %(t’ x0, ¢) via (2.24). The variational equation for 59750 (see again Lemma 2.4.3) yields :

R(t) = [A+gf(£(t,:co,g),g,t)] R(t), R(0) = I,,

and, since R(t) = Q(t) + ' by (2.24), we have that

Q) = [ 4+ 52 @000, 00.61)] Q)+ 52 (@(0.a0,0.¢.0) ¢, Q) =0,

Put p(t) = [|Q(¢)|lr. Due to the definition of the Frobenius norm, p(t) is locally absolutely conti-
nuous and, by the Cauchy-Schwartz inequality, one has p(t) < ||Q(t)|r. Thus, the differential
equation satisfied by Q(t) together with (2.16) yield :

po< (@) + 1Allo) p(t) + () eldllo) p(0) =0,

where we have used (2.15) and the elementary fact that [|e!4|o < ellAlo for all ¢+ € [0,1].
Integrating this inequality and applying the Bellman-Gronwall lemma yields, taking (2.18) into
account, that p is bounded on [0, 1] by ne?l4llo+7 This implies (2.25) by definition of p. [ [

Proof. Proof of Lemma 2.2.2 If we endow R® x R! with the norm ||(y, 2)| = |ly|| + ||/, it follows
from (2.21) that, for fixed (y, z,¢) € R® x R! x £, the map Ty R x R! — R® x R defined by

Ty,z,C(yla Zl) = (Cily7 Dilz) - (Cilyl (y/7 zlu C) ) DilZl(yla Zla C))

is a shrinking map with shrinking constant bja; < 1, whose fixed point is the unique (g,z) €
R® x R! satisfying T (9, Z, ¢) = (y, 2, 7(¢)). In addition, it holds that (7, 2) = limj_. T;”z’c(y’, 2"
for any (y/,2'), and this classically implies that (g, z) is continuous with respect to y, z, and
¢. Indeed, the continuity of Y7 and Z; entails that T, . ¢(y/, ) is continuous with respect to y,
z and (¢ for fixed ¢/, 2. Therefore, if we write §(y, z,(), Z(y, 2,¢) to emphasize the functional
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dependence, and if we choose yg, zg, (o together with ¢ > 0, there is a neighborhood Vj of
(Y0, 20, Co) in R x Rl x £ such that (y, z,¢) € V, implies :

||T7 ,C( (y07207€0) (yO;ZO7CO)) - (?7(907207CO)vZ(?/mZOvCO))H =

1 Ty,2.¢ (Y0, 20, C0), Z2(Y05 205 C0)) — Tyo,20,¢0 (F(Y05 205 C0), Z(Yo, 205 o)) ||
<e.

Consequently, for (y, z,() € Vp, we have by the shrinking property that

1(5(y, 2,€), 2(y, 2,Q)) = (5(y0, 20, G0), Z(%0, 20, C0)) |

= 11_{11 Ty ... (5o, 20, Co), Z(Yo, 20, C0)) — (F(yo0. 20, o), Z(30: 20, C0))|

o0

Z T (505 20, €0)s 240, 20, €0)) = Ty ¢ (U(%0, 20, G0), Z(w0, 20, o)) |

€

—1-bay
which implies the desired continuity. Then, (z,y) — (4(y, 2,¢), 2(y, 2,()) is, for fixed (, the
inverse of the concatenation of the first two components of T3, and it is continuous with respect

o (z,y), and to (. Moreover, we see from the definition of T}, , - and the fixed point property of
Y, Z that

(5,2) = (C'y,D7"'2) = (C™'Y1(5,2,¢), D' Z1(3,2,Q))

and, since Y7 and Z7 are continuous and bounded, this makes for a relation of the form

(g(y> 2, C)a z(yv 2, C)) = (C_ly + ?l(ya 2, C)v D_lz + Zl(yv Z, C))

where 571, 21 are in turn continuous and bounded on R¢ x R! x £ with values in R¢ and R/
respectively. All this yields the existence of an inverse for the map 77 itself, namely

T (y,2.0) = (C 'y + Yily, 2, T Q) D72 + Zily, 2, TH(0), T71(Q)). (2.33)

Let us now seek the map Hp in (2.22) in the prescribed form, namely

Ho(y,2,¢) = (y+ My, 2,0), 2+ 6(y, 2,0) ), (2.34)

where the unknowns are bounded maps A and © with values in R® and R’ respectively. Using
(2.33), one checks easily that (2.23) is equivalent to the following pair of equations :

A =C [Yfl + A(T;l)} (2.35)
1Y, (C”ly Y+ AT, D7+ 2 (T, T”(C)) ,

O =D'Z1 +6(Cy+Y1,Dz+ 21, T(()) — Za(y + A, 2+ ©,0)], (2.36)

where the argument of A, ©,Y], Z:, Y, Zi7T1_ ! when omitted, is always (y, z,¢). The existence
of A and © will follow from another application of the shrinking lemma, this time in the space
B of bounded functions R¢ x R! x &€ — R¢ x R! endowed with a suitable norm. More preci-
sely, letting (A1,©1) denote an arbitrary member of B acting coordinate-wise as (y, z,() +—
(A1(y, 2,¢),01(y, 2,¢)) where Ay and ©; are bounded R® and R'-valued functions respectively,
we define its norm to be

1Az, @01+ = Al + 11641l



42 CHAPITRE 2. “A GROBMAN-HARTMAN THEOREM FOR CONTROL SYSTEMS”

where |||.||| indicates the sup norm of a map R® x R! x & — R¥, irrespectively of k; this makes
(B,1]]-]||+) into a a Banach space. Now, to each (A1,0;) € B, we can associate another member
(A2,0O2) of B where Ag : R¢ x Rl x & — R® and O : R¢ x R! x £ — R! are defined by

Ay = C[?1+A1(T;1)} (2.37)

+Y5 (Cily + Y1 + Al(Tl_l),Dflz -+ Zl + @1(T1_1),771(C)),

Qy=D"! [Zl +01(Cy+Y1,Dz+4+ Z1,T(C)) — Za(y + A1, 2+ @1,0}7 (2.38)

the argument (y, z, () being omitted again for simplicity. The fact that (Ag, ©2) is indeed well-
defined and belongs to B is a consequence of the preceding part of the proof. Consistently
designating by a subscript 2 the effect of the right hand-side of (2.37) an (2.38) on some initial
map, itself denoted with a subscript 1, we see from (2.21)) by inspection on (2.37) and (2.38)
that, if (A1,©1) and (A}, ©]) are two members of B, then

1142 = ASfl| < e [[J[Ar = Aq[I] + aa[[| (A1 — A}, ©1 = ©))]]4, (2.39)

1
1162 = OaI| < = ([[©1 = O Il + an[[(Ar — Ay, ©1 = OY)]l}+) - (2.40)
Adding up (2.39) and (2.40), we obtain

[[|(A2 — A%, ©2 — ©Y)]]|+
< [oa(1+1/d) + max(c, 1/d)] ||[(Ar — A}, ©1 — ©))]|]+
= ofl|(A1 —ALO -0+

where by assumption o < 1. This means that (A;,©1) — (A2, ©2) is a shrinking map on B
whose fixed point (A, ©) provides us with the unique bounded solution to (2.35) and (2.36).
Equivalently, if Hy is defined through (2.34) and Ry through (2.22), then Ry is the unique map
R® x Rl x £ — R® x R! x & of the form (H,id), where id is the identity map on &, such that
H — (y,z) € B and such that the commuting relation (2.23) holds. It remains for us to show
that Ry is a homeomorphism. For this, notice first that Ry is continuous, because Hy turns out
to be continuous : indeed, iterating the formulas (2.37) and (2.38) starting from any initial pair
(A1, ©,) yields a sequence of maps converging to (A, ©) in B, and if the initial pair is continuous
(we may for instance choose the zero map) so is every member of the sequence hence also the limit
since |||.|||+ induces on B the topology of uniform convergence. Next, if we switch the roles of T}
and T5, the above argument provides us with a continuous map Rj, : R® x RixE -RExRx &
of the form (H',id)) with H' — (y, z) € B, satistying R{T> = T1R|. Then, the composed map
R = R{ Ry satisfies RT) = T1 R, and since it is again of the form (H”,id)) with H" — (y, z) € B,
we get R = id by the uniqueness part of the previous proof. Similarly RoR{, = id, so that finally
Ry is invertible with continuous inverse R{, hence a homeomorphism. O O

2.3 Grobman-Hartman theorems for control systems
We consider a control system of the form :
&= f(z,u), ze€R", uwelR™, (2.1)

and we suppose that f(0,0) = 0, i.e. we work around an equilibrium point that we choose to be
the origin without loss of generality. We assume that f is continuous, and throughout we also
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make the hypothesis that 0f/0x(z,u) exists and is jointly continuous with respect to (x,u).
Subsequently, we single out the linear part of f by consistently setting A = %(0,0), so that
(2.1) can be rewritten as
&t = Az + P(z,u)
oP 2.2
x

If in addition f happens to be continuously differentiable with respect to u as well, we set
B = %(O, 0) and we further expand (2.2) into

&t = Ax + Bu + F(z,u)
OF OF (2.3)
ith F(0,0) = —(0,0) = —(0,0) = 0.
with F(0,0) = 5-(0,0) = =(0,0)

Since (2.3) is derived under the stronger hypothesis that f is of class C'* with respect to both

x and u, one would expect stronger results to hold in this case. We want to stress that, deceptively
enough, local linearization of (2.3) will turn out to be a consequence of local linearization of
(2.2) although the latter was derived without differentiability requirement with respect to w.
This is due to the — even more surprising — fact that (2.2) will be locally conjugate to the non
controlled system & = Ax, that is to say the influence of the control can be entirely assigned to
the linearizing homeomorphism. Compare Theorems 2.3.1 and 2.3.3, and see also Remark 2.3.8.

2.3.1 Prescribed dynamics for the control

We investigate in this subsection the situation where, in system (2.1), the control function
u(t) is itself the output of a dynamical system of the form :

¢ = 9(0),
. = b (2.4)

where ((t) € R?, while g : R? — RY is locally Lipschitz continuous and h : R? — R™ is continuous
with, say, h(0) = 0. In particular, u(t) is entirely determined by the finite-dimensional data (0)
and, from the control viewpoint, this is a particular instance of feed-forward on system (2.1) by
system (2.4) where the input may only consist of Dirac delta functions.

Assume first that f is of class C* with respect to x and u so that (2.3) holds. Plugging (2.4)
into the latter yields an ordinary differential equation in R"*4 :

i = Az + Bh(() + F(z,h(()),
¢ = 9.

To motivate the developments to come, observe that if ¢ is continuously differentiable with
g(0) =0, if A and 0g/9((0) are hyperbolic, and if h is continuously differentiable, then we can
apply the standard Grobman-Hartman theorem on ordinary differential equations to conclude
that the flow of (2.5) is topologically conjugate, via a local homeomorphism (z,¢) — (z,£)

around (0,0), to that of | o
() = (0 ) (2)-

However, the hyperbolicity requirement on dg/9¢(0) is more stringent than it seems. Indeed, it
is often desirable to study non-trivial steady behaviors, which usually entail oscillatory controls.
This is why we rather seek a transformation of the form (z,¢) — (H(z,(),() that linearizes
the first equation in (2.5) but preserves the second one. This can be done, as asserted by the
following result which does not require hyperbolicity nor even continuous differentiability on g.

(2.5)
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Theorem 2.3.1. Suppose in system (2.5) that g : R? — RY is locally Lipschitz continuous, that
h:R? — R™ is continuous with h(0) =0, that F : R™ x R™ — R" is continuously differentiable
with F(0,0) = 0F/0x(0,0) = 0, and that A is hyperbolic. Then, there exist two neighborhoods
V and W of 0 in R™ and RY respectively, and a map H : V x W — R™ with H(0,0) = 0, such

that
HxId: VxW — R"™ x W

(z,¢) = (H(,¢),()

is a homeomorphism from V x W onto its image that conjugates (2.5) to

2 = Az + Bh((),
¢ = 9.

Remark 2.3.2. In Theorem 2.3.1 (resp. Theorem 2.3.3 to come), we assume for convenience
that all the functions involved, namely F (resp. P), g, and h, are globally defined. However,
since the conclusion is local with respect to x and (, the same holds when these functions are
only defined locally on a neighborhood of the origin, as a partition of unity argument immediately
reduces the local version to the present one.

(2.6)

Although it looks natural, the above theorem deserves one word of caution for the homeo-
morphism H depends heavily on g and h, and in a rather intricate manner. In fact, it is possible
to entirely incorporate the influence of the control into the change of variables, so as to obtain a
statement in which the term Bh(() does not even appear in the transformed system. This will
follow from Theorem 2.3.3 to come, for which we no longer assume in (2.1) that f is differentiable
with respect to u. Accordingly, we plug (2.4) into (2.2) rather than (2.3), and we obtain instead
of (2.5) the following ordinary differential equation in R"*¢ :

i = Az + P(z,h(()),
¢ = g(¢),

whose flow will be denoted by (¢, xo, (o) — (z(t, x0, o), ((t,o))-

(2.7)

Theorem 2.3.3. Suppose in system (2.7) that g : R? — R? is locally Lipschitz continuous,
that h : R? — R™ is continuous with h(0) = 0, that P(x,u) is continuous R™ x R™ — R"
with P(0,0) =0, that OP/0x exists and is continuous R™ x R™ — R™*™ with 0P/0x(0,0) = 0,
and that A is hyperbolic. Then, there exist two neighborhoods V' and W of 0 in R™ and RY
respectively, and a map H : V. x W — R"™ with H(0,0) = 0, such that

HxId: VxW — R'xW
(z,¢) = (H(z,0),()

is a homeomorphism from V x W onto its image that conjugates (2.7) to

z'_:Az,
¢ = g(¢),

i.e. for all t,xo, (o such that (z(7,x0,0),((T,(0)) € V x W for all T € [0,t] (or [t,0] if t <0),

one has

(2.8)

H(ZE(t, xo, CO)? C(t7 CO)) = etAH(lb? CO)

Theorem 2.3.1 is a consequence of Theorem 2.3.3 because the latter implies that (2.5) and
(2.6) are both conjugate to (2.8). As to Theorem 2.3.3 itself, we will show that it is a consequence
of Theorem 2.2.1. This will require an elementary lemma enabling us to normalize the original
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control system. To state the lemma, we fix, once and for all, a smooth function p : [0, +00) —
[0, 1] such that
vt, p(t)] <3,
0<t<y = p(t)=1,
t<t<l = 0<p@) <1,
1<t = p(t)=0,
and we associate to any map [ : R" x R™ — R" a family of functions G, : R" x R™ — R",
indexed by a real number s > 0, using the formula :

(2.9)

T 2
Go(z,u) 2 ) (”SZH ) B, ). (2.10)

Since the context will always make clear which 3 is involved, our notation does not explicitly
indicate the dependency of G on the map . The symbol ||.||, in the statement of the lemma,
denotes the norm, not only of a vector, but also of a matrix; the result does not depend on a
specific choice of this norm. Also, B(z,r) stands for the open ball of radius r, centered at x, in
any Euclidean space.

Lemma 2.3.4. Let f(x,u) be continuous R™ x R™ — R™ and 03/0x continuously exist R™ x
R™ — R™ ™ with 3(0,0) = 03/0x(0,0) = 0. Then Gs(x,u) defined by (2.10) is in turn conti-
nuous and continuously differentiable with respect to x for every s > 0, and to each n > 0 there
exist o > 0 and 6 > 0 such that

V(z,u) € R" x B(0,6), Hai"

(z,u)]] < n. (2.11)

Proof. For the proof, we use the standard Euclidean norm on R™, R™, and the familiar operator
norm on matrices. Clearly G is continuous and continuously differentiable with respect to x for
every s > 0, and we have :

G 2\ o 2 2
s ) = p(”gﬁ” )8f<x,u> Y (”ﬂ' ) Bz, u) 27, (2.12)

52

where 27 is the transpose of z. Since 3 is continuously differentiable and 93/9z (0,0) = 0, we
get for s > 0 small enough that ||03/0x (x,u)|| < n/14 as soon as ||z, |u]| < s. Let o be an s
with this property. Since 3 is continuous with 3(0,0) = 0, we can in turn pick § with 0 < 6 < o
such that ||3(0,u)|| < no/12 whenever ||u|| < 6. Altogether, we get that

5]
lz]| < o } N { 152 (@, w)ll < 15,
lulf < 0 16(0,w)]| < 15

Now, we need only check (2.11) when ||z|| < o for otherwise G, is identically zero; therefore
we restrict ourselves to pairs (z,u) where ||z]| < ¢ and ||u| < 6. On this domain, we get from
(2.13) and the mean value theorem that

(2.13)

n no 13no
< - = ==

Using this together with (2.13) and the inequalities |p| < 1, ||| < 3, as well as ||zT|| < o,
formula (2.12) with s = o yields :
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Proof. Proof of Theorems 2.3.1 and 2.3.3. We already mentioned that Theorem 2.3.1 is a conse-
quence of Theorem 2.3.3. To establish the latter, consider the following “renormalized” version

of (2.7) :
o= Ar 4 p(I2) P (rp (140 nic)). (2.14)
&= el 9(0),

where p is as in (2.9) and where o, 0 are strictly positive real numbers to be adjusted shortly.
Because the flows of (2.14) and (2.7) do coincide as long as ||z|| < o/V2, ||C]| < 1/2, [|M(Q)| <
/2, and since these inequalities define a neighborhood (0,0) in R"™ x R™ by the continuity of h
and the fact that h(0) = 0, it is enough to prove the theorem when (2.7) gets replaced by (2.14)
for some pair of strictly positive o, 6. To this effect, we shall apply Theorem 2.2.1 with & = R¢Y
endowed with the flow of p(||C]]) g(¢), namely S;({p) is the value at ¢ = 7 of the solution to the
second equation in (2.14) whose value at ¢t = 0 is (p, and with

Gl ¢, t)p<\| ||2> P<$,p<\|h(3t9( ))H> WS (C)))-

We now proceed to check that the assumptions of Theorem 2.2.1 are fulfilled if ¢ and 8 are
properly chosen. Firstly, since g is locally Lipschitz continuous while p is smooth with compact
support on [0, +00), we see that ¢ — p(]|C]|) g(¢) is a bounded Lipschitz continuous vector field
on RY hence it has a globally defined flow, which is continuous by Lemma 2.4.1. This tells us
that (7,() — S;(¢) is continuous R x R? — RY, so S; is indeed a one-parameter group of
homeomorphisms on R? and 7 +— S;(() is certainly Borel measurable since it is even continuous.
The continuity of (7, () — S;(¢) also makes it clear that G(z, ,t) is continuous and continuously
differentiable with respect to x granted the continuity of h, the smoothness of p, and the fact
that P itself is continuous and continuously differentiable with respect to the first variable. A
fortiori then,  — G(z,(,t) is continuously differentiable and ¢ +— G(z,(,t) is measurable.

Secondly, observe since p is bounded by 1 and vanishes outside [0, 1] that ||p(6~!||u||)u|| < @
for all u € R™, consequently G takes values in the smallest ball centered at 0 that contains
P(B(0,0),B(0,0)); this last set is relatively compact by the continuity of P hence G is bounded.
The same argument shows that dG/0x is also bounded, in other words we can choose ¢¢ and )¢
to be suitable constant functions in (2.16), independently of ¢. In particular, (2.17) and (2.18)
will hold. Moreover, if we set 5(z,u) = P(x,u), we have with the notations of (2.10) that

6(e.6.1) = G (2.0 (M5 ) s (2,15

Since p(67Y|h(v)||)h(v) lies in B(0,0) for all v € R? so in particular for v = S;(¢), we deduce
from (2.15) and Lemma 2.3.4 that 0G/0x can be made uniformly small for suitable o and 6.
That is to say, the number 7 in (2.18) can be made arbitrarily small upon choosing o and 6
adequately, in particular we can meet (2.19).

Thirdly, the condition (2.16) that we just proved to hold (actually with constant functions
¢¢ and 9¢ independent of ) entails that the first equation in (2.14) has a unique solution given
initial conditions z(0) and ¢(0) (¢f for instance [98, Theorem 54, Proposition C.3.4, Proposition
C.3.8]) and, since the same holds true for the second equation as was pointed out when we
defined S;(¢), we conclude that the whole vector field in the right hand-side of (2.14) has a flow
on R"™% = R" x RY, which is continuous by Lemma 2.4.1. As 7, defined in (2.6), is nothing but
the projection of this flow onto the first factor R™, we conclude that (7, zg,() — Z(7, 0, () is
continuous. Finally, notice that (2.5) is immediate from the group property of S;. Having verified
all the hypotheses of Theorem 2.2.1, we apply the latter to conclude the proof of Theorem
2.3.3. O O
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2.3.2 Control systems viewed as flows

In [25], a general way of associating a flow to a control system is proposed, based on the
action of the time shift on some functional space of inputs. Before giving the proper framework
for our results, let us first carry out a few measure-theoretic preliminaries.

For arbitrary exponents p € [1, 00|, we denote by L£P(R,R™), or simply by £? for short, the
space of measurable functions Y : R — R™ such that

1/p
Iy, = (/ ||T<t>||pdt) coo ifp<os,
R

ITloc = ess. sup. [|[T(@#)|| <oo ifp=o0.
teR

In the above, measurability and summability were implicitly understood with respect to
Lebesgue measure. The same definitions can of course be made for any positive measure. We only
consider measures defined on the same o-algebra as Lebesgue measure (namely the completion
of the Borel g-algebra with respect to sets of Lebesgue measure zero). We explicitly indicate the
dependence on the measure u of the corresponding functional spaces and norms by writing £P#
and || [lpge

Remark 2.3.5. If u is a positive measure on R as above, and if  and Lebesgue measure are
mutually absolutely continuous, then for any Lebesgue measurable (hence also p-measurable)
function Y it holds that ||Y||cc = || T||cc,u- Indeed, we have that | Y| o < o if, and only if, the
set Eq of those x € R for which || Y||(z) > « has Lebesgue measure zero. Since the latter holds
if, and only if, (Ey) = 0, it is equivalent to require that ||Y|s,, < @ as announced.

For any p € [1,00] and 7 € R, we define the time shift ©, : LP — LP by
O.(T)(t)="T(r+1) . (2.16)

It is well known that, for fixed T € £P, the map 7 — O,(T) is continuous R — £LP if 1 <p < o0
[90, Theorem 9.5]. When p = oo it is no longer so, but the map is at least Borel measurable :

Lemma 2.3.6. For fized T € L, consider the map Ty : R — L defined by Ty (1) = ©,(7).
If V is open in LP, then Ty (V) is measurable in R.

Proof. Set for simplicity Ty(7) = Y,, and fix arbitrarily v € £ together with ¢ > 0. It is
enough to show that the set

E={reR; ||T; -] > ¢}

is measurable. Let y be the measure on R such that du(t) = dt/(1 + t?). In view of Remark
2.3.5, we can replace ||.||oc by ||.|[oo,u in the definition of E. Now, since p is finite, the functions
Y, and v belong to £V#, which is to the effect that

Dl 177 — U”oo,ua (2.17)

lim ||, —v
p—00
see e.g. [90, Chap. 3, Ex.4]. In particular, if we let
Epp={reR; [[Tr —vlpu>e},

we deduce from (2.17) that

[o o lNe o)
E:ﬂUEM

k=1 j=k
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where k and j assume integral values, so we are left to prove that E; , is measurable. But since
translating the argument is a continuous operation R — £P* when p < oo [90, Theorem 9.5,
each F; , is in fact open in R thereby proving the lemma. O O

Endowed with ||.|[,-balls as neighborhoods of 0, the set £? is a topological vector space but
it is not Hausdorff; identifying functions that agree almost everywhere, we obtain the familiar
Lebesgue space LP of equivalence classes of LP-functions; it is a Banach space, whose norm,
still denoted by |.||p, is induced by ||.||, defined in £P, and whose topology coincides with the
quotient topology arising from the canonical map £P — LP. The time shift O, : LP — LP defined
by (2.16) induces a well defined map O, : LP — LP. In what follows, results are stated in terms
of LP, but we do make use of LP for the proof because point-wise evaluation makes no sense in
Lr.

Let us now come back to our control system, namely (2.2), which is obtained from (2.1) by
singling out the linear term in = around the equilibrium (0,0) € R™ x R™. This time, however,
we emphasize the functional dependence on the control by writing

&t = Ax + P(z,Y(t)), (2.18)

where, as in the preceding subsection, P : R® x R™ — R" is continuous and has continuous
derivative with respect to the first argument %—I; :R" X R™ — R™*™. We fix some p € [1, 0] and
we consider controls T € LP(R,R™). Thus, when p < oo, we shall have to handle unbounded
values for Y(¢), and this will necessitate an extra assumption. Namely, if 1 < p < oo, we assume
that to each compact set K C R™, there are positive constants c;(K), ca(K) such that

1P (; u)|| + IIZI;(%U)H < a(K) + oK) [[ul?, (z,u) € K xR™, (2.19)
where we agree, for definiteness, that the norm of a matrix is the operator norm. Classical results
imply (see e.g. [98, Theorem 54, Proposition C.3.4]) that the solution to (2.18) uniquely exists
on some maximal time interval once x(0) = zg and T € LP are chosen. This solution we denote
by

t— x(t,x0, 1) .

This allows one to define a flow on R™ x LP, or on R™ x LP, the flow at time 7 being given by
(.’Eo, T) = (JI(T, Zo, T) ) @T<T> ) . (220)

The main result in this subsection is the theorem below. It is of purely open loop character,
that is to say the linearizing transformation (x, ) +— (z,T) operates at a functional level where
z depends not only on z, but also on the whole input function T : R — R™. That type of
linearization is intriguing in the authors’ opinion, but its usefulness in control is not clear unless
the structure of the transformation is thoroughly understood. Unfortunately our method of proof
does not reveal much in this direction, which may deserve further study.

Theorem 2.3.7. Suppose in (2.18) that P(x,u) is continuous R™ x R™ — R™ with P(0,0) =0,
that OP/0x exists and is continuous R™ x R™ — R™™ with 0P/0x(0,0) = 0, and that A is
hyperbolic. Let p € [1,00|, and,if p < 0o, assume that, to each compact set K C R", there are
positive constants c¢1(K), co(K) such that (2.19) holds. Then, there exist two neighborhoods V/

!The proof is given there for Lebesgue measure only, but it does carry over mutatis mutandis to any complete
regular Borel measure on R, hence in particular to u.
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and W of 0 in R™ and LP(R,R™) respectively, and a map H : V- x W — R™ with H(0,0) = 0,
such that
HxId: VxW — R” x W

(,7) = (H @), T) 221
is a homeomorphism from V x W onto its image that conjugates (2.18) to
z= Az, (2.22)

i.e. for all (t,xo, ) € R x R™ x LP(R,R™) such that (x(1,20,Y),Y) € VX W for all 7 € [0, ]
(or [t,0] if t <0) one has
H(x(t,x0,Y)) = e H(zo,T). (2.23)

Remark 2.3.8. The above theorem parallels Theorem 2.3.3 of section 2.5.1, in that we initially
wrote & = f(x,u) in the form (2.2), assuming that f is continuously differentiable with respect
to x, to finally conclude, under suitable hypotheses, that (2.18) is locally conjugate in some
appropriate sense to the non-controlled linear system (2.22). We might as well have stated an
analog to Theorem 2.3.1 where, assuming this time that f is of class C, we write & = f(z,u) in
the form (2.3) with hyperbolic A, assuming in addition if p < oo that for any compact K C R™
one has

1 (2, w)|| + II%(%U)H < ci(K) + co(K) [[ull?, (z,u) € K xR™, (2.24)

to conclude that & = Az + BY(t) + F(x,Y(t)) is conjugate via z = H(z,Y) to 2 = Az+ BY(t),
where H x Id is a local homeomorphism at 0 x 0 of R™ x LP. Again, although the presence of
the control term BY(t) in the linearized equation makes it look more natural, the result we just

sketched is a logical consequence of Theorem 2.3.7 just like Theorem 2.3.1 was a consequence of
Theorem 2.3.3.

To prove Theorem 2.3.7 we shall again apply Theorem 2.2.1 to a suitably normalized version
of (2.18), the normalization step depending on the following lemma which stands analogous to
Lemma 2.3.4 in the L£P context. For convenience, we denote below by Br»(v,7) the ball centered
at v of radius r in £P, and by Ello (R, R™) (or simply L'llo . if no confusion can arise) the space of
locally integrable functions, namely those whose restriction to any compact K C R belongs to

LK, R™).

Lemma 2.3.9. Let B(x,u) be continuous R™ x R™ — R™ and 93/0x continuously exist R™ x
R™ — R™™ with $(0,0) = 03/0x(0,0) = 0. Assume for some p € [1,00) that, to each compact
set K C R™, there are positive constants c1(K), co(K) such that
op m

16, w)| + 5 (2, w)ll < er(K) + e2(K) Jull”,  (2,u) € K < R™. (2.25)
Then, Gs being as in (2.10), it holds that for every s > 0 and any T € LP(R,R™) we have
Gs(z,Y) € L1 (R,R") and 0Gs/0xz(x,Y) € L] (R,R™") for fivzed x € R. Moreover, to each

n > 0 there exist 0 > 0 and 6 > 0 such that G, satisfies :
VY € Br(0,0), there exists iy € L} (R,R) such that

loc

Uyl <0 and, Yz eR™, |22 (z,T)| < oy (2.26)

Proof. For fixed z € R, it is clear from (2.25) that both Gs(z,Y) and 0G,/0x(z,T) belong
to £} (R,R") when T € LP(R,R™), measurability being ensured by the continuity of G5 and

loc

0G4 /0x. To prove (2.26), first apply Lemma 2.3.4 to find o > 0 and 6y > 0 such that

0G

V(xz,u) € R" x B(0,60p), || o (x,u)|]| < n/2. (2.27)
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Next, let ¢; = ¢1(B(0,0)) and ¢y = ¢2(B(0,0)) be defined after (2.25), and observe that
V(z,u) € R" x R™, ||0Gy/0z (z,u)|| < (1+6/0)(c1 + caf|ul|P) (2.28)

because when ||z|| < o this follows from (2.12), (2.25) and the fact that |p’| < 3, whereas G,
vanishes anyway when ||z|| > o. Introduce now the set

Ex g, ={t €[0,1], |Y] < 6o} (2.29)

Letting ¢y (t) = n/2 for t € Ex g, and ¥y (t) = (14 6/0)(c1 + c2||Y(¢)|?) otherwise, it is clear
that ¢y € £}, .(R,R) and it follows from (2.29), (2.27), and (2.28) that ||0G,/0z(z, T)| < ¢r
for any = € R™. In another connection, let v be the measure on R given by dv(t) = |Y(¢)|Pdt.
By absolute continuity of v with respect to Lebesgue measure, there is € > 0 such that

/ | TP dt <1 121+ 6/0) + 6/0) as soon as |E| < e, (2.30)

where |E| denotes the Lebesgue measure of a measurable set £ C R [90, Theorem 6.11]. Pick

6 > 0 so small that 0
n
— _ 3. 2.31

90 <max{6, 4(1+6/O’)01} ( )

Then, if |||, < 6, the set [0,1] \ Ev g, has measure at most 6/6y hence, by definition of ¢y, we
get in view of (2.30) and (2.31) the estimate :

77 0 n
HQpTHLl[O,l 9 %(1 +6/0)c1 + 1
which is less that n/2 +n/4 4+ n/4 = n by (2.31) again, as desired. O ]

We are now in position to establish Theorem 2.3.7.

Proof. Proof of Theorem 2.3.7 For the proof we can replace L” by L, because if we find a local
homeomorphism of R™ x £P at 0 x 0, of the form H x Id, that conjugates (2.18) to (2.22), the
fact that x(T,@,T) depends only on the equivalence class of T in L” implies that the same
holds true for H(xp, T), and therefore H x Id will induce a quotient map H x Id around 0 x 0
in R™ x LP that is still a local homeomorphism by definition of the quotient topology. To prove
the LP version, we consider the following “re-normalization” of (2.18) :

w4 p(ll !2) P<x,p<”2”p>T>, (2.32)

where p is as in (2.9) and o, 6 are strictly positive real numbers to be fixed. Because the right-
hand sides of (2.32) and (2.18) agree as long as |z|| < o/v/2 and ||Y||, < /2 which defines a
neighborhood (0,0) in R™ x £LP, it is enough to prove the theorem when (2.18) gets replaced by
(2.32) for some pair o,0. To this effect, we shall apply Theorem 2.2.1 with £ = LP, endowed
with the one-parameter group of transformations S, = ©, defined by (2.16), and

Gz, ¢ t) =p (”j!Q) P (x p (”%’”’) C(t)> :

Let us check that the assumptions of Theorem 2.2.1 are met if ¢ and 6 are suitably chosen.

Firstly, it is obvious that S, is continuous (hence a homeomorphism since S.! = S_) because
it is a linear isometry of £P. In addition, 7 — S;(() is certainly Borel measurable, because it is
even continuous when p < oo [90, Theorem 9.5] while Lemma 2.3.6 applies if p = oco.
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Secondly, it follows immediately from the assumptions on P and the smoothness of p that
G(zx,(,t) is continuously differentiable with respect to z for fixed ¢ and ¢, while the measurability
of t — G(z,(,t) follows from the continuity of P and the measurability of ¢. To prove the
existence of ¢ and 1)¢ in (2.16), we distinguish between p < oo and p = oco. If p < 0o, by (2.19)
and the fact that p is bounded by 1 and vanishes outside [0, 1], a valid choice for ¢ is

oclt) = a(B0.0)) + ea(BO.0)) 2 (1512 ey

and, since by the properties of p we have that

i (”%””) (| <o wer, 1=p<m, (2.33)
p
it follows that (2.17) is met with
M = ¢1(B(0,0)) + ca( B(0,0)) 6P.
As to )¢, observe if we set B(x,u) = P(z,u) that, with the notations of (2.10), one has

6o =6, (0 (1) c). -

so Lemma 2.3.9 ensures the existence of ¢¢ and also that the number 7 in (2.18) can be made
arbitrarily small upon choosing o and 6 adequately ; in particular we can meet (2.19). If p = oo,
bc(t) = sup

.Z’EB(O,U)

so that the first half of (2.16) holds by the properties of p. By (2.33) we also have that

€1l
0

oclloo < o sup 1P (x,uw), (2.35)
(z,u)€B(0,0)x B(0,0)

so that ¢. € L>(R,R) hence it is locally summable, and the right-hand side of (2.35) may serve
as M in (2.17). As to 9, observe that (2.34) still holds for p = oo, again with 3(x,u) = P(z,u),

SO we can set oG €]l
i (o (152) )

Go
% (l’,u)

Ye(t) = sup
z€B(0,0)

)

and using (2.33) once more we get

[¥¢lloe < sup : (2.36)

(x,u)€B(0,0)xB(0,0)

Thus ¢ € L2(R,R) hence it is locally summable, and applying Lemma 2.3.4 to the right-hand
side of (2.36) shows that [[1)¢||oc can be made arbitrarily small upon choosing o and 6 adequately.
Consequently 7 in (2.18) can be as small as we wish and in particular we can meet (2.19).
Thirdly, ¢t — Z(t, zo, () defined in (2.6) is just the solution to (2.32) corresponding to T = ¢
and z(0) = zp, which uniquely exists for all ¢ by (2.16), see e.g. [98, Theorem 54, Proposition
C.3.4, Proposition C.3.8]. The continuity R"” x LP — R" of (xq, () — Z(t, zo, () is now ascertained
by Proposition 2.4.4, once it is observed that F(x,u) = Az + p(||z|?/0?)P(x,u) satisfies the
hypotheses of that proposition by (2.19) and the properties of p, and also that Ax + G(z,(,t)
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is the composition of F' with the continuous map on R" x LP given by (z,() — (z, p(|[¢]|»/0)¢)
(Proposition 2.4.4 was actually proved for LP controls, but nothing is to be changed if we work

in LP).
Finally, notice that (2.5) is immediate by the very definition of ©,. Thus we can apply
Theorem 2.2.1 to conclude the proof of Theorem 2.3.7. O O

Remark 2.3.10. It should be noted that, unlike Theorems 2.3.1 and 2.5.3, Theorem 2.3.7 cannot
be localized with respect to u when p < co. However, using a partition of unity argument, the

result carries over to the case where, in (2.18), the map P is only defined on V x R™ where V
is a neighborhood of 0 in R™.

In [25], particular attention is payed to the weak-* topology on £ for the control space,
because it makes the flow 7 +— ©,(T) continuous for fixed Y. Subsequently, this reference focuses
on systems that are affine in the control : & = Xo(x) + C(z)u, where Xg is a C! vector field
on R® and C : R® — R™™ a C! matrix-valued function ; the reason for this affine restriction
is that it ensures, in the weak-* context, the sequential continuity of (zg, ) — (7,29, Y) for
fixed 7, whenever the flow makes sense : this is easily deduced from the Ascoli-Arzela theorem
and the fact that weak-* convergent sequences are norm-bounded [91, Theorem 2.5]. Although
the continuity of the flow © was never a concern to us (only Borel measurability was required),
it is natural in this connection to ask what happens with Theorem 2.3.7 if we endow L*° with
the weak-* topology inherited from the (L', L>°) duality. On the one hand, in case one restricts
his attention, as is done in [25], to a balanced, weak-* compact time-shift invariant subset of
L™ containing 0, e.g. a ball Br(0,7), then the conclusions of the theorem still hold if we equip
the subset in question with the weak-* topology. Indeed, the weak-* topology is metrizable on
any compact set £ because L! is separable [91, Theorems 3.16] and, since weak-* convergent
sequences are norm- bounded, it follows if F is balanced that one can find a neighborhood of
0 in E which is included in Br(0,8) for arbitrary small §. In particular we can embed this
neighborhood in W of Theorem 2.3.7, and then it only remains to show that (2.21) remains
continuous if W is equipped with the weak-* topology ; this in turn reduces via (2.23) to the
already mentioned fact that (zg, ) — x(7,x¢, T) is sequentially continuous for fixed 7 when the
topology on T is the weak-* one. On the other hand, working weak-* with unrestricted controls
in L raises serious difficulties, for no weak-* neighborhood in L can be norm-bounded. This
results in the fact that, although © is now continuous, the domain of definition of the flow
(2.20) may fail to be open : for instance the equation # = x + z2Y(t) with initial condition
x(0) = xo, where x and T are real-valued, cannot have a solution on a fixed interval [0,¢] for
every (zo,Y) € B(0,7) x Wy if Wy is a weak-* neighborhood of 0 in L>°(R,R). Therefore it
is hopeless to build a local homeomorphism by integrating the flow as is done in the proof of
Theorem 2.2.1, and the authors do not know what analog to Theorem 2.3.7 could be carried out
in this context.

Remark 2.3.11. The paper [21] considers transformations R™ x L>® — R™ x L, using for
the input space a topology on L™ which is intermediate between the weak-* and the strong one.
There the structure of conjugating homeomorphisms is not (2.21) but rather a triangular form :

(#,T) — (H(z), F(z,T))

that combines what is called in this reference “topological static state feedback equivalence” and
“topological state equivalence”[21, Definition 5]. We refer the interested reader to the original
paper for a result on topological linearization of systems with two states and one control, using
this type of transformation, under some global hypotheses.
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2.4 Appendix on the flow of ODEs

Continuity without Lipschitz assumption. Let U/ be an open subset of R?. We say that a
continuous vector field X : U — R? has a flow if the Cauchy problem #(t) = X (z(t)) with initial
condition z(0) = x¢ has a unique solution, defined for ¢ € (—¢,¢) with € = ¢(z¢) > 0. The flow
of X at time ¢ is denoted by X, in other words, with the preceding notations, X;(xo) = x(t).
It is easy to see that the domain of definition of (¢,z) +— X;(x) is open in R x U. Although
there is no clear characterization of the vector fields, or ODEs, that have a flow, they enjoy
special properties, even without assuming the well known sufficient Lipshitz conditions on the
right-hand side. Lemma 2.4.1 below is a special case of [24, Chapter 2, Theorem 4.3] or [47, chap.
V, Theorem 2.1]. Lemma 2.4.2 is an application of [24, chapter 2, Theorem 4.1] (that theorem
refers to a continuous parameter p instead of the integer k : apply it to X (u, z) piecewise affine
with respect to p and such that X (0,2) = X (z) and X (£1,2) = X*(x)).

Lemma 2.4.1. If X : U — R% is a continuous vector field that has a flow, the map (t, x) — X¢(x)
s continuous on the open subset of R x U where it is defined.

Lemma 2.4.2. Assume that the sequence of continuous vector fields X* : U — R? converges
to X, uniformly on compact subsets of U, and that all the X* as well as X itself have a flow.
Suppose that Xi(x) is defined for all (t,z) € [0,T] x K with T > 0 and K C U compact.
Then X[F(x) is also defined on [0,T) x K for k large enough, and the sequence of mappings
(t,x) — XF(x) converges to (t,x) — Xi(x), uniformly on [0,T] x K.

Differentiability with measurable dependence on time. Consider a differential equation
T = X(x,t) (2.37)

where the time-dependent vector field X : R” x R — R" satisfies the following properties :
(i) for fixed t € R, the map = — X (x,t) is continuously differentiable R" — R™;
(ii) for fixed z € R", the map ¢t — X (z,t) is measurable R — R;
(iii) for some x1 € R™ there is a measurable and locally integrable function a,, : R — R
such that
| X (x1,8)]| < ag,(t), foralltelR;

(iv) there is a measurable and locally integrable function ¢ : R — R™ satisfying

0X
H@x (z,1)

<(t), forall (z,t) € R" xR,
(6]

where || ||o denotes the familiar operator norm on n x n real matrices.
The choice of the operator norm in (iv) is only for definiteness since all norms are equivalent
on R™*™. Note also that, using (iv) and the mean-value theorem, property (iii) immediately
strengthens to :
(iii)> to each x € R™ there is a measurable and locally integrable function o, : R — RT
such that
| X (z,t)|| < ag(t), forallteR.

Measurability with respect to time and local Lipshitz continuity with respect to the state
(“Caratheodory conditions”) are known to be sufficient for local existence and uniqueness of
solution. Let us state a differentiability result in the not-so-classical case where the dependence
on time is L' but possibly unbounded. It is proved in [74, chapter III], where one can find
comprehensive results assuming assuming only measurability with respect to time.
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By (i), (ii), (iii)’, and (iv), the solution to (2.37) with arbitrary initial condition z(0) =
xo € R™ uniquely exists for all ¢ € R (see [74, Theorem 2.1, Chapter III]), in the sense that there
is a unique locally absolutely continuous function z : R — R” satisfying (2.37) for almost every
t and such that x(0) = zg. We shall denote by Z(, ) the value of this solution at time ¢t = 7, in
other words we let (¢,z9) — Z(7, zo) designate the flow of (2.37). By definition, the variational
equation of (2.37) along the trajectory ¢ — Z(t, zg) is the linear differential equation :

_0X

R 5. (@(tw0), ) R (2.38)

in the unknown matrix-valued function R : R — R™®*".

Lemma 2.4.3 (Theorem 6.1, Chapter III in [74]). If X : R" x R — R" satisfies properties ()-
(iv) above, and if T is the flow of (2.37), then X(t,x) is continuously differentiable with respect
to x and

~

ox
t — %(t, ) (2.39)

is the unique solution of (2.38) with initial condition R(0) = I,,, where I, is the identity matriz
of size n.

Continuity with LP controls. Consider a differential equation of the form
&= F(z,Y(t)) (2.40)

where € R™ while T belongs to LP(R,R™), the familiar Lebesgue space of (equivalence classes
of) functions R — R™ whose p-th power is integrable in case p < oo and whose norm is essentially
bounded if p = 0o ; we endow LP with the usual norm, namely | T, = (J |T||Pdt) /P if p < oo
and ||Y||cc = ess.sup.g|| Y]], where ||.|| denotes the Euclidean norm. Of course, a solution to
the differential equation is understood here in the sense that x(t) is absolutely continuous, and
that its derivative is a locally summable function whose value is given by the right-hand side of
(2.40) for almost every t. Classically, even if F' : R" x R™ — R™ is very smooth, the existence
of solutions to (2.40) when 1 < p < oo requires some restrictions on the growth of F' at infinity.
The following continuity property of the solution with respect to both the initial condition and
T € LP holds :

Lemma 2.4.4 (Theorem 3 in [75], with a = 1). Let F'(z,u) be continuous R" x R™ — R", and
the partial derivative OF |0z exist continuously R™ x R™ — R" ™. Let p € [1,00] and assume if
p < oo that, to each compact K C R"™, there are constants c1(K), c2(K), such that :

1 (2, u)l + II%(%U)H < ci(K) + co(K) [[ull?, (z,u) € K xR™. (2.41)

Then, for any T € LP(R,R™), the solution t +— x(t,xo, ) to (2.40) with initial condition
z(0) = xo uniquely exists on some mazimal time interval Iy, vy containing 0. Moreover, if IC is
a compact subinterval of Iy, v, there is a neighborhood V of (xo, T) in R™ x LP(R,R™) such that
K C Iy xr whenever (zq, ') € V ; within this neighborhood, it further holds that

lim z(t, x5, Y') = z(t, 20, 1), 2.42
o T 1) (t, o, T7) = x(t, 0, T) (2.42)

uniformly with respect to t € K.



Chapitre 3

Reproduction de I’article:

L. Baratchart et J.-B. Pomet,
“On local linearization of control systems”

J. of Dynamical and Control Systems, vol. 15, pp. 471-536, 2009.

Abstract We consider the problem of topological linearization of smooth (C*> or C*)
control systems, i.e. of their local equivalence to a linear controllable system via point-
wise transformations on the state and the control (static feedback transformations)
that are topological but not necessarily differentiable. We prove that local topological
linearization implies local smooth linearization, at generic points. At arbitrary points,
it implies local comjugation to a linear system via a homeomorphism that induces
a smooth diffeomorphism on the state variables, and, except at “strongly” singular
points, this homeomorphism can be chosen to be a smooth mapping (the inverse map
needs not be smooth). Deciding whether the same is true at “strongly” singular points
is tantamount to solve an intriguing open question in differential topology.

3.1 Introduction

Throughout the paper, smooth means of class C*°.

In the early works [57, 50, 103], nice necessary and sufficient conditions were obtained for
a smooth control system @ = f(x,u), with state x € R™ and control u € R™, to be locally
smoothly linearizable, i.e. locally equivalent to a controllable linear system by means of a
diffeomorphic change of variables on the state and the control. The afore-mentioned conditions
require certain distributions of vector fields to be integrable, hence locally smoothly linearizable
control systems are highly non generic among smooth control systems. Similar results hold for
real analytic control systems with respect to real analytic linearizability.

Consider now the topological linearizability of a smooth control system, namely the property
that it is locally equivalent to a controllable linear system via a homeomorphism on the state and
the control which may not, this time, be differentiable. Obviously, smooth linearizability implies
topological linearizability ; the extend to which the converse holds will be the main concern of
the present paper. We address the real analytic case in the same stroke.

In brief, our goal is to describe the class of smooth control systems that are locally topologically
linearizable, yet not smoothly locally linearizable. This class in nonempty : the smooth (even real-
analytic) scalar system

i =u uweR, zeR, (3.1)

55
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gets linearized locally around (0,0) by the homeomorphism (z,u) + (z,u?), whereas the condi-
tions for smooth linearizability fail at this point. However, we observe on this example that the
conjugating homeomorphism has much more regularity than prescribed a priori :

1. it is a smooth (even real-analytic) local diffeomorphism around all points (z,u) such that
u # 0,

2. it is triangular and induces a smooth (even real-analytic) diffecomorphism on the state variable
(i.e. the identity map = +— x),

3. it is a smooth (even real-analytic) map that fails to be a diffeomorphism only because its
inverse is not smooth.

Theorem 3.5.2 of the present paper states that this example essentially depicts the general
situation. More precisely, if a smooth control system is locally topologically linearizable at some
point (Z,u) in the state-control space, then
1". in a neighborhood of (Z,u), the system is locally smoothly linearizable around each point
outside a closed subset of empty interior (an analytic variety of positive co-dimension in the
analytic case),

2. around (Z, 1), there is a triangular linearizing homeomorphism that induces a smooth diffeo-
morphism on the state variable,

3’. the above-mentioned homeomorphism is smooth (although its inverse may not), at least if
df /Ou has constant rank around (z, @) or if sup, ,, Rankd f/Ou(x, u) = m on every neighborhood
of (z,u).

Similar results hold for real-analytic linearization of a real-analytic system.

A homeomorphism satisfying 2 will be called quasi-smooth (see Definitions 3.3.9, 3.5.1),
hence our main result is that local topological linearizability implies local quasi-smooth linea-
rizability. A point (Z,u) where the first rank condition in 3’ is satisfied is called regular, and
at such points local smooth linearizability is equivalent to local topological linearizability (cf.
Theorem 3.5.4). A point (Z,%) where none of the rank conditions in 3’ are satisfied is called
strongly singular. Whether the conclusion of 3’ continues to hold at strongly singular points
raises an intriguing question in differential topology, namely can one redefine the last compo-
nents of a local homeomorphism whose first few components are smooth so as to obtain a new
homeomorphism which is smooth 7 The answer seems not to be known, see the discussion in
section 3.5.1.

Motivations. They include the following.

1. For systems without controls, i.e. ordinary differential equations, local linearization around
an equilibrium has generated a sizable literature, see Section 3.2 for a small sample. It tells
us that, even for a real analytic o.d.e., linearizability much depends on the admissible class of
transformations (formal, real analytic, C* or topological). For instance, although analytic li-
nearization requires subtle conditions relying upon a refined analysis of resonances and small
divisors, the Grobman-Hartman theorem says nevertheless that topological linearization is al-
ways possible at a hyperbolic equilibrium. As one might suspect (this is indeed shown in section
3.5.4), no naive analog to the Grobman-Hartman theorem can hold for control systems because
they feature a family of vector fields rather than a single one. However, it might still be expected
that relaxing the smoothness of the allowable transformations increases the class of linearizable
control systems. It is in fact hardly so : we knew already from [57, 50, 103] that C' lineariza-
bility of a smooth control system implies smooth linearizability, and we prove here that for C°
linearizability this class does not get much bigger. In particular, there are no subtle questions
about resonances and one may say that the most prominent feature of a control system is to be,
or not to be linearizable, regardless of smoothness.

2. Linearizable control systems are systems with linear dynamics, whose nonlinear character
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lies in their input-to-state and state-to-output maps only. Such models are advocated in [58, 95]
for identification (in the discrete-time case), as their reduced complexity makes them more
amenable to standard techniques. It is therefore natural to investigate this class, and topological
equivalence is about the weakest possible from the point of view of identification.

8. From a control engineering point of view, it is common practice to design locally stabilizing
feedback laws for a given system based on its linear approximation when the latter is control-
lable... and to a certain extent one believes that the latter and the former locally “look alike”.
It is therefore legitimate to ask about the relationship between them. Since no discriminating
topological invariants are known, topological conjugacy might appear as a good candidate. The
present paper shows that the relationship is almost never that strong : topological conjugacy to
the linear approximation is almost as rare as differential conjugacy.

Incidentally, a system whose linear approximation is not controllable may still happen to be
locally topologically linearizable, i.e. equivalent to a linear controllable system (which is not its
linear approximation). This phenomenon is clarified in section 3.5.3.

Techniques. The conditions for smooth linearizability derived in [57, 50, 103] come up natu-
rally in some sense. Indeed, to any control system, one may associate a sequence of distributions
defined via a construction using Lie brackets of vector fields attached to the system ; it turns out
that the instance of this sequence of distributions for linear systems yields “constant” —hence
integrable— distributions that span the entire state space in a finite number of steps if the system
is controllable. Since Lie brackets and integrability of distributions are preserved under local dif-
feomorphisms, this translates at once into necessary conditions for smooth linearizability, shown
in [57, 50, 103] to be sufficient. In contrast, homeomorphisms do not allow to pull back Lie bra-
ckets or tangent vector fields; hence the same conditions need not be necessary for topological
linearization, and the proofs in the present paper are more intricate. Specifically, we have to rely
upon the notion of orbits of families of smooth vector fields rather than integral manifolds. The
proof of Theorem 3.5.2 uses classical results concerning such orbits, first established in [101],
that we recall and slightly expand in Section 3.8. Incidentally, the lack of a theory dealing with
orbits of CF vector fields (k € N) is the main reason why the results of the present paper restrict
to C* or C¥ (i.e. real analytic) control systems.

Hopefully our method can be useful to study local topological equivalence to other classes
of systems than linear ones; this is not investigated here.

Organization of the paper. Section 3.2 recalls classical facts on local linearization of or-
dinary differential equations. Section 3.3 introduces conjugation for control systems (under a
homeomorphism, a diffeomorphism, etc.) and establishes basic properties of conjugating maps.
Section 3.4 reviews (topological, smooth, linear) conjugacy between linear control systems after
[17, 108]. Section 3.5 states the main result of the paper (Theorem 3.5.2), namely that local
topological linearizability implies local quasi-smooth linearizability for smooth control systems
(smooth meaning either C*> or C*“), and discusses the gap between smooth and quasi-smooth
linearizability, including geometric characterizations thereof. Section 3.6 contains the proofs of
these results; the proof of Theorem 3.5.2 relies upon section 3.3, results from [101] stated in
Section 3.8, and technical lemmas from Section 3.7.

3.2 Local linearization for ordinary differential equations

Consider the differential equation

2(t) = f(x(t)), (3-2)
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where f € C¥(U,R") with U an open subset of R” and k € NU {oo,w}, k > 1.

It is well known (the “flow box theorem”, see e.g. [6]) that, around each xg € U such that
f(zg) # 0, there is a change of coordinates of class C* that conjugates (3.2) to the equation
1 =1,129=0, ..., &, = 0. Hence all differentiable vector fields are equivalent to each other, at
points where they do not vanish, via a diffeomorphism having the same degree of smoothness
(including real analyticity).

At a point zg € U such that f(z¢) = 0, i.e. at an equilibrium of the dynamical system (3.2),
its linear approximation is the system

z(t) = Az(t) — Axg (3.3)

where A = D f(x0) is the derivative of f at xy. The equilibrium x is said to be hyperbolic if the
matrix A has no purely imaginary eigenvalue.

The problem of locally linearizing (3.2) is that of finding a local homeomorphism h : V — W
around xp mapping the trajectories of (3.2) in V onto trajectories of (3.3) in W in a time-
preserving manner. In other words, if ¢; denotes the flow of (3.2), we should have for each
x € V that

ho ¢u(x) = et (h(x) — h(zo)) + h(zo)

provided that ¢,(xz) € V for 0 < p < t. When this is the case we say that h conjugates (3.2)
and (3.3), and we speak of topological, C*, smooth, or analytic linearization depending on the
regularity of » and A~ L.

Local linearization at an equilibrium is a very old issue. At the beginning of the twentieth
century, H. Poincaré already identified the obstructions to the existence of a formal change of
variables h that removes all the nonlinear terms when f is analytic. These are the so-called
resonances, see e.g. [47, 6]. In fact, resonant monomials of order ¢ are obstructions to linearizing
the Taylor expansion of f at order ¢ and consequently also obstructions to C! linearization.
However, although there exists a formal power series expansion for h when there are no resonant
terms, the existence of a convergent power series for h (analytic linearization) is a delicate issue.
When the eigenvalues of the Jacobian belong to the so-called Poincaré domain, the absence of
resonances indeed implies analytic linearizability (the Poincaré theorem). If it is not the case,
a famous theorem by Siegel gives additional Diophantine conditions on these eigenvalues to the
same conclusion. These conditions are generically satisfied in the measure-theoretic sense [6]. If
no eigenvalue of the Jacobian is purely imaginary, it turns out [89] that the absence of resonances
is also sufficient for smooth (h, h™! of class C*) but in general not real analytic linearization.
This is still valid when f is merely of class C*.

In contrast, if one allows conjugation via a topological but not necessarily differentiable ho-
meomorphism, the Grobman-Hartman theorem asserts that every ordinary differential equation
with no purely imaginary eigenvalue of the Jacobian (hyperbolicity) can be locally linearized
around an equilibrium, that is, resonances are no longer an obstruction. A proof of this classical
result can be found in [47] :

Theorem 3.2.1 (Grobman-Hartman). Under the assumption that xo is a hyperbolic equilibrium
point, system (3.2) is topologically conjugate to system (3.3) at xg.

In fact, it is proved in [105] that the conjugating homeomorphism A (together with its inverse
h~1) can be chosen Holder-continuous, and even differentiable at ¢ (but not in a neighborhood).
This brings additional rigidity to the mapping h.

The above theorem entails that the only invariant under local topological conjugacy, around
a hyperbolic equilibrium, is the number of eigenvalues with positive real part in the Jacobian
matrix, counting multiplicity. Indeed, as is well-known ( cf. [5]), the linear system @ = Az where
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A has no pure imaginary eigenvalue is topologically conjugate to £ = DX, where D is diagonal
with diagonal entries £1, the number of +1 being the number of eigenvalues of A with positive
real part.

3.3 Preliminaries on topological equivalence for control
systems

3.3.1 Control systems and their solutions

Consider two control systems where n, m,n’,m’ are natural integers :

t = flx,u), zeR", weR™, (3.4)
= g(z,v), zeR", veR™, (3.5)
or expanded in coordinates :
jjl — fl(xlv"')xnaula'”aum) 'él — 91(21,...7271/71)1,..-,Um/)
Tn = o1, o, Tny Uty .oy Up) Zo = G (21, oy 20y U1y e ey Upt)

where = or z is called the state and u or v the control.

Although our main results are stated (in section 3.5) for infinitely differentiable —or real
analytic— control systems, their proofs deal with non-smooth objects because the transfor-
mations we consider are only assumed to be continuous. This leads us to keep smoothness
assumptions to a minimum in the present section. Accordingly, the maps f; : R” x R™ — R and
gi R™ x R™ — R are assumed to be at least continuous any additional regularity assumption
will be stated explicitly. We do not restrict their domains of definition ; this is no real loss of
generality because they could anyway be extended using partitions of unity (real analyticity
plays no role in the present section), and whenever a result is stated, the domain where it holds
true is precisely stated and the value of f and g outside this domain does not matter.

If m is zero or f does not depend on u, equation (3.4) reduces to the ordinary differential
equation (3.2). Of course “genuine” control systems are those whose right hand side does depend
on the control.

Definition 3.3.1. By a solution of (3.4) that remains in an open set Q C R"*™  we mean a
mapping v defined on a real interval I, say

vy: I — Q
3.6
b ) = (), () 30
with v1(t) € R™ and vr(t) € R™, such that :
— v is measurable, locally bounded, and 1 is absolutely continuous,
— whenever [T1, T3] C I, we have :
T
Nn(12) — n(h) = . (), y(t))de . (3.7)
1
Solutions of (3.5) that remain in Q' C RY 47 gre likewise defined to be mappings
L (3.8)

t o= At = (n@), n®)

having the corresponding properties with respect to g.
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If (z,u) is a point in Q, U a neighborhood of @ such that {Z} x U C €, J a real interval,
and 7y : J — U a measurable and locally bounded map, then, by [24, Ch. 2, Theorem 1.1] and
the continuity of f, there exists, on a possibly smaller interval I C J, a solution 7 of (3.4) that
remains in 2 subject to the initial condition ~1(0) = Z. This solution may not be unique without
further assumptions on f, for instance that it is continuously differentiable, or merely locally
Lipschitz in the first argument.

Remark 3.3.2. Observe that Definition 3.3.1 assigns a definite value to vy(t) for each t € I.
Of course, since y1 remains a solution to (3.7) when the control vy gets redefined over a set of
measure 0, one could identify two control functions whose values agree a.e. on I, as is customary
in integration theory. However, these values are in any case subject to the constraint that y(t) €
for every t € I, and altogether we find it more convenient to adopt Definition 3.5.1.

3.3.2 Feedbacks

In the terminology of control, a solution in the sense of Definition 3.3.1 would be termed open
loop to emphasize that the value of the control at time ¢ is a function of time only, namely that
~i(t) bears no relation to the state x whatsoever. A central concept in control theory, though,
is that of closed loop or feedback control, where the value of the control at time ¢ is computed
from the corresponding value of the state, namely is of the form «(x(t)). To make a formal
definition of a feedback defined on an arbitrary open set, we need one more piece of notation :
if Q@ C R™ x R™ is open, we let m, : Q — Qgn the natural projection that selects the first n
components, where Qgn = 7,(2) C R™.

Definition 3.3.3. Given an open set Q@ C R""™ g feedback on Q is a continuous mapping
a: Qpn — R™ such that (z,a(x)) € Q for all x € Qgpn. A C* (resp. C¥) feedback on Q is one
of class C* (resp. C¥).

A feedback is nothing but a mapping « such that x +— (z,a(z)) is a continuous section of
the natural fibration m, : Q — Qgn. Of course, there are sets {2 whose topology prevents the
existence of any feedback. However, if there is one there are plenty, among which C*feedbacks
are uniformly dense. This is the content of the next proposition, that will be used in the proof
of Theorem 3.5.2. To fix notations, let us agree throughout that the symbol || || designates the
Euclidean norm on R irrespectively of the positive integer ¢, while B(z,r) stands for the open
ball centered at z of radius 7 and B(z,r) for the corresponding closed ball.

Proposition 3.3.4. Let Q be open in R and o : Qgn — R™ be a feedback on Q. To each
e > 0, there is a C*®feedback 3 : Qrn — R™ such that ||a(x) — B(z)|| < € for z € Qpn.

Proof. Let @ =Ko C K1+ C Ky C K1+ be an increasing sequence of compact subsets of
Qrn, each of which contains the previous one in its interior, and whose union is all of Qgn. For
each x € Qgn, define an integer

k(z) 2 min{keN; z €Ky} . (3.9)
To each k, by the continuity of o and the compactness of K, there is pg > 0 such that

e B(z, ) x Conv { a(B(z, ) } € Q,

® Vuy,uz € Conv { a(B(:U“uk)) }7 [y — ugl| < e, (3.10)

T € Ky :>{

where the symbol Conv designates the convex hull. In addition, we may assume that the sequence
(k) is non increasing.

Denote by I%k the interior of Ky, set Dy = Ki\ IOCk_l for £ > 1, and cover the compact set
Dy, with a finite collection By of open balls having the following properties :
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o
— each of these balls is centered at a point of Dy, and is contained in the open set Cx1 \Kr_2
(with the convention that K_; = @),

— each of these balls has radius at most M.

The union B = (J;~; Bk is a countable locally finite collection of open balls that covers Qgn,
and it has the property that every ball in B is included in B(w, pi()) as soon as it contains x.
Let Bj, for j € N, enumerate B, and h; be a smooth partition of unity where h; has support
supph; C B;. If we pick z; € B; for each j, the map §: Qgrn — R™ defined by

Blz) = hjlx)alz)) (3.11)

jEN
is certainly smooth. In addition, since by construction z; belongs to B(x, uk(x)) whenever hj(x) #
0, we get that B(z) lies in the convex hull of o(B(z,r)) for some r < piy(,), and therefore, from
(3.10) and (3.9), that (z,5(z)) € Q and ||a(z) — B(x)|| < e. Hence § is a smooth feedback on €
such that ||a(x) — (z)|| < € for all x € Qpn. O

3.3.3 Conjugacy

We turn to the notion of conjugacy for control systems, which is the central topic of the
paper.

Definition 3.3.5. Let
x: Q -

(x,u) — x(zu) = (xi(z,u), xp(z,u)) (3.12)

be a bijective mapping between two open subsets of R"™™ and R +m’ respectively. We say that
X conjugates systems (3.4) and (3.5) if, for any real interval I, a map v : I — Q is a solution
of (3.4) that remains in Q if, and only if, x o~y is a solution of (3.5) that remains in .

Although this definition makes sense without any regularity assumption, we only consider
the case when y and ! are at least continuous. Then Brouwer’s invariance of the domain (see
e.g. [77]) implies that n’ +m’ = n+m if (3.4) and (3.5) are conjugate via such a x. Proposition
3.3.6 below asserts that more in fact is true.

Proposition 3.3.6. If the map x in (3.12) is a homeomorphism that conjugates (3.4) to (3.5),
thenn =n', m =m/, and x1 depends only on x :

x(au) = (xa(e), xu(z,u)) . (3.13)

Moreover, x1 : Qrn — Qg is a homeomorphism. Here, one should recall the notation Qgn that
was introduced before Definition 3.5.5.

Proof. Let Z, @, @ be such that (Z,%) and (Z, @) belong to Q. Let further z(t) be a solution' to
(3.4) with 2(0) = = and

wt)=u if t<0,

ut)=au" if t>0.
By conjugacy, z(t) = x1(z(t),u(t)) is a solution to (3.5) with v given by v(¢t) = xu(z(t),u(t)),
for t € (—e,¢€) and some € > 0. In particular xi(z(t),u(t)) is continuous in ¢ so its values at
0% and 0~ are equal. Hence x1(Z,u) = x1(z,u’) so that x : Qrn — Qp,, is well defined and
continuous. Similarly, (X_I)I induces a continuous inverse Q{Rn, — Qgn. By invariance of the
domain n = n'. O

This solution is not necessarily unique since here f and g are merely assumed to be continuous.
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In view of this proposition, we will only consider conjugacy between systems having the same
number of states and inputs. Hence the distinction between (n,m) and (n/,m’) from now on
disappears.

Remark 3.3.7. In the literature, there seems to be mo general agreement on what should be
called a solution of a control system, nor on the concept of equivalence. We discuss and compare
some notions in use in section 3.3.5.

Remark 3.3.8. Tuking into account the triangular structure of x in Proposition 3.5.6, one may
describe conjugacy as resulting from a change of coordinates in the state-space (upon setting
z = x1(z)) and then feeding the system with a function both of the state and of a new control
variable v (upon setting u = (x " i(z,v)), in such a way that the correspondence (z,u) — (z,v)
is invertible. In the language of control, this is known as a static feedback transformation, and
two systems conjugate in the sense of Definition 3.3.10 would be termed equivalent under static
feedback.

This notion has received considerable attention (see for instance [54]), albeit only in the dif-
ferentiable case (i.e. when x is a diffeomorphism). Differentiability has the following advantage :
when x1 and (x1)~! are differentiable, x conjugates systems (3.4) and (3.5) on some domain if,
and only if

_ Ix1
gbale), xalz,w) = 2 -(2) flz,u) (3.14)
holds true on this domain. Hence one may replace Definition 3.3.10, which is based on solutions
to (3.4) and (3.5), by the equality above expressing the way in which x transforms the equations.
Note that the differentiability of x1 is not required.

Various degrees of regularity for x give rise to corresponding notions of conjugacy in Defini-
tion 3.3.10 below.

Definition 3.3.9. For k € NU {oo,w}, k > 1, a map x as in (3.13) is called a quasi-C*
diffeomorphism if and only of it is C° homeomorphism and x1 is a C* diffeomorphism Qrn —
On, d.e. x1 and i~ * are of class CF.

Definition 3.3.10. Let k € NU{oo,w}, k> 1.

Systems (3.4) and (3.5) are topologically (resp. C*, resp. quasi-C*) conjugate over the pair
Q. if there exists a homeomorphism (resp. CF diffeomorphism, resp. quasi-CF diffeomorphism)
X : Q — Q' that conjugates the two systems.

System (3.4) is locally topologically (C*, quasi-C*) conjugate to system (3.5) at (Z,u) €
R™™ if? the two systems are topologically (CF, quasi-CF) conjugate over a pair Q, ', where Q
is a neighborhood of (T, u).

Remark 3.3.11. All definitions are invariant under linear time re-parameterization, namely :
if x : @ — @ conjugates systems (3.4) and (3.5), then for any A € R (if A < 0, this reverses
time) the map x also conjugates the systems

= Af(x,u) and 2z=Ag(z,v).

Indeed, this is trivial for X\ = 0, otherwise, if t — (z(t),u(t)) is a solution of & = Af(x,u)
on a time-interval [t1,t2], and &(t) and u(t) denote respectively x(t/N\) and u(t/\), then t —

2Tt would be more natural to say that system (3.4) at (Z,a) € R™™™ is locally conjugate to system (3.5) at
(',4') € R™™™ if the two systems are conjugate over a pair Q, Q', where Q is a neighborhood of (z,a) and Q'
is a neighborhood of (z',4’). However, prescribing (z’, %) would increase notational burden and add no relevant
information.
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(Z(t),u(t)) is a solution of (3.4) on [Xt1, At2], hence x sends (Z(t ,'I;i( )) to (2(t),0(t)) satisfying

z2(t) = g(2(1),0(1)). Consequently, x maps (x(t),u(t)) to (2(t),v(t)) = ((Z(\t),5(\))), which is
a solution of 2 = Ag(z,v).

In case there is no control ( i. e. m = m’ = 0) so that neither u nor yy appear in (3.12),
Definition 3.3.10 coincides with the usual notion of local conjugacy for ordinary differential
equations.

3.3.4 Properties of conjugating maps

Below we derive some technical facts about conjugacy and feedback that are fundamental to
the proof of Theorem 3.5.2, although they are not needed to understand the result itself.

In the proof of Proposition 3.3.6, we only used conjugacy on a very small class of solutions,
namely those corresponding to piecewise constant controls with a single discontinuity. This
raises the question whether smaller classes of solutions than prescribed in Definition 3.3.1 are
still sufficiently rich to check for conjugacy. Under mild conditions on f and g, as we will see in
the forthcoming proposition, conjugacy essentially holds if it is granted for a class of inputs that
locally uniformly approximates piecewise continuous functions, and this fact will be of technical
use in the proof of Lemma 3.6.3. To fix terminology, we agree that a function I — R™, where [ is
a real interval, is called piecewise continuous if it is continuous except possibly at finitely many
interior points of I where it has limits from both sides and is either right or left continuous. If in
addition the function is constant (resp. affine, resp. C°) on every open interval not containing
a discontinuity point, we say that it is piecewise constant (resp. piecewise affine, resp. piecewise
C>).

Proposition 3.3.12 (Conjugacy from restricted classes of inputs). Assume that f and g are
continuous R™ x R™ — R™ and locally Lipschitz-continuous with respect to their first argument.
Let x : Q — Q' be a homeomorphism between two open subsets of R"T™  and denote by Qp
and QU respectively the open subsets of R™ obtained by projecting Q and € onto the second
factor. Let further C and C' be collections of locally bounded measurable functions R — R™
whose restrictions C|y and C'|; to any compact interval J contain in their respective closures,
for the topology of uniform convergence, the set of all piecewise continuous functions J — Q
and J — QU respectively. If x maps every solution (3.6) of (3.4) such that y(t) € C|; to a
solution of (3.5) while, conversely, x~1 maps every solution (3.8) of (3.5) such that v (t) € C'|1
to a solution of (3.4), then the restriction of x to any relatively compact open subset O C )
conjugates systems (3.4) and (3.5) over the pair O, x(O).

Proof. Let us first show that

for any solution v : I — Q of (3.4) such that g is } (3.15)

piecewise continuous, x © 7 is a solution to (3.5).

Since the property of being a solution is local with respect to time, we may suppose that I is
a compact interval. Then, there is an open set O and a compact set K such that v(I) C O C
K C Q. By the hypothesis on C, there exists a sequence of functions vy : I — R converging
uniformly to g such that vgj; € C|;. Define for each k € N a time-varying vector field X k by
Xk(t,x) = f(x,y1x(t)). By the continuity of f, this sequence converges uniformly on compact
subsets of I x R™ to X(t,z) = f(x,vr(f)); moreover, since vy is bounded (being piecewise
continuous) vy is also bounded, thus the local Lipschitz character of f(x,u) with respect to x

3This means that each (Z,%) € Q has a neighborhood A such that ||f(z’,u) — f(z,u)| < c||z’ — || for some
constant ¢ whenever (x,u) and (z,u) lie in V.
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implies by compactness that X (¢,z) and X k(t,x) are themselves locally Lipschitz with respect
to x on I x Ogn. Pick tyg € I and apply Lemma 3.7.3 with I = [t, t2], 2o = Y1(to), and U = Ogn.
This yields, say for k > K, that the solution 7 to the Cauchy problem

() = XF(Ep(t) Y1k (to) = m(to)

maps I into Ogn and that the sequence (71 x)r>x converges uniformly on I to 71. Hence, if we
let

Ye(t) = (r(t), yk(t)),

the sequence (yx)r>k converges to -, uniformly on I. In particular v, (1) C K C Q for k large
enough.

Now, since i, : I — € is a solution to (3.4) with vy € C|r, it follows from the hypothesis
that x o7 is a solution to (3.5) that remains in ', i.e. with the notations of (3.12) we have,
for k large enough,

ot — xiom(te) = / glxom(s)ds, tel. (3.16)

By the continuity of y, the convergence of v (t) to v(¢), and the fact that g remains bounded on
the compact set x(K), we can apply the dominated convergence theorem to the right hand-side
of (3.16) to obtain in the limit, as k — oo, that

x1oy(t) — xtov(to) = /tg(xov(s))ds, tel.

Thus x o7 : I — R™™ is a solution to (3.5) that remains in ', thereby proving (3.15).

The next step is to observe from (3.15) that, since piecewise constant controls are in particular
piecewise continuous, the proof of Proposition 3.3.6 applies to show that y : @ — ' has a
triangular structure of the form (3.13).

With (3.15) and (3.13) at our disposal, let us now prove the proposition in its generality.
Choose an arbitrary open subset O with compact closure O in 2, and fix two compact subsets
IC and ;1 of Q such that

Oc@clochcl%chlcQ.

where ]OC stands for the interior of IC.

Let v : I — O be a solution of (3.4). We need to prove that x o~ is a solution to (3.5) and
again, since the property of being a solution is local with respect to time, we may suppose that I
is compact. Notations being as in (3.6), it follows by definition of a solution that g is a bounded
measurable function I — R™. We shall proceed as before in that we again approximate v by
a sequence -y of trajectories of (3.4) that are mapped by x to trajectories of (3.5). This time,
however, the approximation process is slightly more delicate, because it is no longer granted by
the hypothesis on C but it will rather depend on general point-wise approximation properties to
measurable functions by continuous ones.

By the compactness of I, there is exc > 0 such that

(z,u) €K = B((z,u), ex) CloCl . (3.17)

Let uy, : I — R™ be an auxiliary function with the following properties :
(i) u., is piecewise constant on I,
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(i) (&(t),uy (1)) €k for all ¢ € I and every map & : I — R” that satisfies

sup 1€(t) = ()| < exc/2. (3.18)

Such a function u., certainly exists. Indeed, by definition of a solution, ~; is absolutely continuous
thus a fortiori continuous I — R"™, and therefore we know for each ¢ € I that the set

wH(Bn(t),exc/2))

is an open neighborhood of ¢ in I, hence a disjoint union of open intervals in I one of which
contains t; call this particular interval U;. By the compactness of I, we may cover the latter
with finitely many intervals Uz, for 1 < j < v. Let now j(t) denote, for each ¢ € I, the smallest
index j € {1,...,v} such that ¢t € Uy,. Then, the map

Uy () = ()

clearly satisfies (i), and since (vi(¢j«)), (1)) € O C K, it follows from (3.17) and the fact
that [|1(t) — n(tj) [ < ex/2 by definition of j(t) that u,; also satisfies (ii).

Next, recall that vy is a bounded measurable function I — R™ so, by Lusin’s theorem [90,
Theorem 2.23] applied component-wise, there is, for every integer & > 1, a continuous function
hi : I — R™ that coincides with <y outside some set 7, C I of Lebesgue measure strictly less
than 1/k%, and in addition such that

sup [ (t) || < v/msup [ly(t)]- (3.19)
tel tel

Put By, = {t € I, (m(t), he(t)) §éIOC} Since hy, is continuous Ej is compact, and since y(I) C

@) CIOC it is clear that Ej C T hence Ej has Lebesgue measure strictly less than 1/k?. Conse-
quently, by the outer regularity of Lebesgue measure, Ej can be covered by finitely many open
real intervals Iy 1, ..., I n, whose lengths add up to no more than 1/k2.

We now define the sequence of functions ~y on I by setting, for k > 1,

’Y]I,k(t) = hk(t) iftel \ Ujvzkl IkJ,
k() = uy(t)if t € Uit Iy

By construction 7y is piecewise continuous, and uniformly bounded independently of k in view
of (3.19) and the fact that u,,, being piecewise constant, is bounded. Moreover, as >, -, 1/ k? <

(3.20)

00, the measure of the set ijz’“llm is the general term, indexed by k, of a convergent series,
hence almost every t € I belongs at most to finitely many of these sets so that ~y; converges
point-wise a.e. to vy on I as k — oo.

Redefine now X*(t,z) = f(z,yux(t)), X(t,z) = f(x,v(t)), and observe from what we just
said and the continuity of f that X*(t,2) converges to X (¢,z) when k — oo, locally uniformly
with respect to x € Ogn, as soon as t ¢ E where E C I is a set of zero measure which is
independent of k. Moreover, again from the boundedness of g, y1 and the local Lipschitz
character of f, we have that X*(t,2), X (¢, x) are locally Lipschitz with respect to z. Pick to € T
and apply Lemma 3.7.3 with U = Ogn, I = [t1,t2], and xo = y1(to). We get, say for k > K, that
the solution 71 to the Cauchy problem

Yt) = XF(t (), k(o) = 7(to) s

is defined over I, maps the latter into Orn, and that the sequence (71 x)r>x converges uniformly
on [t1,t2] to 1.
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We claim that i (t) = (y1.k(t), Yok(t)) lies in IOCl for allt € I when k is so large that

Sup s (t) = (@) < ex/2 (3.21)
te

Indeed, if t € U;I}, ;, this follows automatically from definition (3.20) by property (ii) of w,, ; if
t & U;ly j, then (y1(t), hi(t)) ek by the very definition of U;I}, j, and since v;(t) = (m,x(t), hr(t))
in this case, we deduce from (3.17) and (3.21) that () EIOCL This proves the claim.

Altogether, we have shown that v : I —f1 is a solution of (3.4) as soon as k is large enough,
with g 1 a piecewise continuous function on I by construction. By (3.15), we now deduce that,
for k large enough, 7, = x o 7% is a solution of (3.5) that stays in €. Let us block-decompose
V. into

Me®) = xi(me(®)) s me®) = xu(yx®), ymut))

where we have taken into account the triangular structure of x. That ~; : I — €' is a solution
of (3.5) means exactly that

Flt) — Aplto) = / G(1(5), Yiu(s))ds, el (3.22)

to

Due to the continuity of y, the functions 'yf’ i and 71’1, 1 respectively converge uniformly and point-
wise almost everywhere to 7{ = x1071 and v = xgo~y on I. Since g is bounded on the compact set
X (K1) that contains v (I) for k large enough, we get on the one hand, by dominated convergence,
that the right-hand side of (3.22) converges, as k — oo, to fti) g(~(s), vg(s))ds, and on the
other hand that the left-hand side converges to v{(t) — 7{(to). Therefore (v{,7) = xov : L — &
is a solution of (3.5).

This way we have shown that xy maps any solution of (3.4) that stays in a relatively compact
open subset O of ) to a solution of (3.5) that stays in €. This achieves the proof, for the converse
is obtained symmetrically upon swapping f and g, C and C’, and replacing x by x . 0

The triangular structure of conjugating homeomorphisms asserted by Proposition 3.3.6 is to
the effect that any such homeomorphism y : 2 — €' is a fiber preserving map from the bundle
Q — Qgn to the bundle ' — Q... Since feedbacks are naturally associated to sections of these
bundles by Definition 3.3.3, x gives rise to a natural transformation from feedbacks on ) to
feedbacks on €. This transformation will prove important enough to deserve a notation : to any
feedback a on ), we associate a feedback yma on ' by the formula

ma(z) 2 xalx () ol (2)) - (3.23)

We leave it to the reader to check that the properties of an action are satisfied, and in particular
that
X 'm(xma) = a. (3.24)

Naturally associated to a control system (3.4) and a feedback « is the following continuous
vector field f, on Qgn :

fa(z) = [flz,a(x)) . (3.25)

If the homeomorphism x in (3.13) conjugates system (3.4) to system (3.5), then it is clear that x1
maps the solutions of the ordinary differential equation & = f,(x) to the solutions of the ordinary
differential equation Z = g, m«(2). Indeed if x(t) is a solution of the former, then (z(t), a(z(t))) is
a solution of the control system (3.4) in the sense of Definition 3.3.1 so the conjugacy assumption
implies that (x1(z(t)), xu(z(t),a(z(t)))) is a solution of (3.5), and setting z(t) = x1(z(t)) one



3.3. TOPOLOGICAL EQUIVALENCE FOR CONTROL SYSTEMS 67

clearly has xm(z(t), a(x(t)))) = xma(z(t)); hence z(t) is a solution to 2 = g,ma(2z) because
(2(t), xma(z(t))) is a solution of (3.5).

Now, if a; and ap are two feedbacks on (2, and the two vector fields f,, and f,, are defined
on Qn by (3.25), we denote their difference by 6 fo, as :

6f041,0¢2 = fa1 - focz . (326)

Such vector fields are similar to the difference vector fields used in [60], except that we consider
arbitrary feedbacks instead of constant ones. To us, these vector fields will play an essential role.
The next proposition states that a homeomorphism that conjugates two control systems also
conjugates the integral curves of such difference vector fields.

Proposition 3.3.13 (preservation of difference vector fields). Suppose that f and g in (3.4)
and (3.5) are continuous and locally Lipschitz continuous with respect to their first argument.
Assume they are locally topologically conjugate at (0,0) over the pair Q,Q. Then, notations for
x1 and xx being as in Proposition 3.3.6, we have for every pair of feedbacks a1, a0 on S that x1
conjugates any solution of

T = Ofasan(x) (3.27)

that remains in Qg to a solution of

z = 59xl0c17xlocz(z) (3.28)

that remains in Q. .

It is perhaps worth emphasizing that the solutions of (3.27) and (3.28) need not be unique
since « is merely assumed to be continuous.

Proof. Let n : [t1,t2] — Qe be an integral curve of 0 fo, «,, and set

ui(t) = ai(n(t)) , we(t) = an)) . (3.29)

Let further ]?: R™t™ — R™ be bounded, continuous and Lipschitz continuous with respect to
its first argument, and coincide with f on some compact neighborhood of

n(ltr o)) x (aa(n(ltr, 1)) | az(n(lta, t2]))) -

Such a ]?is easily obtained upon multiplying f by a function of class C*with compact support.
For ¢ € N, let n‘ be the solution to the Cauchy problem

t

n(t) = ) + [ Ge(rn'(7)dr (3.30)
with
Gilt,7) = 2 f(z,u(t))
if ¢t €[ty +5(ts — t1), tr + (§ + 3)(t2 — t1)),
Got,z) = —2f(z,ua(t)) ‘ (3.31)
if t €[ty + (% 3)(ta — ),t1+%(t2—t1)),
Go(ta,z) = —2f(x,ua(ta)), 0<j<l—1.

The definition of 5 is valid because, since Gy(t, z) is bounded and locally Lipschitz with respect
to the variable z, the solution to (3.30) uniquely exists.
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_ From Lemma 3.7.4 applied to the case where XYt 2) = f(z,w(t)) and X2 (t,z) =
f(z,us(t)) are in fact independent of ¢, any accumulation point of the sequence (n’), say 7>
a solution to

() = f02@),w®) — fF>(),u2(t) ,  n=() = nlt) .
Since fA‘ is locally Lipschitz continuous with respect to its first argument, the solution to this
Cauchy problem is unique and, since f and f coincide at all points (1(t), u1(t)) and (n(t), ue (t))
this entails 7°° = n. Thus (n ) converges uniformly to 1 on [t1,%s] and, for £ large enough, n’
remains a solution of (3.30) if £ is replaced by £ in (3.31). Moreover, n‘([t1,t2]) C Qgn for £ large
since the same is true of 1. Since x conjugates the two systems, hence also by Remark 3.3.11
the systems where f and g are multiplied by 2 or —2, the map xy o’ : [ti,t2] — Qpn is, for £
large enough, a solution to
t

xion'(t) = xion(t) + Go(r, x1 0’ (1))dr (3.32)
t1

with _
Golt,z) = 2g(z,xu(x " (2),u1(t))) ,
if t € [t1+ 2(ts — t1),t1 + (3 + 59) (t2 — 1)),

Gilt,2) = —2g(zxa(x; '(2), ua(t))) | (3.33)
ift €[t + (4 + &) (t2 — t1), t1 + L (82 — 1)),
Gtz z) = —2g(z,xu(xy " (2), ua(t2))).

Since (x1 o n’) converges uniformly to x1 o n by the continuity of x, replacing g by a bounded
and continuous g : R"™™ — R™ that coincides with g on a compact neighborhood of

xwon(lt,tal) x (xa(n(lts. ta]). ca(nilta, t21)) U xa (it t2]), ac(n(ftr, ) )

does not affect the validity of (3.32)—(3.33) for ¢ large enough. Lemma 3.7.4 now implies that all
accumulation points of the sequence (x1o7%) in the uniform topology on [t 5] are solutions of

2 =gz, xu(x; ' (2),u1 () — g(z xu(xi " (2), ua(t)))-

Because x1 o7 is such an accumulation point, it is by (3.29) a solution to

¢ o= glzxalg ' (2),en(x ' (2) — gz xulxi ' (2), a2 (xi (2)))
which is nothing but (3.28). O

3.3.5 Alternative notions of conjugacy and equivalence
3.3.5.1 Transformations in functional spaces

Following [25], one may view the control system (3.4) as a flow on the product space R" x U,
where U is a functional space of admissible controls whose dynamics is induced by the time-
shift. Transformations on R™ x U then naturally arise ; they involve the future and the past of the
control, unlike the mere homeomorphisms on finite dimensional spaces that we consider here.
The corresponding notion of equivalence is obviously rather weak. In Chapter 2, a “Grobman-
Hartman theorem” theorem is proved in this setting, i.e. generic control systems (3.4) are locally
conjugate to a linear system via this kind of transformation. With the much stronger notion of
equivalence that we use here, we shall see (section 3.5.4) that “almost” no system is conjugate
to a linear system.

Let us also mention [21], where control systems are maps (x(0),u(.)) — z(.) that satisfy
certain axioms, without reference to differential equations, and where the notion of topological
equivalence involves transformations on the product R™ x U.



3.4. THE CASE OF LINEAR CONTROL SYSTEMS 69

3.3.5.2 zx-conjugacy

Let us call x-solution of system (3.4) any map ¢ — ~i(t) such that there exists a map g
for which v = (y1,71) is a solution in the sense of Definition 3.3.1; the set of z-solutions is the
projection on the x factor of the set of solutions. Let then x-conjugacy be defined in the same
way as Definition 3.3.10 defines conjugacy, except that we replace solutions by x-solutions and
the homeomorphism y that acts on state and control with a homeomorphism = +— z = h(z) on
the state only.

In the literature, both notions are used (without the prefix “z-”). For instance [108], devoted
to the topological classification of linear control systems (see section 3.4.2) relies on z-conjugacy.
We favor Definitions 3.3.5 and 3.3.10 of conjugacy and solutions because results have to be stated
locally with respect both to x and u for nonlinear control systems.

Conjugacy implies z-conjugacy : use Proposition 3.3.6, take h = x1 and ignore xy. The
converse is not true in general, as the reader may check easily.

3.4 The case of linear control systems

3.4.1 Kronecker indices

A linear control systems is a special instance of (3.4), of the form
& = Ax + Bu (3.34)

where A and B are constant n x n and n X m matrices respectively. When dealing with linear
systems, it is natural to consider an equivalence relation similar to that of Definition 3.3.10, but
where x is restricted to be a linear isomorphism :

Definition 3.4.1. Two linear systems
t = Az + Bu and i = Az + Bv

are linearly conjugate if and only if any of the following two equivalent properties is satisfied :

1. There is a nonempty open set Q C R and a linear isomorphism x of R*™™ whose
restriction Q — x(Q) conjugates the two systems in the sense of Definition 3.3.10.

2. There exist matrices P € R™", Q € R™*™ and K € R™™, with P and Q invertible, such
that

A = P(A-BK)P !,

5 — pBoL. (3.35)

Since, by Proposition 3.3.6, a linear conjugating homeomorphism is necessarily of the form
(x,u) — (Pz, Kz + Qu), the equivalence between properties (1) and (2) follows at once from
differentiating the solutions. Provided it exists, {2 plays absolutely no role in this context since
(3.35) implies that the two systems are in fact linearly conjugate on all of R+,

Linear conjugacy actually defines an equivalence relation on linear control systems or equi-
valently on pairs (A, B), for which (3.35) can be read as “(A, B) is equivalent to (A, B)”. The
classification of linear systems under this equivalence relation is well-known [17], and goes as
follows. Each equivalence class contains a pair (A., B.) of the form (block matrices) :

AS 0 - 0 o - 0
Ao = | O0A CoBo= | (3.36)
: 0 0 0

m
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where
0 1 0 0 0
AS = o |, b = c |, 1<ism (3.37)
1 0
0 --- e 0 (e ) 1 (rix1)
The integers (K1, ..., km) are called the controllability indices of the control system, also known

as the Kronecker indices of the matrix pencil (A, B), while Af is a square matrix of dimension
n— (K1 +- -+ Kmy) that may be assumed in Jordan canonical form. Note that k1 + - -+ Ky, <,
and if k1 + -+ + K, = n there is no A§; also, it may well happen that x; = 0, in which case
A¢ and b§ are empty and do not occur in (3.36) to the effect that there are less than m blocks
beyond Af. Normalizing so that

K122 km 20,

and ordering the Jordan blocks arbitrarily, there is one and only one such normal form per
equivalence class. A complete set of invariants is then the list of Kronecker indices and the
spectral invariants of the matrix Ag.

With the natural partition z = (Zy, Z1, ..., Zy) corresponding to the block decomposition
(3.36), the control system associated to the pair (A, B.) reads

Zo = AoZo, Zv = AMZy + wb§, o, Zm = ApZp + umbl,

where Zj is missing if k1 + - - - + Kk, = n and Z; is missing if k; = 0. Because it is not influenced
at all by the controls, Z; is sometimes called the non-controllable part of the state. In this paper,
we are only interested in controllable linear systems, namely :

Definition 3.4.2. A linear control system (3.34) is said to be controllable if, and only if, the
following two equivalent properties are satisfied :

1. There is no bloc A§ in the associated normal form (3.36).

2. Kalman’s criterion for controllability :
Rank(B, AB,..., A" 'B) = n.

To see the equivalence of the two properties, observe that the n — k1 — - -+ — Ky, first rows
of the matrix P that puts (A, B) into canonical form (i.e. z = Pz) form a basis of the smallest
dual subspace that annihilates the columns of B and at the same time is invariant under right
multiplication by 4, i.e. they are a basis of the left kernel of (B, AB, ..., A" ' B). For controllable
linear systems, the only invariant under linear conjugacy is thus the ordered list of Kronecker
indices. These can be computed from (B, AB, ..., A" ! B) as follows : if we put

r; = Rank(B,AB,...,A77'B), j>1, r=0,r_1=-m,

Sj :’l“j—’l”jfl,j21, Sop=m, (3'38)

then s; does not increase with j and a moment’s thinking will convince the reader that the
number of Kronecker indices that are equal to i is s; — s;4+1, or equivalently that s is the
number of x;’s that are no smaller than k.

To us, it will be more convenient to use as normal form the following permutation of the
previous one. Let p be the smallest integer such that s, = 0, so that

0 =5, <5801 < 5,2 < - <851 < 8 =m,
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with Z sj = n. From these we define, for 0 <i < p:
j=1

o; = ZSj = N —Ti-1, (3.39)
Jj=i

so that in particular o, =0, 0,1 = s,—1 > 0, 01 = n and 09 = n + m. Note that, from (3.38),
o; =n —1;—1 for ¢ > 1. We shall write our controllable canonical form as 2 = A.z + B.v with

0,
0 e
0 | Jo3

0

Ac: ' . : . s Bc: (340)
0 Jot
0 5
where for any integers r and s with s <r, J; is the s x r matrix

J: = I 0 (3.41)

where I is the s X s identity matrix.

3.4.2 Topological classification of linear control systems

In [108], which is devoted to the topological classification of linear control systems and uses
the notion of z-conjugacy rather than conjugacy ( cf. Section 3.3.5), the following result is
proved :

Theorem 3.4.3 (Willems [108]). If two linear control systems i = Az + Bu and 3 = Az + Bo
are topologically x-conjugate, then they have the same list of Kronecker indices, and the non-
controllable blocks A§ and gg in their respective canonical forms (3.36) are such that the two
linear differential equations X = A5 Xo and Zo = ESZO are topologically equivalent.

As pointed out in Section 3.3.5, topological conjugacy implies topological z-conjugacy but not
conversely. However, for linear control systems having the same number m of inputs, Theorem
3.4.3 implies that these notions are equivalent. Indeed, if two systems are respectively brought
into their canonical form (3.36) by a linear change of variable on R™™ and if in addition
they are x-conjugate, then their non-controllable parts are topologically equivalent while the
remaining blocks are identical by equality of the Kronecker indices. Hence, both in the above
theorem and in the corollary below, one may use indifferently “z-conjugate” or “conjugate”
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Corollary 3.4.4. If two linear systems © = Ax + Bu and z = Az + Bv are topologically
conjugate and one of them is controllable, then the other one is controllable too and they are
linearly conjugate.

Proof. Controllability is preserved, since Kronecker indices are by the theorem. Linear conjugacy
follows, as we saw that the list of Kronecker indices is a complete invariant for controllable
systems under linear conjugacy. O

In some sense, the results of section 3.5 can be viewed as a generalization of Corollary 3.4.4
to a local setting where only one of the two systems is linear.

3.5 Local linearization for control systems

In this section, we consistently assume that the map f defining system (3.4) is either smooth
or real-analytic.

Definition 3.5.1. Let k € {oo,w}. The system (3.4) is said to be locally topologically (resp. C*,
resp. quasi-CF ) linearizable at (Z, ) € R"™ if it is locally topologically (resp. C*, resp. quasi-
CF) conjugate, in the sense of Definition 8.3.10, to a linear controllable system ¢ = Az + Buv
(cf. Definition 3.4.2).

This definition of smooth linearizability coincides with linearizability by smooth static feed-
back as described in the textbooks [52, 79]. In subsection 3.5.2, we recall classical necessary and
sufficient geometric conditions for a system to be smoothly (resp. analytically) linearizable, and
we complement them with a characterization of quasi-smooth (resp. quasi-analytic) linearizabi-
lity.

3.5.1 Main result

If a smooth control system is locally topologically linearizable, then the conjugating ho-
meomorphism has a lot more regularity than required a priori. This is in contrast with the
Grobman-Hartman theorem for ODE’s and constitutes the central result of the paper :

Theorem 3.5.2. Let k € {oco,w} and assume that f is of class C* on an open set Q C R™™,
Then system (3.4) is locally topologically linearizable at (Z,u) € Q if, and only if, it is locally
quasi-C* linearizable at (Z,1).

Proof. See at the end of the paper, page 81. O

Observe from (3.14), that a quasi-C* diffeomorphism y is a linearizing homeomorphism if
and only if it satisfies

ox1

5, @) f@w) = Ax(z) + Bxa(z,u) . (3.42)

Hence quasi-smooth linearizability is much easier to handle than topological linearizability, that
relies on conjugating solutions rather than equations.

System (3.1) of the introduction is topologically, quasi-C*and quasi-C>linearizable at (0, 0)
but fails to be even C! linearizable ; hence quasi-C* cannot be replaced with C* in Theorem 3.5.2.
To study the gap between CF and quasi-C* linearizability, note that (3.42) imposes additional
regularity on a linearizing quasi-C* diffeomorphism :
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Proposition 3.5.3. Let k € {oo,w} and f in (3.4) be C*. If x : Q@ — ' is a quasi-C*
diffeomorphism that conjugates (3.4) to the linear system z = Az + Buv, then :

1. the map By : @ — R™ is of class CF,

2. for any (x,u) € Q in the neighborhood of which the rank of df/Ou is constant, one has

Rank %(m, u) = Rank B.

0
3. for any open subset O of €}, one has sup Rank —f(m',u') = Rank B.
(z' u)eO ou
Proof. Point (1) is direct consequence of (3.42) and the smoothness of x1 and f. To establish
(2) and (3), differentiate (3.42) with respect to u to obtain

O ) = OBy
Let V C Q be open and such that Rank 0f/0u(z,u) = p some integer p and all (z,u) € V. Define
¢:V — R"™™ by ¢(x,u) = (x1(z), Bxu(z,u)). On the one hand, since xj is a diffeomorphism,
(3.43) implies that the rank of the Jacobian of ¢ is n + p, hence, by the constant rank theorem,
#(V) is a (n + p) dimensional immersed sub-manifold of R"*™ ; on the other hand, since y is
open, ¢(V) is an open subset of the (n + Rank B)-dimensional linear range of I,, x B; hence
p = Rank B. This proves point 2, and at the same time point 3 because any O C () contains

an open subset on which the rank of 0f/Ju is constant while (3.43) clearly implies that, for all
(x,u) € Q, the rank of 0f/0u(x,w) is no larger than Rank B. O

(3.43)

Based on Proposition 3.5.3, let us divide the points of €2 into three classes.
— A point (Z,a) € Q is called regular if it has a neighborhood on which df/du has constant
rank. It is easy to see that regular points form an open dense subset of 2.
— If (z,u) is not regular, it is termed weakly singular if each neighborhood O C € of this
point satisfies
of
sup Rank —=(z,u) =m. (3.44)
(z,u)€0 Ou
— A point (Z,u) € Q which is neither regular nor weakly singular is said to be strongly
singular. This means it has a neighborhood O C €2, such that
0 0
sup Rank —f(x, u) =m’' <m, Rank —f(a_:,ﬂ) <m. (3.45)
(x,u)€0 ou ou
The distinction between topological and smooth linearizability may now be approached wvia the
following theorem that complements Theorem 3.5.2.

Theorem 3.5.4. Let k € {oo,w} and f be of class C* on an open set Q C R"™,
— System (3.4) is locally C* linearizable at (Z,) € Q if, and only if it is locally topologically
linearizable at (Z,u) and the latter is a regular point.
— If (3.4) is locally topologically linearizable at (Z,u) and the latter is a weakly singular
point, then a linearizing homeomorphism around (T, u) may be chosen to be a map of class
CF, although not necessarily a C*diffeomorphism (its inverse may fail to be C*).

Proof. The first assertion is a consequence of Theorem 3.5.2 together with Theorems 3.5.7 and
3.5.8 to come, observing that condition (2) in the latter will automatically hold at a regular point
by the constant rank theorem. Next, assume that y : Q — ' is a quasi-C* diffeomorphism that
conjugates the C*¥ system (3.4) to the linear controllable system 2 = Az 4+ Bv at some weakly
singular point (z,u). By (3) of Proposition 3.5.3, the rank of B is m hence it is left invertible;
by (1) of the same proposition, g is indeed C*. O
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Whether Theorem 3.5.4 remains true if “weakly singular” gets replaced by “strongly singular”
is unknown to the authors. This turns out to be equivalent to the following question in differential
topology which is of interest in its own right and seems to have no answer so far.

Open question 3.5.5. Let O be a neighborhood of the origin in RPYY and F : O — RP a smooth
(resp. real-analytic) map. Suppose G : O — R? is a continuous map such that FF x G : O —
RP x RY? is a local homeomorphism at 0.

Does there exist another neighborhood O' C O of the origin and a smooth (resp. real-analytic)
map H : O" — R? such that F' x H : O' — RP x R? is still a local homeomorphism at 0 ¢

If the answer to the open question was yes, then Definitions 3.5.1 and 3.3.9 of quasi-smooth
(resp. quasi-analytic) linearizability might equivalently require x to be smooth (resp. analytic)
because, assuming the linear system is in normal form (3.40)-(3.41), one could set F' = m, 45, 0x
and smoothly (resp. analytically) redefine the last m — s; components of x.

If the answer to the open question was no, then Definition 3.5.1 would really be more general
than the one obtained by restricting x to be smooth (resp. analytic). Indeed, if F' provides a
counterexample to the open question, say, in the C* case, we may consider on RP x O the
control system

i = F(u) , x€RP uecRP (3.46)

which is locally quasi-smoothly linearizable at the origin because the local homeomorphism
(x7u) = (Z,U) = (SU,F(U),G(U))

conjugates (3.46) to
¢ = Bu, with B=/(I,]0). (3.47)

However, no smooth homeomorphism

X (@u) = (z,0) = (al@), xa(z,u))

exists that quasi-smoothly linearizes (3.46) at O : if this was the case, by Corollary 3.4.4 we may
assume up to a linear change of variables that x conjugates (3.46) to (3.47). Then conjugacy
would imply

%f(a:)F(u) = Bxu(z,u)

whence in particular

= (200) " B0

and the last ¢ components of xy(0,u) would yield a smooth H such that F' x H is a local
homeomorphism at 0 in RPT9, contrary to the assumption.

3.5.2 Geometric characterization of quasi smooth linearization

Let X and U be two open subsets of R™ and R™ respectively, and assume that f is defined
on X xU. For each u € R™, let f, be the vector field on X defined by :

ful@) = flz,u). (3.48)

Also, for each (z,u) € X x U, we define below a subspace D(x,u), that coincides with the range
of the linear mapping 0 f/0u (x,u) when its dimension is locally constant. First, we consider the
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subset £;, C R" (not a vector subspace) given by :

Y€ Ly & 3(wy)eU, lim w,=u (3.49)
and lim f(x7wn) B f(l‘,u)

neso [ fla,wn) — fa )]

subsequently we put
D(xz,u) = SpangLy,, . (3.50)

In words, D(z,u) is the vector space spanned by all limit directions of straight lines through
f(z,u) and f(z,u') as u' approaches w in R™; it is of common use in stratified geometry to
generalize the notion of tangent space. Note that the set L, depends on the norm used in
(3.49), but the subspace D(x,u) does not.

Proposition 3.5.6. If f is of class C*° and if we denote by Ran L the range of a linear map
L, we have that

D(z,u) D Rangi(z,u) (3.51)

and equality holds at every (xz,u) where the rank of Of /Ou (x,wu) is locally constant with respect
to u.

Proof. The inclusion (3.51) holds because any nonzero element of Ran 0 f /0u(x, u) can be written
Of /Ou(x,u).h for some h in R™, and one has

of /ou (x,u).h lim fz,u+th) — f(z,u)
10f /Ou (@, u).hll — t=0+ [|f (2, u+th) — f(z, )l |

Now fix (z,u) and assume that the rank of Jf/0u is locally constant around (z,u), equal to
r < m and use the constant rank-theorem. Up to a permutation of coordinates,

(hlv" 7hm) 'i) (fl(x?u+h> - fl(xvu)v"- ,fr($,U+h) - fr(xvu)ahr—i-lw . ahm)

is a local diffeomorphism around zero in R™ and, setting p = A™' o 2z 0o A with z given by
z(wi, ..., wy) = (w1, ..., w,,0,...,0), there is a constant ¢ such that

oW < cllf(z,u+h) = f(z,u)]| and f(z,u+ p(h)) = f(z,u+h) (3.52)

for all h. Take y € L4, ; by definition, there is a sequence (h,,) converging to zero and satisfying
(3.49) with w,, = u + hy ; from (3.52), we may re-write it as

Dt Lzt o) = () o)l
= OS] [, utha) — F(@, )]

where both ratios are bounded ; extracting a sequence such that both converge, the limit of the
first ratio is, by definition of the derivative, %(m,u).h with A a limit point of p(hy,)/|lp(ha)|l;
hence y € Randf/0u (x,u). We have proved that £,, C Randf/0u(x,u). From (3.50), this
implies the reverse inclusion of (3.51) because the left-hand side is a linear subspace. O

(3.53)

We can now characterize smooth (resp. analytic) and quasi-smooth (resp. quasi-analytic)
linearizability in parallel. The proofs are given pages 78 through 81.



76 CHAPITRE 3. “ON LOCAL LINEARIZATION OF CONTROL SYSTEMS”

Theorem 3.5.7 (smooth or analytic linearizability). Let k € {co,w} and f be of class C* on
an open set Q C R" ™. The control system (3.4) is locally C* linearizable at (z,u) € Q if, and
only if there are open neighborhoods X and U of * and @ in R™ and R™, with X x U C §, such
that the following conditions are satisfied.

1. D(z,u) does not depend on u for (x,u) € X x U.
2. The rank of ?(w,u) is constant in X X U.
u

3. Defining on X the distribution Ao by Ao(z) = D(x,w) — this is possible if point (1) holds
true — and inductively the flag of distributions (Ag) by :

Ak-Jrl = Ay + [fa, Ak] (354)

where [ , | denotes the Lie bracket, then each Ay for 0 <k <n —1 is integrable (i.e. has
constant dimension over R and is closed under Lie bracket) and the rank of A, is n.

Theorem 3.5.8 (quasi-smooth or quasi-analytic linearizability). Let k € {co,w} and f be of
class C* on an open set Q@ C R™™™. The control system (3.4) is locally quasi-CF linearizable
at (z,u) € Q if, and only if there are open neighborhoods X and U of T and u in R™ and R™,
with X x U C §, such that conditions (1) and (3) of Theorem 3.5.7 are met and, instead of
condition (2), it holds that

2'. Denoting by . < m the constant rank of Ay, the mapping

F: XxU — XxR?
(z,u) = (z, f(z,u))

restricts to a C° fibration* W — F(W) with fiber R™~" on some neighborhood W of (Z,u)
m X xU.

(3.55)

Theorem 3.5.7 is of course equivalent to the results in [57, 50, 103], but the conditions are
stated here in a slightly different form to parallel Theorem 3.5.8.

Corollary 3.5.9. Assume that f is real analytic on some open set 8 C R™™™  [f the control
system (3.4) is locally C* (resp. quasi-C™) linearizable at (Z,u) € 2, then it is also C¥ (resp.
quasi-C¥ ) linearizable there.

Proof. analyticity does not appear in the conditions of the theorems, except for the regularity
of f itself. O
3.5.3 Linearization versus equivalence to the linear approximation

For a control system, smooth linearizability at an equilibrium implies conjugacy to its linear
approrimation :

Proposition 3.5.10. Let (z,u) be an equilibrium point of (3.4), i.e. f(Z,u) = 0, and let
A=0f/0x (z,u), B=0f/0u(z,u) so that :

fr,u) = A(x—2) + B(u—1) + ez —2,u—1), (3.56)

where ¢ is little o(||x — Z|| + |Ju — ul]).

* A C° fibration with fiber F over B is a continuous map g : £ — B for which every & € B has a neighborhood
O in B such that g~ (O) C £ is homeomorphic to O x F, the so-called trivializing homeomorphism 1 : g~*(O0) —
O x F being such that m o1 = g where 7 : O x F — O is the natural projection onto the first factor.
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If system (3.4) is locally smoothly linearizable at (z,u), then :
1. its linear approzimation (A, B) is controllable (cf. Definition 3.4.2),
2. the system is smoothly conjugate to (A, B) at (z,u).

Proof. Let x be a local diffeomorphism conjugating system (3.4) to 2 = Az + Bv at (Z,u), and
observe from (3.14) in Remark 3.3.8 that smooth linearizability translates into (3.42). If we write
f asin (3.56), and if we set P = %(i), K = %ixﬂ(i,ﬂ), Q= %%(a_c, u), we get by differentiating

(3.42) with respect to x and u at (Z,u), using the relation f(z,u) = 0, that
PA = AP+ BK , PB = BQ.

Since P and @ are square invertible matrices by the triangular structure of x displayed in (3.13),
this implies that the linear systems (A4, B) and (A, B) are linearly conjugate, see (3.35). Since
(A, B) is controllable by definition so is (A, B), thereby achieving the proof. O

Proposition 3.5.10 has no analog if the control system is only topologically linearizable (hence
quasi-smoothly linearizable according to Theorem 3.5.2). For example, the system (3.1) in the
introduction is quasi-C“linearizable at (0,0), but its linear approximation & = 0 is not control-
lable and it is not topologically equivalent to & = 0. Apart from such degenerate cases, there
also exist systems that are quasi-analytically linearizable at some point with controllable linear
approximation there, and still they are not conjugate to this linear approximation. An example
when m =n = 2 is given by :

i1 o= u o, @ = a1+ oug,
This system is quasi-analytically conjugate at (0,0) to
21 = v, Z = vy, (3.57)

via z = x, v1 = Uy, v9 = u23 + x1. However, its linear approximation at the origin is 1 = wuy,
9 = x1, which is controllable yet not conjugate to (3.57) (cf. Theorem 3.4.3).

3.5.4 Non-genericity of linearizability

Except when m > n or (n,m) = (2,1), the conditions of Theorem 3.5.7 require a certain
number of equalities (involving f and its partial derivatives) to hold everywhere. For example,
the integrability of a distribution entails that all Lie brackets be linearly dependent on the
original vector fields, i.e. certain determinants must be identically zero. This makes smooth
(resp. analytic) linearizability of a smooth (resp. analytic) control system highly non-generic in
any reasonable sense, because when written in proper jet spaces it is contained in a set of infinite
co-dimension. Moreover, small perturbations of a system that does not satisfy these condition
will not satisfy them either, while most perturbations of a system which satisfies them will fail
to do so. Compare for instance [102] where it is shown that the equivalence class of any system
affine in the control has infinite co-dimension in some Whitney topology.

From Theorem 3.5.4, quasi-smooth or quasi-analytic linearizability, hence also topological li-
nearizability by Theorem 3.5.2, require the same equalities to hold on an open dense set, although
this time some singularities are allowed. This is no more “generic” than smooth linearizability,
as opposed to ODE’s for which the Grobman-Hartman theorem allows one to linearize around
an equilibrium as soon as it is hyperbolic.
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3.6 Proofs

Proof of Theorems 3.5.7 and 3.5.8

We begin with a lemma whose cumbersome index arrangement will be rewarded later when
constructing the Kronecker indices of the linearized system.

Lemma 3.6.1. Let k € {oo,w}. Let Ag and fz be respectively a distribution and a vector
field, both of class C* on a connected open neighborhood of x € R™. Let further A;, i > 0, be
the distributions defined according to (3.54), and set for convenience A_y = {0}. Assume they
satisfy point (3) of Theorem 8.5.7 or 8.5.8. Put

r; = RankA;_1 , 1> 0, ro=0, r_1 =—m, (358)

so that r; = n for some i < n—1;let p € {3,...,n+ 1} be the smallest integer such that
rp—1 = n. Define also

Si=Ti—Tic1, oi=9 sj=n—ri1, 0<i<p (3.59)

(note that s, = 0, =0).
Then, there exists coordinates X1, ..., xn of class CF on a neighborhood X of = such that
~ X1,---Xo; are independent first integrals of N;,_o fori e {1,...,p— 1},
= Xoi+j = JuXoig1+5 for all integers i,5,2<i<p—-1,1<j<s;

(faXos 1+ 5 the Lie derivative of the function x4, ,+; along the vector field fy).

Proof. Note that when ¢ = 1, the first point above means that xi,...,x, are indeed local
coordinates. Now, the Frobenius theorem provides us with n — r independent CF first integrals
for a CF integrable distribution of rank r. This accounts for the regularity of the coordinates if
we construct them as follows.

First pick n —r,_2 = 0,1 independent first integrals of A,_3 and call them x1,..., X0, ;;
define further X140y 1+ >X20,_1 DY Xop_14j = fax; for 1 < j < 0,1 = sp,—1. Clearly,
X153 Xop_1+s,_1 Satisfy the conditions for i = p — 1. Then proceed inductively : assume that,
for some ig € {2,...,p— 1}, the functions x1, ... s Xoio+si, Dave been constructed and satisfy the

conditions for ¢ > 9. We claim that the differentials dy, are linearly independent at each point
of X. Indeed, assume that there is ¥ € & and real coefficients p; and A such that

Tig Tig
> wdxi(@ + > Md(faxw) (2) =0. (3.60)
Jj=1 k=1+044+1

Put wy; = Xp;dx; and wo = Y Apdxy. Since d commutes with the Lie derivative, we may rewrite
(3.60) as wi (%) + fawa(Z) = 0. In particular, for any CF-vector field X in A;,_2, we get as
w1(X) =0 that fzwa(X)(Z) = 0. Now, by virtue of the formula

Ja (w2(X)) = fawa(X) + wa([fa, X]), (3.61)

we obtain since we(X) = 0 that wa([fz, X])(Z) = 0, that is, wy annihilates A;,_1 at Z. But
dxi(z),. .. ,dxgioﬂ(f) are a basis of the orthogonal space to A;,_1(Z) by the induction hy-
pothesis, whereas wy(Z) is a linear combination of the dy(z) for o;,4+1 < k < 0y,. There-
fore, since we know by the induction hypothesis that the dy, are point-wise independent for
1 < ¢ < 0y, we get that the A\, are zero and then the u; are also zero by (3.60). This proves
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the claim. Next, recall that x1,...,Xq,, are first integrals of A;,_2, thus a fortiori of A;,_s.
For X a CF-vector field in the latter we deduce from (3.61), where wy is replaced by dx;
with 1 + 0441 < £ < oy, that Xl40iyy -+ s Xogg+si, A€ also first integrals of A;,_3. In case
Tip + Sip < Tig—1, PICK Xoy fs;0+15 - - - Xoyy 1 0 that xg for 1 < € < 04,1 is a complete set of
independent integrals of A;,_3. If i9p = 2 we are done, otherwise define Xoig-1+i = faxgio +; for
1 <j < s4,—1 in order to complete the induction step.

Proof of Theorems 3.5.7 and 3.5.8. The two proofs run parallel to each other.

We first show necessity, assuming that k£ = oo for analyticity does not appear in the conclu-
sions. Assume local (quasi) smooth linearizability, ¢f. Definitions 3.5.1 and 3.3.9. Without loss
of generality, we assume that 2 = X x U where X and U are open neighborhoods of  and @ in
R™ and R™ respectively. Let x : X x U — Q' C R"™"™ be as in (3.13) ; recall that xp is a smooth
diffeomorphism X — x1(X). We may also assume, after composing x with a linear invertible
map, that the pair (A, B) is in canonical form (3.40)-(3.41), but we still write A, B rather than
Ac, Bc. Denote by By, ..., By, the columns of B and define the vector fields by, . .., b, on R™ by

bi(2) =B;, 1<i<m, by(z) =Az+ Bu (3.62)

and the distributions A; by

Ao(z) = Spang{bi(2),...,bm(2)} =RanB  Ajp1 = A + [bo, Ai], 1 <i<m. (3.63)
From (3.42), we have
%(:ﬂ) f(z,u) = bo(xi(z)) + B(xu(z,u) — xu(z,a)). (3.64)

Since x is a triangular homeomorphism, xy(z,w) — xu(z,u) covers an open neighborhood of 0
in R™ when w ranges around « in R™. Thus, in view of (3.64), £, , defined by (3.49) contains

~1
an open set in <%(x)> RanB, and by double inclusion

D(z,u) = (%f(@) " Raus.

This proves point 1, and also proves that the distribution Ag in point 3 is the pullback of Ag
by the diffeomorphism x1, i.e. (x1), Ao = Ao. Since (3.64) also implies (x1), fa = bo, we have
(x1), A; = A; for all i. This gives point 3 because it is obviously true with A; instead of A;, and
integrability and ranks are preserved by conjugation with the smooth diffeomorphism xi. In the
case of smooth linearizability, point 2 is easily obtained by differentiating (3.64) with respect to
u and using invertibility of dxy/0u(x, ).

To conclude the proof of necessity, let us prove point 2’ in the case of quasi-smooth lineari-
zability. Let

M = n, Ix1
={ (z,y) € X xR"™; %(:U)y — Axi(r) € RanB }.

This is a smooth embedded sub-manifold of X x R™ of dimension n+r1, where r; = Rank B < m.
If we define F as in (3.55), it is clear from (3.42) that

FxxU) ¢ M.

Now, take some (m — r1) X m matrix C' whose rows complement r; independent rows of B into
a basis of R™. Pick matrices £ and Es of appropriate sizes such that

Ei1B + E5C = I, .
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By (3.42) we get

o

E
Y o

(l‘) f(a:,u) - AXI(x) + EQOXH($7U) = X]I(xau) . (365)
Define
Y X XU — MxR?

by the formula :
w(xvu) - (‘Ta f(w,u),CXH(x,u)).

From (3.65), this mapping has an inverse given by

ol (X xU) - A xU

@) = (@) B[ 2@y - A + B )

so that i defines a homeomorphism from X x U onto its image which is open in M x R™™"
by invariance of the domain. Let O be a neighborhood of (Z, f(Z,u)) in M and S an open ball
centered at Cxp(Z,4) in R™" such that O x S C (X x U), and take W = ¢~1(O x S).
Then F : W — F(W) = O is a C° fibration with fiber S and trivializing homeomorphism
Y : W — O x 8. Since S is homeomorphic to R, condition 2’ follows.

We turn to sufficiency. Points 1, 3, and either 2 or 2’ imply, for all x € X,
Ag(z) = Spang{f(z,w)— f(z,u), (u,w) €U xU} . (3.66)

Indeed the right-hand side always contains D(x, u) because it contains all the differences f(z, wy,)—
f(z,u) in (3.49), and point 1 implies the reverse inclusion because f(z,w)— f(x,u) can be com-
puted as the integral on the segment [u, w] C U of a function that, thanks to Proposition 3.5.6,
belongs constantly to Ag(x).

From (3.66), the distribution Ay is of class C*. Considering point 3, we may apply Lemma 3.6.1.
We thus obtain some, with r;, s; and o; the integers defined by (3.58) and (3.59), some C* co-
ordinates xi,...,Xn on a neighborhood of Z possibly smaller than X (but that we continue
to denote by X), i.e. a diffeomorphism x1 : X — x1(X), with x1 = (x1,.-.,Xxn), meeting the
conclusions of Lemma 3.6.1. In particular, xi,...,xn—r, are first integrals of the distribution
Ay, and from (3.66), this implies that dx;/0x(x) f(z,u) does not depend on u, and is there fore
equal to its value for u = @ :

X :
(;; () f(z,u) = faxi(z), 1<i<n-—r. (3.67)
For larger i, the left-hand side depends on x and u : define A : X x Y — R™ by
Mew) = (P ey fe) P ) ) (3.68)
Then, defining coordinates z1, ..., 2z, by z = x1(x). The equations of system (3.4) are as follows

(the first line gives the derivatives of the n — r; first coordinates and the second line the last r;
ones) :
730’i+l+j = Zoi+j> 2<i<p—1,1<j<s,

2 = )\n—K(X;I(Z),U), n—-m +1<0<n. (3.69)

If point 2 is satisfied, the rank of the map (z,u) — (x1(x), %f(x,u)) is constant and
thus, according to (3.66), it is equal to n + r1, 1 being the rank of Ag. From (3.67), the map
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(x,u) — (x1(x), Az, u)) has the same constant rank n-+r;. Hence there exists ¢ : X'xUf — R™ "
such that

(x,u) = (Xl(x)a )‘(xau)7 ¢(m,u)) (3'7())

is a diffeomorphism of class C*. Obviously, defining x1 by x1(x,u) = (A(z,u), ¢(z,u)) yields a
CF diffeomorphism x that conjugates (3.4) to a linear controllable system z = Az 4+ Bu. This
proves sufficiency in Theorem 3.5.7.

If point 2’ is satisfied instead, let ¢ : W — F(W) x R"™ " be the “trivializing” homeomor-
phism. Recall that, with 7 : F(W) x R"™" — F(W) the natural projection, one has m oty = F';
call ¢ : YW — R™ "1 the map such that ¢ = F' x ¢ Composing F' with (z,£) — (x1(z), %5), one
gets that (z,u) — x(z,u) = (xi(z), A(z,u), p(x,u)) is a homeomorphism. It clearly conjugates
(3.4) to a linear controllable system Z = Az + Bu. This proves sufficiency in Theorem 3.5.8. [

Proof of Theorem 3.5.2

This theorem for k = w is consequence of this theorem for k£ = oo and of Corollary 3.5.9.
Hence we only have to prove it for k = oo, i.e. we assume that f is infinitely differentiable and
we prove that topological linearizability implies quasi-C®°linearizability.

Without loss of generality, we suppose that (z,u) = (0,0). Assume there exists a homeomor-
phism x from a neighborhood of the origin in R”*™ to an open subset of R™*™ that conjugates
system (3.4) to the linear controllable system

2 = Az + Bv (3.71)

with z € R"” and v € R™. Composing x with a linear invertible map allows us to suppose that
the pair (A, B) is in canonical form (3.40)-(3.41), i.e. that (3.71) can be read

2Ui+k = ZU¢,1+]€ ) 2 S l S P, 1 S k S Si—1, (372>

where the integers s; and o; were defined in (3.38) and (3.39) and where, for notational com-
pactness, we have set :

1>

Zntk = Uk ; (3.73)

recall here that sy = m, and notice that s; < m may well occur as it simply means that
Rank B < m, in which case some of the controls do not appear in the canonical form. With the
aggregate notation :

Rojy1+1 u1

11>

Zj
2o, U,

and the matrices J? defined in (3.41), system (3.72) can be rewritten as

Zy1 = Je s Zps
Zyo = J1Z, 3
: (3.75)
Zy = J27Zy
Z = J3 2
and is viewed as a control system with state (Z,_1,...,Z;) and control Z,. We also make the

convention, similar to (3.73), that

A
Tnt+k = Uk, (3.76)
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and we use for the controls the aggregate notation :

Tn+1 Uy
: = . (3.77)

Tn+m Um,

>

Xo

Let us now prove that property Py below is true for 0 < ¢ < p — 1.
Property Py, : there exists a smooth local change of coordinates around 0 in R™, say

(1,...,20) — (X, Xp..., X0, X1),

with X € RO+ and Xi e R¥ for 0 <i<{ (if £ = 0 there are no X;’s beyond Xy whereas if
¢=p—1 there is no X ), after which system (3.4) reads :

X = F(X.X)

Xe = Fy(X, X, Xo-1)
: ; (3.78)
):(2 = FQ():(ava"'aXl)

Xl = FI(X7XZ7"’7X17XO)

and such that (3.78), viewed as a control system with state ()?,Xg, ..., X1) and control Xy, is
locally topologically conjugate at (0,0) to system (3.75) via a local homeomorphism

(X, Xy, .., X1, X0) — (Zp_1,. .., Z0)

which is, together with its inverse, of the block triangular form :

(prlv"wgé-ﬁ-l) = (/I\)()?) X = ‘/I}(prlw"?ZZ-‘rl)
Zy = ®(X, Xy) Xo = V(Zp1,---,Z)
Zi = (X, Xy, X0) X1 = Ui(Zp1,....2)
Zy = Po(X, Xy, ..., X1,X0) Xo = \IJO(Zp_l,...,Zl,Zg)

where ®; and V; are, for 1 < i < £, continuously differentiable with respect to X; and Z;
respectively, have an invertible derivative, and satisfy for 1 < i < £ the relation :

Fi(X, X, .. X, Xim) = F(X,Xy,...,X:,0)

00 (% Xy, X0)) T
+ (o (X, Xe, oo, X5) i (3.79)

(I)i—1<5(:7 X@? ceey X’i; Xi—l) - q)i—l()?7X£7 cee 7Xl70)) 5

furthermore, the partial homeomorphism
(X, X0) = (Zp1r-e s 20) (3.80)

locally topologically conjugates, at (0,0) € R7+175¢ the reduced control system

~

X = F(X, X)), (3.81)
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with state X and input Xy, to the reduced linear control system

Zp1 = It Zpa
: (3.82)
Zoyw = JiZ

wit state (Zp—1,. .., Ze41) and input Z,.

Indeed, Py is merely the original assumption on local topological conjugacy of systems (3.4)
and (3.75), where the triangular structure (3.13) of the conjugating homeomorphism was taken
into account ; note that, in Py, (3.79) is empty and that the reduced system (3.81) is the original

system. Next, supposing that P, holds for some ¢ > 0, we apply Lemmas 3.6.2 and 3.6.3 (see
below) to the reduced systems (3.81), (3.82), and to the partial homeomorphism (3.80), with

d= Op41, T'= S¢, S = Sp+1, U= Xf7 (331,. "7$d) - Xa
ZV=(Zp-1,. s Zoia), Z* = Zpyq, and V = Z,
and then, upon renaming X2 as Xot1, fQ as Fyyq, and choosing X! to be the new )A(, we get
Pry1-
Now, P,_1, where we specialize (3.79) to i = 1, provides us with a smooth change of variables

around 0 in R" :
(xl,...,xn) [ ad (prl,...,Xg,Xl)

with X; € R% such that, in the new coordinates, system (3.4) reads
Xp—l = Fp—l(Xp—la Xp—2)

pr2 = pr2(Xp71a pr27pr3)
: (3.83)
Xy = Fy(Xp1,...,X1)
Xl - Fl(Xp—la"‘7X17X0)7
and also such that the local homeomorphism ® that topologically conjugates system (3.83) to
system (3.75) at (0,0) is, together with its inverse W, of the triangular form :

Zp-1 = q)pfl(prl) Xp1 = \I’pfl(zpfl)
Zp—2 = (I)p—2(Xp—17 Xp—2) Xp2 = ‘Pp—2(Zp—lv Zp—2)
: : (3.84)
Zr = ©1(Xp1,...,X0) X1 = WW(Z,1,...,71)
Zy = Po(Xp-1,...,X1,Xo) Xo = Vo(Z,-1,..., 21, 20),

where the following three properties hold :

1. Each & and ¥, for £ > 1 is continuously differentiable with respect to X and Zj
respectively ; in particular, 0®y /0 X}, is invertible throughout the considered neighborhood.

0Fy,

2. For k > 2, Raunkan_1 (0,...,0) = sp, i.e. this rank is maximum, equal to the number
of rows.
3. F satisfies
(X, 1,....X1,X0) = F(X,_1,...,X1,0) (3.85)

0P -1
<8X11(Xp_1,...,X1)> J2 (

QO(Xp—la v 7X17X0) - (I.O(Xp—la v 7X17O)> .
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From the maximum rank assumption on 0F,_1/0X,_2, it is possible to define Y, 5 whose first
sp—1 entries are those of F,_;(X,_1, X,—2) and whose remaining s,_» —s,_1 entries are suitable
components of X, o, in such a way that

(Xp-1,-,X1) = (Xp-1,Yp2,Xp3...,X1)

is a local smooth change of coordinates around 0 in R™. After performing this change of coordi-
nates and setting Y,_; = X, for notational homogeneity, system (3.83) reads
Y, = J8 Y,

Yoo = Fp—Q(Yp—hYp—%Xp—?’)

Xy = B(Y,1,Yp 0, X, 3,...,X1)

X1 = B, 1,Y, 0, X, 3,..., X1, X0)

where the F’s enjoy the same properties than the F’s, in particular the maximality of
Rank 0F}/0X;—1(0,...,0) for p—2 > k > 2. One may iterate this procedure, limited only by the
fact that the maximum rank property mentioned above only holds for k£ > 2 but not necessarily
for k = 1. Altogether, this yields a smooth local change of coordinates around 0 in R" :

(Xp—lv"')Xl) g (Yp—l;‘-'ayi)v

after which system (3.83) is of the form

Voo = J& Y,
o (3.86)
Yo = J3N
Yi = Fi(Y,-1,,...,Y1,X0) ,

where we abuse the notation Fj for simplicity because, although it needs not be the same as
in (3.83), this new F; enjoys the same property (3.85) for some suitably redefined ®; and ®y.
Now, we may rewrite (3.85) as

F1<Yp—17 ] Y17X0) = J’rfml H(Yp—lv IR 7}/17 XO) (387)
where H, in the aggregate notation Y = (Y,_1,,...,Y1), is defined by
Fi(Y,0 9L (y)-t 0
H(Y, XO) — < I(Oa )) + ( oY1 (0 ) I > (CI)O(Y7 Xo) — (I)O(Y, 0))
m—si

Since ® has the triangular structure displayed in (3.84), the map Xy — ®o(Y, Xo) is injective
for fixed Y = (Y,—1,...,Y7) in the neighborhood of 0 where it is defined in R™. Consequently,
(Y, Xo) — (Y, H(Y, Xy)) is also injective in the neighborhood of 0 where it is defined in R ;
since it is continuous, it is a local homeomorphism of R" ™™ at (0, 0) by invariance of the domain,
and then (3.86), (3.87) make it clear that system (3.83) is locally quasi-smoothly linearizable at
this point.

Since (3.83) is smoothly conjugate to the original system (3.4), this proves local quasi-smooth
linearizability of the latter hence the theorem.

Two lemmas. The following two lemmas are applied recursively in the above proof of Theo-
rem 3.5.2 to obtain the forms (3.83), (3.75), and (3.84). Although these lemmas team up into a
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single result in the above-mentioned proof, they have been stated here separately for the sake
of clarity.

We will consider two control systems with state in R and control in R”. Expanded in
coordinates, the first system reads

Ii‘l = fl(fL‘l, ey Tdy g1 - - - 7$d+r)
: (3.88)
tq = fa(T1,.. ., %dTar1, - Tayr)
with state variable (z1, ..., z4) and control variable (z441,. .., Zq4+,) € R", the functions fi, -, fy
being smooth R — R. The second system has state variable (#1,...,24) and control variable
(Zd41s - - - » 2d+r) € R", and it assumes the special form :
21 = 91(21, N ,zd)
éd*S = gdfs(zb ot zd) (3 89)
Zd—s+1 = Zd+1
Zd = Zdts s
where 0 < s < d and s < r while g1,--- , g4_s are again smooth R? — R. Nothing prevents us

here from having s < r, in which case some of the controls do not enter the equation. It will be
convenient to use the aggregate notations

A

X = (z1,...,2q), Ué(xdﬂ,...,derr),
Zé(zl,...,zd), Vé(zdﬂ,...,szﬂn),
and to further split Z into (Z!, Z?) with
ZY2 (1, zass)s ZEE (Zaesits- s 2d) s (3.90)
so as to write (3.88) in the form .
X = f(X,U) (3.91)

and (3.89) as ‘
Zl — gl(Zl, Z2)
Z? = JV,

with J¢ the s x r matrix, defined in (3.41), that selects the first s entries of a vector.

(3.92)

Lemma 3.6.2. Let d, v and s be strictly positive integers with s < d and s < r. Suppose, for
some € > 0, that
©: (_€’€)d+r N RdJrr

is a homeomorphism onto its image, with inverse 1, that conjugates system (3.91) to system
(3.92). Then, there exists 0 < &’ < ¢ and a smooth local change of coordinates around 0 € R :
0: (=)t — 0((=¢,€)?) C (—e,e)?

that fizes the origin and is such that, in the new coordinates X = 0=1(X), both the system, (3.91)
and the conjugating homeomorphism @ = ¢ o (6 x id) assume a block triangular structure with
respect to the partition X = ()?1,)?2), where X' 2 (T1,...,T4—s) and X2 2 (Td—st1y---5Td) ;
that is to say, on (—¢',€")4*", we have that
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— system (3.88) reads :

X, =[x (3.93)
X = f2(X1,X2,U),

—  On their respective domains of definition, the homeomorphism @ and its inverse 1; =

(0~ x id) ot read :

>§z
1

7' = FXY XU o= di(zY
72 = P(XLXY) X = (2,27 (3.94)
vV = (XL X%4U) U = (2,22 V).
Lemma 3.6.3. Let
QB . (*E/, €/)d+r N Rd+r

be a homeomorphism onto its image, having the block triangular structure displayed in (3.94),
and assume that it conjugates the smooth system (3.93) to the smooth system (3.92). Necessarily
then, @ has the following properties :

1. The map $? is continuously differentiable with respect to its second argument X 2 and

)
a—f(0,0) is invertible.
0X?
2. On some neighborhood of 0 € R included in (—¢',")%*", one has :
PELXAU) = (3.95)
~ -1

2wl 32 0p° v1 32 s (=3/%1 w2 30wl ¥2
PRLE0) 4+ (S5 (XL 7 (PR X0 - B(X, X0

3. On some neighborhood of 0 € R? included in (—¢',&")?, the partial homeomorphism
(X', X%) = (F'(X), (X, X)) (3.96)
conjugates the control system
X1 =YX, X2, (3.97)
with state X' and control )~(2, to the control system
zt = g1z, 2?) (3.98)
with state Z' and input Z2.
Note that (3.97) and (3.98) are reduced systems from (3.93) and (3.92).

Proof of Lemma 3.6.2. Since the homeomorphism ¢ conjugates (3.91) to (3.92), we know, by
Proposition 3.3.6, that ¢ and ) split component-wise into :

V = er(X,0) U = vi(Z,V) .

Consider the map f : (—¢,&)9"" — R? given in (3.91), and let us define g : p((—¢,)4*") —
R¢ analogously from (3.92), namely g is the concatenated map whose first d — s components
are given by ¢g'(Z) and whose last s components are given by J:V. Define two families of
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continuous vector fields 7 and G', on (—¢,¢)% and ¢1((—¢,)?) respectively, by the following
formulas (compare (3.142)) :

F' = {6far.an; a1,z feedbacks on (—e,¢)?t" } | (3.100)
G = {69s,3 ;5. B feedbacks on ¢((—¢,)47) } . (3.101)

Applying Proposition 3.3.13 twice, first to x = ¢ and then to x = v, we see that each integral
curve of a vector field in F’ is mapped by ¢r to some integral curve of a vector field in G’ and
vice-versa upon replacing 1 by 11. This shows in particular that uniqueness of solutions to the
Cauchy problem associated to vector fields is preserved, i.e. if we define the families of vector
fields (compare (3.143)) :

F' = {YeF, Y hasaflow}, (3.102)
Gg" = {Yed, Yhasaflow}, (3.103)

we also have that each integral curve of a vector field in F” is mapped by ¢1 to an integral
curve of a vector field in G” and vice-versa upon replacing o1 by 1. By concatenation, using
Proposition 3.8.5, it follows that

for any X € (—¢,e)%, @1 defines a homeomorphism,
for the orbit topologies, from the orbit of F" through X (3.104)
onto the orbit of G" through p1(X),

where the orbit topology as described in Proposition 3.8.5 (by definition the restriction of ¢y
is bi-continuous for the topologies induced by the ambient space; bi-continuity for the orbit
topologies requires the description of these topologies as given in Proposition 3.8.5).

Now, the vector fields 6gs, 3, appearing in (3.101) inherit from the structure of g, displayed
in (3.92), the following particular form :

0

09p1,8,(Z) = BA(Z) — Bon(2) | (3.105)

B11(Z) — Boal(2)

where 3;1,..., 3 s designate, for i = 1,2, the first s component of the feedback ;. This will
allow for us to describe explicitly the orbits of G”, namely :

the orbit of G" through Zy = (c1,...,¢q)
is the connected component containing Zy of the set (3.106)
{Z € ¢1 ((—E,E)d) y 21 =Cly.vy2d—s = Cd—s}-

Indeed, the orbit in question is contained in this set, because it is connected, and because all
the vector fields in G” have their first d — s components equal to zero by (3.105).

To prove the reverse inclusion, it is enough to show that the orbit of G” through Zj, denoted
hereafter by Ogr 7, contains all the points sufficiently close to Zp having the same first d — s
coordinates as Zy. Indeed, since Zy was arbitrary, this will imply that the connected component
defined by (3.106) splits into a disjoint union of open orbits hence consists of a single one by
connectedness. That is to say, putting Zy = (Z¢, Z3) according to (3.90), 3.106 will follow from
the existence of a p > 0 such that

{28} x B(Z3.p) = B(Zo,p) N Ogr 2, (3.107)
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Now, it follows from Remark 3.8.3 that, for sufficiently small p, each connected component
of B(Zo,p) N Ogr z, is an embedded sub-manifold of B(Zy, p). Then, the connected component
of B(Zy,p) N Ogr z, containing Zy is, by inclusion, an embedded sub-manifold of the linear
manifold {Z}} x B(ZZ, p). In particular, since no strict sub-manifold can be densely embedded
in a given manifold, we see that (3.107) will hold is only we can prove that

The connected component containing Zoy of B(Zy, p) N Ogr z,

is dense in {Zy} x B(Zg,p) for the Euclidean topology. (3.108)

To prove (3.108), pick Vj such that (Zy, Vj) € (p((—e,s)d”) and observe, since the latter is
an open set, that shrinking p further, if necessary, allows us to assume B(Zy,p) x B(Vp,p) C
o((— d*’”) We claim that any continuous map B(Zy, p) — B(Vo, p) extends to a feedback on
( +T) Indeed, in view of the one-to-one correspondence 3 — ' m3 between feedbacks
on go(( ,€)47) and feedbacks on (—¢,e)*™" (cf. the discussion leading to (3.23)-(3.24)), it is
enough to prove that every continuous map ¥1(B(Zo, p)) — (—¢,€)" extends to a continuous
map (—¢,e)? — (—¢,e)", and this in turn follows from the Tietze extension theorem since
Y1(B(Zo, p)) is closed in (—¢,¢)? and since (—¢,€)" is a poly-interval. This proves the claim.

From the claim, it follows that the restriction to B(Zp,p) of the R®-valued vector field
J3(01(Z) — P2(Z)), accounting for the lower half of the right-hand side in (3.105), can be as-
signed arbitrarily, by choosing adequately the feedbacks (5 and (2, among continuous vector
fields B(Zo, p) — B(0, p) (take (32 to extend the constant map Vg on B(Zy, p)). Of course, the
corresponding vector field dgg, g, in (3.105) belongs to G’ but not necessarily to G” since conti-
nuous vector fields need not have a flow. However, since dgg, g, has a flow at least when (3 and
(o are smooth, we deduce from Proposition 3.3.4 that the restriction to B(Zy, p) of the vector
fields in G” are of the form {0} x Y, where Y ranges over a uniformly dense subset T of all
Ré-valued continuous maps B(Zy, p) — B(0, p). Now, every point in B(Z2,p) can be attained
from Zg upon integrating, within B (Zg, p), a constant vector field of arbitrary small norm. By
Lemma 3.7.2 applied with & = B(Z3,p) and K = {Z2}, the corresponding trajectory can be
approximated uniformly by integral curves that remain in B (Zg, p) of vector fields in Y. There-
fore, every point in {z}} x B(Z3, p) is the limit of endpoints of integral curves of G” that remain
in {23} x B(Z2,p), which proves (3.108) and thus (3.106). In particular, the orbits of G” are
embedded sub-manifolds in ¢r((—¢,e)?).

Next, we turn to the orbits of ", and we designate by Oz» , the orbit of 7" in | — e,e[?
through the point p. On the one hand, Proposition 3.8.5 and Theorem 3.8.2 show that Oz» ), is
a smooth immersed sub-manifold of | — ¢, e[%. On the other hand, by (3.104), this immersed sub-
manifold is sent homeomorphically by ¢, both for the orbit topology and the ambient topology,
onto Ogr 4 () Which is a smooth embedded s-dimensional sub-manifold of ¢1((—¢,2)?), as we
saw from (3.106). This entails that all orbits of F” in | — ¢,e[? are embedded sub-manifolds of
dimension s. Consequently, still from Proposition 3.8.5 and Theorem 3.8.2, there are coordinates
(€1,...,&4) defined on an open neighborhood Wy of the origin in | — &, €[ —this neighborhood
may be assumed to be of the form {(&1,...,&y), |&] < &’} — such that, in these coordinates,

W(]mo]-—”,(] = {(Ela"'?gd)7With(gslea"'vgd)ET}7

with T a subset of | — ¢/, ¢/[%~* containing (0,...,0), the tangent space to Wy N Ozn o at each
of its points being spanned by 9/0&1,...,0/0s, while at any point p € Wy the vector fields
0/0¢1,...,0/0& belong to the tangent space of Oz ,. But since we saw that all orbits are
smooth sub-manifolds of dimension s, these vector fields actually span the tangent space to the
orbit at every point. Hence all the vector fields 6 fq, q, in F” have their last d — s components
equal to zero on Wy in the £ coordinates, and this holds in particular when «;, g range
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over all constant feedbacks (—¢,e)? — (—¢,¢)". This implies, by the very definition of 6 fu, as,
that (SS“, e ,éd) — as computed from (3.91) upon performing the change of variable X +—
(&1,...,&q) — does not depend on the control variable U. Choose for X the & coordinates
arranged in reverse order, and let fbe the analog of f in the new coordinates ()~( ,U). Then the
first d — s components of f do not depend on U so that (3.93) holds. Moreover, if ¢ denotes
the new homeomorphism that conjugates (3.93) to (3.92) over (—¢,&)?t", &((—e,)%™"), and if
1 denotes its inverse, it follows from (3.104) and the above characterization of the orbits that

o1 maps the sets where 71,...,T4 s are constant to those where 21, ..., 24 are constant, thus
the functions @1,...,p4_s and ¥1,...,14_s depend only on their d — s first arguments whence
(3.94) follows. O

Proof of Lemma 3.6.3. We use again the concatenated notation ¢ = (g%, ?), Y1 = (@Zl,zp),
these partial homeomorphisms being inverse of each other. Let (Zy, Vo) € @((—¢’,¢")4*™) and &”
be so small that the product neighborhood (Zg, Vo)+(—¢",&")%*" lies entirely within §((—¢’,&/)*).
The restriction to (Zo, Vo) + (—€”,&")4*" of 4 conjugates (3.92) to (3.93). Consequently, for any
V e (—¢",€")", we may apply Proposition 3.3.13 to this restriction and to the constant feedbacks
a1(Z) = Vo +V and as(Z) = Vjy; this yields that ¢y, given by

(2,72) — (X', X% = (@N2").4*(2",2%),

maps every solution of

zZV =0, 7% =JV (3.109)

r

that remains in Zy + (—¢”,¢”)¢ to a solution of
-1 2 o~ ~ ~ ~ ~ ~ _
X =0, X =7XLX2 @ (X)), (XL, X%,V +V)) (3.110)
- f2(X17 X27 11)3(%’51()(1)’ &2(X17 XQ)a %))

that remains in IZI(Z() +(—¢",€")%), and vice versa upon applying Proposition 3.3.13 in the other
direction.
Integrating (3.109) explicitly with initial condition Z(0) = Zy, we get that

t — {EI(Z&) _
V(25,25 + tJV)

solves (3.110) for sufficiently small ¢, hence 1;2(Z 1. Z?) is differentiable at Zy with respect to its
second argument in the direction JV', with directional derivative

_ - i B
W22 IV = PENZ) P2, 22,0828, 22,V + V)

072
— PPWNZ5), 0% (25, 23), (25, 75, Vo)) - (3.111)

In particular, since Zy can be any member of @y((—¢’, &)%) while J5V can be assigned arbitrarily
in (—”,&")%, we conclude that 0vy?/0Z2(Z', Z?) exists and is continuous since this holds for
the partial derivatives. Next we prove that 81;2 /072 is invertible at every point by showing that
its kernel reduces to zero. In fact, if the left-hand side of (3.111) vanishes, so does the right-
hand side which is also the value of the right-hand side of (3.110) for X = {/II(ZO). Therefore the
constant map t — @ZI(ZO) is a solution to (3.110) over a suitable time interval, and by conjugation
the constant map ¢ — Zj is a solution to (3.109) over that time interval which clearly entails
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JV = 0, as desired. Now, since 8122/8Z2 is invertible at every (Z', Z%) € g1((—¢',¢')%), the
triangular structure of (3.94) and the inverse function theorem together imply that

~ 72 _ o -1
s;Q(Xl X%) = (222@1()(1),&2()(1,)(2))) (3.112)

continuously exists and is invertible for (X!, X2) € (—¢’, ') This proves point 1.

Let us turn to point 2. Select an open neighborhood W of 0 having compact closure in
(—¢',€)%, so there is > 0 such that G(X, 0)+ (=5, 7)*" is included in &((—¢’, e')4+") whenever
X e W.IfV € (=n,n)", we can apply (3.111) to (Zy, Vo) = #(X,0) with X € W, and we obtain
in view of (3.112) :

(§;2(X1 X2)> IV = - (X', X2,0) (3.113)

+f2 <)?17)~(2,{/;3(551(5(1),@2()?1,)?2)7@3()?1,)?2,0) +V)> .

Set
U =9 (@"(XY), (X", X2, (X, X2,0)+V) (3.114)

and observe that (X,V) — (X,U) = ¥(3(X,0) + (0,V)) defines a continuous map h : W x
(=n,m)" — (—€',&")%*7 such that h(0) = 0, which is injective. By invariance of the domain, h
is a homeomorphism onto some open neighborhood of 0, say N C (—¢,&/)%+". For (X,U) € N,
(3.114) can be inverted as

V=3(X,U) - 3X,0), (3.115)

and substituting (3.114) and (3.115) in (3.113) yields (3.95).
Finally we prove point 3, keeplng in mind the previous definitions and properties of h, W, n
and V. For X = (X!, X2) € (—¢,¢')?, define V(X) € RS x {0} C R" by the formula :

JV(X) = 2;2 (X1, %2)(F2(0,0,0) — JA(X!, X2,0). (3.116)
Clearly V : (—¢’,&/)? — R" is continuous and V(0) = 0, so there exists an open neighborhood
VCWof0in R such that V(X) € (—n,1)" as soon as X € V; then, if we set h(X,V (X)) =
(X,U(X)) € NV, it follows from (3.116), (3.115), and (3.95) that

XY X2 UX) = £2(0,0,0), X eV. (3.117)

We will show, using Proposition 3.3.12, that the restriction of 1 to any relatively compact open
subset X of V conjugates (3.97) and (3.98) over X, ¢(X), and this will achieve the proof. To
this effect, let C to be the collection of all piecewise affine maps R — R*® with constant slope
£2(0,0,0) (cf. the discussion before Proposition 3.3.12) and note that, for any open set O C R*
and any compact interval J C R, the restriction of C to J contains, in its uniform closure, the
set all piecewise continuous maps J — O. Now, consider a solution v : I — V of the control
system :

X = PELT) (3.118)

with state X! and control Y ; hereafter, Vi C R and Vy C R® will indicate the projections of
V onto the first d — s and the last s components respectively, and similarly for any other open
set in R?. Assume that the control function ~r : I — Vy is the restriction to I of some member
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of C. By definition, if a,b are the endpoints of (}hat may belong to I or not), there are time
instants a =ty < t; < --- < ty = b, and vectors &£1,...,En € R® such that, for 1 < j < N, one
has

tia<t<t; = ~yu(t) = & +1tf%(0,0,0), (3.119)

while at the points ¢; themselves 7y is either right or left continuous when 1 < j < N. We claim
that @1(7y(t)) is a solution that remains in @1()) of the control system :

zt = ¢4z, D) (3.120)

with state Z! and control T'. In fact, since 71 is continuous by definition of a solution, so is @' (1)
and therefore, as @1(7y(t)) lies in @1(V) for all ¢t € I by construction, it is enough to check that

Ts

P (m(T2)) - SZI(VI(Tl)):/T g (@' (n(®)), P*(m(t), m(t))) dt (3.121)

whenever t;_; < T1 < Ty < t; for some j > 1. However, the restriction of v(t) to (tj_1,t;) is a
solution that remains in V of the differential equation :

1= )

;Y]I = f2(070a0)7

hence (y(t), U(~(t)) is, by (3.117), a solution of (3.93) that remains in A/, and therefore (3.121)
follows from the triangular structure (3.94) of ¢ and the fact that it conjugates system (3.93)
to system (3.92). This proves the claim.

In the other direction, we observe since it is included in W that V has compact closure in
(—¢’,€’)?, and therefore that @r(V) in turn has compact closure in &r((—¢’,’)?). Pick ' > 0
such that @1(V) x (=1, 7)" C @((—€’,&")™), and let C' denote the collection of all piecewise
smooth maps R — R® whose derivative is strictly bounded by 1’ component-wise. The restriction
of C’ to any compact real interval J is uniformly dense in the set all piecewise continuous maps
J — O, for any open set O C R®. Clearly, any solution 7' : I — ¢1(V) of system (3.120), whose
control function v : I — (@1(V)); is the restriction to I of some member of C’, satisfies the
differential equation

1= 9'(v, )

o= J7(dy/dt, 0)
on every interval where it is smooth. By the very definition of ' and C’, it follows that
('y’(t), (d'yﬁ(t)/dt,O)) is, on such intervals, a solution to (3.92) that remains in @((—¢’,¢’))4*"
and, since @Z conjugates system (3.92) to system (3.93), we argue as before to the effect that
Y1(7') is a solution to system (3.118) that remains in V. Appealing to Proposition 3.3.12, we
conclude that ¢y conjugates system (3.118) to system (3.120) on relatively compact open subsets
of V, as desired. 0

3.7 Appendix : Four lemmas on ODEs

Throughout this section, we let U be an open subset of R?. We say that a continuous vector
field X : U — R? has a flow if the Cauchy problem #(t) = X (z(t)) with initial condition
x(0) = o has a unique solution, defined for t € (—¢,¢) with ¢ = e(x¢) > 0. The flow of X at
time ¢ is denoted by Xy, in other words we have with the preceding notations that Xy (zg) = z(t).
It is easy to see that the domain of definition of (¢, x) — X (¢, 2) is open in R x Y.
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Lemma 3.7.1. If X : U — R% is a continuous vector field that has a flow, the map (t, x) — X;(x)
s continuous on the open subset of R x U where it is defined.

Proof. This is an easy consequence of the Ascoli-Arzela theorem, and actually a special case of
[47, chap. V, Theorem 2.1]. O

Lemma 3.7.2. Assume that the sequence of continuous vector fields X* : U — R?® converges
to X, uniformly on compact subsets of U, and that all the X* as well as X itself have a flow.
Suppose that Xi(x) is defined for all (t,z) € [0,T] x K with T > 0 and K C U compact.
Then X[F(x) is also defined on [0,T) x K for k large enough, and the sequence of mappings
(t,x) — X[ (x) converges to (t,x) — Xy(x), uniformly on [0,T] x K.

Proof. By assumption,
K= {Xt($), (t,.%') S [O,T] X K}

is a well-defined subset of U that contains K, and it is compact by Lemma 3.7.1. Let Ky be
another compact subset of & whose interior contains K1, and put d(Ky,U \ Ko) = n > 0 where
d(E1, E2) indicates the distance between two sets Ey, Fy. From the hypothesis there is M > 0
such that || X*|| < M on Ky for all k, hence the maximal solution to x(t) = X*(x(t)) with
initial condition x(0) = zp € K remains in Ky as long as ¢t < n/2M. Consequently the flow
(t,x) — XF(x) is defined on [0,17/2M] x K for all k, with values in Ko. We claim that it is a
bounded equicontinuous sequence of functions there. Boundedness is clear since these functions
are Ko-valued, so we must show that, to every (¢t,z) € [0,1n/2M] x K and every ¢ > 0, there is
« > 0 such that || X*(¢,2") — X*(t,z)|| < e for all k as soon as |t — /| + ||z — 2/|| < a. By the
mean-value theorem and the uniform majorization || X*(XF(x))|| < M, it is sufficient to prove
this when ¢ = t’. Arguing by contradiction, assume for some subsequence k; and some sequence
x; converging to x in K that

| XF (2) — XF(z)|| > forallleN. (3.122)

Then, by Lemma 3.7.1, the index k; tends to infinity with . Next consider the sequence of maps
Fy : [0,7/2M] — Ko defined by Fi(t) = XF(2;). Again, by the mean value theorem, it is a
bounded equicontinuous family of functions and, by the Ascoli-Arzela theorem, it is relatively
compact in the topology of uniform convergence (compare [47, chap. II, Theorem 3.2]). But if
@ : [0,n/2M] — Ky is the uniform limit of some subsequence F,, and since X M; converges
uniformly to X on Ky as j — oo, taking limits in the relation

ki, ¢ ki,
X, g (z1,) = =y, +/ X"y (Xslj (m,))ds
0

gives us
O(t) ==z —i—/o X(®(s))ds

so that ®(t) = X;(x) since X has a flow. Altogether Fj(t) converges uniformly to X;(z) on
[0,1/2M] because this is the only accumulation point, and then (3.122) becomes absurd. This
proves the claim. From the claim it follows, using the Ascoli-Arzela theorem again, that the
family of functions (¢, z) — X[ (z) is relatively compact for the topology of uniform convergence
[0,7/2M] x K — Ky, and in fact it converges to (t,x) — X;(z) because, by the same limiting
argument as was used to prove the claim, every accumulation point ®(¢,x) must be a solution
to

t
O(t,z) = a:+/0 X(s,®(s,z))ds
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hence for fixed = is an integral curve of X with initial condition z. In particular, by definition
of K71, we shall have that d(X[(x), K1) < n/2 for all (t,x) € [0,7/2M] x K as soon as k is large
enough. For such k the flow (¢, z) — X[ (x) will be defined on [0,7/M] x K with values in K, and
we can repeat the whole argument again to the effect that XJ(z) converges uniformly to X ()
there. Proceeding inductively, we obtain after [27'M/n] + 1 steps at most that (¢,z) — XF(x)
is defined on [0,7] x K with values in Ky for k large enough, and converges uniformly to
(t,z) — Xi(x) there, as was to be shown. O

The next lemma stands analogous to Lemma 3.7.2 for time-dependent vector fields, assuming
that the convergence holds boundedly almost everywhere in time. The assumption that the vector
fields have a flow is replaced here by a local Lipschitz condition that we now comment upon.

By definition, a time-dependent vector field X : [t1,t2] x U — R? is locally Lipschitz with
respect to the second variable if every (to,zo) € [t1,t2] X U has a neighborhood there such
that || X (¢,2") — X (¢, 2)| < c|[|Jz’ — =], for some constant ¢, whenever (¢,z) and (¢, 2’) belong to
that neighborhood. This of course entails that X is bounded on compact subsets of [t1, t2] X U.
Next, by the compactness of [t1, t2], the local Lipschitz character of X strengthens to the effect
that each xz¢p € U has a neighborhood N, such that | X (¢,2) — X (¢, 2)| < ¢z ll2’ — x|, for
some constant c,,, whenever xz,2’ € N, and t € [t1,t2]. If now K C U is compact, we can
cover it by finitely many A, as above and find ¢ > 0 such that z,2’ € K and |z — 2'|| < ¢
is impossible unless z,2’ lie in some common AN,,. Consequently there is ¢k > 0 such that
| X (¢, ") — X(t,x)|| < cx||lz’ — x| whenever z,2" € K and ¢ € [t1,t2], because if ||z — 2/|| < e we
can take cx > maxy ¢g, ,, Whereas if ||z — 2/|| > ¢ it is enough to take cx > 2M /e where M is
a bound for || X|| on [t1,t2] x K. Finally, if X (¢,x) happens to vanish identically for = outside
some compact K’ C U, we can choose K such that

IC’CIOCCICCL{

and construct cx as before except that we also pick € > 0 so small that ||z —2/|| < € is impossible
for x € K’ and 2’ ¢ K. Then it holds that || X (¢,2') — X (¢, 2)|| < ex||a’ — z|| for all z, 2’ € U and
all t € [t1,t2], that is to say X (¢, z) becomes globally Lipschitz with respect to z. These remarks
will be used in the proof to come.

Lemma 3.7.3. Let t; <ty be two real numbers and X : [t1,ta] XU — R? ¢ sequence of time-
dependent vector fields, measurable with respect to t, locally Lipschitz continuous with respect to
x € U, and bounded on compact subsets of [t1,t2] xU independently of k. Let X : [ty to] xU — R?
be another time-dependent vector field, measurable with respect to t, locally Lipschitz continuous
with respect to x € U, and assume that, to each compact K C U, there is Ex C [t1,t2] of zero
measure such that, whenever t ¢ Ex, the sequence X*(t,x) converges to X(t,x) as k — oo,
uniformly with respect to x € K. Suppose finally that ~y : [t1,ta] — U 1s, for some (to,x0) €
[t1,t2] X U, a solution to the Cauchy problem

) = X)), () = o (3.123)
Then, for k large enough, there is a unique solution i : [t1,t2] — U to the Cauchy problem
() = X)), wlto) = o, (3.124)
and the sequence (V) converges to -y, uniformly on [t1,t2].

Proof. Upon multiplying X*(¢,x) and X (¢,z) by a smooth function ((x) which is compactly
supported Y — R and identically 1 on a neighborhood of y([t1, t2]), we may assume in view of the
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discussion preceding the lemma that X (¢, 2) and X*(t, z) are defined and bounded [t1, t2] x R? —
R¢ independently of k, measurable with respect to ¢, and (globally) Lipschitz continuous with
respect to x.

Then, by classical results [98, Proposition C 3.8., Theorem 54|, the solution to (3.124), say
Yy uniquely exists [t1,ts] — R? for each k :

t
() =z0+ | XF(s,7(s))ds,  t € [ty,ta]. (3.125)
to

From the boundedness of X*, it is clear that ~; is an equicontinuous and bounded family of
functions, hence it is relatively compact in the topology of uniform convergence on [t,ts]. All
we have to prove then is that every accumulation point of 7, coincides with . Extracting a
subsequence if necessary, let us assume that v converges to some 7, uniformly on [¢1,t2]. Let
K C R? be a compact set containing vx([t1,ts]) for all k; such a set exists by the boundedness of
vk If we let Exc C [t1, ta] be the set of zero measure granted by the hypothesis, there exists to each
s € [t1,t2]\ Ex and each & > 0 an integer ks . such that || X*(s,7)— X (s,7)|| < cassoonasx € K
and k > ks.. In another connection, the Lipschitz character of X with respect to the second
argument and the uniform convergence of 7 to 5 shows that that || X (s, vx(s)) — X (s,73(s))|| < &
for k large enough. Altogether, by a 2-¢ majorization , we find that

Jim (X" (5, 7(5) = X (5, 7()]| =0,

that is to say the integrand in the right-hand side of (3.125) converges point-wise almost eve-
rywhere to X (s,7%(s)). Since X* is bounded we can apply the dominated convergence theorem
and, taking limits on both sides of (3.125) as k — oo, we find that ¥ is a solution to (3.123)
whereas the latter is unique. Hence 4 — v as desired. O

The following averaging lemma for continuous vector fields is less classical than in the locally
Lipschitz case, where the Cauchy problem has a unique solution.

Lemma 3.7.4. Let t; < to be real numbers and (X'%)pen, (X?%)ien, be two sequences of
continuous time-dependent vector fields [t1,t2] X R? — R, uniformly bounded with respect to
¢, that converge uniformly on compact subsets of [t1,t2] x R? to some vector fields X' and X?
respectively. Denoting by L = to — t1 the length of the time interval, define, for each £ € N, the
“average” vector field Gy : [t1,t2] x RY — R? by :

teti+I0, t1+ 5L = Got,x) = XY(t,x),

4 . 3.126
teltt B 0+ = Gilta) — X*(1a) | (3:126)
for 5 €{0,...,0—1} and, say, Gy(ta, x) = X>*(ta, ) for definiteness.
Let g : [t1,ta] — R? be a solution to
t
Yelt) — & = Go(7,7e(7))dT . (3.127)

t1

Then the sequence () is compact in CO([t1,ts], R?), and every accumulation point v is a

solution to

1

Voolt) — T = 2/t (X1 (7,700 (7)) + X2(7, 700 (7)) dT . (3.128)
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Proof. Let
M = sup | X"t 2)| . (3.129)

t,x,i,l

From (3.126)-(3.127), it is clear that M is a Lipschitz constant for -y, regardless of £. In particular
~¢(t) stays in a fixed compact ball B of radius M L, and the family (v,) is equicontinuous. From
Ascoli-Arzela’s theorem this implies compactness of the sequence (v,) in the uniform topology
on [tl, tg].

Rewrite (3.127) as

¢ L m(r 2L (7
) =2 = [ (Gulrutry - RO

COXV () + X ve(r) X () + X (7 (7))
i Pt et i)
! XI(T>’Y€(T)) + X2(T7’7€(T))

+ dr . (3.130)
t1 2

By the uniform convergence of X to X?, it will clearly follow that any accumulation point
Yoo Of (7¢) satisfies (3.128) if only we can show that the first integral in the right-hand side of
(3.130) converges to zero as ¢ — oo.

To prove this, we compute, from the definition of Gy :

t %L A(r T L(r T
L7 (Gt - 2D )

1+%L 2
241
_ /t1+ T L XLK(T, 'yg(T)) - XQ’E(Ta 'YE(T)) dr (3 131)
t1+%L 2

dr

_ /“*”L XV (7, 70(1)) = X2 (7, %0(7))
t

1+%L 2

t1+%L
= / , (Ag(T, Ye(T)) — Ag(T + 2%,’}/@(7’ + Q—Le))) dr
t1+%L

with A, = 1(X16 — X2%). On the compact set [t1,t5] x B, the vector field A, is uniformly
continuous with a modulus of continuity that does not depend on ¢ ; consequently, by the uniform
Lipschitz property of v, we see for arbitrary € > 0 that the norm of the last integral is less that
€/2¢ as soon as £ is large enough, independently of ;.

Now, the first integral in (3.130) can be decomposed into a sum of at most ¢ integrals like
these we just studied plus an integral over an interval of length smaller that 1/¢. Since the norm
of the integrand is bounded by 2M, the norm of the last term is less than 2M//¢. Summing over
Jj, the above estimates tell us that, for ¢ € [t1,t2] and for ¢ is large enough,

¢ . )
/1; (Ge(T,w(T)) X () + X (va(T)))dT _

+2M
2 2

This achieves the proof since £ > 0 was arbitrary. O
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3.8 Appendix : Orbits of families of vector fields

In the proof of lemma 3.6.2 we need results from [101] on orbits® of families of smooth vector
fields, that were recently exposed in the textbook [59, chapter II]. We recall them below, in a
slightly expanded form.

Let F be a family of smooth vector fields defined on an open subset U of R?. For any positive
integer N and vector fields X1, ..., X belonging to F, given m € U, consider the map F given
by

(t1,....ty) — XL (X2 (XN (m)) ) (3.132)

where the standard notation X;(x) indicates the flow of X from z at time ¢ ; of course, F' depends
on the choice of the vector fields X7 and of the point m. This map is defined on some open
connected neighborhood of the origin, hereafter denoted by dom(F'), and takes values in U.
In fact, (t1,...,tn) € dom(F) if, and only if, for every j € {1,..., N}, the solution z(7) to
i = X(x), with initial condition z(0) = ngj( (X1 (m))--+), exists in U for all 7 € [0,1;]
(or [tj,O] ift; < 0).

The orbit of the family F through a point m € U is the set of all points that lie in the image
of F for at least one choice of the vector fields X, ..., X~. In words, the orbit of the family F
through m is the set of points that may be linked to m in U upon concatenating finitely many
integral curves of vector fields in the family. We shall denote by O, the orbit of F through m.

Note that the definition depends on U in a slightly subtle manner : if 7 defines by restriction
a family of vector fields F|y on a smaller open set V' C U and if m € V, then

VNOrm D O]:\wm’ (3.133)

but the inclusion is generally strict because of the requirement that the integral curves used to
construct O, ,,, should lie entirely in V.

We turn to topological considerations. The topology of U is the usual Euclidean topology.
The topology of O, as an orbit is the finest that makes all the maps F', arising from (3.132),
continuous on their respective domains of definition, the latter being endowed with the Euclidean
topology. The classical smoothness of the flow implies that each F is continuous dom(F) — R,
hence the topology of Of,, as an orbit is finer than the Euclidean topology induced by the
ambient space U. It can be strictly finer, and this is why we speak of the orbit topology, as
opposed to the induced topology.

Starting from F, one defines a larger family of vector fields Pr, consisting of all the push-
forwards® of vector fields in F through all local diffeomorphisms of the form thl o XtQ2 0---0 thyv
where X1, ..., X" belong to F. That is to say, vector fields in Pr are of the form

(X} 0o x]) X° (3.134)

*

where X0 X1 .. XN belong to F.

® One of the motivations in [101] was to generalize the notion of integral manifolds to vector fields that are
smooth but not real analytic. Note that the orbits of a family of real analytic vector fields actually coincide with
the maximal integral manifolds of the closure of this family under Lie brackets [101, 67, 78]. However, even if we
assume the control system (3.4) to be real analytic, integral manifolds are of no help to us because topological
conjugacy does not preserve tangency nor Lie brackets. Using orbits of families of vector fields instead is much
more efficient, because topological conjugacy does preserve integral curves.

6 Recall that the push-forward of a vector field X : V — R? through a diffeomorphism ¢ : V — ¢(V) is the
vector field . X on ¢(V) whose flow at each time is the conjugate of the flow of X under the diffeomorphism ¢ ;
it can be defined as p. X (p(z)) = Dp(z)X (x), where Dp(z) is the derivative of p at z € V.
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Remark 3.8.1. Note that a member of Pr is defined on an open set which is generally a strict
subset of U, whereas members of F are defined over the whole of U, and it is understood that a
curve v : I — U, where I is a real interval, will be called an integral curve of Y € Pr only when
~v(I) is included in the domain of definition of Y .

For z € U, we denote by Pr(x) the subspace of R? spanned by all the vectors Y (z), where
Y € Pr(z) is defined in a neighborhood of z.

Theorem 3.8.2 below, which is the central result in this appendix, describes the topological
nature of the orbits. To interpret the statement correctly, it is necessary to recall (see for instance
[99]) that an immersed sub-manifold of a manifold is a subset of the latter which is a manifold
in its own right, and is such that the inclusion map is an immersion. This allows one to naturally
identify the tangent space to an immersed sub-manifold at a given point with a linear subspace
of the tangent space to the ambient manifold at the same point. The topology of an immersed
sub-manifold is in general finer than the one induced by the ambient manifold ; when these two
topologies coincide, the sub-manifold is called embedded.

Theorem 3.8.2 (Orbit Theorem, Sussmann [101]). Let F be a family of smooth vector fields
defined on an open set U C R%, and m be a point in U. If Or m denotes the orbit of F through
m, then :
(i) Endowed with the orbit topology, OF ,, has a unique differential structure that makes it
a smooth connected immersed sub-manifold of U, for which the maps (3.132) are smooth.
(i1) The tangent space to OF y, at x € OF , is Pr(x).
(iii) There exists an open neighborhood W of m in U, and smooth local coordinates § : W —
(—n,n)¢ C RY, with £(m) = 0, such that
(a) in these coordinates, W N OF , is a product :

WNOrm = (—n,n)?xT (3.135)

where n > 0, q is the dimension of OF ., and T is some subset of (—n, n)4=9 containing
the origin. The orbit topology of OF i, induces on W NOF ,, the product topology where
(—n,n)? is endowed with the usual Euclidean topology and T with the discrete topology.

(b) if v : [t1,t2] = W N Of, is an integral curve of a vector field Y € Pr (see remark
3.8.1), then t — &(~(t)), ¢+ 1 <1i <d, are constant mappings,

(c) the tangent space to OF m at each point p € W N OF, is spanned by the vector fields
8/8511 SRR a/aéfb

(d) at any point p € W, the vector fields 0/0&1, . ..,0/0&, belong to the tangent space to
the orbit of F through p.

Remark 3.8.3. Another description of the product topology in point (iit) — (a) is as follows.
The connected components of W N O, are the sets

Swa = (=n,m)7 x {a} (3.136)

for a € T, and the topology on each of these connected components is the topology induced by
the ambient Euclidean topology. In particular each Sy, is an embedded sub-manifold of U.

Proof of Theorem 3.8.2. Assertion (i) is the standard form of the orbit theorem (cf. e.g. [59,
Chapter 2, Theorem 1]), while assertion (i7) is a rephrasing of [101, Theorem 4.1, point (b)].
Assertion (ii7) apparently cannot be referenced exactly in this form, but we shall deduce it from
the previous ones as follows.

By point (i7), the tangent space to O, at m € S is the linear span over R of Y1(m),...,Y9(m),
where Y1, ..., Y? are ¢ vector fields belonging to Pz, defined on some neighborhood of m, and
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such that Y(m),...,Y%(m) are linearly independent (recall that ¢ is the dimension of Oz ).
Let us write ‘ .
vio= (Xt oo Xt
7,1

7,Nj

) X 1<j<q
*
where X7k ¢ Ffor0< k< N j, and where the ¢; ;’s are real numbers for which the concatenated
flow exists, locally around m (compare (3.134)).

Since Y1(m),...,Y49(m) are linearly independent, one may complement them into a basis of
R? by adjunction of d — ¢ independent vectors that may, without loss of generality, be regarded

as values at m of d — ¢ smooth vector fields in U, say Y9!, ... Y Then, the smooth map

1 +1 d
L(Er, ..., &) = (y51 0o Yd oY o-~~oY£d> (m) (3.137)
defines a diffeomorphism from some poly-interval Z,, = {(&1,...,&q), |&| < n} onto an open
neighborhood W of m in U, simply because the derivative of L is invertible at the origin as
Y(m),...,Y%(m) are linearly independent by construction. Let £ : W — Z,, denote its inverse.
By the characteristic property of push-forwards, we locally have, for 1 < j < ¢, that

j — j:l j7N' .]70 j7N' j’l
YEj = th’l 0---0 th,NJj o ng o X—tj,ij 0---0 X—tj71 ) (3.138)
This implies that, in (3.137), the images under L of those d-tuples sharing a common value of
§g+1s - -+, &q all lie in the same orbit (’);7,;(07_._707&1“7__.7§d). In particular, the map
1 +1 d
Tlyeoo Tqg <le+§1 o--~ngl+§q OYng o---ngd) (m)

is defined H?Zl(—n —&m—¢&5) = WNOx 1(e,..¢,), and this map is smooth from the Euclidean
to the orbit topology by (3.138) and point (7). If we compose it with the immersive injection
Jw : WNOr Le,..cn) — W (keeping in mind that W N O 1., s open in Or 1, . ¢,
since the orbit topology is finer than the Euclidean one), and if we subsequently apply &, we get
the affine map

T1y.--,Tq (7—1+€17"' qu+€q7£q+l,"' 7£d)' (3139)

Thus the derivative of (3.139) factors through the derivative of £ o Jy at L(&1, ..., &y), which
implies (d) ; from this (c¢) follows, because ¢ is the dimension of the orbit through m. If Y € P
is defined over an open subset of W, and if we write in the £ coordinates Y (§) = >, a;(£)0/0%;,
then, since Y () is tangent to Or¢ by (i7), we deduce from (c), that the functions ag41,...,aq
vanish on O ,,, whence (b) holds.

We finally prove (a). Considering (3.137) and (3.138), a moment’s thinking will convince the
reader that W N Ox,, consists exactly, in the  coordinates, of those (£1,...,&4) such that

(ygqﬂ oo yg;) (m) € OFm, (3.140)
which accounts for (3.135) where T is the set of (d — ¢)-tuples ({441, ...,&q) such that (3.140)
holds. To prove that the orbit topology is the product topology on (—n,1)? x T where T is
discrete, consider a map F as in (3.132), and pick ¢ = (¢1,...,ty) € dom(F) such that F(t) € W
(hence F(t) € W N Oz,y,); then F is continuous at ¢ for the product topology because, for ¢
close enough to ¢, the values {g41(F'(t)), ..., &a(F(t)) do not depend on ¢ by (b) (moving ¢; means
following the flow of a vector field in Pr, namely the push-forward of X through th1 o-- -OXZ;II)
while & (F'(t)), ..., &(F (t)) vary continuously with ¢ according to the continuous dependence on
time and initial conditions of solutions to differential equations. Since this is true for all maps F,
the orbit topology on W N O#,, is finer than the product topology. To show that it cannot be
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strictly finer, it is enough to prove that the orbit topology coincides with the Euclidean topology
on each set Sy, defined in (3.136), a basis of which consists of the sets O x {a} where O is
open in (—n,n)%. Being open for the product topology, these sets are open the orbit topology as
well by what precedes and, since O, is a manifold by (i), each point (y,a) € O x {a} has, in
the orbit topology, a neighborhood N, C O x {a} which is homeomorphic to an open ball of R?
via some coordinate map. When viewed in these coordinates, the injection Ny, — O x {a} from
the orbit topology to the Euclidean topology is a continuous injective map from an open ball in
R? into RY, and therefore it is a homeomorphism onto its image by invariance of the domain.
As (y,a) was arbitrary in O x {a}, this shows the latter is a union of open sets for the orbit
topology, as desired. O

Consider now the control system :
r = f(z,u), (3.141)

with state z € R? and control u € R”, the function f being smooth on R% x R”. Let € be an
open subset of R¢ x R™ and, following the notation introduced in section 3.3, put Qpa to denote
its projection onto the first factor. In the proof of Theorem 3.5.2, we shall be concerned with
the following family of vector fields on Qpa :

F' = {0far.00, 01,09 feedbacks on Q} | (3.142)

where feedbacks on ) were introduced in Definition 3.3.3 and the notation ¢ f,, , Was fixed in
(3.25), (3.26).

Since feedbacks are only required to be continuous, F' is a family of continuous but not
necessarily differentiable vector fields on {2ra and, though the existence of solutions to differential
equations with continuous right-hand side makes it still possible to define the orbit as the
collection of endpoints of all concatenated integrations like (3.132), Theorem 3.8.2 does not
apply in this case.

To overcome this difficulty, we will consider instead of F’ the smaller family :

F' = {XeF, X hasaflow}, (3.143)

where the sentence “X has a flow” means, as in appendix 3.7, that the Cauchy problem (t) =
X (x(t)), 2(0) = zg, has a unique solution, defined for |t| < g9 where £y may depend on x,
whenever zg lies in the domain of definition of X. Let us consider the orbit Oz» ,, of " through
m € Qga, which is still defined as the union of images of all maps (3.132) where X7 € F”, the
domain of each such map F' being again a connected open neighborhood dom(F’) of the origin in
R by repeated application of Lemma 3.7.1. As before, we define the orbit topology on OFrm
to be the finest that makes all the maps (3.132) continuous, and since uniqueness of solutions
implies continuous dependence on initial conditions (see Lemma 3.7.1), the orbit topology is
again finer than the Euclidean topology. A priori, we know very little about Oz~ ,,, and its orbit
topology as Theorem 3.8.2 does not apply. However, Proposition 3.8.5 below will establish that
these notions coincide with those arising from the family F of smooth vector fields obtained by
setting :

F = {6fa1.00, 1,2 smooth feedbacks on €2 }. (3.144)

Note that, from the definitions (3.142), (3.143) and (3.144), we obviously have
FcF" cF, (3.145)

hence the orbits of these families through a given point obey the same inclusions.
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Remark 3.8.4. [t may of course happen that the family F' is empty because 2 admits no
feedback at all. However, if F' is not empty, then F is not empty either by Proposition 3.3.4.

Proposition 3.8.5. Suppose that f : R* x R" — R is smooth, and let Q be an open subset of
RY x R”. Let F" be defined by (3.142)-(3.143).

For any m € Qga, the orbit Ozn p, of F' through m coincides with the orbit through m of
the family F of smooth vector fields defined by (3.144), and the topology of Oz r,, as an orbit
of F, coincides with its topology as an orbit of F". In particular, the conclusions of Theorem

3.8.2 hold if we replace F by F" and U by Qpa.

Remark 3.8.6. With a limited amount of extra-work, it is possible to show that the orbits
of F' also coincide with those of F. Hence they turn out to be manifolds despite the possible
non-uniqueness of solutions to the Cauchy problem. However, (3.132) is no longer convenient to
define the orbit topology in this case because the maps F may be multiply-valued when X7 € F,
and it is simpler to work with the family F" anyway.

The proof of the proposition is based on the following lemma.

Lemma 3.8.7. For m € Qga and X',..., XN € F", let F : dom(F) — Qga be defined by
(3.132). Fiz t = (t1,...,tn) € dom(F) and set m = F(t).

Then, there is a neighborhood T of t in dom(F), with F(T) C OFm, such that F : T — Orm
s continuous from the Fuclidean topology to the orbit topology.

Assuming the lemma for a while, we first prove the proposition.

Proof of Proposition 3.8.5. We noticed already from (3.145) that the orbit of F” through m
contains the orbit of F through m. To get the reverse inclusion, consider the map F' defined by
(3.132) for some vector fields X', ..., XV belonging to . Then, observe from Lemma 3.8.7 that
F takes values in a disjoint union of orbits of F, and that it is continuous if each orbit in this union
is endowed with the orbit topology. Since dom(F’) is connected, F' takes values in a single orbit,
which can be none but Of ,,,. As I was arbitrary, we conclude that Oz ,,, C Of , and therefore
the two orbits agree as sets. Moreover, since each map F' was continuous dom(F') — O, the
orbit topology of Oz~ ,,, is by definition finer than the orbit topology of Or ,, ; but since it is
also coarser, by definition of the orbit topology on O ,,, because F C F”, the two topologies
in turn agree as desired. O

Proof of Lemma 3.8.7. Theorem 3.8.2 applied to the family F, at the point m = F(t), yields
an open neighborhood W of 7 in Qg4 and smooth local coordinates (£1,...,&7) : W — (—n,1)¢
satisfying properties (4i7) — (a) to (¢i¢) — (d) of that theorem. For € > 0 denote by 7 the compact
poly-interval :

T. = {t=(tr,...,tn) €RY, |t; — ;| <e}.
By Lemma 3.7.1, F' is continuous dom(F') — Qpa and, since dom(F') is an open neighborhood
of T in RV, we can pick € > 0 such that

7. Cdom(F) and F(7;)C W .
As X', ..., X" belong to " C F', we can write
¢
X' = 6fpp, 1SL<N

for some collection of feedbacks af, af on Q. From Proposition 3.3.4, there exists for each

(6,1) € {1,...,N} x {1,2} a sequence of smooth feedbacks on €, say (ﬂf’k)keN, converging to
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af uniformly on Qga. Subsequently, we let Y“* denote, for 1 < ¢ < N and k € N, the smooth
vector field on Qpa
Ytk = 6f5f,k”3§,k .

Clearly Y%* € F and, for each ¢, we have that Y“* converges to X! as k — oo, uniformly on
compact subsets of Qpa.
Now, pick j € {1,..., N} and consider a N-tuple tU) € T, of the form :

t9) = (F1, .. Ej1,t, .. ty),  |te—1 <e for j << N.

Let also 1; designate, for simplicity, the N-tuple (0,...,1,...,0) with zero entries except for the
j-th one which is 1. Then, for |A| < e, we have that

() +Al; = (t_l, e ,fj_l,fj + At Jtn) € Te,
and a simple computation allows us to rewrite F'(t + A1;) as :
j 1 i~1 _ yi o yi—l 1
F(tY +21;) = X} oo X] o X0 X7 ono X1, (P(1)).

Let us set

1k i1k ik i1k 1k
Ap(N) = th1 0---0 Yti_l ) Y; o ngj_l 0---0 Y_{l(F(t)).

Repeated applications of Lemmas 3.7.1 and 3.7.2 show that, for fixed j and t), the map \ —
Ak (A) is well-defined [—¢, ] — W as soon as the integer k is sufficiently large, and moreover that
Ag(\) converges to F(tU) 4 \1;) as k — o0, uniformly with respect to A € [—¢,¢]. Now, by
the characteristic property push forwards, A — Ag()) is an integral curve of the smooth vector
field
Z8 = (o oxy ) ik
o tio1 ), )

which is defined on a neighborhood of { F(t") +)1,); |A| < e} in W. Since Z* € Pr (cf. equation
(3.134)), it follows from point (iii) — (b) of Theorem 3.8.2 that, for k large enough,

{loAk()\) = gzOAk(O), VA e [—6,6], iE{q+1,...,d}.

It is clear from the definition that A;(0) = F(t)); hence, using the continuity of & and taking,
in the above equation, the limit as k — 400, we get

Eo F(tV) 4 A1) =& o F(tV), VA e [-e,e], i€ {g+1,...,d}. (3.146)

Since {g41 0 F(t) = --- = &40 F(t) = 0 by definition of W, successive applications of (3.146) for
7 =N,...,1lead us to the conclusion that

€10 F(t) = =& oF(t)=0, VteT.. (3.147)

Equation (3.147) means that, in the &-coordinates, F(7:) C (—n,n)? x {0}. Hence, from the
local description of the orbits in (3.135) (where m is to be replaced by m), we deduce that
F(7;) C OFm. Actually, with the notations of (3.136), we even get the stronger conclusion that

F(T:) € Swp

which achieves the proof of the lemma, with 7 = 7., because the orbit topology on Sy is the
FEuclidean topology by Remark 3.8.3. O
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Abstract

This note deals with “Grobman-Hartman like” theorems for control systems (or in other
words under-determined systems of ordinary differential equations). The main results (proved
elsewhere) is that when a control system is topologically conjugate to a linear controllable
one, then it is also “almost” differentiably conjugate. We focus on the meaning of this result,
and on an open question resulting from it.

4.1 Introduction

In this note, we discuss the local behavior of a nonlinear control system
= f(x,u), xeR", vweR™, (4.1)

say around (0,0) € R™*"™. For general control systems (as opposed e.g. to affine in the control),
“local” has to be understood with respect to both state and control.

The first reaction when dealing with local properties is to compute the linear approximation
of (4.1). When this linear control system happens to be controllable, all the local usual control
objectives can be met using linear control, based on the linear approximation. For instance,
a linear control that asymptotically stabilizes the linear approximation will also stabilize the
nonlinear system, locally ; minimizing a quadratic cost can also be achieved up to first order
based on the linear approximation only. Hence, the linear approximation is a good enough
model for the purpose of designing controllers achieving a desired behavior for small states and
controls. We believe that all control engineers or control theorists agree on this statement, arising
from practice, although we would welcome some contradiction.

Rephrasing the above statement without reference to control objectives leads to an imprecise
statement, grounded mostly on some necessarily subjective intuition, and that should rather be
taken as an opening sentence to launch a debate than as a conjecture :

(4.2)

nothing distinguishes qualitatively the behavior of a monlinear control
system from the one of its linear approximation if the latter is controllable.

103
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It is natural to try to formalize this statement, as a prerequisite to any proper theory of nonlinear
modeling and identification of control systems, in a very preliminary manner since it only deals
with local phenomena. A nice way to turn that belief into a sound, and correct, assertion would
be to find some equivalence relation between control systems (or models) that preserves at least
“qualitative” behavior, and for which these two systems (a nonlinear system and its controllable
linear approximation) are in general equivalent.

We assume controllability of the linear approximation. When this fails none of the above
is correct, at least in the most common case when the nonlinear system is itself controllable.
Indeed, (non-)controllability is a qualitative phenomenon : for instance, feeding a linear non
controllable system with “random” inputs, one observes that the state is confined in leafs of
positive codimension, while for a controllable system the whole state space is explored.

To enlighten the discussion on local behavior of control systems, let us recall the situation
for ordinary differential equations & = F'(x) (particular case of (4.1) where the control u has
dimension 0) :

— If F(0) # 0, the “flow-box theorem” (see e.g. [5, §7]), gives local coordinates, smooth if F

1
is smooth, in which F' is of the form
0
— If F(0) = 0 and the square matrix F’(0) has no pure imaginary eigenvalue (hyperbolic
equilibrium), then Grobman-Hartman Theorem [47, Theorem IX-7.1] tells us that the flow
of the differential equation is locally conjugate to the flow of its linear approximation via a
homeomorphism that need not, in general, be smooth if F' is smooth (and in fact smooth
conjugation requires more assumption, resonances are obstructions to it) (see e.g. [6, §22]).
— If F(0) = 0 and the square matrix F’(0) has some pure imaginary eigenvalue, then the
situation is more intricate even locally, namely the phase portrait of the nonlinear dy-
namical system & = F(x) can be very different locally from the one of a linear system.
This case is of high interest in the theory of dynamical systems, but can be considered
as “degenerate”, in the same way as non controllability of the linear approximation for
control systems.
Since conjugation of flows does preserve qualitative phenomena like the overall aspect of the
phase portrait, one can indeed assert that, locally around all points except non hyperbolic
equilibria, a differentiable dynamical system “behaves like” a linear one, and this is translated by
conjugation via a homeomorphism, although conjugation via a smooth diffeomorphism preserves
some more subtle local invariants (resonances, etc...).

Coming back to control systems, first of all, the equivalent of conjugation by a smooth change
of coordinates is (smooth) feedback equivalence, whose study was initiated in [15], see a survey in
[54]. In fact this is conjugation via a smooth diffeomorphism on the state and control, forced to
have a triangular structure (see Proposition 4.2.5 below). The conditions under which a control
system (4.1) is smoothly feedback equivalent to a linear controllable one are well known [57, 50]
(and contrary to the case of ordinary differential equations, they are very simple), but they reveal
that very few nonlinear systems are locally feedback equivalent to a linear one, even when the
linear approximation is controllable. This remark and the review of the situation for ordinary
differential equations naturally brings about the question whether for control systems, relaxing
the regularity of the conjugating maps, i.e. considering conjugacy by homeomorphisms instead
of smooth diffeomorphisms would make more systems equivalent to a linear one.

After recalling some basic facts in section 4.2, we give in section 4.3 an essentially negative
answer to the question evoked above, based on quoting a result from Chapter 3, that topological
conjugacy to a linear controllable system implies conjugacy by “almost” smooth feedback (but
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the gap is really small). Section 4.4 recalls, also from Chapter 3, a technical open question
that would allow a nicer result and a nicer description of that “almost” smooth conjugacy, and
finally section 4.5 extends the discussion of the results from section 4.3, their implications, and
the questions they raise in nonlinear modeling.

4.2 Preliminaries on equivalence of control systems

4.2.1 Definitions
Consider two smooth control systems with state x (resp. z) and input u (resp. v) :

t = f(x,u), zeR", weR™, (4.3)
= g(z,v), zeERY | veR™

or, expanded in coordinates,

i = fil@1,. o, Tpy Uty Upy), Zi = gj(21,. ., 20, V1, -, Uyt ),

1<i<mn,1<j<n/, with the f;’s and g;’s some smooth (i.e. C°) maps.

We assume that f and g are defined respectively on the whole of R™ x R™ and R™ x R™
because it simplifies many of the statements below ; this is actually no loss of generality to us for
all the results we prove are local with respect to x, u, z, v, so that f and g can be extended using
partitions of unity outside some neighborhoods of the arguments under consideration without
affecting the results.

Definition 4.2.1. By a solution of (4.3) that remains in an open set Q C R"™™  we mean a
mapping v defined on a real interval :
y: I = Q
to—= ) = (@), m)) ,

with v1(t) € R™ and vy(t) € R™, such that v is measurable, locally bounded, ~1 is absolutely
continuous and, whenever [T1,Ty] C I, we have :

(4.5)

Ts

n(Tz) — n(Ty) = . f(n@), m(t))dt .
1
Solutions of (4.4) that remain in ' C R"*" are likewise defined to be mappings 7/ : I — &/
having the corresponding properties with respect to g.
We now define the notion of conjugacy for control systems.

Definition 4.2.2. Let
x: Q -

(z,u) +— x(z,u) = (xa(z,u), xu(z,u)) (4.6)

be a bijective mapping between two open subsets of R and R ™ respectively. We say that
x conjugates v : I — Q and~' : I — Q' if and only if v/ = x o ~.

We say that x conjugates systems (4.3) and (4.4) if, for any real interval I, a map~y : I — §
is a solution of (4.3) that remains in Q if, and only if, x oy is a solution of (4.4) that remains
in Y.

We say that systems (4.3) and (4.4) are locally topologically conjugate at (0,0) if we can
chose Q0 and Q' to be neighborhoods of the origin and x a homeomorphism. We say that they are
locally smoothly conjugate if, in addition, x and x~' are smooth. Here the word smooth means
C*.
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In case there is no control, so that m = m’ = 0 and we omit v and xy, Definition 4.2.2
coincides with the classical notion of local topological conjugacy for non controlled differential
equations, and may serve as a definition in this case too. Let us write more formally the classical
local results on ordinary differential equations that we recalled in the introduction :

Theorem 4.2.3 (Flow-box theorem). If m = 0 and f(0) # 0, system (4.3) is locally smoothly
conjugate at 0 to the linear system 21 = 1,29 =--- = 2, = 0.

Theorem 4.2.4 (The Grobman-Hartman theorem). If m =0, f(0) =0, and f'(0) has no pure
imaginary eigenvalue, system (4.3) is locally topologically conjugate at 0 to the linear system

z=f'(0)z.

From now on, we consider control system, i.e. we assume m > 1.

4.2.2 Some properties of conjugating maps

It turns out that conjugating homeomorphisms preserve the dimension of both the state and
the control and must have a triangular structure :

Proposition 4.2.5. With the notations of Definition 4.2.2, suppose that (4.3) and (4.4) are
topologically conjugate via a homeomorphism x : Q — Q. Thenn =n', m = m’, and x1 depends
only on x :

x(@,u) = (xa(@), xu(z,u)) . (4.7)

Moreover, x1: Qrn — Qpn is a homeomorphism.

Proof. Let Z, u, @ be such that (Z,u) and (Z,@’) belong to €. Let further z(t) be the solution
to (4.3) with 2(0) = z and u(t) = @ for ¢t < 0 and u(t) = @ for ¢t > 0. By conjugacy, z(t) =
x1(z(t),u(t)) is a solution to (4.4) with v given by v(t) = xn(z(t),u(t)), for t € (—¢, €) and some
e > 0. In particular xr(z(t),u(t)) is continuous in ¢ so its values at 07 and 0~ are equal. Hence
x1(Z,a) = x1(Z, ') so that x1 : Qpn — Q’Rn, is well defined and continuous. Similarly, (X_l)l
induces a continuous inverse Q]/Rn’ — Qpgn. O]

In view of Proposition 4.2.5, we will only consider conjugacy between systems having the
same number of states and inputs. Hence the distinction between (n,m) and (n’,m’) from now
on disappears.

Taking into account the triangular structure of y in Proposition 4.2.5, one may describe
conjugation as the result of changing coordinates in the state-space (by setting z = x1(z)) and
feeding the system with a function both of the state and of a new control variable v (by setting
u = (x"Yr(z,v)), in such a way that the correspondence (x,u) + (z,v) is invertible. In the
language of control, this is known as a static feedback transformation, and two conjugate systems
in the sense of Definition 4.2.2 would be termed equivalent under static feedback. This notion
has received much attention, although only in the differentiable setting (i.e. when the triangular
transformation y is a diffeomorphism), see e.g. [15, 54].

4.2.3 Linearization

Recall that f is assumed to be smooth (of class C*°). Let us make a formal definition of
topological and smooth linearizability.

Definition 4.2.6. The system (4.3) is said to be locally topologically linearizable at (z,u) €
R™ ™ if it is locally topologically conjugate, in the sense of Definition 4.2.2, to a linear control-
lable system z = Az + Bw.
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Definition 4.2.7. The system (4.3) is said to be locally smoothly linearizable at (z,u) € R"*™
if 1t is locally smoothly conjugate, in the sense of Definition 4.2.2, to a linear controllable system
2= Az + Bv.

Explicit necessary and sufficient conditions for a nonlinear system to be locally smoothly
linearizable at a point were given in [57, 50], and also in [103] (the previous two references dealt
with control affine systems only), and is recalled in many nonlinear control textbooks. Without
mentioning these conditions, let us simply say that they require a certain number of distributions
to be involutive, and that this is a very non-generic property.

4.3 Main result on topological linearization

Let us now give a —basically negative— answer to the natural question raised at the end
of section 4.1 : for control systems, removing the differentiability requirement on the conjugacy
does not allow many more control systems to be (topologically) conjugate to a linear controllable
system, contrary to the situation of ordinary differential equations (without control), (see section
4.1 and Theorems 4.2.3 and 4.2.4). Recall that f is assumed to be smooth (of class C*°).

Theorem 4.3.1 (from Chapter 3). System (4.3) is locally topologically linearizable at (0,0) if,
and only if there exists an open neighborhood 2 of (0,0) in R™™™ and a homeomorphism

y: Q =

(x,u) — X(z,u) = (xi(z), xu(z,u)) (4.8)

(possibly different from the homeomorphism defining topological linearizability of the system,)
such that

1. X conjugates system (4.3) to a linear controllable system 2 = Az + Buv, in the sense of
Definition 4.2.2,

2. X1 : Qn — Q. defines a smooth (C>) diffeomorphism.

This does not state that topological linearizability implies smooth linearizability for ¥ need
not be a diffeomorphism even though x1 is. In Chapter 3, the conclusion of the theorem is called
quasi smooth linearizability. A thorough discussion as well as the proof of Theorem 4.3.1 is given
there. Let us recall here what is necessary to make this theorem clearer.

Proposition 4.3.2. The conclusions of Theorem 4.3.1 imply that
1. Bxt: Q—R™ s smooth,
2. the rank of B is the mazimum rank of Of/0u in small neighborhoods of the origin.

Proof. Computing 2 at the origin of a trajectory starting from (z,u) € €2 implies, by the smooth-
ness of X1,

OX1 _ ~ ~
This gives an obviously smooth expression of Bxy. The second point is proved using Corol-
lary 4.3.5' at points close to the origin where the rank of df/0u is maximum, and hence locally
constant. ]

If B is left invertible (i.e. has rank m), the first point implies that Xy itself is smooth, and
we have the following immediate corollary :

! The proof of Corollary 4.3.5 does not use Proposition 4.3.2.
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Corollary 4.3.3. If there are points arbitrarily close to (0,0) where the rank of Of /Ou is m
(i.e. where this linear map is injective), then X in Theorem 4.3.1 is a smooth mapping.

Of course if B has rank strictly less that m, X1 need not be smooth. This is discussed in
section 4.4.

Note that the assumption of Corollary 4.3.3 is very “reasonable” : for instance for single input
systems, the only case where it is not met is when f does not depend on u in a neighborhood
of (0,0), but then the system cannot be topologically conjugate to a controllable linear system :

Corollary 4.3.4. If m =1, i.e. if (4.3) is a single input system, then X in Theorem 4.53.1 is a
smooth mapping.

This is however still not “smooth linearizability” because even though y is smooth, its inverse
might fail to be differentiable at the point of interest. The simplest example is the system

t=ul, zeR, uekR , (4.10)

clearly conjugate by (z,v) = x(z,u) = (x,u%) to the linear controllable system # = v. Obviously,
X is smooth, ! is continuous, 1 is the identity smooth diffeomorphism, but the inverse of y
itself fails to be differentiable at the origin. In fact, no smooth diffeomorphism can conjugate
these two systems. This can easily be proved but is also a consequence of the necessity part of
the following result that tells us exactly when smooth linearizability is implied by topological
linearizability :

Corollary 4.3.5. When f is of class C*°, system (4.3) is locally smoothly linearizable at (0,0)
if and only if it is locally topologically linearizable at (0,0) and the rank of Of /Ou is constant
around (0,0).

Proof. Smooth linearizability is a particular case of topological linearizability, and it implies
constant rank of 0f/0u because differentiability of the smooth diffeomorphism and its inverse
allow one to get a formula for 0f/ou(x,u).

Let us prove the converse. Suppose that the rank of 9f/0u is r < m in a neighborhood
of (0,0) and that system (4.3) is locally topologically linearizable at (0,0). From Theorem
4.3.1, this implies that there exists a triangular homeomorphism (z,u) — (z,v) = X(x,u) =
(x1(z), Xu(x,u)) that conjugates system (4.3) to a linear controllable system Z = Az + Bv with
the additional property that X1 defines a smooth diffeomorphism from a neighborhood of 0 € R"
onto its image.

Let ' < m be the rank of the matrix B. There are invertible n x n and m x m matrices P
and @ such that

(4.11)

where I,/ is the 7/ x ' identity matrix.

Computing Z at the origin of a trajectory starting from (x,u) € Q implies (4.9) by the
smoothness of Y1. Hence the map B.Q !Xy is smooth where it is defined, and differentiating
(4.9) with respect to u yields :

i, Of _ 9(B.Q™'Xn)
P%(if)%(%u) = T(%U)-
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Since P%(l‘) is invertible and the rank of df/0u is r, both sides have constant rank r. This
implies 7 < /. This also implies that the mapping R"t™ — R"*"" defined by

(r,u) +— (x,BCQfli]I(x,u)),

has a constant rank n + r in a neighborhood of the origin, hence, by the constant rank theorem

applied to this mapping, there is a 7 x m matrix K of rank r (selects r lines that are independent
B.Q7x . .

among the m lines of W(ax u)), a neighborhood € of (0,0) in R"™™ | two smooth map-

pings o : R — R and §: R"™ — R"'~" (in fact they only need to be defined in suitable

neighborhoods of the origin) such that X is defined on 2, and

BQ ey — (07 KEATE) ) (112)
for all (z,u) € 2 and
(z,u) — (z, KB.Q 'xu(z,u), B(z,u)), (4.13)

defines a smooth diffeomorphism from 2 onto its image. This implies that r = 7’ because from
(4.12, r < r’ would prevent X from being one-to-one. Hence K can be taken the identity matrix.
Define x : Q — R"™™ by ¥ = L o) with

Ib(fﬁvu) = (P%I(x)v KBCQ_I)N(]I($,’LL) ’ ﬁ(mvu))

and L(z,v) = (P7'2,Q ). ¢ is a smooth diffeomorphism because (4.13) is one, and L is
obviously a (linear) smooth diffeomorphism. Setting (Z,7) = Xx(x,u) conjugates system (4.3) to
zZ = AZ + Bv. O

4.4 An open question

It is a reasonable question to ask whether the conclusion of Corollary 4.3.3 holds in general,
namely whether Theorem 4.3.1 can be strengthened so as to state that ¥ is, on top of its other
properties, a smooth mapping (when the rank of 9f/du is not locally constant, ¥ would fail to
be be differentiable, from the necessity part of Corollary 4.3.5).

Let us examine the case where the assumptions of Corollaries 4.3.3, 4.3.4 and 4.3.5 fail (these
three corollaries already state the desired conclusion), namely the case of systems with m < 2
controls where the rank of 9 f/0u is everywhere strictly smaller than m, studied locally around a
point where this rank is not constant (i.e. the rank at the point is strictly less than the maximum
rank in arbitrary small neighborhoods of this point, itself strictly smaller than m.

The smallest dimensions where this occurs is n = 1, m = 2, i.e. systems & = f(x,u1,us2)
with x, u1 and ue scalar. In order to state our open question in the smallest dimension possible,
let us drop the dependence on the right-hand side on x and consider systems

i =a(u,up), € R, u=(uy,up) € R? | (4.14)

where a : R? — R is smooth. Let us assume that this system is locally topologically linearizable
around (z,u) = (0,0,0). The only canonical controllable linear system with one state z € R and
two controls (v1,v9) € R? is 2 = v1, hence local topological linearizability means existence of a
homeomorphism

X ($7u17u2) = (Z,’Ul,’l)g) = (Xl(x),X2(.’E,U1,U2),X3($,U1,U2)) (415>
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(in the terms of Definition 4.2.6, x1 is x1 and x1 is (x2, x3)) that conjugates (4.14) to the linear
system Z = v1. From Theorem 4.3.1, this implies existence of another homeomorphism X of the
same triangular form, that we denote by y instead of ¥, such that x; is a smooth diffeomorphism
(from a real interval containing zero onto an open interval) and xs is a smooth mapping from
an open neighborhood of the origin in R? to R, while our results do not grant that y3 has any
more regularity than continuity. In fact the conjugation reads

ox1

%(x)a(uhug) = xo(x,uy,uz). (4.16)

This implies in particular that xs does not depend on x, and then one can replace vy =
x3(z, uy, ug) with vo = x3(0,u1,uz) without changing the conjugating property. Composing x
given by (4.15) with (z,v1,v2) — (x1 *(2), %(Xfl(z))*lvl,vg), one finally gets a conjugating
homeomorphism of the form

(z,ur,ug) — (x, alu,uz), Blui,u2)) (4.17)

where G(u1,u2) = x3(0,u1,u2). Hence local topological linearizability amounts to existence of a
continuous mapping 3 from an open neighborhood of the origin in R? to R such that (uj,us)
(a(u1,uz), B(uy,uz)) defines a homeomorphism from a neighborhood of the origin in R? onto its
image (we just proved it is necessary, but conversely, it makes (4.17) a local homeomorphism,
that obviously conjugates (4.14) to 2 = vp). Similarly, conjugacy via a homeomorphism that is
a smooth map amounts to existence of a smooth mapping having the same property. Hence the
question whether X can be taken a smooth mapping in Theorem 4.3.1 reduces to the following

Open question 4.4.1. Let a and 3 be two mappings | — ¢,[?>— R, ¢ > 0, such that a is
smooth, § is continuous, and (u1,us) — (a(u1,uz2),5(ui,uz)) defines a homeomorphism from
] —&,¢[? onto its image. Does there exist a smooth mapping b:] —¢’,e'[2— R, 0 < ¢’ < ¢, such
that (u1,u2) — (a(ug,uz),b(ui,us)) defines a homeomorphism from ] — &' €'[? onto its image ?

This question in differential topology can be posed in higher dimension of course, see below.
It is of interest in its own right and seems to have no answer so far, even for p = ¢ = 1.

Open question 4.4.2. Let O be a neighborhood of the origin in RPT4 and F : O — RP a smooth
map. Suppose there is a continuous map G : O — R? such that F x G : O — RP x R? is a local
homeomorphism at 0.

Does there exist another neighborhood of the origin O' C O and a smooth mapping H : O’ —
RY such that F x H : O' — RP x RY is again a local homeomorphism at 0 ?

4.5 Implications in Control Theory

Let us come back to the discussion we started in the Introduction. Consider a control system
(4.1), assume for simplicity that we work around an equilibrium, i.e. f(0,0) = 0, and let us write
its linear approximation, i.e.

flx,u) = Az + Bu + F(x,u) (4.18)
with F(0,0) = Z—J;(o,o) - 2—5(0,0) ~0, (4.19)

so that the nonlinear system (4.1) reads

& = Ax + Bu + F(z,u). (4.20)
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From the remarks made in the introduction, the relevant situation is the one where the linear
system
2 = Az + Bv (4.21)

is controllable. Let us assume slightly more to rule out the pathologies described in the previous
section. The additional assumption is very mild and is, for instance, always true when the
constant n X m matrix B has rank m; it is implied by linear controllability for single input
systems.

OF
Assumption 4.5.1. The pair (A, B) is controllable and the rank of %(ZE,U) is equal to the
rank of B for small (z,u).

The question raised in the introduction was the one of finding a reasonable equivalence
relation that would make the two systems (4.20) and (4.21) locally equivalent. Comparing the
situation of ordinary differential equations (without control), a candidate was local topological
conjugacy as in Definitions 4.2.2 and 4.2.6, and if that candidate was successful, we would have
a result making precise the vague statement (4.2).

Corollary 4.3.5 implies that, for A, B and F satisfying Assumption 4.5.1, systems (4.20) and
(4.21) are locally topologically conjugate if and only if they are locally smoothly conjugate, and
it is known from [57, 50] that this is false for a generic F, even satisfying (4.19). This discards
topological conjugacy as a candidate for the above mentioned equivalence relation, but this does
not contradict the basic belief behind statement (4.2).

A way to contradict that statement would be to find at least one example satisfying the
assumption, but where the nonlinear system (4.20) displays some local “qualitative” phenomenon
that do not occur for the linear system (4.21). In the qualitative theory of dynamical systems
(without control), the phase portrait gives a picture of the behavior, on which phenomena like
attractors, invariant set, (stable) closed orbits can just be “seen”. A control system is more
complex : it describes how the behavior of the state (at least in the state space representation)
is linked to the control. It is not very clear what a qualitative phenomenon should be for a
control system. The least to require is that it be invariant by topological conjugacy as defined
here. In the introduction, we pointed out that (non-)controllability is a qualitative property, but
it is of no help here since (4.2) only refers to controllable systems.

We do believe that clarifying the status of a statement like (4.2) is very relevant to control
theory and modeling. Our negative results (section 4.3) say that topological conjugacy is not
the right tool to answer this. A looser equivalence could be a way to state (4.2) properly. It
could also be that the intuition behind (4.2) is totally wrong and that some nonlinearities F
allow system (4.20) to display some qualitative phenomena locally that cannot occur on a linear
system (4.21).
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Abstract. If two control systems on manifolds of the same dimension are dynamic
equivalent, we prove that either they are static equivalent —i.e. equivalent via a clas-
sical diffeomorphism— or they are both ruled ; for systems of different dimensions, the
one of higher dimension must be ruled. A ruled system is one whose equations define
at each point in the state manifold, a ruled submanifold of the tangent space. Dyna-
mic equivalence is also known as equivalence by endogenous dynamic feedback, or by
a Lie-Béacklund transformation when control systems are viewed as underdetermined
systems of ordinary differential equations; it is very close to absolute equivalence
for Pfaffian systems. It was already known that a differentially flat system must be
ruled ; this was a particular case of the present result, in which one of the systems
was assumed to be “trivial” (or linear controllable).

5.1 Introduction

We consider time-invariant control systems, or underdetermined systems of ordinary diffe-
rential equations (ODEs) where the independent variable is time. Static equivalence refers to
equivalence via a diffeomorphism in the variables of the equation, or in the state and control
variables, with a triangular structure that induces a diffeomorphism (preserving time) in the
state variables too. It is also known as “feedback equivalence”. Dynamic equivalence refers to
equivalence via invertible transformations in jet spaces that do not induce any diffeomorphism in
a finite number of variables, except when it coincides with static equivalence ; these transforma-
tions are also known as endogenous dynamic feedback [68, 37], or Lie-Bécklund transformations
([1, 37] and Chapter 6), although this terminology is more common for systems of partial dif-
ferential equations (PDEs) ; dynamic equivalence is also very close to absolute equivalence for
Pfaffian systems [19, 93, 94].

The literature on classification and invariants for static equivalence is too large to be quoted
here; let us only recall that, as evidenced by all detailed studies and mentioned in [102], each
equivalence class (within control systems on the same manifold, or germs of control systems) is
very very thin, indeed it has infinite co-dimension except in trivial cases. Since dynamic equiva-
lence is a priori more general, it is natural to ask how more general it is. Systems on manifolds
of different dimension may be dynamic equivalent, but not static equivalent. Restricting our at-



114 CHAPITRE 5. “A NECESSARY CONDITION FOR DYNAMIC EQUIVALENCE”

tention to systems on the same manifold and considering dynamic equivalence instead of static,
how bigger are the equivalence classes ?

The literature on dynamic feedback linearization [53, 23], differential flatness [37, 68], or
absolute equivalence [93] tends to describe the classes containing linear controllable systems or
“trivial” systems. The authors of [37, 68, 93] made the link with deep differential geometric
questions dating back to [44, 19, 48]; see [7] for a recent overview. Despite these efforts, no
characterization is available except for systems with one control, i.e. whose general solution
depends on one function of one variable ; there are many systems that one suspects to be non-
flat —i.e. dynamic equivalent to no trivial system— while no proof is available, see the remark
on (5.23) in Section 5.4.1. There is however one powerful necessary condition [88, 96] : a flat
system must be ruled, i.e. its equations must define a ruled submanifold in each tangent space.
As pointed out in [88], this proves that the equivalence class of linear systems for dynamic
equivalence, although bigger than for static equivalence, still has infinite co-dimension.

Deciding whether two general systems are dynamic equivalent is at least as difficult. There is
no method to prove that two systems are not dynamic equivalent. The contribution of this paper
is a necessary condition for two systems to be dynamic equivalent, that generalizes [88, 96] : if
they live on manifolds of the same dimension, they must be either both ruled or static equivalent ;
if not, the one of higher dimension must be ruled. Besides being useful to prove that some pairs
of systems are not dynamic equivalent, it also implies that “generic” equivalence classes for
dynamic equivalence are the same as for static equivalence.

Outline Notations on jet bundles and differential operators are recalled in Section 5.2; the
notions of systems, ruled systems, dynamic and static equivalence are precisely defined in Sec-
tion 5.3. Our main result is stated and commented in Section 5.4, and proved in Section 5.5.

5.2 Miscellaneous notations

Let M be an n-dimensional manifold, either C*° (infinitely differentiable) or C* (real analytic).

5.2.1 Jet bundles

Using the notations and definitions of [43, Chapter II, §2], J*(R, M) denotes the k' jet
bundle of maps R — M. It is a bundle both over R and over M. If (z!,...,2") is a system of
coordinates on an open subset of M, coordinates on the lift of this open subset are given by
toat, gt w8 e, (2D (™)) where ¢ is the projection on R.

As an additive group, R acts on J¥ (R, M) by translation of the t-component ; the quotient
by this action is well defined and we denote it by

JE(M) = J’“(R,M)/]R. (5.1)

Since we only study time-invariant systems, we prefer to work with J*(M). Quotienting indeed

drops the t information : local coordinates on Jk(M) are given by z',..., 2", &', ..., &", -,

(zH® ... (2™)*); for short, we write z, &, ..., 2. For £ < k, there is a canonical projection
T s JE(M) — JHM) (5.2)

that makes J*(M) a bundle over J*(M); in particular it is a bundle over M = J°(M) and over
TM = JY(M). In coordinates,

Tz, &, . .. a0 Wy = (2, i, 20
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Notation To asubset Q C J*(M), we associate, for all £, a subset , C J*(M) in the following
manner (obviously, Qf = ) :

o mee(Q) e <k,
Q= { T Q) if >k (5-3)

5.2.2 The k*" jet of a smooth (C*°) map z(.): I — M

With I C R a time interval, it is a smooth map j*(x(.)) : I — J¥(M) (see again [43]); in
coordinates,

Fa() (@) = (2(t),@(1),&(),...,aP () .

By a smooth map whose k™ jet remains in Q, for some Q C J*(M), we mean a smooth
x(.) : I — M such that j%(z(.))(t) € Q for all ¢ in I.

5.2.3 Differential operators

If Q is an open subset of J¥(M), and M’ is a manifold of dimension n’, a smooth (C* or
C“) map ® : Q — M’ defines the smooth differential operator of order! k

DE = ®ojk. (5.4)

Obviously, Dé; sends smooth maps I — M whose k'™ jet remains in © to smooth maps I — M’.
In coordinates, the image of t — x(t) is t — ®(x(t), &(t), #(t),..., 2% (t)). Note that we do not
require that k be minimal, so ® might not depend on x
We call j" o D(’% the ™ prolongation of the differential operator Dé ; it sends smooth maps
I — M whose k™ jet remains in Q to smooth maps I — J"(M'); it is indeed the differential
operator Df;;f, of order k + r, with ®"l the unique smooth map 7,11 (Q) — J"(M’) such
that
j o d ojk = ol ojk+r . (5.5)

We call @l the rt prolongation of ®. One has 7, o ol = @ o Tk+rk and more generally, for
s<r,
Trso @l =@llom .. (5.6)

5.3 Systems and equivalence

5.3.1 Systems

Definition 5.3.1. A C* or C¥ regular system with m controls on a smooth manifold M is a
C>® or C¥ sub-bundle ¥ of the tangent bundle TM

y 4 TM
O (5.7)
M

with fiber T, a C* or C* manifold of dimension m (e.g. an open subset of R™). The velocity
set at a point x € M is the fiber ¥, = 71 ({x}), a submanifold of ToM diffeomorphic to Y.

L «“Of order no larger than k” would be more accurate : if ® does not depend on k'" derivatives, the order in
the usual sense would be smaller than k. See for instance ¥ in example (5.22).
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Definition 5.3.2 (Solutions of a system). A solution of system 3 on the real interval I is a
smooth (C*) x(.) : I — M such that j'(x(.))(t) € X for allt € I.

Although a general solution of a system need not be smooth, we only consider smooth solu-
tions. They form a rich enough class in the sense that systems are fully characterized by their
set of smooth solutions.

Locally, one may write “explicit” equations of ¥ in the following form. Of course there are
many choices of coordinates and the map f depends on this choice.

Proposition 5.3.3. For each £ € 3, with ¥ — TM a regular system (5.7), there is
— an open neighborhood U of & in TM, Uy its projection on M,
— a system of local coordinates (xy1, xy) on Uy, with x1 a block of dimension n —m and xy of
dimension m,
— an open subset U of R and a smooth (C* or C¥) map f:U — R*™™,
such that the equation of X N U in these coordinates is

@ ,Z_fgﬂfl,ﬂfn,in , (wn,zp,2n) €U . (5-%
Proof. Consequence of the implicit function theorem.

Control systems A more usual representation of a system with m controls is
t=F(x,u), ze€M, uehb, (5.9)

with B an open subset of R™ and F : M x B — TM smooth enough. It can be brought locally,
in block coordinates (x1, zy), to the form

iy = f(zr,2n,u), 41=u (5.10)

modulo a static feedback on u, at least around nonsingular points (z,u) where
oF
rank%(az,u) =m. (5.11)

Equation (5.8) can be obtained by eliminating the control w in (5.10).
If (5.11) holds, (5.9) defines a system in the sense of Definition 5.3.1. All results on systems
in that sense may easily be translated to control systems (5.9).

Implicit systems of ODEs A smooth system of n — m ODEs on M : R(z,%) = 0 with
R : TM — R" ™ also defines a system in the sense of Definition 5.3.1 if it is nonsingular, i.e.
rank 2% (z, &) = n — m.

Singularities With the above rank assumptions, or the one that ¥ is a sub-bundle in Defi-
nition 5.3.1, we carefully avoid singular systems. This paper does not apply to singular control
systems or singular implicit systems of ODEs.

Prolongations of X

For integers k > 1, we denote by ¥ the prolongation of the system ¥ to k" order; it is the
subbundle X < J¥(M) with the following property : for any smooth map x(.) : I — M, with
§%(2(.)) defined in section 5.2.2,

) e, tel o  Fa()t)eXp, tel. (5.12)

The left-hand side means that z(.) is a solution of ¥ according to Definition 5.3.2. Obviously,
1 = Y. We may describe Y in coordinates.
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Proposition 5.3.4. Let K be a positive integer. There is a unique sub-bundle X — JK(M)
such that :

a smooth map x(.) : I — M is a solution of system ¥ on the real interval I
if and only if % (x(.))(t) € Sk for all t € 1. (5.13)
For all§ € Xk, its projection § = mg1(§) is in X and, withU the neighborhood of &1, (z1, 1) the
coordinates on Uy, U the open subset R"T™ and f : U — R™ the map given by Proposition 5.3.5,
the equations of UxNYx in JX (M) are, in the coordinates (x1, z1, 21, £, - - - ,x%K), xﬁK)) induced
onU by (x1, 1),

x%i) = f(i_l)(xl,xn,j:n, ... ,a:](Ii)), 1<i<K,

5.14
(a1, om,dm, .)€ U x RE—Dm (5.14)

where, for a smooth map f:U — R*™™ and £ >0, f© is the smooth map U x RE™ — Rn—™
defined by £ = f and, fori>1,

, . . 0 (i—1) o fli— 1)
FO (@, on,dn, ..., 2l ) = J; f(wr, op, 1) + Z I R (5.15)
i=0 a.:U
Proof. This is classical, and obvious in coordinates. O

Remark 5.3.5. Each Y11 (k > 1) is an affine bundle over ¥, and may be viewed as an affine
sub-bundle of T, i.e. it is a system in the sense of Section 5.3.1 on the manifold ¥ instead
of M.

In particular X9 < TX is the system obtained by “adding an integrator in each control” of
the system 3 < TM. It is an affine system (i.e. affine sub-bundle) even when ¥ is not.

5.3.2 Ruled systems

Recall that a smooth submanifold of an affine space is ruled if and only if it is a union of
straight lines, i.e. if through each point of the submanifold passes a straight line contained in the
submanifold. Such a manifold must be unbounded ; since we want to consider the intersection of
a submanifold with an arbitrary open set and allow this patch to be “ruled”, we use the same
slightly abusive notion as [64] : a submanifold N is ruled if and only if, through each point of it,
passes a straight line which is contained in N “until it reaches the boundary of N”. Here, the
boundary of the submanifold N is 9N = N \ N.

A system will be called ruled if and only if X, is, for all x, a ruled submanifold of T, M. This
is formalized below in a self-contained manner.

Definition 5.3.6. Let O be an open subset of TM. System ¥ (see (5.7)) is ruled in O if and
only if, for all (z,z) € (ONYX), there is a nonzero vector w € T,M \ {0} and two possibly
infinite numbers A\~ € [—00,0) and AT € (0, +00] such that

(x, 2+ Aw) € ONX for all \, \= < A< At and

AT > —co=(r, 2+ A w)ed(ONY),

M < oo = (2,8 + Aw) €9(ONT) . (5.16)

Recall that, by definition, 0(ONX)=0NX \ (ONX).

We shall need the following characterisation.
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Proposition 5.3.7 ([64]). Let O be an open subset of TM. X is ruled in O if and only if, for
all £ = (x,2) in XN O, there is a straight line in T,M passing through & that has contact of
infinite order with 3, at &.

Proof. From [64, Theorem 1], a “patch of” submanifold of dimension m in a manifold of dimen-
sion n is ruled if and only if there is, through each point, a straight line that has contact of order
n + 1. This is of course implied by infinite order. O

5.3.3 Dynamic equivalence

The following notion is usually called dynamic equivalence, or equivalence by (endogenous)
dynamic feedback transformations in control theory, see [68, 41, 56] and Chapter 6. It is in
fact also the notion of Lie-Béacklund transformation, limited to ordinary differential equation, as
noted in [41] or Chapter 6.

Definition 5.3.8. Let ¥ — TM and ¥/ — TM' be C* (resp. C¥) regular systems (see (5.7))
on two manifolds M and M’ of dimension n and n', K, K' two integers, Q C JX(M) and
Q' JE (M) two open subsets.
Systems X and ¥’ are dynamic equivalent over Q and Q' if and only if there ewists two
mappings of class C* (resp. C¥) :
b:Q—-M, V:Q —-M (5.17)
inducing differential operators Dg and D\II,(, —see (5.4)— such that, for any interval I,
— for any solution x(.) : I — M of ¥ whose K™ jet remains inside €,
DE(z(.)) is a solution of ¥’ whose K'™ jet remains inside €/
and DY (DK (2())) = a(.),
— for any solution z(.) : I — M’ of ¥/ whose K'" jet remains inside €V,
DE'(2(.)) is a solution of ¥ whose K™ jet remains inside Q
and DY (DY (2())) = =(.).

Remark 5.3.9. Since all properties are tested on solutions, only the restriction of ® and ¥ to
Yk and Yk (see Proposition 5.3.4) matter; for instance, ® can be arbitrarily modified away
from g without changing any conclusions. Borrowing this language from the literature on
Lie-Bécklund transformations, ® and ¥ above are “external” correspondences.

In [41] or in Chapter 6, the “internal” point of view prevails : for instance ® and ¥ are
replaced, in [41], by diffeomorphisms between diffieties. This is more intrinsic because maps are
defined only where they are to be used. However the definitions are equivalent because these
internal maps admit infinitely many “external” prolongations.

Here, this external point of view is adopted because it makes the statement of the main
result less technical. Note however that, as a preliminary to the proofs, an “internal” translation
is given in section 5.5.1.

Remark 5.3.10. In the theorems, we shall require that Q and Q' satisfy

U NE C (QNZk); and Y NY c (V¥N¥k), , (5.18)
i.e. any (jet of) solution whose first jet is in € lifts to at least one (jet of) solution whose K*
jet is in . Note the following facts about this requirement.
- These inclusions are equalities for the reverse inclusions always hold.
- Replacing the original 2 with Q \ ((Ql NX)\ (2N ZK)1>K and Q' accordingly forces (5.18);
alternatively, keeping arbitrary open sets, Theorem 5.4.2 and Theorem 5.4.1 would hold with
Q; replaced with Q1 \ (21 NX)\ (2N Xk);.
- When ¥/ = TM’ is the trivial system (see section 5.3.5), any open ' satisfies (5.18).
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5.3.4 Static equivalence

Definition 5.3.11. Let O C TM and O’ C TM’ be open subsets. Systems ¥ and ¥’ are static
equivalent over O and O’ if and only if there is a smooth diffeomorphism ® : Oy — O such
that the following holds :

a smooth map t — x(t) is a solution of ¥ whose first jet remains in O } (5.19)

if and only if t — ®(x(t)) is a solution of ¥/ whose first jet remains in O'.

Definition 5.3.12 (Local static equivalence). Let O C TM and O" C TM' be open subsets.
Systems X and X' are locally static equivalent over O and O if and only if there are coverings
of ONY and O'NY :

no c EnlJo*, ¥n0 c ¥'n (O
acA acA

where A is a set of indices, O% and O'“ are open subsets of O and O', such that, for all «,
systems X and Y are static equivalent over O% and O'“.

This definition, stated in terms of solutions, is translated into point (a) below, that only
relies on the geometry of ¥ and ¥’ as submanifolds. Point (b) is used for instance in [63, 107]
where “centro-affine” geometry of each ¥, is studied.

Proposition 5.3.13.  (a) Systems ¥ and X' are static equivalent over O C TM and O’ C
TM' if and only there is a smooth diffeomorphism ® : Oy — Of such that ®, maps O NX to
o'ny.

(b) If systems ¥ and X' are static equivalent over O C TM and O' C TM’', there is, for
each x € Og a linear isomorphism T, M — Tg,)M' that maps ¥, to Zip(x).

(c) Static equivalence preserves ruled systems.

Proof. (b) and (c) are easy consequences of (a), which in turn is clear by differentiating solutions
in Definition 5.3.2. O

5.3.5 Examples

1 We call trivial system on a smooth manifold M the tangent bundle itself TM. Any smooth
x(.) : I — M is a solution of this system; it corresponds to “no equation”, or to the control
system & = u, or to the “affine diffieties” in [41]. Following [37, 41], a system ¥ < TM is called
differentially flat (on Q C JX(M)) if and only if it is dynamic equivalent (over 2 and ') to the
trivial system TM’ for some manifold M’.

2 Any system ¥ — TM is dynamic equivalent to the one obtained by “adding integrators”.
It was described in Remark 5.3.5 as an affine sub-bundle X5 — TX; 3 and ¥y are equivalent
in the sense of Definition 5.3.8 with M’ =X, K =1, K’ = 0, Q an open neighborhood of ¥ in
JYM) = TM such that there is a ® : Q — ¥ that coincides with identity on 2, Q' = M’ = %
and U =7 (see (5.7)).

This may be easier to follow in the coordinates of Proposition 5.3.3. The prolongation of
(5.8) has state (yr, yn) € U, with yy a block of dimension n and yy of dimension m, and equation
U1 = (f(y,yn), yn) - In coordinates, the transformations ® : J'(Uy) — U and ¥ : U — Uy are
given by (y1,yn) = (1, 21, #1,41) = (z,41) and x = ¥(y) = yr.

Static equivalence between these systems of different dimension does not hold.
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3 Let us now give, mostly to illustrate the role of the integers K, K’ and the open sets 2 and €/,
two more specific examples of systems ¥ — TR? and ¥/ < TR3 with the following equations in
TR3, with coordinates (1, z2, 3, @1, 22, 3) or (y1,y2,y3, U1, ¥2,U3), clearly defining sub-bundles
with fiber diffeomorphic to R? :

S:dr=a2, Y:1=vy2+ U2 —1193) s - (5.20)

These equations are even globally in the “explicit” form given by Proposition 5.3.3.

First of all, ¥ is dynamic equivalent to the trivial system ¥” = TR?, with ® : R? — R?
defined by ®(x1, 2, 23) = (21,73) and ¥ : J(R?) — R3 given by W(z1, 29, 21, 22) = (21, 21, 22).
Here K =0, K' = 1,0 = R2 Q' = J(R?).

Also, with K = 1 and K’ = 2, systems ¥ and ¥/ are dynamic equivalent over Q C J*(R3)
and Q' C J%(R?) defined by

Q = {(:Bl,.%'Q,iL‘g, .j?l,ig,.fg), 1-— .T'UQ — .CE23 7& 0},
Q = {(y1,y2,y3, 1, Y2, U3, 1, G2, §i3), 1 — i3 — 93 # 0}.
The maps ® : Q@ — R3 and ¥ : ' — R? are given by

(1 — .%"2).%'3 + x9 T3 .%'22 T3 + T3
1—1’2—1‘23 ’1—.%"2—.%’23
\Il(ylay2ay37 yl:y27y3a glvij?ay:i) = (y37 113; Yy — Z)3 92) (522)

O (21, 22, 3, T1,E2,%3) = ( , T1), (5.21)

Remark 5.3.14. Since ¥ does not depend on second derivatives, K’ = 2 is not the order of the
differential operator DX "in the usual sense ; this illustrates the footnote after (5.4) ; it is however
necessary to go to second jets to describe the domain €' where the restriction to solutions of ¥’
of this first order operator can be inverted.

Finally, note that systems ¥ and X’ are not static equivalent because, from Proposition
5.3.13-(b), this would imply that each ¥, is sent to some E; by a linear isomorphism T,M —
T,M', which is not possible because each X, is an affine subspace of T;M and Z?’J a non
degenerate quadric of T, M.

4 Consider two more systems, ¥ — TR3 and X' — TR? described as in (5.20) :
S =ao4 (B2 —mdn) iy, T =2+ (G — i) ds - (5.23)

System X is ruled —each X, is the union of lines 9 — y193 = A, 1 = y2 + A2 3 for X in R— while
¥ is not. Hence, from point (c¢) of Proposition 5.3.13, ¥ and ¥/ are not static equivalent. We
shall come back to these two systems from the point of view of flatness and dynamic equivalence
in sections 5.4.1 and 5.4.3.

5.4 Necessary conditions

5.4.1 The case of flatness

It has been known since [88, 96] that a system which is dynamic equivalent to a trivial system
—see the beginning of section 5.3.5; such a system is called differentially flat— must be ruled ; of
course, at least in the smooth case, this is true only on the domain where equivalence is assumed.

Theorem 5.4.1 ([88, 96]). If ¥ is dynamic equivalent to the trivial system X'= TM' over
Q c JE(M) and Q' < JX (M) satisfying (5.18), then ¥ is ruled in €.
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Application Since ¥ in (5.23) is not ruled, this theorem implies that it is not flat, i.e. not
dynamic equivalent to the trivial system TR2. On the contrary, ¥’ in (5.23) is ruled, hence the
result does not help deciding it being flat or not ; in fact, one conjectures that this system is not
flat, but no proof is available; see Chapter 9.

5.4.2 Main idea of the proofs

Our main result, stated in next section, studies what remains of Theorem 5.4.1 when Y/ is
not the trivial system. Due to many technicalities concerning regularity conditions, the main
ideas may be difficult to grasp in the proof given in section 5.5.2. In order to enlighten these
ideas, and even the result itself, let us first sketch the proof of the above theorem, following the
line of [88] (itself inspired from [48]), but without assuming a priori that ¥/ is trivial.

Take two arbitrary systems ¥ and Y/, and assume that they are dynamic equivalent. From
Proposition 5.3.3, one may use locally the explicit forms

Y odp = f(rpon,dn), Y 2= g(z1, 21, 2n) .

Recall that n and n’ denote the dimensions of z and z; assume n < n’. Since we work only

on solutions (see Remark 5.3.9 and also Section 5.5.1) and the above equations allow one to
() ()

express each time-derivative z;”’, j > 1, as a function of xy,zy, 25, ..., 2’, we may work

with the variables xI,xH,jCH,:}fH,:B](I3),... and zI,zH,zH,éH,z](I?’Z... only. The map ® of Defini-

. . . . . K
tion 5.3.8 translates, in these coordinates, into a correspondence z; = ¢r(zr, o, 21, . - - ,a;](l )),

21 = ¢u(xr, xn, T, - - - ,x](IK)) ; here the number K is chosen such that the dependence of ¢ versus

x](IK) is effective.

If K =0, this reads z = ¢(z), and n < n’ is absurd because it would imply (around points
where the rank of ¢ is constant) some nontrivial relations R(z) = 0. Hence n = n/, ¢ is a local
diffeomorphism and static equivalence holds locally.

If K > 1, note that ® mapping solutions of 3 to solution of ¥’ implies (plug the expression of

z given by ¢ into state equations of 3') the following identity, valid for all xy, zy, 2, . . . ,x](IK+1) :
¢ , dgr . 09 .. 0P (K+1)
. (1,21, Z1) + 8—1;1136]1 + a—iﬂxn + -+ ax](IK)xH
B o : Opy . Oor .. 0P1  (K+1)
= g <¢17¢H7 0331 f(xvaHamH) + axﬂxﬂ‘{' 6.7)]1m11+ + 8x](IK):E]I
where ¢; and ¢y depend on x1, xy, 1, . . . ,x](IK) only and, at least at generic points,
dpr O
( , ) # (0,0).
8x](IK) &TI(IK)

. . (K) _ . (K) . ,
Fixing such xp, xy, &n,...,2y ~ and consequently z = ¢(x1, on, &1, ...,2y ), and examining ¥/
as a submanifold of T, M’ with equation z; = g(z, 25), it is clear that moving xI(IKH) in a direction
which is not in the kernel of %(wl, X1, LT, - - - ,x](IK)) provides a straight line of T, M’ contained

I

in 3, and, since this covers all points of ¥/, proves that the latter is a ruled submanifold of
T.M' and finally that system X' is ruled. We only examined regular points; see Section 5.5.2
for a proper proof.

Collecting the two cases, we have proved that, if n < n/, either ¥ is ruled or n = n’ and ¥’
is static equivalent to . This is stated formally in Theorem 5.4.2.
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5.4.3 The result for general systems

The contribution of this paper is the following strong necessary condition for dynamic equi-
valence between two general systems. € and ] are defined by (5.3).

Theorem 5.4.2. Let ¥ and X' be systems on manifolds of dimension n and n', K, K' two
integers and Q C JK(M), Q' c JE' (M) two open subsets satisfying (5.18).
If ¥ and X' are dynamic equivalent over 0 and ', then
if n > n'/, system X is ruled in Qq,
if n < n’, system X' is ruled in Q,
if n =n/, then (see Definition 5.53.12 for “locally static equivalent”)
- in the real analytic case, and if 1 N'Y and Q) NY' are connected,
either systems ¥ and ¥/ are ruled in Q1 and QY respectively,
or they are locally static equivalent over Qq and €,
- in the smooth (C*°) case, there are open subsets R,S of Q1 and R', S’ of )
such that Qq and Q) are covered as
M=RUS=RUS, N =RUS=RUS (5.24)
and the systems have the following properties on these sets :
1. ¥ and X' are ruled in R and R’ respectively,
2. 3 and Y are locally static equivalent over S and S'.

Proof. See Section 5.5.2. O

A few remarks are in order :

1 Theorem 5.4.1 is a consequence. Indeed, n’=m’ because Y’ is trivial, dynamic equivalence
implies m’=m (this is common knowledge ; see Theorem 6.1 or [19]), and n > m for any system ;
hence n > n/ and Theorem 5.4.2 directly implies that X is ruled except if the systems are static
equivalent, but this also implies that 3 is ruled from point (c) of Proposition 5.3.13 and the fact
that the trivial system Y/ is ruled.

Static equivalence still appears explicitly in Theorem 5.4.2 because two general systems can
be static equivalent without being ruled.

2 The part “n > n/ or n < n/” can be rephrased as follows : if a system is not ruled, it cannot
be dynamic equivalent to any system of smaller dimension. No necessary condition is given on
the system of lower dimension; indeed any system is dynamic equivalent to at least its first
prolongation, see Example 2 in Section 5.3.5.

3 The case n = n’ states that dynamic equivalence, except when it reduces to static equivalence,
forces both systems to be ruled (in the real analytic case, the added rigidity prevents the two
situations from occurring simultaneously).

In other words, if two systems are not static equivalent and at least one of them is not ruled,
they are not dynamic equivalent. Since the two conditions can be checked rather systematically,
this yields a new and powerful method for proving that two systems are not dynamic equivalent,
a difficult task in general because very few invariants of dynamic equivalence are known.

For instance, to the best of our knowledge, the state of the art does not allow one to decide
whether ¥ and ¥’ in (5.23) are dynamic equivalent or not. In section 5.3.5, it was noted that
they are not static equivalent and ¥’ is not ruled. This implies :

Corollary 5.4.3. 3 and X/ in (5.23) are not dynamic equivalent over any domains.
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4 Since being ruled is non-generic [88], we have the following general consequence (in terms of
germs of systems because the conclusion in the theorem is only local).

Corollary 5.4.4. Generic static equivalence classes for germs of systems of the same dimension
at a point are also dynamic equivalence classes.

Note that this is in the mathematical sense of “generic” : this does not prevent many inter-
esting systems from being dynamic equivalent without being static equivalent... it might even
be that “most interesting systems” fall in this case!

5.5 Proofs

Recall that subscripts always refer to the order of the jet space. The notation (5.3) is
constantly used.

5.5.1 Preliminaries : a re-formulation of dynamic and static equivalence

The maps ® and ¥ are always applied to jets of solutions, and, according to (5.12), the K*P
jets of solutions of ¥ remain in X g ; hence the only information to retain about ® and ¥ is their
restriction to, respectively,

Q=0N%k and ' =0 N . (5.25)
We need one more piece of notation : accgvrdlng to Section 5.2.3, the /t prolongation of a
smooth map d:Q — M', is a map 7TK+”(Q) — JM’; again, only its restriction to QK e

will matter ; for this reason, the notations 3l and U will not stand for the prolongations as
defined earlier, but rather these restrictions :

o Quy— JMY, O — JHM), (5.26)
with QK—&-E = Qg NEx4r, Q’K/Jrg = Q,K’-i-é N E,K/+g . (5.27)

We may now state the following proposition. Smooth (C*> or C“) maps on QKM or K1t
can be defined in a standard way because, from Proposition 5.3.3, these are smooth embedded
submanifolds.

Proposition 5.5.1 (Dynamic Equivalence). Let K, K’ be integers, Q C JX(M) and Q' C
JK' (M’) two open subsets. Systems ¥ and X' are dynamic equivalent over 2 and Q' if and only
if, with Q.9 defined in (5.25), there exist two smooth (real analytic, in the real analytic case)
mappings

3:Q—M and_V:Q — M,
such that &)[H@KH) cy, ol ](Q +1) C E (5.28)

and, with ®5 and U] defined by (5.26),

SN Qg ) €, TNl ) C Q, (5.29)
\fifo&)[ ]:7TK+K’,O ~ , &)OEJ[K} = TK+K',0|~,
K+K'/ K+K/

Proof. If the above conditions on ® and ¥ are satisfied, and z(.) : I — M is a solution of X
whose K jet remains inside €2, then the first part of (5.28) implies that DX (z(.)) is a solution
of ¥, the first part of (5.29) implies that its K*" jet remains inside ©’, and the first part of
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(5.30) implies that DE' (DX (2(.))) = x(.). This proves the first item of Definition 5.3.8; the
second item follows in the same way from the second part of (5.28), (5.29) and (5.30).
Conversely, if ® and ¥ satisfy the properties of Definition 5.3.8, their restrictions ¢ and
\ll to Q and respectively satisfy the above relations because through each point in QKH,
o K/i1s QK+K/ or QKH{/ passes a jet of order K + 1, K/ + 1 or K + K’ of a solution of ¥ or
Y ; differentiating yields the required relations. O

Proposition 5.5.2 (Static Equivalence). With Qy C JY (M) = TM and Q) C JY(M') = TM
two open subsets, systems ¥ and ¥’ are static equivalent over Qy and Q) if and only if, with
(~21, (~2/1 defined in (5.25), there exist a smooth diffeomorphism P : (~20 — S~26, and its inverse Wy
such that B Q1) = Q) (and T(Q) = Q).

Proof. This is a re-phrasing of point (a) of Proposition 5.3.13. O

5.5.2 Proof of Theorem 5.4.2

Assume that ¥ and Y are dynamic equivalent over the open sets Q2 C J K(M) and ' C
JE (M) ;let @ : © — M’ and ¥ : @ — M be the smooth maps given by Proposition 5.5.1
(recall that Q and € are open subsets of Xk and % /). We define open subsets Q% ¢ Q and

Q'S c €V and state four lemmas concerning these :

£ Q% < Thereis a neighborhood V of £ in Q and a smooth map

o % S 31
®q : Vo — M’ such that (I)‘V =®gomky, (5.31)

¢ e VS & There is a neighborhood V' of ¢ in € and a smooth map 5 39
\TIO:VO'—>MsuChthat\T/’V/:\floowKO. (5.32)

Lemma 5.5.3. In the analytic case, and zfﬁ anxy (md Q' = Q' NY are connected, one has
either Q5 = Q or Q% = @, and either U5 = Q' or @S =

Lemma 5.5.4. One has the following identities, where the two first ones hold for any subsets
ScQ,S cQ and any integer £, 0 < { < K + K’,

~1en—1 ~ ~ -1 ~
TR K0 (‘I’[K] (5')) =W (S ), TR (‘I’[K] (S)) = U1 (Skie), (5.33)
oM Q) =, I ) =1, (5.34)
Lemma 5.5.5. If n < n/, then Q5 = @. If n > n’, then Q5 = o

If n = n/, there is, for all £k € ﬁs, a neighborhood V1 of &1 = w1 (Ek) in 1 and an open
subset Vi of Q) such that systems ¥ and X' are static equivalent over Vi and Vi. There is also,
for all &, € 'S, a neighborhood W' of & =1k 1(Ey) in Q) and an open subset Wy of Q0 such
that systems ¥ and X' are static equivalent over Wi and Wj. Finally,

KKK (@[Kl’l ((25)) <I>[K](QK+K/) — O, (5.35)

TKAK K (113[”1’1 (ﬁ’s)> — QK] (QK,+K) — 05, (5.36)

Lemma 5.5.6. For all {11 € §K+1 such that £ = mr+1 Kk (Ex+1) € (Z\ﬁs, there is a straight

line in T%(gK)M/ that has contact of infinite order with ¥ at M (&g 41).
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These lemmas will be proved later. Let us finish the proof of the Theorem.

If n < n’, (5.34) implies existence, for each ¢’ € SNYI =01NY/, of some 11 € QKH such that
o] (€x+1) = € and finally, since Q5 is empty according to Lemma 5.5.5, Lemma 5.5.6 yields a
straight line in T, M " that has contact of infinite order with ¥’ at £ ; from Proposition 5.3.7,
this implies that system ¥’ is ruled over 4. If n > n/, one concludes in the same way.

Now assume n = n’. For all ¢ in & <(§ \ QS)KH), there is, according to Lemma 5.5.6, a

straight line in T M’ that has contact of infinite order with X' at ¢’. By continuity, this is also
true for all £ in the topological closure

B = 3 (00 08)xc1) = mcpern (B (91,05)), (5.37)

where the second equality come from (5.33). Let i(R') be the interior of R’ for the induced
topology on ¥’ ; since R’ = i(R'), there is an open subset R’ of Q) cTM , enjoying the property
that it is the 1nter10r of its topological closure, and such that R’ NY' = i(R') and R’ NY' = R
From Proposition 5.3.7, ¥’ is ruled over R'. Setting S’ = Q) \'R’, one has Q] = R'US’ = R'US’.
Along the same lines, ¥ is ruled over R, open subset of 21 C T M such that RN is the relative
interior of

B o= B (0 05)p041) = mcipors (B (201, @5)), (5.38)

and such that ) = RUS =R US with S = Q; \ R.
We have proved (5.24) and point 1; let us prove point 2. Obviously,

SNXcC TK+K'1 (&)[Kl]il (Q/S)> and Sl N E/ C TK+K'1 (@[K]il (QS)) .
Using identities (5.35) and (5.36), this implies
SN¥cC 7TK,1(§S) and &'NY C WK/’l(QIS) : (5.39)

For all £ in S N X, there is one £ € Q5 such that ¢ = i 1(€k) and, from Lemma 5.5.5, a
neighborhood Vf of £ in €)1 and an open subset V{g of Q) such that systems ¥ and X/ are static
equivalent over VIE and V{g. For all ¢ in 8’ N/, there is one &}, € Q'S such that & = i1 (Efr)
and, from Lemma 5.5.5, a neighborhood W'¢' of ¢} = i 1(Ef ) in Q) and an open subset Wfl
of Q1 such that systems X and X/ are static equivalent over Wll and Wié.

Now, (Vl)gegmg is an open covering of S N ¥ and (VV1 )gl Ss'nsy 18 an open covering of
§'NY'. Take for (Sa)aeA the union of (Vl)gegmg and (VV1 )eresinyy ; take for (8') 44 the union

of (Vl )eesns and (Wl )geslmz,,
This proves the smooth case, and obviously implies the real analytic one from Lemma 5.5.3.

Let us now prove the four lemmas used in the above proof.

Proof of Lemma 5.5.3. If Qs # &, then there is at least an open set in Q derivatives of ®
along any vertical vector field (preservmg fibers of X5 — M) are identically zero; since these
are real analytic they must be zero all over Q assumed connected, hence 05 = Q. The proof is
similar in (.

Proof of Lemma 5.5.4. The first relation in (5.33) is a consequence of the two identities

I+ _ K]

-~ -~ !
TR0,k © P omgtrre i+ and W o @K =7, (5.40)
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respectively (5.6) with (r,s) = (K’ + ¢,K’) and the ¢ prolongation of (5.30). The second
relation follows from interchanging K, ®, S with K', ¥, 5",
From equations (5.28) and (5.29), one has, for any positive integer ¢,

3 Qg 1) Q) and W(Qr ) C Q (5.41)

(for instance, (5.28) implies ®(Qx4y) C ¥, (5.29) implies ol (Qx ) €2}, hence the first
relation above because €, = Q, N ¥}). We only need to prove the reverse inclusions for ¢ =
1. Let us do it for the second one. The second relation in (5.40) for ¢ = 1 implies Q; =
gl (&)[K,+1](§K+K/+1)), and finally Q; c Wl (@K’—H) from the first relation in (5.40) with
(=K +1.

Proof of Lemma 5.5.5. Assume for instance that Q5 is non-empty ; then it contains an open
subset V' and there is a smooth ®¢ : V; — M’ such that, in restriction to V, ® = ®¢ o mx .

~o\—1
Hence (5.30) implies, on the open subset V' = (‘P[K]> (V) of ¥ gikr,

K] = 7TK+K/,0

P o TK,0 © ol (5.42)

v

The rank of the map on the left-hand side is n/ while the rank of the right-hand side is no larger
than n (rank of 7x ), hence Q% # @ implies n’ < n. By interchanging the two systems, this
proves the fist sentence of the Lemma.

Let us now turn to the case where n = n/. Consider {x in Q5. By definition of SN)S, there is a
neighborhood V' and a smooth (real analytic in the real analytic case) map ®¢ : Vo — M’ such
that ® = ®gomg o on V. Let V/ be defined from V as

—1 ~ [
V' = micsrerser (D7 (V) = 8 (Vig o), (5.43)

where the second equality comes from (5.33). Applying ¥ and Ul to both sides of the first
equality in (5.6) and using (5.43) with (r,s) = (K,0) and (r,s) = (K, 1) yields

TV =V, CI“;[H(VI’(,H) =V1. (5.44)

Substituting d=dgo TK,o in (5.30), one has dgoWo TK+K' K = TK+K/0 Ol \TJ[KFI(V) , and
finally L
Ppo W =mpgonV'; (5.45)

in a similar way, substituting ol = i%l] o Tg+1, in the first prolongation of (5.30),
& o U = 7y on Vi, (5.46)

Applying ®, to both sides of the first relation and 5[01] to both sides of the second relation in
(5.44), one has, using (5.45) and (5.46),

Bo(Vo) = Vg, B (Vi) = V. (5.47)

Since the rank of w7 o in the right-hand side of (5.45) is n’ = n at all points of V', ®o must be a
local diffeomorphism at all point of \TI(V/ ) = Vb and in particular at &y : by the inverse function
theorem, there is a neighborhood O of & = 7k (€) in V) and a neighborhood O of ®y(&p) in
M’ such that ®( defines a diffeomorphism O — O'.
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Let us now replace V with V N7 o1 (O), a smaller neighborhood of £ ; V' is still defined
by (5.43) from this smaller V, one has Vy = O, the former Dy is replaced by its restriction to
this smaller Vo, and the above relations still hold. In particular, O’ = ®(O) must be all Vi
according to (5.47), i.e. <I>0 defines a dlffeomorphlsm Vo — V§; let \Ilo be its inverse. Composing
each side of (5.45) with W, one gets ¥ = Ug o mx o on V'; hence, by (5.32), one has V' C Qs
and, since this is true for all £x in Os , one has

~ 1 ~ ~p A~ ~
TR+K! K’ (‘I’[K] (QS)) = MO o) C Q. (5.48)

Let V; and V] and be open subsets of ; and Q] such that
Vi=XnVy,, VW=Xn);. (5.49)

From Proposition 5.5.2, the second relation in (5.47) implies that systems ¥ and ¥’ are static
equivalent over V; and V. Interchanging the two systems, one proves that

~ ,_1 ~ ~ ~ ~
TRAK K <<I>[K1 (Q’S)) = BIKIQE, o) 5 (5.50)

and that, for all £}, € ('S, there are a neighborhood W' of & = mrr1(E)) in Q] and an open
subset W, of Qp such that systems ¥ and ¥’ are static equivalent over W; and Wj.

Now, &)[K’](Qiﬁw) c 5 in (5.48) implies ﬁf(ﬁ(, C @Kl]_l(ﬁ’s), and hence Q5 C
TK4AK' K (5[1(’]* (S )) Hence (5.48) implies the converse inclusion in (5.50); in a similar

way (5.50) implies the converse inclusion in (5.48). This proves (5.35) and (5.36), and ends the
proof of Lemma 5.5.5.

Proof of Lemma 5.5.6. Denote by £x,1 the point k41 in the lemma statement and set

€ = i1,k (Excr1) € Q\Q5, & = T 0(Ex41), &1 = Tr 1 (Exc41). From Proposition 5.3.4, and af-
ter possibly shrinking U so that it is contained in €2, there exist a neighborhood Uy C Q of £ in
JE (M), coordinates (z1, z1) on Uy = 7 0(Uk ) inducing coordinates (x1, x1, &1, &1, . - - ,ZE%K) ZCI(IK))
on Uy, and an open subset Ux C R*" K™ such that the equations of ZjK =Urg NXK in JK( )

in these coordinates are

x%i):f(ifl)(xl,mn,jrﬂ,...,x](f)), 1§i§K, (5 51)
(xl,x]l,:i"]l, . ,xﬁK)) € Uk
By substitution, there is a unique smooth map oK : Ux — M’ such that
® (&) = i (w1, xp, T, - - ;U](I )) for all £ in U with coordinate vector (1, x1, - - x%K) :n](IK)).
Let X; = (Z1, 71, 41, 21, - - :c%l),x](l)) be the coordinate vector of & for i < K + 1 and p the
smallest integer such that ¢x does not depend on :z:]({3 H), e ,:L‘](IK) on at least one neighborhood

of Xg. Shrinking Uy to this neighborhood, and Zle accordingly, we may define ¢ : U; —
M', with Uj; the projection of Ux on R"™™™ such that (&) = ¢K(m1,mﬂ,;tn,...,x](lK)) =
¢(x1, 1, 211, - - x](l )) If p was zero, one would have <I>(§) = ¢(z1, 21), hence the right-hand side
of (5.31) yyould be satisfied for ¢ = &x with V = Z/{K, this is impossible because we assumed
£ € Q\ Q5. Hence p > 1.

(K+1))

For all £k 41 in Uk 1 with coordinate vector (x1, zr, ..., 2y , one has

ol (gg 1) = (a1, 21, 4, . x](I),x](I”H)) (5.52)
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with x : Usp1 — TM' the map defined by

_ _ _ o _ _
X(:BI...I‘](Ierl)): (gi)(JUI...x](Ip)) , a(xr...:r%p))—k é)(xl...xl(lp))xﬁpﬂ) ) (5.53)
Oxy
with a = f + 30 01 88?2) (i+1) . According to (5.29), (5.51) and (5.52), ¥’ contains x(Up1).
Now, for any (zr, .. x](IpH)) € Up11 such that the linear map
9¢ (7) m :
o2 @ o) R = Ty opyM
is nonzero, picking w # 0 in its range, (5.53) implies that the straight line A in T (e m(p))
Iyl
passing through y(x7 .. ](Ip 1 )) with direction w has a segment around x(zp .. x](lp 1 )) contained
in ¥/, hence in particular A has contact of infinite order with ¥’ at point x(z, . . x](Ip +1)). To sum
up, we have proved so far that, for all k41 in ZjKH with coordinate vector (zr, zy, . . ac%[KH))
such that ( (21 ](Ip )) is nonzero, there is a straight line A¢, . | in T5(£K)M ! passing through

Pl (§K+1) that has contact of infinite order with %' at ®W(£x41). The set of such points Ex 1
may not contain £x 1 but its topological closure does, by minimality of p; taking a sequence of
points 11 that converges to k41, any accumulation point of the compact sequence (AéK +1)

is a straight line in T B )M passing through &[] (€x41) that has contact of infinite order with
> at M (Exyq).
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et al. eds, Banach Center Publications, Vol. 32, pp. 319-339, 1995.

Abstract. This paper presents an (infinite dimensional) geometric framework for
control system, based on infinite jet bundles, where a system is represented by a single
vector field and dynamic equivalence (to be precise : equivalence by endogenous
dynamic feedback) is conjugation by diffeomorphisms. These diffeomorphisms are
very much related to Lie-Backlund transformations. It is proved in this framework
that dynamic equivalence of single-input systems is the same as static equivalence.

6.1 Introduction

For a control system
i = flz,u) (6.1)

where z € R” is the state, and u € R™ is the input, what one usually means by a dynamic
feedback is a system with a certain state z, input (z,v) and output u :

2=g(x,z,v), u=~y(z,zv) . (6.2)

When applying this dynamic feedback to system (6.1), one gets a system with state (z,z) and
input v : & = f(x,v(x, 2z,v)), 2 = g(z, z,v). This system may be transformed with a change of
coordinates X = ¢(x,z) in the extended variables to a system X = h(X,v). The problem of
dynamic feedback linearization is stated in [23] by B. Charlet, J. Lévine and R. Marino as the
one of finding g, v and ¢ such that X = h(X,v) be a linear controllable system. When z is not
present, v and ¢ define a static feedback transformation in the usual sense. This transformation
is said to be invertible if ¢ is a diffeomorphism and < is invertible with respect to v; these
transformations form a group of transformations. On the contrary, when z is present, the simple
fact that the general “dynamic feedback transformation” (6.2), defined by g, v and ¢ increases
the size of the state prevents dynamic feedbacks in this sense from being “invertible”.

In [36, 37], M. Fliess, J. Lévine, P. Martin and P. Rouchon introduced a notion of equivalence
in a differential algebraic framework where two systems are equivalent by endogenous dynamic
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feedback if the two corresponding differential fields are algebraic over one another. This is trans-
lated in a state-space representation by some (implicit algebraic) relations between the °
and the “old” state, output and many derivatives of outputs transforming one system into the
other and vice-versa. It is proved that equivalence to controllable linear system is equivalent
to differential flatness, which is defined as existence of m elements in the field which have the
property to be a “linearizing output” or “flat output”. In [68, “Point de vue analytique”], P. Mar-
tin introduced the notion of endogenous dynamic feedback as a dynamic feedback (6.2) where,
roughly speaking, z is a function of x,u, %, 4. ... He proved that a system may be obtained from
another one by nonsingular endogenous feedback if and only if there exists a transformation
of the same kind as in [36, 37] but explicit and analytic which transforms one system into the
other. This is called equivalence by endogenous dynamic feedback as in the algebraic case. These
transformations may either increase or decrease the dimension of the state.

B. Jakubczyk gives in [55, 56] a notion of dynamic equivalence in terms of transformations
on “trajectories” of the system ; different types of transformations are defined there in terms of
infinite jets of trajectories. One of them is proved there to be exactly the one studied here. See
after Definition 6.1 for further comparisons.

In [93], W.F. Shadwick makes (prior to [36, 37, 55, 56]) a link between dynamic feedback
linearization and the notion of absolute equivalence defined by E. Cartan for Pfaffian systems.
It is not quite clear that this notion of equivalence coincides with equivalence in the sense of
[36, 37] or [55, 56], the formulation is very different.

The contribution of the present paper —besides Theorem 6.3 which states that dynamic equi-
valent single input systems with the same number of states are static equivalent— is to give a
geometric meaning to transformations which are exactly these introduced by P. Martin in [6§]
(endogenous dynamic feedback transformations). Our system is represented by a single vector
field on a certain “infinite-dimensional manifold”, and our transformations are diffeomorphisms
on this manifold. Then the action of these transformations on systems is translated by the
usual transformation diffeomorphisms induce on vector fields. There are of course many techni-
cal difficulties in defining vector fields, diffeomorphisms or smooth functions in these “infinite-
dimensional manifolds”. The original motivation was to “geometrize” the constructions made in
[4, 83]; it grew up into the present framework which, we believe, has some interest in itself, the
geometric exposition of [4, 83] is contained in the paper reprinted in Chapter 7.

Note finally that the described transformations are very closely related to infinite order
contact transformations or Lie-Backlund transformations or C-transformations, see [45, 1] and
that the geometric context we present here is the one of infinite jet spaces used in [31, 62, 106, 92]
for example to describe and study Lie-Backlund transformations. These presentations however
are far from being unified, for instance smooth functions do not have to depend only on a finite
number of variables in [92], and are not explicitly defined in [1]. They also had to be adapted
for many reasons in order to get a technically workable framework ; for instance, we prove an
inverse function theorem which characterizes local diffeomorphisms without having to refer to an
inverse mapping which is of the same type. The language of jet spaces and differential systems
has been used already in control theory by M. Fliess [32] and by J.-F. Pommaret [84], with a
somewhat different purpose.

Some recent work by M. Fliess [33] (see also a complete exposition on this topic in E. Dela-
leau’s [30]) points out that a more natural state-space representation than (6.1) for a nonlinear
system involves not only x and u, but also an arbitrary number of time-derivatives of u ; this
is referred to as “generalized-state” representation, and we keep this name for the infinite di-
mensional state-manifold, see section 6.3. In [33, 30], the “natural” state-space representation
is F(z,&,u,, ii,...,u(‘])) = 0 rather than (6.1). Here not only do we suppose that & is an
explicit function of the other variables (“explicit representation” according to [33, 30]) but also

tneW”
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that J = 0 (“classical representation”). Almost everything in this paper may be adapted to the
“non-classical” case, i.e. to the case where some time-derivatives of the input would appear in
the right-hand side of (6.1) ; we chose the classical representation for simplicity and because, as
far as dynamic equivalence is concerned, a non-classical system is equivalent to a classical one
by simply “adding some integrators” ; on the contrary, the implicit case is completely out of the
scope of this paper, see the end of section 6.2.

Very recently the authors of [36, 37] have independently proposed a “differential geometric”
approach for dynamic equivalence, see [38, 41], which is similar in spirit to the present approach,
although the technical results do differ. This was brought to the attention of the author too late
for a precise comparison between the two approaches.

The paper is organized as follows : section 6.2 presents briefly the point of view of jet spaces
and contact structure for system (6.1) considered as a differential relation & — f(x,u) = 0 (no
theoretical material from this section is used elsewhere in the paper). Section 6.3 presents in
details the differential structure of the “generalized state-space manifold” where coordinates are
x,u,u,..., where we decide to represent a system by a single vector field. Section 6.4 defines in
this context dynamic equivalence and relates it to notions already introduced in the literature.
Section 6.5 deals with static equivalence. Section 6.6 is devoted to the single-input case, and
states the result that dynamic equivalence and static equivalence are then the same. Finally
section 6.7 is devoted to dynamic linearization, it introduces in a geometric way the “linearizing
outputs” defined for for dynamic linearization in [36, 37, 68].

6.2 Control systems as differential relations

This section is only meant to relate the approach described subsequently to some better
known theories. It does not contain rigorous arguments.

In the spirit of the work of J. Willems [109], or also of M. Fliess [33], one may consider that
the control system (6.1) is simply a differential relation on the functions of time x(¢),u(t) and
that the object of importance is the set of solutions, i.e. of functions ¢ — (x(t), u(t)) such that
Cfl—f(t) is identically equal to f(z(t),u(t)). Of course this description does not need precisely a
state-space description like (6.1).

The geometric way of describing the solution of this first order relation in the “independent
variable” ¢ (time) and the “dependent variables” = and w is to consider, as in [1, 84, 62, 106, 31],
the fibration

(6.3)

and its first jet manifold J!(7), which is simply 7 (R™ x R™) x R. A canonical set of coordinates
on J(7) is (t,z,u, 2, ). The relation R(t,z,u,d,1) = & — f(x,u) = 0 defines a sub-manifold R
of the fiber bundle (6.3), which is obviously a sub-bundle. The contact module on J!(7) is the
module of 1-forms (or the codistribution) generated by the 1-forms dx; —&;dt and du; —u;dt, 1 <
i<mn,1<j<m.A “solution” of the differential system is a section t > (¢, z(t), u(t), z(t),u(t))
of the sub-bundle R, which annihilates the contact forms (this simply means that ‘é—f = z and
% = 1, i.e. that this section is the jet of a section of (6.3)).

Since we wish to consider some transformations involving an arbitrary number of derivatives,
we need the infinite jet space J°°(m) of the fibration (6.3). For short, it is the projective limit of
the finite jet spaces J* (), and some natural coordinates on this “infinite-dimensional manifold”
are (t,x,u, &, u, &, i,z u®, . ). The contact forms are

dxﬁj) — xz(jﬂ)dt, du,(g) — ugﬂ)dt, 1<i<n,1<k<m, j>0. (6.4)
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This infinite dimensional “manifold” is described in [62] for example, and we will recall in next
section what we really need. The “Cartan distribution” is the one annihilated by all these forms,
it is spanned by the single vector field

3+.8+.3+..8+..8+ (6.5)
= T— U— T— U= + .vn.. .
ot ox ou oz ou

where ﬂ:a% stands for ), xZ%, u% for >, ul% The relation R has to be replaced by its
infinite prolongation, i.e. R itself plus all its “Lie derivatives” along (6.5) :

R(t,x,u,z,u) = = — f(z,u) = 0
Ri(t,z,u,d,0,8,4) = & — gla — SLa = 0
Ro(t,z,u, i, 5, i, i, e®,u®)) = 2@ = . = 0 (6.6)

This defines a sub-bundle R of J*°(m). A “solution” of the differential system is a section
t— (t,x(t),u(t), z(t), u(t),@(t),i(t),...) of the sub-bundle R, which annihilates the contact
forms; it is obviously defined uniquely by x(t) and u(t) such that % (¢) = f(z(t),u(t)) with the
functions u9) and zU) obtained by differentiating z(t) and u(t).

Roo is a sub-bundle of J*°(7) which has a particular form : since the relations allow one
to explicitly express all the time-derivatives &, #,2®), ... of  as functions of z,u, @, i, u®, ..,
a natural set of coordinates on this sub-manifold is (¢,x,u,,1,...); note that if, instead of
the explicit form (6.1), we had an implicit system f(z,u, ) = 0, this would not be true. The
vector field (6.5), which spans the Cartan distribution is tangent to R, and its expression in
the coordinates (¢, x,u,,,...) considered as coordinates on R is

0 0 0 0 0
v s - Y . O (k-+1)
+f(a:,u)8$+uau+uaﬂ+...+u 5@

o (6.7)

and the restriction of the contact forms are dz — fdt, dul?) — w/*1dt, j > 0. The sub-bundles
R~ obtained for different systems are therefore all diffeomorphic to a certain “canonical object”
independent of the system, and where coordinates are (t,z,u,u,1,...), let this object be R x
MZ" where M3ZG" is described in more details in next section and the first factor R is time,
with an embedding v of R x MaZ™ into Joo(m) which defines a diffeomorphism between R
and R x M35"; this embedding depends on the system and completely determines it ; it pulls
back the contact module on J*°(7) to a certain module of forms on R x Mag™ and the Cartan
vector field (6.5) into (6.7). The points in J°°(7) which are outside R, are not really of interest
to the system, so that we only need to retain R, and it turns out that all the information is
contained in R x M5g™ and the vector field (6.7) which translates the way the contact module
is pulled back by the embedding of R x May" into Joo(m) whose image is Roo. This is the point
of view defended in [106] for example where such a manifold endowed with what it inherits from
the contact structure on J°°(7) is called a “diffiety”. It is only in the special case of explicit
systems like (6.1) that all diffieties can be parameterized by x,u, 4, ... and therefore can all be
represented by the single object Moy", endowed with a contact structure, or a Cartan vector
field, which of course depends on the system.

Finally, since everything is time-invariant, one may “drop” the variable ¢ (or quotient by
time-translations, or project on the sub-manifold {¢ = 0} which is possible because all objects
are invariant along the fibers) and work with the coordinates (x,u,, i, ...) only, with f a% +
ua% + il% + ... instead of (6.7); solutions are curves which are tangent to this vector field.
This is the point of view we adopt here, and this is described in details in next section.
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6.3 The generalized state-space manifold

The phrase “generalized state” denotes the use of many derivatives of the input as in [33,
30]. The “infinite-dimensional manifold” Mos"™ we are going to consider is parameterized by
x,U, 1,1, ...;in order to keep things simple, we define it in coordinates, i.e. a point of Mug" is
simply a sequence of numbers, as in [80] for example. It may be extended to xz and w living in
arbitrary manifolds via local coordinates, but, since dynamic equivalence is local in nature, the

present description is suitable.

6.3.1 The manifold, functions and mappings

For k > —1, let M}"™ be R™ x (R™)" (M™" is R"), and let us denote the coordinates in
M by

(:U,u,u,u,...,u( ))
where z is in R” and w, 1, ... are in R™. M3J" is the space of infinite sequences
0 i DUt
(x,u,u,u,...,u(),u( ),...).

For simplicity, we shall use the following notation :
U = (uaiu®,..), X = (U = (zuaiu®, ). (6.8)
Let, for k> —1, the projection 7y, from M55" to M be defined by :
m_1(X) =z, and mp(X) = (z,u, i, ..., u®), k>0, (6.9)

MZE"™ may be constructed as the projective limit of M}"", and this naturally endows it with
the weakest such that all these projections are continuous (product topology); a basis of the
topology are the sets

7.5 (0), O open subset of M}"" .

This topology makes May'" a topological vector space, which is actually a Fréchet space
(see for instance [14]). It is easy to see that continuous linear forms are these which depend
only on a finite number of coordinates. This leads one to the (false) idea that there is a natural
way of defining differentiability so that differentiable functions depend only on a finite number
of variables, which is exactly the class of smooth functions we wish to consider (as in most of
the literature on differential system and jet spaces [1, 62, 80, 31, 106]), since they translate
into realistic dynamic feedbacks from the system theoretic point of view. It is actually possible
to define a very natural notion of differentiability in Fréchet spaces (see for instance the very
complete [46]) but there is nothing wrong in this framework with smooth functions depending on
infinitely many variables. For instance the function mapping (u, %, i, u®, ...) to >0 2% p(#),
with p a smooth function with compact support containing 0 vanishing at 0 as well as its
derivatives of all orders depends on all the variables at zero, but it is smooth in this framework.
It is hard to imagine a local definition of differentiability which would classify this function
non-smooth.

Here, we do not wish to consider smooth functions or smooth maps depending on infinitely
many variables; we therefore define another differentiable structure, which agrees with the one
usually used for differential systems [31, 1, 80, 62, 106] :

— A function h from an open subset V of M5y" to R (or to any finite-dimensional manifold)

is a smooth function at X € V if and only if, locally at each point, it depends only on
a finite number of derivatives of © and, as a function of a finite number of variables, it is
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smooth (of class C*); more technically : if and only if there exists an open neighborhood
U of X in V, an integer p, and a smooth function h, from an open subset of My"" to R
(or to the finite-dimensional manifold under consideration) such that h()) = h, o m,())
for all YV in U. It is a smooth function on V if it is a smooth function at all X in V. The
highest p such that h actually depends on the pth derivative of u on any neighborhood of
X (-1 if it depends on x only on a certain neighborhood of X') we will call the order of
h at X, and we denote it by d(h)(X). It is also the largest integer such that a%) (this
may be defined in coordinates and is obviously a smooth function) is not identically zero
on any neighborhood of X. Note that §(h) may be unbounded on Mo5". We denote by

C>(V) the algebra of smooth functions from V' to R, C®(M") if V = M".

— A smooth mapping from an open subset V of Mcg" to Mgg" is a map ¢ from V to
MZ™ such that, for any v in C®(Mgg"), ¥ o ¢ is in C®(V). It is a smooth mapping
at X if it is a smooth mapping from a certain neighborhood of X to May". Of course,
in coordinates, it is enough that this be true for ¢ any coordinate function. For such a
map and for all k, there exists locally an integer pi and a (unique) smooth map ¢y from
7, (V) C Mp™ to MTﬁ such that

TEOY = QRO . (6.10)

The smallest possible py at a point X" is 0(7 0 ) (X).

— A diffeomorphism from an open subset V' of MZ" to an open subset V of MZ" is
a smooth mapping ¢ from V to V which is invertible and is such that ¢! is a smooth
mapping from Vto V. B

— A static diffeomorphism ¢ from an open subset V' of MGS™ to an open subset V' of
Mz" is a diffeomorphism from V' to V such that for all k, 6(7m o ¢)(X) is constant equal
to k.

— A (local) system of coordinates on MJ" (at a certain point) is a sequence (hq)a>0 of
smooth functions (defined on a neighborhood of the point under consideration) such that
the smooth mapping X — (hq(X))a>0 is a local diffecomorphism onto an open subset of
RN, considered as Mé&o.

Note that the functions x1,...,Zn, U1,. .., Um, UL, ..., Um,... are coordinates in this sense.
Actually, this makes all the “manifolds” May" globally diffeomorphic to M},’OO, so that they are
all diffeomorphic to one another (this can be viewed as renumbering the natural coordinates).
The following proposition shows that static diffeomorphisms are much more restrictive : they
preserve n and m.

Proposition 6.1. Let ¢ be a static diffeomorphism from an open set U of MZ" to an open
set V. of MZ™. Its inverse ¢~ is also_a static diffeomorphism and ¢ induces, for all k > 0,
a diffeomorphism ¢y, from MJ"™ to MJ""™ (from R™ to R™ for k = —1). Its existence therefore
implies n =n and m = m.

Proof : For all £ > —1, since d(p o 7g) = k, there exists a mapping ¢y from 7 (U) to mi (V)
satisfying (6.10) with pi = k. All these mappings are onto because if one of them was not onto,
(6.10) would imply that ¢ is onto either. Now let us consider ¢~!; it is a diffeomorphism from
V to U and there exists therefore, for all k, an integer o and a smooth map (gofl) & from

o, (V) € MG™ to MJ" such that

Teo 1 = ((pfl)k O Ty, - (6.11)
Applying ¢ on the right to both sides and using the fact that 7, o ¢ = ¢4, 0 75, , We get

T = ((p_l)k O Yoy O oy, - (6.12)
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Applied to (z,u,,...), this means

(z,u,,... ,u(k)) = (go_l)k (y,v,0,.. Lo ,U(Uk))

)

with (y,0,9,...,0® . 0@)) = o, (zu,a,...,u®, . ulow) (6.13)

Since ¢, is onto and each v depends only on z, u, . .., ul, (6.13) implies that (np_l)k depends

only on y,v,v,..., v%) . Therefore o}, might have been taken to be k, and then one has (6.12)
with o = k and therefore
-1
= Id m,m 6.14
(SO )k ° Pk M ( )
which proves that each ¢y is a diffeomorphism and ends the proof. |

Let us define, as examples of diffeomorphisms, the (non static!) diffeomorphisms
Yo (pr,....pm) from MEE MEETPIEFPm which “adds py, integrators on the kth input” :

. (plfl) : (pm 1)
. = (z,u1,01...u s Uy Uy« + - Uy
Yo (pr,eipm) (@ U) = (2,V) with ( ) E (}erkl) ! ) (6.15)
= u; .
It is invertible : one may define Y (_,, . _p,.) from MZN to MINTPIT TP o N> p1+
AP bY To—pr—p) (5, V) = (2,U) where x is the N —p1 — ... — py, first coordinates

of z, and u,g 7 s v,(f ) if 7 > pi and one of the remaining components of z if 0 < j < pr — 1, so

that T 7,(P1 e spm) © Tn’( =1Id.

*plrnafpm)

6.3.2 Vector fields and differential forms

The “tangent bundle” to the infinite dimensional manifold ME™ is, since Mag"™ is a vector
space, Mog" x Mog"™, which is a (trivial) vector bundle over M55". A smooth vector field is
a smooth (as a mapping from Mz" to Mog"™ x Mog", considered as Mig“”) section of this
bundle. It is of the form

0 > 0

Where f is a smooth function from M to ]R” and the «;’s are smooth functions from MZ™ to
™ where fa stands for ), fi-2- B and o 5 (J) for ). oy, Zaam’ and the 57-’s and (J) ’s are the

canonical sections corresponding to the “coordinate vector fields” assomated with the canonical
coordinates. Vector fields obviously define smooth differential operators on smooth functions :
in coordinates, Lrh is an infinite sum with finitely many nonzero terms.

Smooth differential forms are smooth sections of the cotangent bundle, which is sim-
ply Mag" x (Msg™)™ where (Mog™)™ is the topological dual of MGo™, i.e. the space of infinite
sequences with only a finite number of nonzero entries; they can be written :

w = gdx + Z ﬂjdu(j). (6.17)
finite

This defines the C®(M%") module A'(M5") of smooth differential forms on M3™. One may
also define differential forms of all degree.

Of course, one may apply a differential form to a vector field according to (w, F) = fg +
> «;f; (compare (6.16)-(6.17)), where the sum is finite because finitely many (3;’s are nonzero.
One may also define the Lie derivative of a smooth function h, of a differential form w,... along
a vector field F', which we denote by Lrph or Lrw. The Lie bracket of two vector fields may
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also be defined. All this may be defined exactly as in the finite-dimensional case because, on a
computational point of view, all the sums to be computed are finite.

Finally, note that a diffeomorphism carries differential forms, vector fields, functions from
a manifold to another, exactly as in the finite dimensional case; for example, if ¢ is a dif-
feomorphism from M3" to /\/loo , F'is given by (6.16) and z,v,0, U . are the canonlcal
coordinates on M?o’ﬁ, the vector field ¢, F on Mo5™ is given by >, fl o5 T Z] i O, k5 m with

fi=(Lr(ziop))op™ and a5, = (Lr(vy) 0 p)) o L.

6.3.3 Systems

A system is a vector field F' on Moy —with n > 0 and m > 1 some integers— of the form

F(X) = :p,u—w + Z +1) (6.18)

J)’

i.e. the xz-component of F is a function of  and w only, and its u-component is uUtY. This
may be rewritten, in a more condensed form,

F = f+C (6.19)

where C is the canonical vector field on M5;", given by

[e.o]

= ) ublt (6.20)
5 8u(3
and the vector field f is such that
@i, f) = 0 i=1,...,m,j>0 (6.21)
[ﬁ,f] =0 i=1,....m,j>1. :

m will be called the number of inputs of the system, and n its state dimension. Note that
in the (explicit) non-classical case [33, 30] (i.e. the case when some derivatives of u would appear
in the right-hand side of (6.1), there would be no restriction on f, besides being smooth, i.e. the
second relation in (6.21) would no longer be there (note however that any smooth vector field
has zero Lie Bracket with u ( y for j large enough, or in other words f depending on infinitely
many time-derivatives of v in (6.1) is ruled out).

In the special case where n = 0, there is only one system (with “no state”) on M. We
call this system the canonical linear system with m inputs; it is simply represented by the
canonical vector field C' given by (6.20).

In section 6.2, a system was an embedding of R x M5" as a sub-bundle of J* ; this defines
canonically the vector field F' on Mos"™ as, more or less, the pull back of the Cartan vector field
(annihilating the contact forms) in J° (7).

F' is the vector field defining the “total derivation along the system”, i.e. the derivative
of a smooth function (depending on x,u,1,...,u")) knowing that & = f(z,u) is exactly its
Lie derivative along this vector field. In [55], B. Jakubczyk attaches a differential algebra to
the smooth system (6.1) which is exactly C®(Mos") endowed with the Lie derivative along
the vector field F'. Of course, this is very much related to the differential algebraic approach
introduced in control theory by M. Fliess [33], based on differential Galois theory, and where a
system is represented by a certain differential field. In the analytic case, as explained in [28],
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this differential field may be realized as the field of fractions of the integral domain C¥(Msg™).
The present framework is more or less dual to these differential algebra representations since
it describes the set of “points” on which the objects manipulated in differential algebra are
“functions”.

The following proposition gives an intrinsic definition of the number of inputs, which will be
useful to prove that it is invariant under dynamic equivalence :

Proposition 6.2. The number of inputs m is the largest integer q such that there exists ¢ smooth
functions hy, ..., hq from Msg™ to R such that all the functions

Lih, 1<k<gq,j>0
are independent (the Jacobian of a finite collection of them has mazimum rank).

Proof : On one hand, hy(z,U) = uy, provides m functions enjoying this property. On the other
hand, consider m + 1 smooth functions A1, ..., Amnt1, let p > 0 be such that they are functions
only of z,u, 1, ...,u”, and consider the (m+1)(n+ mp+ 1) functions functions

L{phk 1<k<m+1,0<ji<n+mp;

from the form of F' (see (6.19) and (6.20)), they depend only on z,u,,...,uPt"+™P) e on
n+m(p+n-+mp+1) coordinates ; since this integer is strictly smaller than (m+1)(n+mp-+1),
the considered functions cannot be independent. |

6.3.4 Differential calculus; an inverse function theorem

All the identities from differential calculus involving functions, vector fields, differential forms
apply on the “infinite-dimensional manifold” Mus" exactly as if it were finite-dimensional : if
it is an equality between functions or forms, it involves only a finite number of variables (i.e.
both sides are constant along the vector fields ﬁ for j larger than a certain J > 0) so that

U
all the vector fields appearing in the formula may be truncated (replaced by a vector fields with

a zero component on ﬁ for j > J), and everything may then be projected by a certain mg
U

(K possibly larger than J), yielding an equivalent formula on the finite-dimensional manifold
Mz’”; if it is an equality between vector fields, it may be checked component by component,
yielding equalities between functions, and the preceding remark applies.

Of course, theorems from differential calculus yielding existence of an object do not follow
so easily, and often do not hold in infinite dimension. For instance, locally around a point where
it is nonzero, a vector field on a manifold of dimension n has n — 1 independent first integrals
(functions whose Lie derivative along this vector field is zero) whereas this is false on Msg™ in
general : for the vector field C on M0 given by (6.20), any function h such that Lch =0 is a
constant function.

One fundamental theorem in differential calculus is the inverse function theorem stating that
a smooth function from a manifold to another one whose tangent map at a certain point is an
isomorphism admits locally a smooth inverse. In infinite dimension, the situation is to more
intricate, see for instance [46] for a very complete discussion of this subject and general inverse
function theorems on Fréchet spaces, which are not exactly the kind of theorem we will need
since more general smooth functions are considered there. Here, for a mapping ¢ from Mc"
(coordinates : z,u, 1, . ..) to Mag" (coordinates : z,v, v, ...), the function assigning to each point
the tangent map to F' at this point may be represented by the collection of differential forms
d(z 0 ), d(v,(cj) o), and a way of saying that, at all point, the linear mapping is invertible with
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a continuous inverse, and that it depends smoothly on the point, is to say that these forms are
a basis of the module A'(M5"); equivalently, this tangent map might be represented by an
infinite matrix whose lines are finite (each line represents one of the above differential forms),
and which is invertible for matrix multiplication with an inverse having also finite lines. It is
clear that for a diffeomorphism this linear invertibility holds; the additional assumption we add
to get a converse is that the mapping under consideration carries a control system (as defined by
(6.19)) on M55™ to a control system on MEE™: note also that we require that the tangent map
be invertible in a neighborhood of the point under consideration whereas the finite-dimensional
theorem just asks for invertibility at the point.

Besides its intrinsic interest, the following result will be required to prove theorem 6.5 which
characterizes “linearizing outputs” in terms of their differentials.

Proposition 6.3 (local inverse function Theorem). Let m,n,m,n be nonnegative integers with
m and m nonzero. Let z1,..., 25, V1, ., Uy ULy .oy Uiy e v v e be the canonical coordinates on

", and X = (T, 1, U, 1, . ..) be a point in Muy". Let ¢ be a smooth mapping from a neigh-
borhood of X in MLS" to a neighborhood of p(X) in M such that

1. on a neighborhood of X, the following set of 1-forms on M3" :

{d(zi 0 @) h<ici U {d(0 0 9) hi<kerm. >0 (6.22)

form a basis of the C*®°(MG™)-module A*(M5S™),

mn

2. there exists two control systems F' on Muy" and F on M5 such that, for all function

he C®(MZ™), defined on a neighborhood of o(X),
(Lsh)o e = Lr(hog) . (629

Then ¢ is a local diffeomorphism at X, i.e. there exists a neighborhood U of X in Mu", a
neighborhood V. of o(X) in Mas" and a smooth mapping (a diffeomorphism) 1 from V to U
such that ¥ o = Idy and oy = Idy .

Note that (6.22) is a way of expressing that the tangent map to ¢ is invertible with a
continuous inverse, and (6.23) is a way of expressing that ¢ transforms the control system F'
into the control system F , in a dual manner since writing F= . F would presuppose that ¢ is
a diffeomorphism.

Proof : Let x1,...,Zn, U1, evy U, Uty s Uy evnn-- be the canonical coordinates on ME".
The first condition implies that there exist some smooth functions af , bf’g , cf , df’J such that

dr; = Ezzlaf (zp 0 @) + Z] Ozrlbz’jd( U)o op) i=1,...,n (6.24)

du; = 22:1 cFd(z00) + ijo szldiwd( ( ) op) i=1,...,m .
Let K be the integer such that the functions z1 0 ¢,..., 25 0 p,v1 0 @,...,v5 0 @, .. .,ng) o
Q... ,vg) o ¢, and the functions af, bf’j, cf, d; 0 all depend on z, u, 4, ..., u) only. Then
2100, ..., Z70Q, V10Q, . .., V500 are n+m functions of the n+ (K +1)m variables z1, ..., zy, u,
b Uy e e s ugK), . ,u%{ ) which, from condition 1 in the proposition are independent because

the fact the forms in (6.24) form a basis of the module of all forms implies in particular
that a finite number of them has full rank at all point as vectors in the cotangent vector
space. Hence, from the finite dimensional inverse function theorem, one may locally replace,

. K ~ . . .
N Ty, ..o, Ty ULy ey Uy - - - ,ug ),. ugn ), n+m coordinates with the functions zy0¢, ..., 250
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©, 0100, . .., vz0p. In particular, there exists n+m functions &; and ¢? defined on a neighborhood
of (2,0,0,...,01)) —with p(X) = (£,9,0,0,...,05)— and such that

z = &zopwop,..., oMo Y) i=1,...,n
A ) . (6.25)
up = G(zopvop,...,v\opY) i=1,...,m
where ) represents some of the n + (K 4 1)m variables z, u, 1, . ..,u) (all minus 77 + (L + 1)

of them). dz; and du; may be computed by differentiating (6.25); the expression involves the
partial derivatives of the functions &; and ¢; and comparing with the expressions in (6.24), one
may conclude that

0§, a¢)
i L] to— 6.26
o0y oA ’ ( )
and we may write, instead of (6.25),
z; = &(zopvop, ..., vPop) i=1,....n
2
u; = C?(zogo,vocp,...,v(L)ogo) i=1,...,m (6.27)
We then define the functions Cl-j for j > 0 by
G o= L (6.28)
(note that this makes (ij a smooth function of z,v, ..., U(H_j)) and we define ¢ by
. .. . Ty = gi('zﬂjw"vU(L))’
(z,v,0,0,...) = (z,u,0,i,...) with ugj) _ {g(z,v,...,v(Lﬂ)), i>0 (6.29)

Its is straightforward to check that (6.23), (6.28), (6.29) and the fact that L{pu is u9) imply that
pot=1Idand Yoyp=Id. |

6.4 Dynamic equivalence

The objective of the previous sections is the following definition. As announced in the in-
troduction, it mimics the notion of equivalence, or equivalence by endogenous dynamic
feedback given in [68] for analytic systems (analyticity plays no role at all in the definition of
local equivalence), which coincides with the one given in [36, 37] when the transformations are
algebraic. The present definition is more concise than in [68] and allows some simple geometric
considerations, but the concept of equivalence is the same one. It also coincides with “dynamic
equivalence” as defined in [55, 56|, see below. It is proved in [68] that if two systems are equiva-
lent in this sense then there exists a dynamic feedback in the sense of (6.2) which is endogenous
and nonsingular and transforms one system into a “prolongation” of the other.

Definition 6.1 (Equivalence). Two systems F on M2 and F on M™™ are equivalent at
X € M™ and Y € ME" if and only if there exist a neighborhood U of X in Mz5", a neigh-
borhood V of Y in MSS"™, and a diffeomorphism o : U — V such that p(X) =Y and

F = @, F (6.30)

on U. They are globally equivalent if there exists a diffeomorphism o from Moy" to M@’ﬁ such
that (6.30) holds everywhere.
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Note that in the definition of local equivalence, the diffeomorphism is only defined locally.
This might be worrying : it is not very practical to know that something may be constructed in
a region which imposes infinitely many constraints on infinitely many derivatives of the input
u. This actually does not occur because a neighborhood U of a point X contains an open set
of the form WI_{I(U k) with Ug open in M7”", so that being in U imposes some constraints on
T, u, G, i, . .., u) but none on w K+ E+2)

Some notions of dynamic equivalence (“dynamic equivalence” and “dynamic feedback equiva-
lence”) are also given in [55, 56]. To describe them, let us come back to the framework of section
6.2, where Mog™ is a sub-bundle of J*®(7) and Mog™ is a sub-bundle of J*°(7) ; the transforma-
tions considered in [55, 56] have to be defined from J*°(7) to J°°(7) whereas our diffeomorphism
¢ is only defined on Mz"™ (and maps it onto Msg™); actually, Lie-Béicklund transformations
are usually defined, like in [55, 56], all over J°°(7r); this is referred to as outer transformations,
or outer symmetries if it maps a system into itself, whereas inner transformations are these,
like our ¢, defined only “on the solutions”, i.e. on Mzg". Since the transformations in [56] are
required to be invertible on the solutions only, it is proved there that a transformation like our
¢ may be extended (at least locally) to J*°(m) and therefore that local equivalence in the sense
of Definition 6.1 is the same as the local version of the one called “dynamic equivalence” (and
not “dynamic feedback equivalence”) in [56].

It is clear that equivalence is an equivalence relation on systems, i.e. on vector fields of the
form (6.19) because the composition of two diffeomorphisms is a diffeomorphism. There is not
however a natural group acting on systems since a given diffeomorphism might transform a sys-
tem F into a system G and transform another system F” into a vector field on M?o’n/ which is
not a system. For instance, for py,...,p, nonnegative, the diffeomorphism Tn7(p1,---7pm) defined
in (6.15) transforms any system on Mos" into a system on MNP FPm whereas the dif-
feomorphism Y, 1+ 4p (=p1,.—pm) —itS iNVerse— transforms most systems on MEAPLE P
into a vector field on Moy" which is not a “system” because it does not have the required struc-
ture on the coordinates which are called “inputs” on Mgy". Two important questions arise :
what is exactly the class of diffeomorphisms which transform at least one system into another
system and what is the class of vector fields equivalent to a system by such a diffeomorphism.
An element of answer to the latter question is that “non-classical” systems [33, 30], i.e. these
where the right-hand side of (6.1) depends also on some time-derivatives of u, or vector fields on
which the second constraint in (6.21) does not hold, are in this class of vector fields because they
are transformed by T, i . k), where K is the number of derivatives of the input appearing in
the system, into a (classical) system, this illustrates that generalized state-space representations
[33, 30] are “natural” ; however, it is clear that the class of vector fields which may be conjugated
to a “system” is much larger : the only system (classical or not) on MZY s ¢ and very few
systems on Mgy" are transformed into C' by T, (=n.0,...,0) for example. A partial answer to the
former question is given by :

Theorem 6.1. The number of inputs m is invariant under equivalence.

Proof : For any function h, Lz (ho¢™') = (Lph)o ¢! The integer m from Proposition 6.2
is therefore preserved by a diffeomorphism ¢. |

Further remarks on the class of diffeomorphisms which transform at least one system into
another system may be done. One may restrict its attention to systems of the same dimension,
i.e. to diffeomorphisms from May™ to itself because if ¢ goes from Moy™ to MQZ;’N with N > n
and transforms a system into a system, T, (v_pn0,..0) © ¢ is a diffeomorphism of MZN that
transforms a system into a system. In the single-input case (m = 1), as stated in section 6.6,
 must be static, which is a complete answer to the question because a static diffeomorphism
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transforms any system into a system. In the case of at least two inputs (m > 1), the literature
([62, Theorem 4.4.5] or [1, Theorem 3.1], but these have to be adapted since they are stated
in an “outer” context) tells us that either ¢ is static or it does not preserve the fibers of
e o Me" — MY for any k, ie., if ¢ is given by ¢(z,u, 4, 1,...) = (z,v,0,0,...), there
is no k such that (z,v,0,...,v") is a function of (z,u,, ...,u®) only. This is related to the
statement [23] that, when dynamic feedback is viewed as adding some integrators plus performing
a static feedback, it is inefficient to add the same number of integrators on each input.

6.5 Static equivalence

Definition 6.2 (Static equivalence). Two systems F on M™ and F on M are (locally/
globally) static equivalent if and only if they are (locally/globally) feedback equivalent with the
diffeomorphism ¢ in (6.30) being a static diffeomorphism.

From Proposition 6.1, we know that a static diffeomorphism really defines an invertible static
feedback transformation in the usual sense, this is summed up in the following :

Theorem 6.2. Both the number of inputs m and the dimension n of the state are invariant
under static equivalence. Moreover, w_1 0@ provides a local diffeomorphism in the classical state-
space R™ and the u component of my o ¢ provides a nonsingular feedback transformation which
together provide an invertible static feedback transformation in the usual sense.

6.6 The single-input case

It was proved in [23, 22] that a single-input system which is “dynamic feedback linearizable”
is “static feedback linearizable”. The meaning of dynamic feedback linearizable was weaker that
being equivalent to a linear system as meant here : “exogenous” feedbacks (see [68]) were allowed
in [23] as well as singular (feedbacks which may change the number of inputs for example).
The following Theorem 6.3 may be viewed as a generalization of this result to non-linearizable
systems, but with a more restrictive dynamic equivalence.

It is known that the only transformations on an infinite jet bundle with only one “de-
pendent variable” which preserves the contact structure (Lie-Bécklund transformation in [1],
C-transformation in [62]) are infinite prolongations of transformations on first jets (Lie transfor-
mation according to [62]), see for instance [62, Theorems 6.3.7 and 4.4.5]. The following result
is similar in spirit. We give the full proof, a little long but elementary : it basically consists in
counting the dimensions carefully, it is complicated by the fact that we do not make any a priori
regularity assumption (for instance, the functions y; and v; defining the diffeomorphism are not
assumed to depend on a locally constant number of derivatives of u).

Theorem 6.3. Let F and F be two systems on M (i.e. two single input systems with the
same number of states). Any (local/global) diffeomorphism ¢ such that F' = ¢, F is static. Hence
they are (locally/globally) equivalent if and only if they are (locally/globally) static equivalent.

Proof : The second statement is a straightforward consequence of the first one. Let us consider
a diffeomorphism ¢ such that F' = ¢, F and prove that ¢ is static. Suppose that, in coordinates,
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¢ and ¢! are given by ¢(z,U) = (2,V) and ¢~ 1(z,V) = (x,U) with :
z = X*l(l‘au) r = 7/}71(%]))
v = xolz,U) u = Po(z,V)
: : (6.31)
o) = xj(x,U) ul) = (2, V)
Since F = v« F', we have
LFX—I(xau) = }V(X—l(xvu)7 Xo(l‘,Z/{)) (632)
Lpxj(z,U) = Xjp(z,U) forj=>0.

Let X be an arbitrary point of the domain where ¢ is defined. From the definition of a
diffeomorphism, there is an integer J > —1 and a neighborhood U of &' (J is § (770 o <p)( ) if U
is small enough) such that xy_; and xo depend only on x, u,, . . . ,u) on U and

ou <J> and a %

are not both identically zero on U (one might take all the open set where ¢ is defined ML
in the global case— instead of U, but this might cause J to be infinite).

If J was —1, x—1 and xo would both depend only on z, but the dimension of x is n and the
dimension of (x_1,x0) is n + 1 : there would be a function such that h(x_1, xo) would be zero
on U and this would prevent ¢ from being a diffeomorphism ; hence J > 0.

The first equation in (6.32), and the second one for j = 0, imply :

Ox- Ox-1, dx— -
"o ) + b S = FOca(eu) ot u)).
O (:c,u)+%u+...+auu)u = iz, U) .

By taking the derivative with respect to u(/*1) of the first equation and with respect to u(?) for
j > J + 2 of the second equation,

Ox—-1 . _ ox1 .
Sul) 0 and 0 = 50 forj>J+2. (6.33)
This implies that that x_; is a function of z,u, ...,u(’=Y (z if J = 0) only, xo is a function of
z,u,. .., u’"D u) only (by definition of J), and x; of z, u, ..., u/ =1, u() 4+ only. It is
then easy to deduce by induction from the second relation in (6.32) that for all j > 0, x; is a
function of z,u, ..., u’ Tt on this neighborhood with
dx;  Oxo .

From the first relation in (6.33) and the definition of J, —_,) is not identically zero on U.

Hence, there is a pgint X = (z,7u,1,...) € U such that 6?(‘3) (X) = 8‘9“) (Z,1, ..., ")) #0. Let
K be §(mp 0 1) (X) —note that it might be smaller than §(m o ¢ 1)(/'1,’)— i.e. ¥_1 and 9y
(K, and 8%(1) and aa}”;g)
is nonzero at X, that there is a neighborhood U of

K) and gz}b(}(l)

locally depend only on z,v,...,v are not both identically zero on any

neighborhood of X. This implies, since 8 X

X such that, on U, % does not vanish, ¥_; and 1y depend only on z,v, ..., v

_Oo
()

and are not both identically zero. We have, on U,

YT+

r = Yo(x_1(z,u, .., u D) oz, u, . u)) L k(2
iy, (6:39)

u = wo(X—l(xvua"'vu(Jil))7 XO(xvuv"'au(J))a ...,XK(%',U,...,U
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K cannot, for the same dimensional reasons as J, be equal to —1, hence K > 0. Now, suppose
that J > 1. Then J + K > 1, and taking the derivative of both identities in (6.35) with respect
to u/*TE) therefore yields

o1 Oxk oo Oxk

o E) Ju+E) T 9p(K) guUtK) 0 (6.36)

identically on U. This is impossible because on one hand % does not vanish because of

(6.34) and on the other hand K has been defined so that g;p(;{l) and

8‘27{’[2) are not both identically

zero on U. Hence J > 1 is impossible.
We have proved that J = 0. Hence x; depends only on z,u...ul) (z for j = —1) for all

j > —1 (see above) and 6(1)8) is, for all j, nonsingular at all points (consequence of the smooth
invertibility of ¢). This is the definition of a static diffeomorphism. |

6.7 Dynamic linearization

A controllable linear system is a system of the form (6.19) where the function f is linear,
i.e. f(x,u) = Az + Bu with A and B constant matrices, and (Kalman rank condition) the rank
of the columns of B, AB, A’B is n.

There is a canonical form under static feedback, known as Brunovsky canonical form [17]
for these systems : they may be transformed via a static diffeomorphism (from Mo"™ to itself)
to a linear system where A and B have the form of some “chains of integrators” of “length”
T1,...,Tm; the diffeomorphism Y, (_, . ) from M to M0 (see (6.15)) which “cuts off”
all these integrators then transforms this system into C' (see (6.20)) :

Proposition 6.4 ([17]). A controllable linear system with m inputs is globally equivalent to the
canonical system C on MO,

We wish to call dynamic linearizable a system which is equivalent to a controllable linear
system. From the above proposition, this may equivalently be stated as :

Definition 6.3. A system is (locally/globally) dynamic linearizable if and only if it is (lo-
cally/globally) equivalent to the canonical linear system C' on MY

Of course this concept is the same as in [68, “analytic approach”] since the equivalence is the
same. In [36, 37, 68|, the notion of linearizing outputs or flat outputs is used to define flat control
systems as these which admit such outputs. It is proved that flatness coincides with equivalence
by endogenous feedback to a controllable linear system. In [55, 56] a system is called free if the
differential algebra (C*°(Mazg™), L) is free; the linearizing outputs we define below are free
generators of this differential algebra. The following theorem in a sense re-states the result “flat
< linearizable by endogenous feedback”.

Theorem 6.4 (linearizing outputs). A system F on Ma3" is locally dynamic linearizable at
a point X if and only if there exist m smooth functions hi,..., hy from a neighborhood of X
in M&5™ to R such that (Lhg)1<p<m,0<j i a system local of coordinates at X. It is globally
dynamic linearizable and only if there exist m smooth functions hy, ..., hy from MZ" to R such
that (L-hi)1<k<m,0<; is a global system of coordinates. These functions are called linearizing
outputs.

Proof : If F is dynamic linearizable, there exists a (local/global) diffeomorphism ¢ from Mog"
to M2° such that C' = pF. Define hy by hp = U,(Cj) o with v,(g) the canonical coordinates
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on M%™. Since v\ = chvk (the jth Lie derivative of vy along C') and C' = ¢, F, we have
Lihy = Lip(uog) = (L po)oe = o o,

so that, since ¢ is a diffeomorphism and (v,g] ))lékﬁm,OSj is a system of coordinates on Mgno’o,
(v,(j ) o ©)1<k<m,0<; is a system of coordinates on MZ". Conversely, if there exist m functions
hi, ...,y enjoying this property, then one may define the diffeomorphism ¢ mapping a point
(z,U) of MZ"™ to the point of M%™ whose coordinate v,gj) is L]éhk(m,l/{). It is clear that
p ' =C. |

Of course, this is far from being a solution to dynamic feedback linearization since one
has to determine if linearizing outputs exist, which is not an easy task; see Chapter 7 for
bibliography and a discussion of this topic. Let us give a rather convenient way of tackling this
problem by transforming it into its “infinitesimal” version. Recall that a Pfaffian system is a
family of differential forms of degree 1 with constant rank; any family of forms generating the
same module (or co-distribution) defines the same Pfaffian system. The infinitesimal version of
linearizing outputs is and object already defined n[4, 83] :

Definition 6.4. A Pfaffian system (w1,...,wn) is called a linearizing Pfaffian system at
point X if and only if, for a certain neighborhood U of X, the restriction to U of the forms
Liwg, 5> 0,1 <k<m form a basis of the C®(U)-module A'(U) of all differential forms on
U.

We have three comments on this definition. Firstly, this is a property of the Pfaffian system
(w1, ...,wn) rather than the m-uple of 1-forms since it is not changed when changing the col-
lection of forms wy, ..., wy, into another collection which span the same module. Secondly, one
may prove than the rank of such a Pfaffian system must be m (see the proof of Proposition 6.2).
Finally, one should not be mislead by the terminology : existence of a linearizing Pfaffian
system does not imply linearizability :

Theorem 6.5. A system F on MGS" is locally dynamic linearizable at point X if and only if
there exists, on a neighborhood of X, a linearizing Pfaffian system (w1, ...,wy,) which is locally
completely integrable.

By locally completely integrable, we mean the classical Frobenius condition dwy Awi A ... A
wm = 05 note that the condition that (L%Wk)lglcgm,ogj be a basis of A'(U) implies that the
rank at all point of (wy,...,w) is m, and is therefore constant.

Proof : The condition is obviously necessary from Theorem 6.4 by taking wy, = dhy. Conversely,
one may apply the finite dimensional Frobenius theorem to (w1, ..., w) because they depend on
a finite number of variables, and, as noticed above, they have constant rank m : there exists m
functions hj . .. hy, (of the same number of variables than these appearing in wj .. . wy,) such that
dhq,...,dh,, span the same co-distribution than wy, ..., w,, ; this implies that (L{pdhk)lgkgmpﬁ
is also a basis of A'(U). Define the map ¢ : U — MZO as assigning to a point (x,U) of MSS"
to the point of MZ™ whose coordinate vl(j ) is L%hk(x,bl). It is clear that for all function
h e COO(Mgém), <Lci~z> op = Ly, (iL o go), so that theorem 6.3 implies that ¢ is a local
diffeomorphism. |

This result is more interesting in the light of the fact that a controllable system admits a
linearizing Pfaffian system at “almost all” points. Next chapter develops further this point of
view, see also [4] for a more algebraic approach.



Chapitre 7

Reproduction de I’article:
E. Aranda-Bricaire, C. H. Moog et J.-B. Pomet,

" Infinitesimal Brunovsky form for nonlinear systems
with applications to dynamic linearization”,

in Geometry in Nonlinear Control and Differential Inclusions, B. Jakubczyk
et al. eds, Banach Center Publications, Vol. 32, pp. 19-33, 1995.

7.1 Introduction and Problem Statement

The purpose of this note is to present a “geometric” version of the constructions made in
[4, 83]. The framework from Chapter 6 will be used ; it is briefly summed up in section 7.2.

The contribution of [4, 83] was to construct a so-called “infinitesimal Brunovsky form” (“non-
exact Brunovsky form” in [83]) for controllable nonlinear systems and to relate it to dynamic
linearization ; they use the linear algebraic framework introduced in [12]. The point of view on
the feedback linearization problem was the one of looking for “linearizing outputs”, following the
idea of [36, 37, 68]. It is therefore, following the terms of [36, 37, 68|, linearization via endogenous
dynamic feedback. In [83], we relied explicitly upon the notion of differential flatness [36, 37, 68|,
whereas [4] re-defines the notion of linearizing outputs in terms of dynamic decoupling and
structure at infinity.

Here, in the framework of Chapter 6, dynamic linearization is equivalence to a linear system
via diffeomorphism on the extended state space manifold ; linearizing outputs are functions such
that these and all their “time-derivatives” are a set of local coordinates on the generalized state-
space manifold. The main interest of this approach over the algebraic ones is that it is possible
to give local notions, and therefore singularities are not ignored.

In section 7.3, we define the infinitesimal Brunovsky form and relate it to some work on
time-varying linear systems and linearized systems of nonlinear systems [34, 35]. In section 7.4,
we relate this construction to existence of linearizing outputs, and explain why it provides a
good framework for searching linearizing outputs.

7.2 Summary of Chapter 6

2.1. The “infinite dimensional manifold” M3" is, for short, R” x (R™)N. A global system
of coordinates is x1, ..., Tn, U1, ...\ Um, ULy « .., Upm, U1, .... It is endowed with the product

145
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topology : an open set may be described by some restrictions on a finite number of coordinates,
i.e. there is a k such that, considered as an open set of R” x (R™)N = R™ x (R™)* x (R™)N, it
can be written O x (R™)N with O an open set of R™ x (R™)F.

2.2. A smooth function on My;" is one which depends only on a finite number of coordinates
and is smooth as a function of these coordinates. C*>°(U) stands for the algebra of smooth
functions defined on an open subset U of Mz". A smooth mapping from Ma5" to MET g g
mapping whose composition with any smooth function is a smooth function. A diffeomorphism
from Mog" to Msg" is a bijective smooth mapping whose inverse is a smooth mapping.

2.3. A vector field is a possibly infinite linear combination » Uiﬁiwi where the v;’s are smooth
functions and the w;’s are some of the coordinates x1, ..., Tn, Uty -, Um, ULy -y Umy - - -
A differential form of degree 1 (or 1-form) is, with the same conventions, a finite linear
combination Y v;dw;. AY(U) stands for the C*°(U)-module of 1-forms defined on U.

2.4. All the “formulas” from finite dimensional differential calculus involving objects like Lie
brackets and Lie derivatives are valid. For instance, the Lie derivative of a form w = " v;dw;
along a vector field F' may be computed, in coordinates, according to Lrw = Y Lpv;dw; +
vid(Lpw;). Also, a diffeomorphism carries vector fields or differential forms from one manifold
to another, we use the usual notation @, F or ¢*w.

2.5. A smooth control system (6.1) :

&t = f(z,u) (7.1)
with state x € R and input u € R™ is represented by a single vector field
0 .0 .0
F = f(z,u)mz7— + = + ti=— + ... (7.2)

ox ou ot

on Mo5". We often refer to “system F”, confusing system (7.1) with vector field F.

2.6. The Lie derivative along F' defined by (7.2) is simply the “time-derivative” according to
(7.1) : we often write ¢ or w instead of Lrpp or Lrw for a function ¢ or a 1-form w.

2.7. A diffeomorphism from Mo5" to Mag™ given by (z,u, 1,1, ...) — (z,v,0,1,...) is said to
be a static diffeomorphism if and only if z depends only on x, v depends only on = and w,
¥ depends only on z, u and % ... A static diffeomorphism is nothing more than a nonsingular
static transformation in the usual sense : if F' is a system on Muy" and Fisa system on Mgo",
existence of a static diffeomorphism ¢ such that F = @« I is equivalent to n = n, m = m and

static equivalence of the control systems associated with F' and F'.

2.8. Of course, n = 0 is not ruled out in the above definitions, coordinates on M0 are simply
{u,u,1,...}, and the only system is the canonical linear system with m inputs (6.20) :

_ (3+1)
C = EO n 50l (7.3)

It has “no state”, but one should not worry about this since n = 0 is obtained after “cutting all

the integrators” in a canonical linear system [17] and arbitrarily renaming some states “inputs”.
Dynamic linearizability is conjugation via a diffeomorphism to system C' :
Definition 7.1 (rephrasing of Definition 6.3). A system F is locally dynamic linear-

izable at point X € Mo3" if and only if there exists a neighborhood U of X in Muy", an open
subset V' of MTO’O, and a diffeomorphism ¢ from U to V such that,
on U, OxF' C
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2.9. Consider a C*°(U)-module of vector fields D (resp. of forms H), defined on an open set U.
The annihilator of D is the module of the forms which vanish on all the vector fields of D, and
vice-versa :

HY = {X,VweH, (w,X)=0}; Dt = {w,VXeD, (wX)=0}.

D(X) (resp. H(X)) denotes the subspace of the tangent (resp. cotangent) space to May" at
point X € U made of all the X(X) for X € D (resp. w(X) for w € H). We call the dimension
of D(X) (resp. H(X)) the pointwise rank of D (resp. H) at point X. D or H is said to be
nonsingular at point X if and only its the pointwise rank is constant in a neighborhood of
AX'; it is then equal to the rank of the module over C*(U).

7.3 The Infinitesimal Brunovsky Form

Let us define the following sequence of C*® (M )-modules of vector fields :

ij = Span{ﬁ,ﬁ,} ]20
Dy = Span{%,%,%,é..}
Dl = Span{%,%,%,m,...}
: (7.4)
Dyy1 = Dy + [F, Dyl
Do = > D
k
and, since these are “infinite-dimensional”, we define for each Dy (k > 1) its “a% part” :
~ 0
Dr = Dy N Span{ 8—} , kel o0 (7.5)
i
(Span{a%} stands for the C*®°(Mos™)-module generated by 8%1’ e %), which makes Dj(X)
(see paragraph 2.9) finite-dimensional for all X € Mg"), and yields
Di. = ﬁk ® Dy, ke [1,00] . (76)

Note that (7.5) and (7.6) are both valid for £ = co and that Doo might as well have been defined

by Deo = Z Dy, . We define also a sequence of C* (M™)-modules of forms :
k

H_; = Span{dz, du,...,dul)} ;>0

Ho = Span{dz,du}
Hiy = Span{dz }

; (7.7)
Hk+1 = {wer,U:):LFWEHk}

Mo = () M -
k

See paragraphs 2.4 and 2.6 for a definition of w or Lrw. We have the following relation between
the Dy’s and the H’s :
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Proposition 7.1. All the modules Dy, and Hj are invariant by static feedback, i.e. by static
diffeomorphism of Mc"™ (see paragraph 2.7), and, for all k,

Ho CHeg1 CHi , DpCDyy1 CDo , Hip = DF ., Dy C HE,  (7.8)
with H;- = Dy, at points where ﬁk is nonsingular (see paragraph 2.9).

Proof : From (7.4) and Proposition 6.1, a static diffeomorphism ¢ does not change Dy, for
k < 1; since the recursive definition of Dy for larger k only uses Lie brackets, it is then clear
that the modules built according to (7.4) from ¢, F are exactly ¢.Dj. The two first relations
in (7.8) are obvious from (7.4) and (7.7) and the fourth one is a consequence of the third one

because Dy C (D,ﬁ)L, with an equality at nonsingular points. Let us prove the first one by
induction. It is obvious for k < 1. Let us suppose that it is true for k£ > 1. From the fact that if
(w,X) =0 then (Lrw, X) = —(w, [F, X]), we have :
we€Hg1 © weH, and Low € Hy
& VX €Dy, (w,X) = (Lpw,X) =0
& VX eDy, wX) = (w[FX])=0 & weDy, . n

We shall now relate this construction to accessibility. The following Lie algebra is defined in
[60], and often called the strong accessibility Lie algebra : this Lie algebra of vector fields
on R" is the Lie ideal generated by all the vector fields f(u,.) — f(v,.) for all possible values
of u and v in the Lie algebra generated by the vector fields f(u,.) for all possible values of w.
The main result on strong accessibility in [60] (see the definition there) is that it is equivalent
to the strong accessibility Lie algebra having rank n. In [29], the strong jet accessibility Lie
algebra is defined; it differs from the strong accessibility Lie algebra in that the differences
f(u,.) = f(v,.) are replaced by derivatives of all orders with respect to all the components of w.
It is easy to see (this is actually its definition in [29]) that it is the Lie algebra generated by all
the vector fields

3k1+..-+kmf

_ 7.9
Bulfl . auﬁlm (7.9)

adly on . JEN, K= (k... kn) €N, gff =

It a priori depends on . In the analytic case, it does not depend on u and is equal, for all value
of u, to the strong accessibility Lie algebra. Of course, in the general (smooth) case, full rank
for this Lie algebra is sufficient, but not necessary, for strong accessibility. A vector field on R"
depending on u, like these defined in (7.9) and all their iterated Lie brackets, clearly defines a
vector field on Mos™ (which belongs to Span{a%} and commutes with all the ﬁiﬁ for j > 1

but not a priori with the %’s). Here, we call L the Lie algebra composed of the vector fields

on Mog"™ associated to these in the strong jet accessibility Lie algebra as defined by (7.9) (or in
[29]), and we define £ by

L = L&D = E@Spam{gug_2 9

(7.10)

L is obviously a Lie algebra because [%,E} c L and [ﬁ,a = {0} for j > 1. The phrase
: u

“strong jet accessibility Lie algebra” will further refer to £ rather than to a Lie algebra of vector

fields on R™, and L is its %—component. We have :

Theorem 7.1. For any open subset U of Mug",

1. Ll (restriction to U of the strong jet accessibility Lie Algebra) is the Lie Algebra generated
by (i.e. the involutive closure of) Dol (the restriction of Do to U).
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2. If the C*°-module 1300 o is finitely generated, then it is a Lie algebra, and so is Doolys,

and hence :

~]

Doly = L, e ﬁ“"U = L (7.11)

‘U )
Proof : Point 1 is straightforward from (7.9) and (7.4). We only have to prove that if U is such
that 7500 . is finitely generated, then D |;; is a Lie algebra; for this, we shall prove that the

module of vector fields
M = {X € Dsly, X, Doly] C Doolyy}

is equal to Duo|y;. By assumption, Dl is generated by the vector fields ﬁ, 1 <k <m,
k

j >0, plus a finite number of vector fields of Span{dz} whose expressions involve only a finite
number, say J, of time-derivatives of u; Dso|;; is therefore invariant by Lie bracket by the vector
fields %I(cj) for j > J, which span D_;_1). M therefore contains D_(;_y); furthermore, it is a

submodule of Dy |;;, invariant by F' from Jacobi identity. Since it is clear that, for all k, and in
particular k = —(J — 1), Dy is the smallest module of vector fields which contains Dy, and is
invariant by Lie brackets by F', M = Dy|;. |

For further considerations, we will avoid “singular” points in the sense of the following
definition where H;, + Hk stands for the module over smooth functions spanned by all the forms
w and w with w € Hg. “Nonsingular” was defined in paragraph 2.9.

Definition 7.2. A point X € M3" is called a Brunovskij-regular point for system F if and
only if one of the two following (equivalent) conditions is satisfied :

(i) All the modules Dy, (k > 2) are nonsingular at X .

(i) All the modules Hy + Hy (k > 2) are nonsingular at X.
These properties are true for all k > 0 if and only if they are true for k=2,...,n+ 1. We call
Pk the locally constant rank of Hy. Around a Brunovskij-regular point, there exists an integer k*
such that, for all k < k*, ppr1 < pr — 1 and Hy = Hiy1 = Heo for k > k*.

Proof of i<-it : Suppose that all the ﬁk’s, and thus all the Hj’s, are nonsingular at X.
For a certain k, let {ni,...,np+q} be a basis of Hy with {n1,...,7m,} a basis of Hyy1. The
forms n1, ..., Mptqs Mp+1s - -5 Nptrq SPAD Hy + Hy. On the other hand, if a linear combination
S mi+ 329, Aimps vanishes at X then, for all vector field X € Dy, (S0, Agfip1i, X), which
is equal to (3°7 | N\inp44, [F, X]), vanishes at X', hence (37 Ainp1i, Y)(X) =0forall Y € Dy ;
since {n(X),..., ny(X)} is a basis of the annihilator of Dy (X) and {n(X), ..., np4e(X)} are
independent, all the \;’s vanish at X' ; hence f:f w;n; vanishes at X', hence all the pu;’s also
vanish at X. Hence {11(X), ..., 0p1q(X),Mpr1(X), ..., prq(X)} is a basis of Hy(X) + Hp(X)
and Hy + ’Hk is nonsingular at X.

Conversely suppose that all the modules Hy + ’Hk are nonsingular at X. Let C, = {X €
Dy, [F,X] € Dy} and Cr = CpN Span{%,%}. Clearly, C;, = Cj, ® Dy. Arguments simi-
lar to these of the end of the proof of Proposition 7.1 show that (Hj + Hj)* = Cp (equa-
lity between modules). All the @’s are therefore nonsingular at X. Let us prove by induc-
tion that all the modules Dy are nonsingular too. This is true for k = 1 (ﬁl = {0}). Sup-
pose that it is true for £ > 1, and let {...,%,%,Xl,...,XHq} be a basis of D, with
{.. %, %,Xl,...,Xp} a basis of Ci. Then the same arguments as in the first part of this
proof show that {X1(X),..., Xpq(X), [F, Xpi1](X), ..., [F, Xptq](X)} is a basis of Span{%}@

Dy41(X) and Dy is nonsingular at X. |
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Theorem 7.2 (Infinitesimal Brunovsky form). Around a Brunovsky-regular point there exists

Poo functions of x only Xx1,...,Xps, and m 1-forms wy,...,wn, and m non-negative integers
T1...,T"m Such that
{dx1,...,dxpe} is a basis of Hoo = Hy, forl > k" +1 (7.12)

{dx1,. . dxpe b U {w,(gj), re>1,0<j<rp—1} isa basis of H;, for all | < k*.(7.13)

Furthermore all the wy’s are in Hy = Span{da} —i.e. 1, > 1 for all k— if and only if, at the
point (x,u) under consideration,
of of
— cony, ——(a, = . 7.14
ranke { 5 —(z,0), ... 5 = (@,u) } m (7.14)
At a Brunovsky-regular point, Do, is equal to D,y1 and is hence nonsingular and hence
locally finitely generated. Hence strong accessibility implies, from Theorem 7.1, that pso = 0. In
that case and if (7.14) is met, (7.13) implies

{w](cj)7 0<k<m, Ogjgrk—l} is a basis of H1 = Span{dfv}

() : . . _ (7.15)
{w, 0<k<m,0<j<ry} isabasis of Hy = Span{dz,du} .

Hence, with wy ; = w,ij), and with the a; ;’s and b; ;’s some functions such that the matrix [b; ;]; ;

is invertible at X,

Xl = fyl(Xh"'uXpoo)
Xoso = Vpoo X1+ Xpo)
Wil = w2 (7.16)
Wi = w3 '
1<1<m
Wir—1 = Wir
Wigy = 25 @igdry + 370 by jduy

We call this “infinitesimal Brunovsky form” because it looks like the canonical Brunovsky form
[17] for linear system; it is not a “canonical form” for any equivalence relation : the data of the
forms wi,...,wy, and of (7.16) does not give a unique system.

Proof : The proof goes along the lines of [4] or [83]. Since we are at a Brunovsky-regular
point, H is nonsingular and locally spanned by exactly po, forms. These forms depend on
a finite number of variables z,u, ..., u). One may then project these forms, and hence Hx,
on the finite dimensional manifold M7" (see Section 6.3.2) and use the finite dimensional
Frobenius theorem : from Theorem 7.1, H is completely integrable and therefore is spanned
by poo exact forms dy; ... dx,. With x1...Xx,. some functions, which depend only on = because
dx; € Doo C D;. Then the forms wy may be constructed recursively such that (7.13) holds :

- it holds for [ > k* + 1 provided all the r;’s are no larger than k* (it will be the case).

- chose wy, ... ,wp,. so that {dx1,...,dXpe,w1,--.,Wp,. } is & basis of Hy-, and set ry = ... =
Tpee = k*, (7.13) is then satisfied for | > k* provided all the remaining r;’s are no larger than
kE* —1 (it will be the case).

- Induction on ¢, downward from ¢ = k* to £ = 0 : for 0 < ¢ < k* — 1, let us suppose that (7.13)
is true for [ > ¢+ 1 (assuming that all the r4’s corresponding to wy’s which have not yet been
built are no larger than ¢), and build some wy’s with ry = ¢ so that (7.13) is true for [ > £. It is
not difficult to prove (see [4, proof of Th. 3.5], really similar because by assumption Hy41 +Hesn
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is nonsingular here) that {dxi,...,dx,..} U {w,(j), e >0+ 1,0 <j<r,—{}is aset of linearly
independent elements of Hy, actually a basis of Hyy1 + H£+1 C Hy. Add, if they do not form a
basis of Hy, some new wy’s with the corresponding r’s equal to /.

After [ = 0, no new wy’s are needed because if there is a certain number of wy’s such that
(7.13) holds for I = 0 (we have not yet proved there are exactly m of them), then duy,...,du,,

are linear combinations of the dy;’s and the w,(cj )’s for rp, > 0 and 0 < j < rg, which immediately

implies that, for ¢ > 0, dugq), e ,du%) are linear combinations of the dy;’s and the w,(gj Vs for

rp > 0and 0 < j < rg+gq,ie. (7.13) is met for | = —¢ < 0 without any additional wy’s; this
ends the construction of the wy’s and proves r, > 0 for all k. There are exactly m w;’s because
an obvious consequence of (7.13) is that p; — p;41 is equal to the number of r;’s larger or equal
to I; in particular, since p; — piy1 = m for [ < 0 (see (7.7)), the total number of wy’s is m. To
prove the very last part of the theorem, one therefore has to prove that p; — pos = m if and
only if (7.14) holds, which is obvious because, from (7.4), Dy = D1 @ Span{g—ufl, ol %} and
because of Brunovsky-regularity. |

The reason for defining this “Brunovsky form” in [4, 83] was to suggest a way to look for
“linearizing outputs” (see theorem 7.3 below for definition and comments).

Definition 6.4 introduces, as in [4, 83|, the notion of a linearizing Pfaffian system. Recall
that one should not be mislead by the terminology : a linearizing Pfaffian system, contrary to
a linearizing output, does not linearize anything unless it has more properties (integrability, see
Theorem 7.3). An an immediate consequence of Theorems 7.1 and 7.2 is :

Corrolary 7.2. If a system F is locally strongly accessible around a point X, which is Bru-
novsky-regular for F', then F', admits, locally around X, a linearizing Pfaffian system (w1, ...,wp).
A possible choice is the forms wi,...,wn constructed in Theorem 7.2. If (7.14) holds, w1, ... ,wn
are in ‘H1 = Span{dz}.

Comments on this “Brunovsky form”

Let us indicate the similarity between the content of this section and the algebraic framework
for “time-varying” linear systems developed in [33, 34| for example.

For U an open subset of Mos", let C*®°(U)[Lp] be the algebra of differential operators which
are polynomials in the Lie derivative with respect to I’ with coefficients in C*>°(U). This is a
non-commutative algebra since (aLp)(bLr) = abL% + a(Lpb)Lp. It plays the same role as the

non-commutative ring k[%} (k is a differential field) introduced in [33] to define linear time-
varying systems : a linear system is a module over this ring and it is controllable if and only if
it is a free k[%]—module (which is also a k vector space).

In the nonlinear case, in [33, 35] a system is represented by a differential field k& and, via

Kéhler differentials, one may define the linearized system as a k[%]—module, whose equivalent

here is the C*°(U)[Lr]-module A*(U).

Relying upon results from [97, 29] which state that a nonlinear system satisfying the strong
accessibility condition has a controllable linear approximation along “almost any” trajectory, a
nonlinear system is said to be controllable in [35] if and only if the k[%]—module associated to
the differential field £ is free.

Note that the assertion “(w1,...,wp) is a linearizing Pfaffian system” (or (7.13) with ps, = 0)
is equivalent to “(wi,...,wn) is a basis of the C®(U)[Lx]-module A'(U)”; hence Corollary
7.2 constructs a basis of this module, and hence establishes that it is free. We have proved
(theorem 7.1), that, at a Brunovsky-regular point (and even at a point where Dy is locally
finitely generated), the strong accessibility rank condition implies that the module is free, or that
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the linearized system is controllable in the sense of [33, 35]. This is not exactly a consequence
of [97, 29]. Technically, the result is contained in the fact that D, is (around a regular point)
closed under Lie bracket, which may be interpreted as : the torsion submodule of the C*°(U)[Lf]-
module A*(U) is “integrable”.

An algebraic construction of the “canonical Brunovsky form” (or of a basis of the module)
for controllable time-varying linear systems, based on some filtrations, is proposed in [34]. The
sequence of the Hy’s is a filtration of AL(U). It does not coincide with these introduced in [35],
but might certainly be interpreted in the same terms. The “well-formedness” assumption in [35]
corresponds to (7.14) at the end of Theorem 7.2.

7.4 Dynamic linearization as an integrability problem

Dynamic linearizability from Definition 7.1 is actually linearizability by endogenous
dynamic feedback as defined in [68, 36, 37]. It is proved there that this is equivalent to
flatness, i.e. to existence of linearizing outputs or flat outputs. In the present framework, these
are defined below. They are given an interpretation in terms of dynamic decoupling and structure
at infinity in [4] and in [68], and they are defined as the free generators of the differential algebra
C®(MGS™) in [55, 56].

The following is an immediate consequence of Theorems 6.4 and 6.5 :

Theorem 7.3. Let X be a point of Mug". The following assertions are equivalent :
1. The system F' is locally dynamic linearizable at point X .

2. There exist m smooth functions hy, ..., hmy from a neighborhood of X in MS" to R such
that (nghkhgkgm,ogj s a local system of coordinates at X. Such m functions are called
linearizing outputs (or simply one linearizing output) [36, 37, 68].

3. F admits, on a neighborhood of X, a linearizing Pfaffian system (ni,...,Mm) which is
completely integrable, i.e. such that dng Am A...Anym=0,k=1...m.

We saw in the previous section that all strongly accessible systems admit, at Brunovsky-
regular points, a linearizing Pfaffian system, which, of course, may not be integrable. We therefore
have to investigate what all linearizing Pfaffian systems are, and we may say that a system is
dynamic linearizable if and only if there exists one among all these which is integrable.

For an open subset U of Mo5", let A(U) be the algebra of m x m matrices with entries in
the algebra of differential operators C*(U)[Lp] :

A

AU) 2 My (CP(U)[LE]) (7.17)

A matrix in A(U) defines an operator on m-uples of 1-forms in a straightforward manner, and
we have :

Proposition 7.3. Let (w1,...,wn) be a linearizing Pfaffian system and let n1,...,nm be m
1-forms defined on an open set U of MoS". (m1,...,nm) s a linearizing Pfaffian system if and
only if there exists P(Lg) in A(U) which is invertible in A(U) and is such that

m w1
| = PLp)| (7.18)

TIm Wm
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Proof : There always exists P(Lr) € A(U) such that (7.18) holds because (w1,...,wn) is
a linearizing Pfaffian system. If (n1,...,7n,) is also a linearizing Pfaffian system, there exists
Q(Lr) € A(U) such that
w1 m
= Q(Lr)

W, NIm

Hence Q(Lp)P(Lr) and P(Lp)Q(LF) transform respectively (w1, ...,wy) and (11, ..., 7y) into
themselves. Hence Q(Lp)P(Lr) = P(Lr)Q(LF) = I because the forms wlij) (resp. n,ij)), 1<k<
m, j > 0, are linearly independent. Conversely, it is obvious that (7.18) with P(Lr) invertible
implies that (U/(gj))lgkzgmgzo is a basis of the C*(U)-module A'(U). |

A straightforward consequence of Theorem 7.2 and Proposition 7.3 is :

Theorem 7.4. Let X € MG5" be a Brunovsky-reqular point for system F, and let wy,. .., wmn
be the 1-forms constructed in Theorem 7.2, defined on a certain neighborhood U of X. System
F is locally dynamic linearizable at point X if and only if there exists an invertible matrix
P(Lr) € A(U) such that
w1 w1
= P(Lp) : (7.19)

Wm Wm

is a locally completely integrable Pfaffian system, i.e. dwxy AWy A...ANwm =0 fork=1,...,m.

Of course, this is not per se a solution to the dynamic feedback linearization problem ; it
is rather a convenient way to pose the problem of deciding whether or not linearizing outputs
exist. The main difficulty comes from the fact that the degree of P may be arbitrarily large
because the linearizing outputs may depend on an arbitrary number of time-derivatives of w.
Let us make this number artificially finite :

Definition 7.4. System F is said to be (x,u,...,u))-linearizable (for K = —1, this
reads x-linearizable) at point X if and only if there exists some linearizing outputs function of
(z,u, ..., u)) only (on z only for K = —1).

Of course, a system is dynamic feedback linearizable (in the sense of Definition 7.1, i.e.
linearizable by endogenous dynamic feedback according to [36, 37, 68], or dynamic linearizable
according to [55, 56]) if and only if it is (z,u,...,u))-linearizable for a certain K. We have
the following theorem which precises Theorem 7.4.

Theorem 7.5. Let X € M35" be a Brunovskij-reqular point for system F, and let wi, ..., wmn,
and r1,. ..,y be, respectively, the 1-forms and integers constructed in Theorem 7.2. System F'
is (x,u, . .., uF))-linearizable at point X if and only if there exists an invertible matriz P(Ly) €

A(U) satisfying the conditions of Theorem 7.4 and such that the degree of the entries of the k-th
column is at most K + 7.

Proof : The condition is necessary for (z,u, ... ,ulE ))—linearizability because if hq,..., h,, are
some linearizing outputs function of z, w, ..., u") only, (7.19) holds with @y = dyy and, from
(7.13), the columns of P have to satisfy the degree inequalities. Conversely, suppose that (7.19)
holds with the degree of the kth column of P being at most K + r; and the system (@1, ...,wy)
completely integrable, then (@i, ...,w,,) is spanned by some exact forms (dhy,...,dh,,); the
functions hy are linearizing outputs ; the degree inequalities imply that all the Wi ’s are in H_g =
Span{dz,du,...,du}, and hence that the hy’s are functions of z,u,...,u™ only. |
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One of the reasons why our results provide a rather convenient framework is that, outside
some singular points, it is not difficult to describe invertible matrices of a prescribed degree.
As noticed in [34, 35, 51], the polynomial ring C*(U)[LF] enjoys many interesting properties.
Namely, it is possible to perform right and left Euclidean division by a polynomial whose leading
coefficient does not vanish. It is well known (see for example [110]) that, in the constant coefficient
case, all invertible polynomial matrices are finite products of “elementary matrices”, i.e. either
diagonal invertible matrices or permutation matrices or matrices whose diagonal entries are all
equal to 1 while only one of the non-diagonal entries is nonzero, and it is an arbitrary polynomial.
Since the tool to get such a decomposition is only Euclidean division, this remains true in the
case of coefficients in C*°(U) as long as one does not have to perform Euclidean division by a
polynomial whose leading coefficient vanishes. This does not happen often, although it is not
very easy in general to say which singularities the original matrix should not have for this not
to happen; in the meromorphic case ([4, 83]), this never happens since the coefficient of the
polynomials then belong to a field and are therefore invertible, even if they “vanish” at a point,
if they are not zero. Now, if one bounds a priori the degree of the columns of P (say one wishes to
decide whether (x,u, ..., u))-linearizability holds), then all invertible matrices satisfying these
bounds may be sorted into a finite number of types of finite products of elementary matrices,
each type involving a finite number of functions. In each case,

w1
d( P(Lr) | : ) = 0

Wm

(with d acting on each entry) is a set of partial differential equations in these functions. The so-
lubility of these PDE’s is equivalent to the existence of a system of linearizing outputs depending
only on a fixed finite number of time-derivatives of u.

7.5 Conclusion

We have developed a framework for looking for linearizing outputs which gives a convenient
way for writing down a system of equations whose solubility is equivalent to the existence of a
system of linearizing outputs. Some work has already been done in the direction of characteri-
zing the cases where linearizing outputs exist. These results give either sufficient conditions or
necessary and sufficient conditions for existence of linearizing outputs for some particular cases.
For example, (z,u, ..., u®))-linearizability (in most cases, K = —1) or a prescribed “structure
at infinity” (see [70, 69, 72]). A criterion for existence of a matrix P of degree zero for general
two-inputs systems is given in [83]. The “sufficiency” part of the result contained in [72] is re-
derived in [2] in a way that simplifies, to our opinion, the argument partly due to E. Cartan.
Finally, a characterization of (z,u)-linearizability for affine systems with 4 states and 2 inputs is
given in Chapter 8. These last results seem to demonstrate that “infinitesimal Brunovsky form”
is a convenient way to tackle the problem of looking for linearizing outputs.
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8.1 Introduction
A deterministic finite dimensional nonlinear control system
i = fu) (8.1)

where the state = lives in R", the control u lives in R™, and f is smooth —smooth means C*°
in this article— is said to be locally static feedback equivalent around (Z, ) to another system

i o= ) (8.2)
around (Z,0) if there exists a nonsingular feedback transformation, i.e. two maps
u = afz,v)
8.3
v = 6(2) 53

such that (z,v) — (¢(2),a(z,v)) is a local diffeomorphism sending (z,v) to (z,u), that trans-
forms (8.1) into (8.2). The interest of feedback equivalence is that the transformation (8.3)
allows one to convert the solution to a certain control problem for system (8.1) to the solution
of a similar control problem for system (8.2). It is clear that (germs of) static feedback trans-
formations form a group acting on (germs of) systems, and that static feedback equivalence
is an equivalence relation. This feedback equivalence has been very much studied, see for ins-
tance [15, 13, 54]. Classification of control systems modulo this equivalence is of course a very
ambitious and difficult program, almost out of reach. A more restricted problem is the one of
describing the orbits of controllable linear systems, i.e. systems of the form Z = Az + Bv with
(controllability) the columns of B, AB, A2B, A3B, ... having full rank. This problem is known
as static feedback linearization, and has been completely solved : in [57, 50], explicit conditions
are given for a general nonlinear system to be locally static feedback equivalent to a controllable
linear system.

155
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A dynamic feedback, or dynamic compensator, as opposed to static, is one where the “old”
controls u are not computed from the “new” ones v by simply static functions (8.3), but through
a dynamic system which has a certain state ¢ :

v = ofz,§v)
§ = 7(‘7:767”) (84)
z = ¢($,£),

where ¢ lives in R, ¢ > 0, and ¢ is a (local) diffeomorphism of R™. (z,v) may be viewed as
the “input” of the control system, and (u, x,§), or (u, X) as its “output”.

Clearly, (8.4) allows one to transform system (8.1) into a system like (8.2). However, contrary
to the case of static feedback, the dimension of the state of the transformed system (8.2) is
strictly larger than the dimension of the state of the original system (8.1), and for this reason,
it a priori difficult to say what an “invertible” dynamic feedback “transformation” can be. One
may however, following [23], state the problem of dynamic feedback linearization as the one of
deciding when a system (8.1) can be transformed via a dynamic feedback (8.4) into a linear
controllable system. The problem of deciding if a given system is dynamic feedback linearizable
is much more difficult than the one for static feedback and is still open. A panorama and further
references on dynamic feedback linearization from the point of view of compensators (8.4) can
be found in [23]. This reference contains some sufficient conditions, that have the annoying
drawback of not being invariant by static feedback, and also the following three results, that are
of more general interest : a single input system (u € R), at a “regular” point, is dynamic feedback
linearizable if and only if it is static feedback linearizable ; dynamic feedback linearizability at a
rest point (z,u) = (Z,0) implies controllability of the linear approximation of the system at this
point ; a controllable system which is affine in the control —i.e. the right-hand side of (8.1) is
affine with respect to u— and such that the dimension of the state is larger than the dimension
of the control by at most one is always dynamic feedback linearizable.

As seen above, the case of systems with one control is completely understood outside singu-
larities, so that the nontrivial cases have at least two controls. The cases where the dimension of
the state is less than 3 are somehow trivial (again, away from singularities), and the case where
it is 3 and the system is affine in the control is covered by the above mentioned result from [23].
The smallest nontrivial cases are therefore non-affine systems with three states and two inputs,
and affine systems with four states and two inputs. Section 8.6 explains how to apply the results
of this paper to three-dimensional non-affine systems, but the rest of the paper is devoted to
systems

T = X()(x) + ule(ZL‘) + UQX2($) (8.5)

where x € R* and u; and us are in R (u = (u1,u2)). Xo, X1 and X5 are smooth vector fields in
R*. Smooth means C> in this article.

Of course, since it is the simplest non-trivial case, the problem of dynamic feedback linea-
rization for the four dimensional system (8.5) has already been studied. In [66], based on the
results from [23], sufficient conditions on Xy, X; and Xy are given. A drawback of these results
is that they are not invariant by static feedback, and are only sufficient conditions. They are
contained in the results of the present paper.

Rather recently, some conceptual advances have been made on dynamic equivalence and
dynamic linearization, initiated in [68, 36] (see [40] for a complete exposition). In [68], a res-
tricted class of compensators (8.4) is studied, called endogenous dynamic feedbacks. They are
exactly these that should be called “invertible”. They are the compensators (8.4) such that, by
differentiating relations (8.1) and (8.4), it is possible to express £ and v as functions of z, u,
@, and a finite number of time-derivatives of u. The compensator (8.4) may then be replaced
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by some formulas giving z and v as functions of (z,u, 4, i, ...), which is “invertible” by formu-
las giving x and u as functions of (z,v,v,9,...). On the other hand, the notion of differential
flatness for control systems is introduced in [68, 36, 40], as roughly speaking, existence of m
—two for system (8.5)— functions of x, u, % and a finite number of time-derivatives of v which
are differentially independent (the Jacobian of any finite number of these functions and their
time derivatives has maximum rank) and such that both = and u can be expressed as functions
of these m functions and a finite number of their time-derivatives. These functions are called
linearizing outputs, or “flat outputs”. It is proved there that differential flatness is equivalent to
equivalence by endogenous dynamic feedback to a controllable linear system. In the differential
algebraic framework of [36, 40], flatness is defined as the differential field representing the system
being non-differentially algebraic over a purely transcendental differential extension of the base
field, and the linearizing output is a transcendence basis. Of course, the linearizing outputs are
then “restricted” to be algebraic. With a suitable definition of endogenous dynamic equivalence
between differential fields, it is proved that differential flatness is equivalent to equivalence by
endogenous dynamic feedback to a controllable linear system.

In [56], a notion of dynamic equivalence in terms of transformations on solutions of the
system is studied ; different types of transformations are defined there in terms of infinite jets
of trajectories, for smooth systems, one of them is proved there to be exactly the one studied
here. A property of “freedom” is introduced that is close to differential flatness and is proved to
be equivalent to equivalence to a linear system.

See [40], [23], [4] or chapter 7 for a more complete panorama and list of references on dy-
namic feedback equivalence and dynamic feedback linearization, with references to recent and
interesting results and points of views that we do not discuss here, like the work by Shadwick
[93] (and subsequent articles) that make a link between dynamic feedback linearization and the
notion of absolute equivalence defined by E. Cartan for Pfaffian systems.

There was a need to develop a geometric framework for the invertible transformations that
represent dynamic feedback. This was done by the author in Chapter 6 and independently by
the authors of [36, 40] in [38, 39]. In these papers, an (infinite dimensional) differential geometric
approach, based on infinite jet spaces, is used, and the transformations described above may be
seen as diffeomorphism that conjugate a system to another, they are a particular case of infinite
order contact transformations, or Lie-Béacklund transformations used in the “geometric” study
of differential systems and partial differential relations.

Here, we adopt the notations and the precise definitions for linearizing outputs and dynamic
linearization from Chapters 6 and 7. They are summed up in section 8.2.2 and 8.2.3.

The problem of deciding endogenous' dynamic linearizability is then the one of deciding
existence of a system of linearizing outputs. The first difficulty is that there is no known a priori
bound on the number of time-derivatives of the input the linearizing outputs should depend upon
(similarly, there is no a priori bound on the dimension of ¢ in a compensator (8.4) that would
transform a given nonlinear system into a linear system if such a compensator exists). Even for
four-dimensional systems (8.5), no such bound is known. We do not address this difficulty in
the present paper. We only give necessary and sufficient conditions for existence of linearizing
outputs depending on z and u. We call z-dynamic and (z,u)-dynamic linearizability existence
of linearizing outputs depending on u or on (z,u). Note that the present conditions are quite
explicit : a small package in Maple, described in [65], that helps in the process of checking the
present conditions, will soon be available from the author.

Technically, the results in this paper amount to conditions for existence of solutions to some

! Tt is announced in [40, 39] that general dynamic feedback linearizability implies endogenous dynamic lineari-
zability. From such a result, existence of linearizing outputs would be necessary and sufficient for general dynamic
feedback linearization.
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differential relations : in principle, given a system, one may write the PDEs that a pair of
functions (hi(z,u), ho(z,u)) has to satisfy to be a pair of linearizing outputs, and then check
whether this system of PDEs has some solutions (formal integrability, Spencer co-homology, see
for instance [18] or [85]). This program reaches its limits very quickly seen the complexity of the
PDEs themselves, and of the computation of compatibility conditions : even if algorithms are
theoretically available, writing the PDEs for linearizing outputs for a general system is already
heavy, and computing the compatibility conditions via general algorithms is overwhelming. The
essence of the paper is however to compute these compatibility conditions, but in a way that
uses a lot of the structure of the problem and makes them tractable. In particular, we use,
for the case of linearizing outputs depending on z and wu, the “infinitesimal Brunovsky form”
introduced in [4, 3, 83|, that allows to write different PDEs : the unknowns are then some
coefficients of transformations that act on pairs of differential forms —the condition is that it
makes them integrable— instead of the linearizing outputs themselves. It would be interesting to
know whether it is general that the use of the infinitesimal Brunovsky form provides a method
to write the equations for linearizing outputs in a more tractable manner. This is explained into
details in section 8.2, see especially subsection 8.2.6 for a discussion of the two possible ways of
writing the equations for existence of linearizing outputs, either directly or via the infinitesimal
Brunovsky form.

The paper is organized as follows. Section 8.2 recalls or introduces some technical material,
including the precise definitions of what is intended here by feedback linearization and linearizing
outputs in the geometric context of Chapters 6 and 7. Sections 8.3 and 8.4 contain the results,
i.e. necessary and sufficient conditions for z-dynamic linearization (section 8.3) and for (z,u)-
dynamic linearization (section 8.4). Section 8.6 shows that non affine systems in R? which are
dynamic feedback linearizable may be transformed into an affine system (8.5) in R* by a simple
dynamic extension, using a result by Rouchon [88] or Sluis [96]. Most proofs are in section 8.7,
and some basic facts on Pfaffian systems used in them are recalled in the Appendix. Section 8.8
makes some remarks on the problems we leave open and on the interest and limitations of the
techniques we use.

8.2 Statement of the problem

8.2.1 Static Feedback

A static feedback transformation, around a point (Z,u) is a local transformation on the
controls v = ¢o(x, u), defined on a neighborhood of (z, @), with % invertible (the reason for the
subscript “2” is that we shall use a local diffeomorphism ¢ on x, so that (z,u) — (¢1(z), p2(z, u)
is a local diffeomorphism on (x,u)).

Since we are only concerned with systems like (8.5) where the controls appear linearly, we
shall only need affine static feedback. A local affine static feedback transformation is one of the
above type where ¢ is affine with respect to u. It is more convenient to write the inverse of ¢9
with respect to u, i.e. to write, instead of (v1,v2) = ¢a(x, u1,us),

( s ) = o) ( o ) + A(z) (8.6)

with «a(z) an invertible 2 x 2 matrix and [(x) a vector, both depending smoothly on z. It
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transforms system (8.5) into

i = Xo(z) + v X1(z) + vaXy(x)
Xo = Xo + 51 X1 + (X5 (8.7)
with X1 = a1 Xy + a1 Xo '

Xo = app Xy + axnXs

A system is locally static feedback linearizable if and only if it may be transformed
by such a transformation into a system which, in some coordinates z = ¢1(x), reads like a
controllable linear system 2 = Az + Bv in R* with two inputs; these linear systems are all of
the form (a) or (b) below, up to a linear feedback —like (8.6) with o and 3 constant— and a
linear change of coordinates :

Z1 = 29 2 =29
Z9 = 23 Z9 = Uq

OF SN R i (33)
Z4 = U9 Z4 = U9

These are the two Brunovsky canonical forms for controllable linear systems with two inputs
and four states, see [17]. Static feedback linearizable systems are a particular case of z-dynamic
linearizable systems because (z1,z4) for the form (a), and (x1,x3) for the form (b) may be
chosen as a pair of linearizing outputs (see section 8.2.3).

Static feedback will also be used in the present paper to give some simple “normal” forms
modulo this transformation and a change of coordinates on z of the systems considered for each
case, or set of conditions, see (8.27), (8.28), (8.30), (8.31), (8.33), (8.44), (8.60), (8.66). The
term feedback invariant refers to a property or an object that is invariant with respect to this
equivalence relation between systems.

8.2.2 “Infinite dimensional” differential calculus and equivalence by
endogenous feedback

This section is devoted to briefly recalling some notations and results from Chapters 6 and 7.

As mentioned in the introduction, similar material was also presented —independently—
in [38, 39]. The content of [38, 39] is more general and more formal, and tends to give as a
conclusion that systems (8.1) is not a general enough class of system for control theory, whereas
Chapter 6 aims at developing the sufficient framework to use classical tools from differential
calculus for the study of dynamic feedback. This infinite dimensional framework is, in any case,
a rather convenient way of manipulating functions and other objects which depend on a finite
but not a priori fixed number of variables, and it allows to say that the transformations by
dynamic feedback are “diffeomorphisms”.

We call generalized state manifold for system (8.1) with n states and m inputs the “infinite

dimensional manifold” Mos"™ where a set of coordinates is (21, ..., Tn, UL, ..., U, U1y -« U,
T T T, ). It is the projective limit of the finite dimensional manifolds M}", K > —1
with coordinates (z1,...,Tp, U, ..., Um, ULy« U, --- ,ugK), ... ,u%{)) —when K = —1, this
means (z1,...,2,)— and we have the obvious projections 7 from ME" to M?n :
K K
TR(T1 - Ty Up oo Uy eee ee ) = (xl...xn,ul...um,...ug )...ugn)). (8.9)

The topology is the product topology, the least fine such that all these projections are
continuous, i.e. an open set is always of the form 7,'(O) with O a (finite-dimensional) open
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subset of M7". In particular when a property holds locally around a point (x,u, @, i, u® . )
it means that it holds on a neighborhood of this point, i.e. for points whose first coordinates
(an unknown a priori but finite number) are close to these of the original point, but with no
restriction on the remaining coordinates. Actually, we will often say “in a neighborhood of
(z,u,...,u))” to indicate that the value of (uw(K+D o(E+2) ) does not matter, i.e. the
neighborhood is of the form m'(0) with O a neighborhood of (,u,...,u™)) in MP".

Smooth functions are functions of a finite number of coordinates which are smooth in the
usual sense. Differential forms of degree 1 are finite linear combinations :
alydzy + -+ a"ydz, + ajdug + - + altduy, + ...+ a},dug‘]) +- 4 af,”dug;z) where the ag’s
are smooth function. Forms of any degree may be defined similarly Vector fields are (possibly
infinite) linear combinations bl_laim+-~-+b’11%+boau +- 405 au +b1 2 et +b1 8u +oe
Note that this infinite sum is only symbolic. There is no notion of “convergence” here since a
vector field may be defined as a derivation on smooth functions, which, by definition depend
only on a finite number of variables, so that the sum becomes finite when computing the Lie
derivative of a smooth function along this vector field.

A diffeomorphism is a mapping ¢ from Mos" to Mog" which is invertible and such that ¢
and ¢~ ! are smooth mappings, in the sense that, for any smooth function h from M@" to R,
h o ¢ is a smooth function from ./\/lm . to R, and for any smooth function k from M55" to R,
ko ¢~!is a smooth function from M to R.

A system T=f (a: w) w1th T € R” and u € R™ is represented by a vector field of the form
F = f(z,u)2 5e T U1 8u1 + U5 8u2 + g5 au + ... on the manifold Mgg". It is said to be (locally)

equivalent by endogenous dynamic feedback to the system 2z = f (z,v) with z € R™ and

ve Rm, itself represented by the vector field F = f(z, v)% + 1}18%1 + 1'128%2 + i)la%l +...o0n

oo™ if and only if there exists a (local) diffeomorphism from Mag" to MIE™ that conjugates
these two vector fields. This implies that m = m.

These diffeomorphism exactly mimic the transformations defined in [68]. The definition of
“endogenous” as opposed to “exogenous” is explained there, or in [40].

From now on, let us focus on the small dimensional system (8.5), i.e. n =4 and m = 2. We
associate to system (8.5) the following vector field on M2 :

0 .0 . 0
F = Xog+wXy +uXe + 41— + 99— + U1— + ... . (810)
Juq Oug Oty
Let us call canonical linear system with two inputs the vector field
0 0 3) 0
C = i —— i i i i
U1 o1 + U9 P + ¥ ER + VU9 ER +v; 96, +
on the manifold Migo where a set of coordinates is vy, v, U1, U2, U1, U2, . . .. Any controllable linear

system with 2 inputs can be (globally) transformed via a diffeomorphism into the canonical linear
system on Mi;?, see Chapter 7. For instance, for the first case in (8.8), the diffeomorphism is
given by v1 = I, 1}1 = T2, ’51 = I3, ’U§3) = Ui, ’U§4) = 111,.. .,V = X4, ’[)2 = u2, 1.}2 = ’112,....
Hence, system (8.5) is said to be locally linearizable by endogenous dynamic feedback, or simply
endogenous dynamic linearizable at X € M2 if and only if there is a diffeomorphism ¢
from an open neighborhood of X in MC2>54 to an open set of Mig? which transforms the vector
field F defined in (8.10) into the vector field C' on MZ2Y.

Let us discuss a few more objects that will be used in the paper. Lie Brackets, exterior
derivative, Lie derivatives and all objects from usual differential calculus may be defined because
they (or each of their components) may all be computed finitely and depend on a finite number
of variables; all identities from differential calculus are valid (any given such identity really
involves only a finite number of variable).
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We call time-derivative along system (8.5) the Lie derivative along the vector field F. It
corresponds to the derivation defined in the differential fields in [40]. It will often be denoted d

. dt
instead of Lp. It may be applied to functions : for a function h(x,u,,. .. ,u) h, or Lph, or
ih, is the function of z,u, 1, . .., w5t obtained by applying the chain rule and substituting

Xo(x) +u1 X1 (x) +ugXo(z) for . This time-derivative may also be applied to forms. The time-
derivative of w = a' day + -+ + a*  dzg + abduy + addus + - - + abdul”) + a2dul”, ie. its Lie
derivative with along F', is given by

w = alydiy + -+ + atidiy + alyday + -+ atyday
+ a(l)dlh + agdﬂz + C'L(l)dU1 + d%dUQ + .-
e+ aljdug‘]ﬂ) + a%dugj+1)dbdu§J) + d%dug‘])

where dz; stands for the differential of the ith component of Xy 4+ u1 X1 4+ w2 Xo.
Let us mention one last notation. By Span{dx} or Span{dx, du} we mean the module over
smooth functions spanned by dx1, dzs, dxs, dzy4, or by dx1, dzs, dxs, dzy, duy, dus respectively.

8.2.3 Linearizing Outputs

Linearizing outputs, or flat outputs were introduced by Fliess, Lévine, Martin and Rou-
chon in their work on differential flatness. Originally, it was a way to view the problem of
dynamic feedback linearization in a more tractable way, but the systems for which there exists
linearizing —or flat— outputs, i.e. differentially flat systems, possess properties that are very
interesting independently from the fact that they may be rendered linear in some coordinates
after adding to them a dynamic compensator : all their solutions may be parameterized “freely”
by the linearizing outputs, see [40].

The following is the definition of linearizing output in the framework exposed above, taken
from Theorem 7.3. It totally agrees with the one in [68, 40].

Definition 8.2.1. A pair of functions (hy,ha) on MZE s called a pair of linearizing outputs

on an open subset U of ME if the functions (L%hk)k (12}.750 are a set of coordinates on U,
e b 7.]_

e if X — <L%hk(X))k {13}, 750 is a diffeomorphism from U to an open subset of RN = M2D.
E b 7‘7_

It is said to be a pair of linearizing output at point (Z,u,1,...,a\")) with J > —1 (when
J = —1, this stands for x) if it is a pair of linearizing output on an open set U of the form
771 (Uy) (see (8.9)) where Uy is a neighborhood of (%, a,4, . ..,u"")) in ./\/l?]’4, i.e. R2J+6,

The following equivalent formulation (Theorem 6.4) may appear simpler. It is closer to the
definition in [68, 40].

Proposition 8.2.1. A pair of functions (hi, hg) on M2 isa pair of linearizing outputs at point
(Z,u,,. .. ,ﬂ(‘])) with J > —1 (when J = —1, this stands for &) if and only if there exists on
open set U of the form ;1 (Uy) (see (8.9)) such that
1. The differential forms (dhg))k (12} 550 are linearly independent at all points of U (mea-
e b 7]_

ning that whenever you take a finite number among these, they are linearly independent)

2. There exists an integer L and a smooth function 1 from an open set of R2E+2 to RS such
that (x,u) = ¥ (h1, ha, h1, he,. .., th), héL)) on U (this is an identity between functions of
T, Uy U, ... ).
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As said above, the linearizing outputs have a lot of interest in themselves, when they exist.
They are also very relevant for the problem of dynamic linearization, thanks to the following
equivalence, pointed out in [68, 36, 40].

Proposition 8.2.2 (Theorem 6.4). (Local) endogenous dynamic linearizability is equivalent to
existence (locally) of a pair of linearizing outputs.

The following may illuminate the above introduced notions.
Sketch of proof : A diffeomorphism ¢ that conjugates the vector field F' defined in (8.10)
to the canonical vector field C' on MZ@O defines two functions h;y = v1 o p and he = vy 0 @
on M%! which have the property that all their Lie derivatives L%hk are transformed by the
diffeomorphism into the coordinate U,(j ), which implies that the functions Liﬁhk are locally a set
of coordinates on Mgf; conversely, if two functions exists which have this property, it is very
easy to build a diffeomorphism from M2 to MZY which transforms F into C. |

By definition of what a smooth function is, the functions in a pair of linearizing outputs
depend only on a finite number of variables among z, u, %, i...In Chapter 7, we say that a
system is (z,u, ..., ulK ))-dynamic linearizable when there exists a pair of functions depending
only on x, u, ..., ulX )). Clearly, from proposition 8.2.2 and above, linearizability by endogenous
dynamic feedback implies (z,u, ..., u))-dynamic linearizability for a certain K. Of course,
a very interesting question is : given a system, how to determine a bound K such that if it
is dynamic linearizable at all, then it is (z,u,u,1,.. .,u(K))—dynamic linearizable 7 Even for
systems of the form (8.5), this is the subject of ongoing research.

As explained in the introduction, we only deal, in the present paper, with linearizing outputs
depending on x only, or on x and w :

Definition 8.2.2. System (8.5) is said to be (x,u)-dynamically linearizable at the point
X = (Z,4,...,a")) if and only if there exists a pair of linearizing outputs (hy, hy) that depend
on x and u only on an open set 771_(1 (X), a pair of linearizing outputs depending on x and u only.
It is said to be x-dynamically linearizable if these linearizing outputs depend on x only.

The present paper characterizes z-dynamic linearizability and (x, u)-dynamic linearizability
for systems (8.5). Systems that are proved here not to be (z,u)-dynamic linearizable might or
might not be (x, u, 4)-dynamic linearizable, or (z,u, i, ii)-dynamic linearizable, and so on...

8.2.4 Non-accessibility

Since we only work at regular points, non-accessibility always means in the present paper
(and with the dimensions as in (8.5)) that there exists one function x(z), or two functions y1(z)
and x2(x), such that x = ¢(x) for some function ¢, or x; = ¢i(x1,x2), ¢ = 1,2 for some
functions ¢ and ps.

This is an obstruction to existence of a pair of linearizing outputs. Indeed, if (h1,h2) is a
pair of linearizing outputs, x = ¢(x), or x; = ¢;(x1, x2) implies a nontrivial relation between
hi, ho, b, ho, ..., hg‘]), th) for a certain J > 0, which cannot occur from the definition of a pair
of linearizing outputs.

8.2.5 Linearizing Pfaffian systems, infinitesimal Brunovsky form

An infinite set of differential forms is a basis of the space of all differential forms in the
neighborhood of a point if any finite number of them are linearly independent at this point and
there exists a neighborhood U of this point such that any differential form defined on U may be
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written as a linear combination of a finite number of the forms in the “basis” with coefficients
smooth functions defined in U.

Definition 8.2.3. Let wy and we be two differential forms. We say that {w1,ws} is a lineari-
zing Pfaffian system at a certain point (T,u,u, . .. @)Y if and only if w1, wy and all their

(4)

time-derivatives, i.e. (wk form a basis of the space of all differential forms in a

ke{1,2}, 5>0
neighborhood of this point.

Note that this is a property of the Pfaffian system (or the co-distribution) {w;,ws} rather
than the pair of forms since this property will still hold if w; and wy are replaced by another
basis for the same Pfaffian system.

Clearly, if (hi, he) is a pair of linearizing outputs, then {dhi,dha} is a linearizing Pfaffian
system because the function 1 in proposition 8.2.1 translates into a linear combination when
differentiating. The converse is also true but requires an “infinite dimensional” local inverse
theorem (Theorem 6.3) :

Proposition 8.2.3 (Theorem 6.5). A pair of functions (h1,h2) is a pair of linearizing outputs
at a point if and only if {dhi,dho} is a linearizing Pfaffian system at this point.

Since we pointed out that being a linearizing Pfaffian system does not depend on the precise
choice of the basis, from Frobenius theorem, it is enough to have a linearizing Pfaffian system
satisfying Frobenius condition

Proposition 8.2.4 (Theorem 6.5). There exists a pair of linearizing outputs around a point if
and only if there exists a linearizing Pfaffian system {w1,wa2} on a neighborhood of this point
satisfying Frobenius condition : dwq A w1 A ws = dwy A wy Awe = 0 in a neighborhood of this
point.

We have the following —straightforward— property that describes all the possible linearizing
Pfaffian systems from one :

Proposition 8.2.5 (Proposition 7.3). Let {w1,ws} be a linearizing Pfaffian system at a certain
point.

Then for two forms m1 and n2, {n1,m2} is a linearizing Pfaffian system if and only if w;
and wo are linear combinations of n1, Mo and a finite number of their time derivatives on a
neighborhood of this point.

Analogously, a pair of functions (hi,he) is a pair of linearizing outputs at this point if and
only if wy and we are linear combinations of dhi, dhe and a finite number of their time derivatives
on a neighborhood of this point.

Note that the fact that {w1,w2} be a linearizing Pfaffian system implies that n; and 72, or
dhy, dhg are always linear combinations of wy, we and a finite number of their time derivatives.

Let us now translate this property into existence of an operator relating (w1, w2) and (11, 72).
For an open set U in M2, let A(U) be the C°(U) algebra :

11>

A(U) Moo (C®(U)[LF]) . (8.11)
of 2 x 2 matrices whose entries are differential operators, polynomial in the derivation along F,
i.e. whose entries are of the form

2 d K

d d
p0+p1a+p2& +--~+pKa )



164 CHAPITRE 8. “AFFINE CONTROL SYSTEMS WITH 2 INPUTS AND 4 STATES”

where the p;’s are smooth functions from U to R (recall it means they depend only on x and a
finite number of time-derivatives of u). Elements of A(U) act in an obvious manner on pairs of
functions, or on pairs of differential forms.

Proposition 8.2.6 (Theorem 7.4). Let {w1,w2} be a linearizing Pfaffian system at a certain
point. Then for two forms m and n2, {n1,m2} is a linearizing Pfaffian system if and only if on
a neighborhood U of this point, there exists P € A(U) such that

e P has an inverse in A(U),

(m) = () (5.12)

This has some interest because it is possible, at least away from some singular points, to
build a linearizing Pfaffian system for any accessible system. This is the construction of the
“infinitesimal Brunovsky form” in chapter 7 or in [4]. Some sequences of modules (over smooth
functions) of 1-forms and of vector fields, called Hy, Dy and Dy, are defined in Chapter 7. Points
where they have constant rank are called “Brunovsky-regular”, and at these points, a special
linearizing Pfaffian system may be constructed. Let us recall here the minimum needed for our
specific dimensions. Define the following modules of vector fields over smooth functions :

ﬁg = Span{Xl,Xg}

ﬁg = 132 —+ [F,ﬁg]
= Span{ X1, Xo, [Xo, X1] — ua[X1, Xo], [Xo, Xo] + ui[X1, X }

D4 = 733 —+ [F,ﬁg,]
= Span{X1 , XQ, [Xo,Xl] — UQ[Xl,XQ] , [XO,XQ} + Ul[Xl,XQ] ,
[Xo, [Xo, X1]] + u1[X1, [Xo, X1]] + u2 ([X1, [Xo, Xa]] — [Xo, [X1, X2]])
—ujug[ X1, [X1, Xo]] — u2[Xo, [X1, Xa]] — 1] X1, Xa],
[Xo, [Xo, Xo]] +u1 ([ X1, [Xo, Xo]] + [X1, [Xo, Xo]]) + u2[X1, [Xo, X2]]
+u12[X1, [Xl, XQH + U1U2[X2, [Xl, XQH + ﬂl[Xl, XQ] }

(8.13)

Definition 8.2.4. A point (z,u,u) where the vector fields X1 and X3 are not collinear is called
Brunowvsky regular if and only if the three distributions Dg, Dg and D4 have constant rank in
a neighborhood of this point. A point (z,u,u,,...... ) € M2 s called Brunouvsky regular if and
only if the (z,u,u) is Brunovsky regular.

The fact that Brunovsky regularity depends on the value of x, v and @ only comes from the
fact that the vector fields in (8.13) depend on the eight variables x, u, % only (note also that they
are linear combinations of the four coordinate vector fields corresponding to the z-coordinates
only... they might be seen as vector fields on R* parameterized by u and ).

We always assume that the rank of Dg is two, then, at a Brunovsky regular point, the ranks
of Dy, D3, Dy may only be 2,2,2, 2,3,3,2,3,4 or 2,4, 4. In the two first cases, system (8.5) is not
accessible (see Chapter 7). In the two other cases, Theorem 7.2 allows one to build a linearizing
Pfaffian system {w1, w2} which has the peculiarity that either {wy,w;, ws,wa} or {wy, w1, @1, wa}
is a basis of Span{dx} (see the meaning of Span{dx} at the end of section 8.2.2). Let us make
this precise, only in the case where the ranks are 2,4,4 because we will not use this process in
the case 2,3,4.

Proposition 8.2.7 (Inﬁn1te31mal Brunovsky Form, Theorem 7.2). Around a point where the
ranks of DQ, Dg and and D4 are 2, 4 and 4 respectively, and if w1 and we are two linearly
independent 1-forms in the annihilator of DQ, i.e. of {X1, X2} :

{wi,ws} = Span{dx} N {X1, Xo}t, (8.14)
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then {w1,wa} is a linearizing Pfaffian system, and more precisely, {wi,ws,w1,wa} is a basis of
Span{dx}, {w1, we, w1, wa, W1, Wa} is a basis of Span{dx,du}, and more generally {w1, wa, Wi,
W, ..., wg]), wé‘])} is a basis of Span{dx,du,du,...,du/=2}. The 1-forms wy and wy can be

chosen involving x only.

This is a particular case of [3, theorem 2]|. The following proof may however help the reader’s
understanding.
Sketch of proof : The forms w; and we satisfying (8.14) may always be chosen so that they
involve x only because X1 and Xy involve x only. We use the following identity, which is true
for any form w and any vector field X :

(w,X) = (Lpw, X)
= LF<UJ, X> - <w7 [FaXD
d
= a<w,X> - <w7[F7X]> (815)
Now, on one hand the forms w; and ws are in Span{dx}, i.e. have no component on du; and ds
because (8.15) implies

0 0

aT”) = <Wk,[F,8—UiD — (i, X)) = 0

<wk )
for Kk = 1,2 and ¢ = 1,2. On the other hand, wi,ws,w;,ws are linearly independent : if it was
not that case at a point, there would exist some constants A1, As, t1, 42, not all zero, such that
Aw1 + Aowsg + pyw + pows would vanish at this point ; since (w1, X;) = (we, X;) = 0, this would
imply that, for i = 1,2, (A\w; + Aawe, X;) also vanish at this point ; this in turn would imply,
from identity (8.15), that

(Mw1 + Aaws , [Xo +u1 X1 + u2Xo, X))

vanishes at this point, i.e. that Ajwq+Asws is in the annihilator of ﬁg, and hence that Ay = Ay =0
because the rank of D3 is 4 and wy and wy are independent ; this is impossible because then pyw1+
powo would vanish at the considered point while w; and wy are independent. It is easy to prove

(t+1)

the last property for all J > 2 : since w1, wa, Wy, ws are in Span{dx} and du,, may only appear

by taking the time-derivative of dué), it is clear that w]g) is in Span{dz,du,du, ..., du(j*2)},

and the linear independence of all these is proved by using recursively identity (8.15). |
The term “infinitesimal Brunovsky form” refers to the fact that, with the above choices of
the 1-forms w; and wg, system (8.5) implies :

jtwl = w
d - 4
gwl = Y jardr; + Braduy + Fradug
dtw2 = w2
d - 4
Gwa = Y joagdr; 4+ Boidur + faadus

where the functions 3; ; are such that the 2 x 2 matrix [; ;] is invertible on a neighborhood of
(Z,u). If the forms w; and wy were integrable, one might define z function of z and v function
of x,u (static feedback transformation) by dz; = wy, dzg = wi, dvy = &1, dzg = wa, dzy =
Wy, dvg = 9, such that (8.5) reads like the Brunovsky canonical form (8.8.b) —we would have
obtained the form (8.8.b) if we would have considered the case where the ranks of DQ,Dg,D4
are 2,3,4—. It is called “infinitesimal” because it is only at the level of differential forms instead
of functions (coordinates) and can give functions if the differential forms are integrable, which
is false in general.
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Now that we have built a special linearizing Pfaffian system, we may state the following
consequence of propositions 8.2.4, 8.2.6 and 8.2.7. It is specialized to z-dynamic linearization or
(z,u)-dynamic linearization, and the fact that the linearizing outputs depend on z only or on
x and u only is translated into a condition on the degree of the entries of the matrix P comes
from the special properties on w; and ws given in proposition 8.2.7. Again, this is only stated in
the case where the ranks of Dy, D3 and 254 are 2,4,4 because we will not use this process in the
case 2,3.4.

Proposition 8.2.8 (Theorem 7.5). Let (Z,1) be a point where the ranks of Dy, D3 and Dy are
2,4,4, and w1 and ws be defined in a neighborhood of (Z,u) as in proposition 8.2.7 (see equation
(5.14)).

System (8.5) is x-dynamic linearizable (resp. (x,u)-dynamic linearizable) at point (Z, u, ...,
E(J)) if and only if there exists a neighborhood U of this point, and a 2 X 2 polynomial matrix
P € A(U) whose entries are polynomials of degree at most 1 (resp. at most 2), such that P has
an inverse in A(U) and the Pfaffian system {n1,n2} defined by

< Z; ) — P(d%) ( Z; > . (8.16)

is completely integrable, i.e. n1 and Ny satisfy dny Ami Ane = dna Ani Ane = 0 in a neighborhood
of this point.

We shall use this property, especially for (x,u)-dynamic linearizability in section 8.4. Of
course, this would be useless without a reasonable description of the invertible matrices in A(U)
of degree at most 2. In fact, away from some singularities, invertible matrices may be described
as products of “elementary matrices”, like unimodular matrices in the case of polynomials with
constant coefficients :

Proposition 8.2.9. Let P be a matriz in A(U), which has an inverse Q in A(U).
o If the degree of P is 1 on an open dense subset of U (i.e. P has degree at most 1 everywhere,
and possibly zero on a closed set of empty interior), then there is an open dense subset Uy of
U such, for that all X € Uy, there is a neighborhood Vx, a scalar smooth function a, and two
invertible matrices Jy and Jy of degree 0 (i.e. whose entries are smooth functions), all defined
on Vy, such that, on Vy,
d

P(%) A ( (1) v )J2 (8.17)
o [f the degree of P is 2 on an open dense subset of U (i.e. P has degree at most 2 everywhere,
and possibly 1 or 0 on a closed set of empty interior), then there is an open dense subset Uy of
U such, for that all X € Uy, there is a neighborhood Vx, scalar smooth functions a, X\, a and b,
and an invertible matriz Jy of degree 0 (i.e. whose entries are smooth functions), all defined on
Vx, such that, on Vy, either

d 1 —q4 1 0
P(—) = dt 1
(dt) J1<0 . )(_bgt 1>J2 (8.18)

1 0
P(Et) = Jl(—ad—bd2 1>J2 (819)

either J2:<;(1]><i\é> 07"J2=<i?>. (8.20)

or

with
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Proof of proposition 8.2.9 : Although the ring of polynomials C*°(U) [%] is not commutative,

there is a left and right Euclidean division by polynomials whose leading coefficient does not
vanish (this is because the leading coefficient of the product of two polynomials is computed as if
the coefficients were constant). We also use the fact that the matrix formed with the coefficients
of the terms of higher degree on each column cannot be invertible for an invertible matrix, except
if it is a degree zero matrix.

For the case of degree 1, at points where not all leading coefficients vanish, there is an inver-
tible matrix K of degree zero (may be take either triangular or a permutation matrix) such that

P (%)K 2 has its first column of degree zero. Then at points where not both terms of this column

—ad
vanish, a Euclidean division yields a smooth function a such that J; = P (%)K 2 ( (1) aldt )

has degree zero. Take Jo = K. 2_1. The open set Uy is the set where the functions we had to divide
by do not vanish.

For the case of degree 2, Let us distinguish different cases. In all cases, we have to divide by at
most three polynomials, the points where they vanish without being zero on a neighborhood —if
they are zero on an open set, then the corresponding polynomial has locally a smaller degree—
is closed with empty interior, the open set Uy is its complement.

— If both polynomials in the second column of P(%) have degree zero, then, at any point,

one of them at least does not vanish, and dividing by it the corresponding polynomial

2
(degree 2) in the first column yields a degree two polynomial —« + a% + b% such that

' P(d)( 1 0)
n = - d d2
dt —a+aa+ba 1

has degree zero. This yields (8.19) with the second expression for Jy in (8.20).

— If both polynomials in the second column of P (%) have degree at most 1 but they are not
both of degree zero, then, at any point where the leading coefficient of this one does not
vanish, Euclidean division by this polynomial of the corresponding polynomial (degree 2)

in the first column yields a degree one polynomial —a + b% such that

P d) ( 1 0 )

1t d

dt —a+b i 1

has a first column of degree zero, and then dividing by a non-vanishing element of this
first column yields a such that

d 1 0 1 od

= pP(= dt

& PO —aspd 1 0 1
dt

has degree zero. This yields (8.18) with the second expression for Jy in (8.20).

— If at least one of the polynomials in the second column of P(dg) has degree 2, then, at

points where its leading coefficient does not vanish, dividing the corresponding polynomial
in the first column by this coefficient yields a function A\ such that

o (5 )

has both entries in its second column of degree at most 1 (A is identically zero if the first

column of P(4) had degree 1 or 0). Apply one of the two first cases to P(Q) 0 1
dt dt 1 =X
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instead of P(=5:). This yields either (8.19) or (8.18), with the first expression for J; in
(8.20). N

S

8.2.6 Two ways of writing the equations for the linearizing outputs

The most natural method for deciding if there exists some linearizing outputs depending on
x and u is to write down the equations that a pair of functions has to satisfy in order to be a
pair of linearizing outputs, and then to find conditions (on the system (8.5)) for these equations
to have solutions. Let us describe these equations, but only for the case when the linearizing
outputs are restricted to depend upon x only :

Proposition 8.2.10. Suppose that Xy and X in (8.5) or (8.10) are linearly independent. Let
hi(x) and ha(z) be smooth functions; then (hi,ha) is a pair of linearizing outputs at a certain
point if and only if

Ohy  Ohy
dur  Ouy

rank ohe  ohe < 1 (8.21)
Juy Oua

dhy  Ohy

Oui  Oug 0 0

Oha Ok 0

Oui  Ouz -

rank | Gh ok oy b | S 2 (8.22)

Our  Ouz Ouir  Ouz
Ohy  Ohy  Ohy  Oha
ouq Ousg oy Oz
on a neighborhood of this point, and the forms dhy, dhs, dhl, dilg, dﬁl, dﬁg are independent at

this point.

Proof : Let us prove necessity. If (h, ha) is a pair of linearizing outputs, the six mentioned forms

have to be independent by definition. If the rank in (8.21) was 2, it is clear that the only linear
()

combinations of the dh;’’s which would also be linear combinations of dz1, dzz, dz3, dz4, would
have all their coefficients zero except the coefficients of dhy and dhs, which would contradict the
fact that dxq, dzo, dzs and dzy4 are linear combinations of the dhfj )’s. This proves that (8.21) is
necessary. If the rank in (8.22) was 3 (cannot be 4 from (8.21)), the only linear combinations of
the dh;j )%s which would also be also linear combinations of dz1, dao, dxs, dzy, would be linear
combinations of dh;, dhy and Ajdhy + Xodhy with the line (A1, A2) in the right kernel of the
matrix in (8.22), impossible from the fact that contradict the fact that dz;, dzg, des and dzy
are independent linear combinations of the dh,(j )’s. This proves that (8.22) is necessary. which
are also linear combinations of dxy, dxo, Sufficiency follows from solving for dz, dzs, drg and
dz4 as linear combinations of dhy, dho, dhl, djlz, dﬁl and dﬁg. [ |
Conditions (8.21)-(8.22) are better related to the vector fields defining system (8.5) using :

oh; oh;
_ — Lk 8.23
Dy, Duy, X (8.23)
and
8hz 2
D = LXOLthi + LXkLXOhi + QUkLthZ + ugs (LXk/Lthi + LXkLXk/hi) (824)

where ¥ =2ifk=1and k¥’ =1if k = 2.

The two equations (8.21)-(8.22) give a system of PDEs in h; and hs (some determinants
being zero), and the independence condition an inequality (a nonzero determinant). These have
solutions of and only if the system is z-dynamic linearizable.
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Some similar conditions on functions of x and u may be written, and existence of solution
would be equivalent for (z,u)-dynamic linearizability.

A different possibility is to use the material introduced in section 8.2.5 : under non-singularity
conditions (being at a “Brunovsky regular” point), there exists two differential forms such
that {wi,ws, w1, ws} (or {wy,w1,d1,ws} but let us consider the first case only) is a basis of
Span{dx}, these forms may be constructed explicitly, and, from proposition 8.2.8, the system is
x-linearizable or (z,u)-dynamic linearizable if and only if there exists an invertible polynomial

matrix such that
d w1
P(—
(dt) < w2 >

is made of two exact one-forms, with some bounds on the degree of the entries of P. We then
translate the fact that these forms are exact into a system of PDEs in the coefficients of the
matrix, using the decomposition from proposition 8.2.9. The system is xz-dynamic or (x,u)-
dynamic linearizable if and only if these PDEs have solutions.

These two methods —writing directly the PDEs a pair of functions has to satisfy to be a
pair of linearizing outputs or writing the PDEs the coefficients of the elementary matrices in the
decomposition of P have to satisfy for the Pfaffian system P(%) (w1,w2)T to be integrable—
are obviously equivalent, although they lead to different equations.

One drawback of the second method is that it only works at “Brunovsky-regular” points,
while Brunovsky-regularity is not necessary for dynamic feedback linearization, see the example
in section 8.5. Although Brunovsky-regular points form an open dense set, one cannot neglect
this weakness. Note however that in the example of section 8.5, we conclude even at points which
are not Brunovsky-regular, by density. In general, this second method seems to yield equations
that may be considered more geometrically, and it proves to be very useful in our proofs.

For the simplest cases (cases 1 to 5 in theorem 8.3.1), we have used the first (direct) method,
or even no particular method from these when we simply exhibit some pairs of linearizing
outputs. Case 6 in theorem 8.3.1 is not elementary ; it contains a necessary condition that we
prove using the first (direct) method ; the proof is natural; it would also be in a sense simpler
using the infinitesimal Brunovsky form, but this case would then be split into two because
depending whether (8.52) holds or not, the infinitesimal Brunovsky form is different, and points
on the boundary are not Brunovsky-regular while the present proof has no problem at these
points. We give as an alternative a proof based on the infinitesimal Brunovsky form, outside
singularities (section 8.7.1). To test for (x,u)-linearizability, we were not able to use the direct
method, and we had to use the second one based on infinitesimal Brunovsky form. It turns out
that the first one yield rather huge PDEs in the linearizing outputs, and we found no obvious way
to handle them naturally as in the case of x-dynamic linearization, while the second one gives
some PDEs that, though very heavy computations are needed, may be handled by elementary
methods.

8.3 2z-dynamic linearizability
We define the following distributions

Ay = Span{Xi, Xo}

My Ay + [AQ,AQ] = Span{Xl,XQ, [Xl,XQ]}

My Mo + Moy, My] (8.25)
Span{X1 5 X2 y [Xl,XQ] ) [Xl, [Xl,XQH y [XQ, [Xl,Xg]] }

A3 = Span{Xl, XQ, [Xl,XQ], [X(),Xl], [X(),XQ]}
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We will only study the situation in the neighborhood of points where the rank these distri-
butions are constant, and the vector fields X; and X5 are linearly independent and we define
the integers mq, mq, d3 by :

rank Ay = 2 03 2 rank Asg
mg 2 lank My (8.26)
my 2 rank My

These ranks and the distributions in (8.25) are obviously feedback invariant from their definition
and (8.7).

At a point where these ranks are constant, the only possible values for (mg,mi,d3) are
(2,2,2),(2,2,3), (2,2,4), (3,3,3), (3,3,4), (3,4, 3) and (3,4,4). Actually, we will not distinguish
between cases (3,4, 3) and (3,4,4), so that when (mg,m1) = (3,4), the rank of A3 need not be
constant.

The following theorem allows one, in each of the cases depending on the different possible
values of the above ranks, to decide whether system (8.5) is z-dynamic linearizable or not.
When it is not only z-dynamic linearizable, but static feedback linearizable, this is mentioned.
In addition, for each case, we give a normal form for system (8.5) up to a nonsingular static
feedback transformation (see (8.6)) and a change of coordinates. The proof is given in section
8.7.1. A small package written in Maple that makes the needed computations, as well as these
corresponding to theorem 8.4.1 if needed, will soon be available from the author; it is described
in [65].

Theorem 8.3.1. Let T be such that the distributions spanned by the modules As, Mgy, My
and As have constant rank in a neighborhood of T, with Ay of rank 2, as in (8.26). Actually, if
(mo,m1) = (3,4), we do not require that the rank of As be constant.

1. If mg = mq = 2 and 43 = 2, system (8.5) is locally non accessible and therefore non
linearizable by endogenous feedback. Locally around T, after a preliminary nonsingular
feedback transformation and in appropriate coordinates, it has the following form, where
a1 and as are smooth functions :

2 = ai(z,22)

Zy = az(21,2) (8.27)
23 = U

Z4 = w2

2. If mg = mq1 = 2 and 3 = 3, there are three sub-cases :

a) If Ag is not involutive (i.e. if there are points x arbitrarily close to T such that
[As, As](z) & As(z), even if [As, As](Z) C As(Z)), system (8.5) is not linearizable
by endogenous dynamic feedback. It has locally, around T, after a preliminary
nonsingular feedback transformation and in appropriate coordinates, the following

form :
2.:1 - (I(Zl,Z2,Z3)
2 = = (8.28)
3 = U1
Z4 = V2
where a is a smooth function such that
o*a o . _
— is not identically zero on any neighborhood of T. (8.29)

2
0z
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b) If Az involutive and the rank of Az+[Xo, As] is 3 in a neighborhood of T, sys-
tem (8.5) is locally non accessible and therefore non linearizable by endogenous
feedback. Locally around %, after a preliminary nonsingular feedback transformation
and in appropriate coordinates, it has the following form, with a a smooth :

Z'l == a(zl)

7;2 = Z3

= o (8.30)
Zy = V2

c) If Az involutive and the rank of As+[Xo, As| is 4 at point T (and therefore in
a neighborhood), system (8.5) is locally static feedback linearizable. It has, after a

preliminary nonsingular feedback transformation and in appropriate coordinates, the
form (8.8.a).

3. If mg = mq = 2 and d3 = 4, system (8.5) is locally static feedback linearizable.
It has, after a preliminary nonsingular feedback transformation and in appropriate coordi-
nates, the form (8.8.b).

4. If mg = mq = 3 and d3 = 3, system (8.5) is locally non accessible and therefore mon
linearizable by endogenous feedback. Locally around T, after a preliminary nonsingular
feedback transformation and in appropriate coordinates, it has the following form, where
a1 and ag are smooth functions :

21 = al(zl)

Z'g = V1

) 8.31
Z23 = a3(z1,22,23,24) + 2401 (8.31)
24 = V2.

5. If mg = mq1 = 3 and d3 = 4, system (8.5) is locally x-dynamic linearizable at a
point (T, 11, us,...) if and only if

rankg { X1(Z) , X2(2), [Xo, X1](Z) — u2[X1, Xo](2),

[Xo, Xo](Z) + w1[X1, Xo](2)} = 4. (8.32)

This condition is satisfied on an open dense set of any open set where mg = mp = 3 and
03 =4.

After a preliminary nonsingular feedback transformation and in appropriate coordinates,
the system has the following form :

21 = 29

2= n (8.33)
Z3 = as(z1,22,23,214) + 2401

Z4 = Vo

with a is a smooth function. A possible choice of linearizing outputs is given, in these
coordinates, by hy = z1, ho = z3. Condition (8.32) reads :

8(],3
— . .34
v + 924 # 0 (8.34)

6. If mo = 3 and my = 4, there exists a unique (up to a nonzero multiplicative function)
linear combination of X1 and Xo : X = M X1 + XX such that

[X,[Xl,XQH € Span {Xl,XQ,[Xl,XQ]} (835)
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(this is the characteristic vector field, or characteristic direction of the distribution spanned
by the independent vector fields X1, Xo and [X;, Xa]).

System (8.5) is x-dynamic linearizable at (z,u) if and only if
[X, Xo] € Span{Xi, X2, [X1,X2]} (8.36)
on a neighborhood of T and

rankg { X1(2), X2(3) , [Xo, X](2) + w1 [X1, X)(7) + [ X2, X](7) } = 3 (8.37)
rankg { X1(Z), Xo(2), [X1, Xo](Z), [Xo, X1](Z), [Xo, X2](Z),
[Xo, [X1, Xo]}(Z) + a1 [X1, [X1, Xo]](Z) + o[ Xo, [X1, Xo]](Z) } = 4. (8.38)

Given any open set in R* x R? such that for all (Z,a) in this open set, (mg,m1) = (3,4)
and (8.36) is satisfied at T, the set of (T,u)’s in this open set where (8.37) and (8.38) are
satisfied is open and dense.

These conditions may also be formulated using differential forms instead of vector fields.
Since mg = 3, one may take a —unique up to a nonzero multiplicative function— diffe-
rential form in the four variables x only annihilating X1, Xo and [X1, X :

wi € {X1, X, [ X1, Xo]} (8.39)

then dwi A w1 is a form of degree 3 that does not vanish because my = 4. System (8.5) is
x-dynamic linearizable at (z,u) if and only if

dwvg Awi Awp = 0 (840)

on a neighborhood of  and
rankg { w1 (Z), m (), m2(2) , m(z,4), 772(:f u}y =5, (8.41)
rankg { w1(Z), wi(z,u)} = 2, (8.42)

where n1 and n2 are forms of degree 1 such that, for a certain 1-form T,
dwi = Wi AT 4+ n1 A (8.43)

or in other words dwi Aw1 = ni AmaAwr ({wi,m1,m2} is the characteristic system of wy, it is
the annihilator of the vector field X defined in (8.35)), and the “dot” is the time-derivative
along the system, i.e. the Lie derivative along the vector field F (8.10). The two conditions
(8.41) and (8.42) are satisfied on an open dense set of any open set where mo = 3 and
my = 4.

When these conditions are met, all pairs of linearizing outputs may be obtained as follows :
take for hi a first integral of the vector field X (i.e. Lghy = 0) such that dh, wi and @y
are linearly independent. Then the Pfaffian system {dhi,w1} is integrable. Take for ha a
second first integral of this Pfaffian system.

Around a point where (mg, m1) = (3,4), after a preliminary static feedback transformation
(8.6) and in appropriate coordinates, system (8.5) has the form :

21 =
Zo = fa(z1,22,23,24) + 2301 (8.44)
Z3 = f3(21,22,23,24) + 2401 '

Z"4=’U2
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Condition (8.36) or (8.40) is equivalent to fo being independent of zy :

df2

oz _ 4
5 0, (8.45)

and conditions (8.37) and (8.38), or (8.41) and (8.42), translate into :

9f3

— A4
v + D1 # 0 (8.46)
and
df2 0f2 P
i R R 4
(v + 9 P T 3 23 D25 + zv1) # (0,0) (8.47)

at the point under consideration. A pair of linearizing outputs is, for instance, given by
(21, 22) at a point where v1 + g—g does not vanish, and by (23,22 — z123) at a point where

f3— g—ﬁ — Z3% + z4v1 does not vanish.

Note that this theorem does not say anything about the situation around points T where

— either one of the distributions spanned by Ay, My or M is singular,

— or they are regular, (mg, m1) # (3,4) and the distribution spanned by Ag is singular,

— or (mg, m1,03) = (2,2,3), the distribution spanned by As —i.e. by {X1, X, [Xo, X1],
[Xo, X2]} since (mg,m1) = (2,2)— has rank 3 and is integrable, but the distribution
spanned by {X1, X2, [Xo, [Xo, X1]], [Xo0, [Xo0, X2]]} is singular.

8.4 (z,u)-dynamic linearizability

8.4.1 Problem statement

Let us examine the situations in which theorem 8.3.1 concludes that there exist no pair
of linearizing outputs depending on z only for system (8.5), without ruling out existence of
linearizing outputs depending on more variables (u, @, ...). This occurs

— in case 5 when (8.32) fails,

— in case 6 when (8.36) fails,

— in case 6 when (8.36) is satisfied but (8.37) or (8.38) fails.

The first and third situations are singularities because (see theorem 8.3.1) in case 5, (8.32) is
met on an open dense set, and in case 6 if (8.36) is satisfied, (8.37) or (8.38) are met on an open
dense set. We will not study these two situations. The second situation does not correspond
to a singularity since X, Xo, [X1, X3, and [X, Xo] may very well be linearly independent
(this is even generic) on an open set where (mg,m1) = (3,4). We shall study this situation
in the present section. We make one more non-singularity assumption : we rule out the points
where the rank of X, Xy, [X1, X3], [X, Xo] drops to 3 while being 4 at arbitrarily close points.
Furthermore, the techniques that we will use require to be at a Brunovsky-regular point (see
definition 8.2.4). Brunovsky-regularity translates into condition (8.51) below. It is clear that, on
an open set where (mg, m1) = (3,4) and X1, Xs, [X1, X2, and [)Nf, Xy] are linearly independent,
Brunovsky-regular points form an open and dense set. Hence Brunovsky-regularity is one more
non-singularity assumption. It is needed for technical reasons, but the example in section 8.5
shows that it is not necessary. To sum up :



174 CHAPITRE 8. “AFFINE CONTROL SYSTEMS WITH 2 INPUTS AND 4 STATES”

Rank assumptions made all over the present section :
(X is defined by (8.35))

rank {X;, Xo} = 2 (8.48)

rank {X1, Xa, [X1,X2]} = 3 (8.49)

rank { X7, Xo, [X1, Xo], [X1, [X1, X2]], [Xo, [Xl,Xgl] }o= 4 (8.50)
rank { X1, Xo, [X1, X2, [X0, X]|} = 4 (8.51)

rank { X1, Xo, [Xo, X1] — u2[X1, Xo], [Xo, Xo] +ui[X1,X2] } = 4 (8.52)

From (8.48)-(8.49)-(8.50), we are in case 6 of theorem 8.3.1. (8.51) indicates that (8.36) does
not hold, and hence from theorem 8.3.1, there exist no pair of linearizing outputs depending
on z only, i.e. system (8.5) is not xz-dynamic linearizable. The purpose of this section 8.4 is to
characterize the cases where system (8.5) is (x, u)-dynamic linearizable, i.e. where there exists
a pair of linearizing outputs depending on = and w (but not on 1, i.....).

8.4.2 Main result

Let us now proceed with some preparation for our characterization of (x,u)-dynamic linea-
rizability. The following proposition provides a particular choice of w; and ws (basis of Hs) such
that the expressions of dw; and dws are convenient and “canonical”.

Proposition 8.4.1. Let (z,u) be such that the rank conditions (8.48)-(8.49)-(8.50)-(8.51)-
(8.52) are satisfied. Let wy and wy to be two differential forms of degree 1, linear combinations
of dz1, dxa, das, dxy, such that none of these forms vanish at (z,u) and

wi € {X1, Xo, [X1, Xo]}t

- 8.53
wo € {X1, X2, [Xo+ w1 X1 +usXo, X} (8.53)

Then {wi,ws, w1, ws} is a basis of Span{dx } and there exist uniquely defined functions 5% and
v such that v and 635 do not vanish at (z,u) and

dw; = 5%72 wo Awy  modulo wy , (8.54)
dwy = w1 A ((5%71(,211 + (5%71(,212 — 7&}2) + ywi Awe modulo wo . (855)

Note that it is clear from (8.53) that, in general, w; can be chosen so as to involve x only,
but ws involves x and wu, i.e. it is a linear combination of dxi,dxs,dx3,dzs with coefficients
depending both on z and w. The functions v and 51% a priori depend on x, u and a certain
number of time-derivatives of w.

Proof of proposition 8.4.1 : Suppose that w; and wy are chosen according to (8.53). Then
(8.51) and (8.35) imply that the rank of {X7, Xo, [X1, Xo], [Xo + u1 X1 + u2 X9, X|} is 4, and
hence that {w1,wa} is a basis of the annihilator of {X7, X2}.

The fact that w; in the orthogonal of { X1, Xo, [X1, X5]|} implies that it is in the first derived
system of the Pfaffian system {wi,ws} —see the Appendix— and hence that

dwi = w1 A P171 + wa A PLQ (8.56)

for some forms I'; 1 and I'y 5. Now the forms wi, wy and I'y » must be linearly independent from
(8.50), and then the Cartan characteristic system of {w;} is {w1,w2,T'12} —see the Appendix
(8.191)—, but, by definition of X, this characteristic system is the annihilator of X, and a basis
of the annihilator of X is {w1,ws, &} because, from(8.15),

d ~

0 = dt<QJ2,X> = <u.12,)}> + <w2,[X0—|—U1X1+UQX2,X]>
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and hence (wa, X ) is zero; this proves that I'; » must be a linear combination of wy, we and ws,
which, substituted in (8.56), yields (8.54) with 5%’2 does not vanish because wq, wy and I'; o are
linearly independent.

On the other hand, {w;,ws} is the annihilator of {X;, X2} and therefore has a basis that
can be written with the variable z only; this implies —see (8.192) in the Appendix— that its
characteristic system is at most Span{dx}; since {wi,ws,w1,w2} is a basis of Span{dx}, this
implies

dwy = wi A 1_‘2’1 + wa A 1—‘272 + ywi Awa (857)

for some forms I'; 1 and I'y ». But we have seen above that {wy, wg, wo} is the Cartan characteristic
system of {w;}. It is therefore completely integrable, and this implies that dws = 0 modulo
{wi, w2, wa}; but taking the time derivative of (8.57) yields dws = wi A (T'2;1 + Y@2)) modulo
{w1,wa,wa}; T'e 1 = —7&9, which does imply, together with (8.57), the relation (8.55). |

We are now ready to state the theorem that characterizes (z,u)-linearizability. Its proof is
given in section 8.7.2.

Theorem 8.4.1. Let (Z,u) be a point where conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) are
met, and let the forms wy and wy be defined according to (8.53) and the functions 5%’1 and v be
defined by (8.55). System (8.5) is (z,u)-dynamically linearizable at point X = (Z,u, i, ... .. ) if
and only if the function 5%71 —or equivalently the form of degree 5 dwo A wo A Wy A Wo— does
not vanish at X and the first derived system of the Pfaffian system {wi — é—zwz , wa} has rank

1 and is integrable, i.e. there exists a function o, defined on a neighborhood of X, such that

2 2
d | w +awy — T’Yd)g VAN w1 + awg — T’Yd)g = 0. (858)
52 1 52 1

When these conditions are met, all the possible pairs of linearizing outputs depending on x
and v may be described as follows. Let Q3 = wi + aws — 621—7@2, and Q3 be the time-derivative of
2,1

this differential form (i.e. its Lie derivative along the dynamics F' of the system). The Pfaffian
system {wy, Q3,Q3} is completely integrable. A pair of functions (hi,hy) depending on (z,u) is
a pair of linearizing outputs if and only if {dhy,dhe} C {wa, 3,3} with Q3 € {dhy,dha} and
Q3 ¢ {dhy,dhs}. A possible construction is as follows : since dQ3AQ3 = 0, take hy such that dhy
does not vanish and dhy = kQs (k non-vanishing function) ; take for hy another first integral of
{w2, s, Qg} such that the coefficient of wo when efcpressmg dhe as a linear combination of wa,

Q3 and Q3 does not vanish (i.e. the rank of {dhy,dhy,dh1} does not drop to 2).

This theorem is stated in terms of the forms wy and wy. These forms are only defined up
to a non-vanishing multiplicative function by relation (8.53). However, the condition does not
depend on the particular choice of w; and ws. In a sense this is a consequence of the theorem
itself since (x, u)-dynamic linearizability is clearly static feedback invariant and does not depend
on the choice of w; and we, but the following proposition asserts that a priori these conditions
are static feedback invariant.

Proposition 8.4.2. The conditions of theorem 8.4.1 are invariant by static feedback and do not
depend on the particular choice of w1 and wy in (8.53). Indeed the Pfaffian system {wa,w; —
61 LWy} does not depend on this particular choice.

Proof : It can be checked from (8.55) that if one changes wy into A\jw; and ws into Agws, where
A1 and Ay are non-vanishing functions, then 41, is changed into %5% ; and v into )\il'y. This
b 1 b
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implies the proposition since (8.53) defines w; and w9 up to a nonzero multiplicative function in
a feedback invariant way. |

Let us make a remark on “singular” points, i.e. points where the ranks considered in (8.48)-
(8.49)-(8.50)-(8.51)-(8.52) are not constant. We do not study the situation at these points, in
particular at points which are not Brunovsky-regular, i.e. points where the rank in (8.52) drops.
As illustrated by the example in section 8.5, this singularity is usually not a singularity of
(z,u)-dynamic linearization, but only of the proofs given here : the linearizing outputs are well
defined at these points too, enjoy the property of being linearizing outputs. On the contrary,
points where 5%’1, or the form dwy A wo A we A W9, vanish are, according to the theorem, actual
singularities of (x,u)-dynamic linearizability : in a domain where the rank assumptions (8.48)-
(8.49)-(8.50)-(8.51)-(8.52) hold, there exists no linearizing outputs function of = and w in the
neighborhood of a point where 6571 vanishes. It is interesting, with this respect, to notice that,
under the —generic— assumptions (8.48)-(8.49)-(8.50)-(8.51)-(8.52), it is impossible to build an
example where (x, u)-dynamic feedback linearization would be everywhere nonsingular since for
any value of z and wu, there is a value of u where 5%71 vanishes.

8.4.3 How to check the conditions

We claim that the conditions of theorem 8.4.1 are completely explicit. Let us explain how
to check them on a system (8.5) given by the expression of the vector fields Xy, X; and X5 in
some coordinates x1, T, T3, T4 :

1. Compute w; and we according to (8.53). This involves the computation of Lie brackets, and
then finding the annihilator of some families of vectors, which in coordinates is common
linear algebra (Gauss elimination).

2. Compute w1, wo and &o. The time-derivatives are Lie derivatives along the vector field
(8.10).

3. To compute 5%’1 and v, use the following identities, consequence of (8.55) :

dwo Awg Awg ANy = (5571&}1/\@1/\(#2/\502/\&'}2
dwo Awo Awi Aws = —vywy Ao Awa Awi Aws (8.59)
= —ywiAwi Awa Awy AWy
dws Awi Aws = FYwi Awa Awip Awy .

Hence one may for instance compute the forms of degree 5 dws A wa A we A W9 and dwy A
wy A w1 A wa, check that the first one does not vanish, they appear to be of the form
p1dxy Adxo Adxs Adzg Aduy 4 poday Adxo Adxs Adzg Adus and psdr; Adzs Ades Adxg A
duy + pgdzy Adxg Adzs A dxg A dus respectively, with p1, p2, ps and pyg some functions of
x, u and u, with p1ps — p2p3 = 0, then

2y _ 2 _ 2p

5%,1 P1 P2
4. The Pfaffian system { w; — 621—7&)2, wa} is then known
2,1

5. Use usual procedure to compute its first derived system : the forms d <w1 — l?ﬂd)g) and
2,1

dws must be proportional modulo {w; — 621—7&)2, wo}; if it is the case, this yields « such
2,1

that d (u)l — 521—7(212 + aw2> is zero modulo { w; — 621—7&)2 , wak.
2,1 2,1
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6. Check whether d ( — 51—@02 + aw2> is also zero modulo wy — 51 w2 + aws.

Note that a small package written in Maple that makes the above computations, as well as these
corresponding to theorem 8.3.1, will soon be available from the author; it is described in [65].

8.4.4 The result in particular coordinates

Let us now give a “normal form” for the systems we are studying in this section, i.e. these
meeting conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52). It basically consists, as in “case 6” of theo-
rem 8.3.1, in taking some coordinates (they exist from (8.48)-(8.49)-(8.50)) in which the control
distribution is in “Engel’s normal form”, and use a feedback to annihilate two components of
the drift, then the coordinates are slightly changed to emphasize condition (8.51) :

Proposition 8.4.3. If the rank conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold around a
point (Z,u), there exists a system of coordinates around this point, and a static feedback de-
fined around this point which give the following form to system (8.5) :

21 = v
Z9 = 24 + 23v1
. 8.60
z3 = f(21722723,214) + 9(21522523724)7)1 ( )
24 = V2
where 5
g
a7 8.61
Doa (8.61)
and
_Og dg
Dy 8724(212 for) + 2’487 + f@zg
of of of of
— 2+ 62
<a B0 "0, T o (8.62)

do not vanish at (z,a).

Proof of proposition 8.4.3 : From lemma 8.7.4 (section 8.7.1), using the feedback (8.119)
yields the (8.44). Condition (8.51) implies that % does not vanish. One may therefore take as
new coordinates (z1, 22, 23, f2(21, 22, 23, 24)) instead of (z1, 22, 23, 24), and this yields the normal
form (8.60), changing also vs. Relations (8.61) are simply a translation of (8.50) and (8.52). 1

Proposition 8.4.4. System (8.60) —which is system (8.5) written in appropriate coordinates—
is (z,u)-dynamic linearizable around a point X if and only if the functions f and g have, in a
neighborhood of X, the form

ap + aiz4 + agzf by + b124
fo= Lo g = ——=— (8.63)
co + c1z4 co + C1z4

where ag, a1, az, by, b1, co and c1 are functions of z1, z2, z3 only, which satisfy the following
PDE :

di'AT = 0 with T = (61—23(12) dz; + asdzs — cidzs (864)

and 6%71 does not vanish at this point (co + c1z4 should obviously not vanish either).
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Remarks :
1- The system of PDEs (8.64) reads :

b b
23 (01% —@2%) +C1g%f —a2%+b1% —01(%; —agg—zé+blg%+ag2 =0 (8.65)

2- There is an explicit formula for 5%71 using the a;, b; and ¢; but it is quite long, and does not
really matter here.

This proposition gives a simple way to check whether the system is (x, u)-dynamic linearizable
provided one has found coordinates where it is in the normal form (8.60) —of course finding these
coordinates involves solving some linear PDEs, so that the really explicit test is given by theorem
8.4.1 which only involves some differentiations, and some algebraic manipulations—. Actually,
the coordinates in which a given system meeting conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) is
in the form (8.60) are not unique, and the expression of f and g, for the same system, may
depend on the choice of coordinates, among all these that yield a form like (8.60)). Naturally,
the fact that these f and g meet or not the conditions of the proposition does not depend on
this choice. It however raises the question of finding, among all the coordinates that produce a
normal form like (8.60), these which produce the “simplest” f and g. Let us give an answer only
for the special case when the conditions of the proposition are met (i.e. in the (z,u)-linearizable
case). It is obvious that if f and ¢ are affine in z4 (special case of (8.63) : aa =¢1 =0, ¢ = 1),
the PDE (8.58) is met, because I' is simply b;dz; ; it turns out that the converse is true : if f
and g are not affine, but of the form (8.63) with as # 0 or ¢; # 0, and with the PDE (8.58), then
some “better” coordinates may be found, in which f and ¢ are affine in the fourth coordinate :

Proposition 8.4.5. There exists coordinates where the system, after a static feedback trans-
formation, is in the form (8.60) with f and g satisfying the conditions of proposition 8.4.4, if
and only if there is another set of coordinates ((1,(2,(3,C4), and another static feedback trans-
formation which yields a normal form (8.60) with f and g affine with respect to the fourth
coordinate :

C:1 = wi
G = G+ Gu (8.66)
G = polC,C2,¢3) + Cap1(C1,C2,G3) + (qo(Cr, C25C3) + Caqa (G, G2, ¢3)) wa
G = we
and 5%’1 does not vanish if and only if the following quantity does not vanish :
qin + wy (p1+wiq)’ + wizk (p1+wiq)
oo 2 9 potwiqo (8'67)

- 3%12 [(pO +w1QO) - C3w1(p1 +UJIQ1)] - (pl +w1Q1) s prtwiqr

In these coordinates, a pair of linearizing outputs is given by
hi =1, ha = G — (p1 —wiq1) Ga-

Proof of proposition 8.4.5 : The expression (8.67) is obtained by computing dwa Awa Awa Al
and checking that it vanishes if and only if (8.67) vanishes, at least at points where (8.52) holds,
i.e. where wi A ws A ws # 0. This is left to the reader. Use the simplest choice :

wp = d¢ — (3d¢
wo = d@3—q1(C1,¢2,¢3)dG — (p1(C1, G2, C3) + wiqi(Cr, €2, (3)) wi -

The “if” part of the proposition is obvious because, as noticed just above the proposition,
(8.66) is a particular case of (8.60)-(8.58), and (8.67) ensures that d, ; # 0. Let us prove the “only
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if” part. We suppose that the conditions of proposition 8.4.4 hold, and we build an invertible
transformation (z1, 22, 23, 24) — (1, C2,(3,C4), and an invertible static feedback transformation
(21, 22, 23, 24, V1, V2) — (21, 22, 23, 24, W1, w2), that transforms (8.60) into (8.66). Condition (8.64)
implies that there exists a function 1 (z1, 22, z3) and a non-vanishing function k(z1, 22, z3) such
that

dyy = kT. (8.68)

Now, w; may be chosen w; = dzz — 23dz; and then T' defined in (8.64) is also equal to :
I' = bydz; + aswi — ¢1dzs. Since the rank of {dz;,dz3,wi} is 3 and b; and ¢; do not vanish
simultaneously (this would cause g—i to vanish), the rank of {wy, '} is locally constant, equal to
2, and this Pfaffian system is therefore completely integrable, because these two forms involve
only three variables (z1, 22, z3) ; hence there exists three functions v, k', k", such that

dyy = k:’wl + k‘”F, ]{3,750 . (8.69)
Let us then define
wy = 1/)1 = ]{:<F, Xo + u1 Xy +U2X2>
_ (cobr — c1bo)v1 — crag + (coaz — aici)zs ' (8.70)
co + c1z4

From this equation, one may express vy as a function of wy. Substituting vy for this expression
in (8.60)-(8.63), one obtains the following expressions for 21, 22, 23, which are now linear with
respect to 24 :

1
2 = PR am—— (CO +kc124 w1 + crag + (a1c1 — Coa2)24> (8.71)
1 ’
2y = ——M— (ﬁ(co + c1z4)wy + zzcrag + (cobr — c1bo + arer — Coa2)24) (8.72)
Cobl - Clbo k
. bo + b
z3 = O—Mwl + a0b1 + (a1b1 —agbo)Z4 (873)

k (coby — c1bo)
Let us then define

G = u1(z1,22,23) (8.74)

G = 1a(z1,22,23) (8.75)
_ K'(21, 22, 23)

e e (8.76)

Ca = K(21,22,23) 2 (8.77)

Let us see that in these coordinates, and with w; given by (8.70), we have (8.66) :

- {1 = wy is a consequence of (8.74) and (8.70),

- From (8.75), (o = (dtby, Xo + u1 X1 + upXo ), which is also equal, from (8.70) and (8.69), to
%ﬂwl + K'{w1, Xo+u1 X1 +u2Xs), which, since (w1, Xo+u1 X1 +u2Xs) = 24, and considering
(8.76) and (8.77), yields {y = ¢4 + Czwy.

- In the expressions for Z;, 22 and Z3 given by (8.71), (8.72) and (8.73), all the functions of
(21, 22, 23) may be expressed as functions of ({1, (2,(3), and z4 may be substituted for % (see
(8.77)) ; therefore, 21, 29 and Z3 are polynomials in (4 and w; with coefficients function of
((1, €2, C3 with one term of degree zero, one term of degree 1 in (4, one term of degree 1 in w;
and one term of degree 2 in 4w; ; since (3 is a function of (21, 22, 23), ég is also such a polynomial,
which allows one to define functions p,, p1, o and ¢; such that (3 is as in (8.66).

- é4 is equal to k'((1, €2, ¢3)v2 plus some terms which depend only on (3, (2, (3, {4 and v;. Since
k' does not vanish, calling all this expression wy defines a nonsingular feedback that yields the
required form. ]
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8.5 An example

Let us consider the following system, which is given as example 2 in [23] :

T1 = Ty + T3u2

3?72 = I3 + T1up (8.78)
r3 = U1 + To2U2

.f4 = u2.

The transformation z; = x4, 29 = X9, 23 = T1, 24 = X3, V] = U9, V2 = U] + Toug puts it
into the form (8.66), known to be (z, u)-dynamic linearizable. Let us however follow the general
method. We have :

¥ _ _ 0 _ 0 0 p) 0 _ 0
X =X = Bz3 Xy = T3 T P55 T 225,51 aay o [X1, Xo] = Fap
X 0 v o o
[Xo. X] = =2, [Xo+wXi+upXe, X] = —32 —upl .

Brunovsky-regular points are points where (8.52) holds, i.e. points where
r1 — U1 75 0 . (8.79)

The simplest choice for w; and ws is (see (8.53)) :

wi = dzy — x1dxy,
wyg = dxrp — uodxy + (uQxl — $3)dx4 . (8'80)
By expressing dws = —dug Adxg +d(ugx; — x3) Adzy in the basis {w1,ws, w1, ws, s} (at points
where (8.79) holds), with
w1 = dzs + ugdxy — (:L'Q + U2$3)dl’4
wy = —u22da?1 + (1 — I'Lg)dxg + (—u1 +x3u22 +$1ﬂ2)dw4 . (8.81)
Wy = (I‘l —Ul)dUQ + ()dml + ()d:ﬂg + ()dl‘g + ()d$4 ,
one obtains an expression like (8.55) with :
2 (4 S 1
g, = detw o oL (8.82)
’ 1 — U1 1 — Uq

so that 6, # 0 is equivalent to w2 + uj — 1 # 0. Then the form w3 = wy — 521—'%212 may be
’ 2,1
explicitly computed. dwg A wo A wg and dws A we A ws are collinear :
uj

dwg Awz Awz = —adws Aws Awg  with o = ————r. (8.83)
U + us — 1

A basis of the derived system of {wa,w; — 621—7@2} is therefore
2,1

Y. rp — up
— = —————dz4 . 8.84
wy + aws u2+u23_1 T4 ( )

It is obviously integrable, condition (8.58) of theorem 8.4.1 is satisfied, hence the system is
(z,u)-dynamic linearizable at points where (5%71 does not vanish. Since x4 is a first integral
of {Q3}, and a basis (at points where (8.78) holds) for the Pfaffian system {ws,Q3,Q3} is
{dx; — uadwe, dxs, dus} —it is indeed integrable, and three independent first integrals are x4,
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ug and 1 — roug—, theorem 8.4.1 implies that two functions (hq(z,u),ha(z,u)) form a pair of
linearizing outputs if and only if A1 and hs are two independent functions of x4, ug and x1 —xouo
such that dhq,dhs,dus are independent but dxy is a linear combination of dhy and dhs. The
simplest choice is

hl = T4 ; hQ =T1 — Ux9 . (8.85)

Let us illustrate on this example the invertible transformations on pairs of differential forms
introduced in section 8.2.5 (following [4, 3]). The functions hy and hg given by (8.85) are related
to the forms wi and wy defining the “infinitesimal Brunovsky form” by :

dhl 1 —Jjgi—(UQ:L'l—xg) 1 0 1 0 01 w1
(an) (o 1 R VAR SRVACICYACE 0

with b = 52%—71 (this may be re-arranged into an expression like (8.143) with some scalar function
a and matrix function J1). Indeed from Proposition 8.2.3 and 8.2.6, and since (wj,w2) is a
linearizing Pfaffian system and the matrices in the right-hand side of (8.86) are all invertible,
this is enough to prove that (hq, ha) is a pair of linearizing outputs at Brunovsky-regular points.
Note that the expressions in (8.86) are indeed singular at “Brunovsky-singular points” —points
that are not Brunovsky-regular— so that the ideas based on the infinitesimal Brunovsky form
fail at these points, while linearizing outputs h; and ho may obviously be continued at these
points, and it may be checked directly that they continue to be linearizing outputs at these
points ; indeed, since

) ) ) .
hi = wug, hy = x3—x1uy — 2202,
hi = 9 ho = x3 + x1u0 — I'QUQQ — x3u23 (8.87)
3) . . .

hy” = g, — (23 + T1U2)U — X2lin,

One may solve for x1, xa, o3, x4, u2, 2 and iy in (8.85)-(8.87) and express them as (rational)
functions of hq, hl, le, hgg), ho, hg, ﬁg at all points where 9 +u23—1 # 0. It is clear on this example
that the requirement of Brunovsky-regularity is purely technical, and the singularities of dynamic
feedback linearization are not related to the singularities of the “infinitesimal Brunovsky form”.
The singularity 5%71 = 0, on the other hand is really a singularity of (z, u)-dynamic linearization.
The conclusion for this system is :
— It is not z-dynamic linearizable at any point, as a consequence of theorem 8.3.1, case 6.
— Tt is (@, u)-dynamic linearizable at all points where 1 + uy — 1 # 0.
This is a consequence of theorem 8.4.1 at points where 1 — u; # 0. At points where
U2 + u23 —1+# 0 and 1 — u; = 0, it is not a consequence of theorem 8.4.1, but is clear
from (8.87).
— It is not (z,u)-dynamic linearizable at points where g + u3 — 1 = 0.
This is a consequence of theorem 8.4.1 at points where x1 — u; # 0. At points where
r1—uj = Uz +us —1 = 0, this is not a consequence of theorem 8.4.1, but may be proved as
follows. Suppose that there is a pair of linearizing outputs (h1, h2) in an open neighborhood
of such a point. Points where x1 —u; # 0 are dense on this neighborhood, and (hy, ha) is still
a pair of linearizing outputs at these points (if the neighborhood is small enough). Hence
(see above) hy and ho are functions of x4, uy and x1 — ugzo : hi(x1,xe, T3, Tg, u1, u2) =
Xi(Z4,u2, x1 — ugxa). Because the rank of duzy, dugd(z1 — ugz2) is 3, the smooth functions
Xi are unique and may be prolonged at the point under consideration (where u; — x1
vanishes). Computing the time-derivatives of the functions h; from these identities, it
can be seen that their partial derivative with respect to zo all vanish at points where
ug + u23 — 1 = 0. This prevents z2 from being, around such a point, a smooth function of
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h1, ha, hl, hg, Hl, fzg, ...... , and hence (hq, h2) from being a pair of linearizing outputs at
these points.
Note that the singularity s + u3 — 1 = 0 does not correspond to a singularity of the linear
approximation. Consider for instance the solution

ul(t) =-1 N UQ<t) =1 N .%'1<t> = .%'2<t) = 1, :C3(t) = —1, x4(t) =t.

Clearly 1 + u3 — 1 is zero along this solution, while the linear approximation §# = Adx + Béu,
with

01 10 0 -1
1 010 0 1

4 = 0100 B = 1 1 ’
0000 0 1

is controllable. An example where this occurs at an equilibrium instead of a nontrivial solution
is obtained by replacing x2 with x4 in 1, the singularity 5571 = 0 then occurs when 9 + u23 =0
while the linear approximation at (z,u) = (0,0) is controllable.

8.6 Non-affine systems in R3

Consider a system _
£ = [f(&wi,we) (8.88)
where ¢ lives in R3. A system of the form (8.5) can always be brought to this form at a point
where one of the control vector fields does not vanish by finding coordinates in which this control
vector field is the first coordinate vector field, dropping the corresponding control and taking
this first coordinate as a new control. The converse is not correct in general.

However a necessary condition for feedback linearization, that can be found in [88] or in [96]
implies that if system (8.88) linearizable by dynamic feedback (even in a more general sense
than endogenous), it has a dynamic extension of dimension 4 which is affine in the control. The
following proposition is a consequence of theorem 1 in [88], except the regularity of 7, but this
is automatic if one wants the linearizing outputs to be smooth :

Proposition 8.6.1 ([88]). At a point (£,w1,ws2) where mnk{%, gTJ;} is 2, a necessary condi-
tion for system (8.88) to be dynamic feedback linearizable is that there ezist, locally around
(&, w1, we), a static feedback transformation (wi,ws) = (&, v1,v2) such that f(&,v(&, vi,v2)) be

affine with respect to v1 : f(&,7(§;v1,v2)) = a(§,v2) + v1b(§,v2).

In the case of system (8.88), an explicit condition for existence of this static feedback trans-
formation may be given, but this is outside the scope of the present paper. It is clear that the
necessary condition for dynamic linearization given in proposition 8.6.1 is exactly the condition
needed to transform system (8.88) into an affine 4-dimensional system. This is summed up in
the following result, which allows one to apply to 3-dimensional non-affine systems (8.88) all the
results obtained in the previous sections for 4-dimensional affine systems.

Proposition 8.6.2. At a point (£, w1, ws) where mnk{(%cl, aanl} is 2, either system (8.88) is not
dynamic feedback linearizable or one may construct a static feedback transformation (wq,ws) =
v(&, v1,v2) such that dynamic feedback linearization of (8.88) is equivalent to dynamic feedback
linearization of

T

) = a(z1,22,23,24) + w1 b(z1, 22,73, 4)

T3

l"4 = Uus .

(8.89)
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8.7 Proofs

All over these proofs, some known facts about Pfaffian systems (derived systems, characte-
ristic system...) are used. They are briefly recalled in the Appendix.

8.7.1 Proof of theorem 8.3.1
Case 1 (Il’l() = 1mj = 2, 63 = 2)

= 2 means that the distribution spanned by the control vector fields X1 and X5 is
1nvolut1ve Frobenius theorem yields a set of coordinates (z1, 22, 23, 24) such that { 305 Doa } is a
basis of this distribution, then

vi = Lx,23 + wiLx,z3 + u2Lx,z23
v = Lxyza + wiLlx, 24 + ualx,24

is a nonsingular static feedback because X; and X5 are independent at point Z. System (8.5)
reads, in the above coordinates as

2 = ai(z1, 22,23, 24) i3 = 1
Zy = aa(z1,22,23,21) 2y = vy

Ag is then spanned by azg, 324, gg; 6;1 + ggg 8;2 and ‘3‘2 8;1 + ggi 325" 03 = 2 implies that aq
and az do not depend on z3 and z4. This yields (8.27).

Case 2.a (mg =m; = 2, i3 = 3)

Since { X1, X2} is integrable of rank 2, there exists two independent functions constant along
X1 and Xs, and one of them at least has either its Lie derivative along [Xj, X1] or its Lie
derivative along [ X, X3] that does not vanish at Z because if not the rank of A3 would drop to
two ; let 29 be this one, and z; be the other one, and define z3 = Lx,22. Lx, 23 or Lx,z3 does not
vanish at Z (because they are equal to Lix, x,22 and Lix, x,)22) and hence z3 is independent
from z; and z9, let z4 be a fourth function, such that (z1, 22, 23, 24) is a system of coordinates.
The nonsingular feedback

v = L%(OZQ + ulLXlLX()ZQ + uQLXgLX()ZQ (8 90)
vy = Lxyz4 + wilx,z4 + ualx,z4
transforms system (8.5) into
21 = a(z1,22,23,24)
2T (8.91)
23 = U
24 = U2,

with @ a certain smooth function. Since Az spans a distribution of rank 3 and :

888 Ja 0 0Oa O

A = Spand o, ot 50 0ea 0

the function a cannot depend on z4, and then

o o 0 da 0 0% 0

Ag+ [Ag,Ag] = Dz 023021 0220z
3 +[ 3 3] Span{ 824 822 + 823 6’21 ’ 82?2) 821

}
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so that the assumption on Aj is equivalent to belng identically zero on no neighborhood of z.

This proves that system (8.5) has the form (8 28) with the condition (8.29), after the change of
coordinates and the nonsingular feedback transformation we just introduced. There remains to
prove that system (8.28) cannot be linearizable by endogenous feedback under condition (8.29).
This is a consequence of the following lemma 8.7.1 because if system (8.28) was linearizable by
endogenous feedback on a neighborhood of a point Z, then there would exist a pair of linearizing
outputs on a neighborhood of this point, and hence the system would also be linearizable by
endogenous feedback around any point of that neighborhood, including these, given by condition

(8.29), where % is non zero.
23

Lemma 8.7.1. System (8.28) is not linearizable by endogenous dynamic feedback in any neigh-
borhood of a point z = (Z1, z2, 23, 24) such that

9%a
Oz 2

Proof of lemma 8.7.1 : Suppose that there exists two linearizing outputs h; and ho, smooth

(L)

functions of a finite number of variables among 21, 22, 23, 24, v1, V2, V1, V2, V1, V2, ... V] 7,

(L)

vy ’, with L a non negative integer, defined on an open subset O C R2E46 containing a point
(21, 22, 23, 24,01, V2, . . . ,55”,5&”) for some (01,09, . .. ,T;E”,iém). All variables may be recovered
from hq, hy and all their time derivatives so that in particular there exists smooth functions 1

and vy such that

(21722723) 7& 0.

= r(ha b, B g kg, RS (8.92)
v = tolhy, by B g by RS (8.93)

This holds in the open set O, which may be restricted so that 87‘3(21, 29, z3) does not vanish on
3

(K j+1)

O. The integer Kj;; is the one such that 1); does not depend on hj , but does depend on

h§Ki’j) on O, i.e. ?ﬁ?j) is not identically zero. Then, since (8.28) implies 21 = a(21, 22, 22), one
Oh, v

has, by substitutiori,
o1 hl 4+t oYy h(K1,1+1) + %h N Y h(KL?‘H)

Ohy hiKl’l) h(Kl 2) (8 94)
g ; 9 Koq+1 9 Koo+l .
= a(¢1,¢27%3h1+'“+ (quzl)h( ! )+8h2h2+ 8h(;§;2)hg 2 ))
2
One must have
Kii1 = Ko7 , Kis = Ko (8.95)

because the left-hand side in (8.94) depends only on hy, hi, ..., thl’IH),hg, ho, ..., h;Kl’QH)
and does depend on th“H) and thmH), and the right-hand side depends only on hl, hl, e
h(K2‘1+1) ho hg, e thMH) and does depend on th2,1+1) and héK“H) because, since 2 a 922 does
not vanish on O, 87‘; is not identically zero on any open subset of O.

Differentiating two times both sides of (8.94) with respect to h;Kl’j +1), and keeping in mind

that, from (8.95), K ; = K j, one has (note that neither ¢ nor v» nor the partial derivatives

of them depend on h;Kl’jH)) :

2
— 0o 5%a h 02 h(Kl 1+1) 8w2h
0 <ah§K1’j)> 32§(¢1 ; ¢2 ’ 8h1 1+ -+ Bh(lKl D 8h2 2+ - (8.96)
d Kip+1
ot h(ziﬂhé e ))
2

)
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for j € {1,2}, and hence ‘?}é’f]_) is identically zero on O which contradicts the fact that it was
Oh. ™

J
precisely chosen (small enough) not to be identically zero on O. |

Case 2.b (mp =my =2, i3 =3)

Since Aj is integrable of rank 3, and {X;, Xy} is integrable of rank 2, and contained in Asg,
there are two independent functions z; and 2o such that z; and z are constant along X; and
X2 and z; constant along the vector fields of Asz. Let z3 be given by 23 = Lx,22 and z4 be
such that (z1, 29, 23, 24) is a system of coordinates. The nonsingular feedback (8.90) transforms
system (8.5) into a system of the form (8.91) above, where a depends on z; only because, since
Lx,z1 = Lx,z1 =0, one has a = 2; = Lx,21, and Lx,z; is constant along As because z; is and
[Xo0,As] C Ag. 21 = a(z1) clearly implies non-accessibility.

Case 2.c (mg =mj =2, i3 = 3)

Static feedback linearizability follows from classical results, see [57, 50]. Let us however
describe the coordinates in which the system has the form (8.8.a). Since Ag is integrable of
rank 3, there is a function z; such that dz; is the annihilator of As. Let zo and z3 be given
by z2 = Lx,z1 and z3 = Lg(ozl, the rank of {dz1,dz2,dz3} is 3 because d3 = 3. Let z4 be any
function such that {z1, 29, 23, 24} is a system of coordinates. The nonsingular feedback

2 2
vl = Lﬁ(ozl + ulLXILonl + UQLX2LX02’1
vy = Lx,za + wiLx,24 + ua2Lx,z24

transforms system (8.5) into (8.8.a).

Case 3 (mg =mj; =2, 03 =4)

As in case 2.c, static feedback linearization follows from classical results, see [57, 50], but we
however describe the coordinates in which the system has the form (8.8.b). Because mo = 2, X
and X5 span an integrable distribution of rank 2, let z; and z3 be two independent functions
that annihilate X; and X5, and let 29 and 24 be defined by 29 = Lx,21 and 24 = Lx,23. 03 =4
implies that (z1, 22, 23, 24) is a system of coordinates, and the following nonsingular feedback

_ 72

v = Ly, z1 + wilx,Lx,z1 + uaLlx,Lx,z1
5

Vo LX02’3 + wiLx,Lx,23 + uaLx,Lx,z23

transforms system (8.5) into (8.8.b).

Cases 4 and 5 (mp =my =3, i3 =3 or 4)

Since mg = m1 = 3, My = M spans an integrable distribution of rank 3. Let z; be a first
integral of this distribution. In case 5 (03 = 4), define 2z, by

zZ9 = onzl. (8.97)

One then has, for i € {1,2}, Lx,22 = —L(x, x,)21 because Lx,z1 =0, i = 1,2, and hence d3 = 4

prevents Lx, zo and Lx,z> from both vanishing at . Up to a permutation of the two controls,
we may suppose that

LXlzg(.f') # 0. (8.98)
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In case 4 (d3 = 3), pick any z3 such that (8.98) holds, it is possible since X; does not vanish.
Since Ly, z1 = 0, the rank of {dz;,dz2} is 2 at point Z. The vector field

(Lx,22) X1 — (Lx,22) X2 (8.99)

does not vanish at point z, z; and 23 are two independent functions constant along it, let z3 be
a third independent first integral of this vector field, and z4 be given by

Lx, z3

Za = .
Lx, 2

(21, 22, 23, 24) is a system of coordinates because z1, zo and z3 are constant along the vector field
(8.99) while the Lie derivative of z4 along it does not vanish at Z (a simple computation shows
that if it would vanish, the rank of M would drop to 2). Defining v; and vy according to the
nonsingular feedback transformation

v = Lxyzo + uiLx,Lx,z1 + wsLlx,Lx,z1

vg = Lx,z4 + u1Lx,24 + u2Lx,z4

(with a possible permutation of the indices 1 and 2 in the right-hand sides, if needed to get
(8.98)) yields, in the above defined coordinates, the normal form (8.31) in case 4, and (8.33) in
case 5. In both cases, a3 is given by

Lx, z3
1
a3 = Lx,z3 — Lxyz2 ,
Lx, 2z
%3 18 obtained because
Lx,z
2
Lx,z3 = Lx, 23 ,
X172

and (in case 4) a1 = Lx, 21 depends only on z; because d3 = 3 implies that Ag = M and hence
that Lx,z is a first integral of the three dimensional integrable distribution spanned by Mj.

In case 4, non-accessibility follows immediately from the normal form (8.31). In case 5, let
us prove that system (8.33) is z-dynamic linearizable around (z, v) if and only if 1%1(2) +v1 # 0.
Let (h1, h2) be a pair of linearizing outputs, depending on z only.

Lemma 8.7.2. Let hy, he be two functions depending on z only such that (hy,h2) is a pair of
linearizing outputs for system (8.33) on a neighborhood of (Z,).
Then the rank of {dz1,dhy,dhs} is 2 on a neighborhood of Z.

Proof : If it was not the case, there would be points z, arbitrarily close to Z, where this rank
would be 3, and where (hj, he) would still be a pair of linearizing outputs. z; is constant along
both control vector fields, and since (h1, he) would still be a pair of linearizing outputs, there is,
from (8.21)-(8.23), a nonzero linear combination of X; and X», say Z, along which both h; and
ho are constant. It is impossible that Lx,h; vanishes at z for all 4,j € {1,2}, so that up to a
permutation, we may suppose that Lx, hy # 0. This yields, following the same construction as
above —construction of coordinates where the system has form (8.33)— a set of coordinates

Lx, ha )

= hi,h
(C17C27C37<4) (zlv 1, Z’Lthl

and a nonsingular feedback w; = hl, wy = é4 such that the system is also of the form (8.33)
with ( instead of z and w instead of v :

(o= G G o= a3(C1,G2,G3,6a) + Gawn

C2:w1 C4:w2
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where ({2, (3) should be a pair of linearizing outputs. This is impossible from (8.22) because

o 0e o g

ow1 owo 1 0 0 0
gTii g% 0 0 _ Ca 0 0 0
gg gg gg 8& - 0 0 1 0
w w w w

IR o vt et agEtw FEtw GO

owq Ows O O

and hence g—‘ﬁ + w; should be identically zero on an open set, which is absurd because its
derivative with respect to wy is 1. |

From this lemma 8.7.2, z; is a function of the two linearizing functions, and therefore one
may replace hj or hg by z1 in (h1, he) and still have a pair of linearizing outputs. Let for instance
hi = z1, then (8.21) is automatically satisfied, and (8.22) implies that he must depend on z,
z2, z3 only because

Oh1  dhy

oo o O 0 0 0 0 0

Ohy  Ohy Ohy

Ov1  Ova 0 0 = ¥ oz 00

Ohy Bh1 Ok Oy 1 0 0 O ’
Ovi  Ove 001 On2 Oha

Oha  Ohy Ohgy  Ohg * * * Oza

vy Ovg 001 03

and the independence condition in proposition 8.2.10 implies (8.34). Conversely, if (8.34) is
satisfied, system (8.33) is x-dynamic linearizable with (z1,23) as a pair of linearizing outputs,
because zy is 21, and z4 is (inverse function theorem) a function of Z3, z1, 29, 23, v1, i.e. of Z3,
21, 21, 23, 21.

Case 6 (mo =3, m; =4)

Let us first clarify the correspondence between the conditions in terms of differential forms
and these in terms of vector fields. Since the form w; is defined by (8.39) and involves only the
four variables x, dw; must be of the form (8.43) because there is only four variables. Let us
prove that, as written just after (8.43),

X € {w17n17772}L‘ (8.100)

From the definitions of w; and X, one has (wy,[X,Y]) = 0 for Y = X; and for Y = X, and
for Y = [X1, Xa], but one also has (wy, X) = (w1,Y) = 0 for these Y’s, and hence, from the
classical formula [100, II-(1.10)] linking Lie Bracket and exterior derivative, (wy,[X,Y]) = 0
implies dw, (X,Y) = 0, but from (8.43), and using again (w1, X) = (wi,Y) = 0, this reads :
(1, X)(n2,Y) — (m )<n2,X) = 0. Since the three vectors X1, Xa, [X1, Xo] are linearly in-
dependent (mg = 3) and the two differential forms 7; and 79 are also linearly independent
(mg = 4 implies that dwy A w1 = m A 2 A wy does not vanish), the last equality implies
(n,X) = (n2,X) =0, and this proves (8.100).
We then have the following

Lemma 8.7.3. Condition (8.36) is equivalent to condition (8.40). If (8.36) or (8.40) holds,
condition (8.37) is equivalent to condition (8.41) and condition (8.38) is equivalent to condition

(8.42).

Proof of lemma 8.7.3 : From the definition of wi, (8.36) may be written (w1, [Xo, X)) =0, or
also (w1, [F, X]) = 0 because [F, X] = [Xo, X] + u1[ X1, X] + u2[X2,X] and the last two terms
vanish on w;. From the classical identity (8.15) and the fact that (w1, X) is zero, (wy, [F, X]) =0
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is equivalent to (Wi, X ) = 0, which is equivalent, from (8.100) to w; being a linear combination
of wy, m and ny. This is (8.40).
Let us proceed to prove that (8.37) is equivalent to (8.41) if (8.40) holds. Consider the

three vector fields X , 8‘3 , % in the six variables z,u. Their annihilator is {wl,nl,ng} Now

consider the six Vector fields obtained by adding the Lie brackets of these by F' : {X 0

’ 3u1 » Dug?
[F, X],|F, 62 I [F, 55 9 1. From the classical identity (8.15), a form w annihilates all these at a
point if and only if w and w annihilate the original three at this point, i.e. if and only if both w
and w are linear combinations of wy, 1 and 72 at this point. It is the case of wy because (8.40)
holds, and the rank of these six vector fields therefore cannot be more than 5; it is equal to 5
exactly at points where the time-derivative of any linear combination of n; and 72 is linearly
independent from wi, 1 and 79, i.e. at points where (8.41) holds. Now this rank is 5 exactly at
points where (8.37) holds because [F, 8%1'] = X, and therefore these six vector fields have the

same rank as :

9. 92
6U1 ’ 8u2
Let us proceed to prove that (8. 38) is equivalent to (8.42) if (8.40) holds. Consider the five

vector fields { X1, Xo, [X1, Xa], 52 Furs au } in the six variables x, u. Their annihilator is {w; }. Now
consider the ten vector fields obtalned by adding the Lie brackets of these by F' :

o 0 0 o
S G (XL [F. X [P X0, X)) [F 5L [P )

{leXQa [F’)?L

{X17X27 [X17X2]7

A form that annihilates all these vector fields at a point must be collinear to wy at this point
because it has to annihilate at least the five original ones. The form w; vanishes on all these
vector fields exactly at the point where wi and wy vanish on the five original vector fields, i.e.
(since these five are linearly independent) exactly at points where the rank of {w,w;} drops to
1. Therefore, the rank of the ten vector fields is 6 at points where (8.42) holds, and 5 at points
where it does not hold. But these ten vector have the same rank as :

0 0
{X1, Xo, [X1, X, Sur’ Dy’  [Xo, X1], [Xo, Xo, [Xo + w1 X1 + u2 X, [ X7, Xo]]},
and this has rank 6 if and only if (8.38) holds. |

Let us now prove necessity of the conditions (8.36)-(8.37)-(8.38), or (8.40)-(8.41)-(8.42).
Lemma 8.7.3, that we have now proved, allows us to simply prove that (8.36) is necessary first,
and then to prove that (8.41) and (8.42) are necessary.

Suppose that there exists a pair of linearizing outputs (hi, he) with h; and hy depending
on z only. We use conditions (8.21) and (8.22) from proposition 8.2.10 to derive the necessary
condition (8.36). We have

]:LZ' = Lx,hi + wiLx hi + uaLx,h; . (8.101)
Equation (8.21) implies that the rank of

< Lx,hi Lx,ht )
Lx,ho Lx,hs

is one. Since m; = 4, the functions Lx, h1 and Lx,h; cannot vanish together; without loss of
generality, suppose that Lx, h1 does not vanish at the point under consideration. Then, with A
the function given by A = Lx,h1/Lx, h1, and defining the vector field Z5 by

Zy = Xo — AXy (8.102)
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one has
Lz,hy = Lzhy = 0. (8.103)

Define the vector fields Zy and Z; by

Lx. hy 1
Zy = Xo — - X Zy = X . 8.104
0 ey 1 Ty L ( )
The systems (8.5) then reads
T = Zy + w1 41 + us 2oy, (8.105)

with wy defined as follows((uy, u2) — (w1, uz) defines a regular static feedback :
wy = le = LXohl + wiLx,h1 + wLlx,h1 = LXohl + (U1+)\u2)LX1h1. (8.106)

Then hl and hg may be written :

ill = w1
: 8.107
hy = LZOhg + wq LZth . ( )
The second time-derivatives are then given by :
hi = iy
hy = Ly hy + wi (Lz Lz, + LzyLz)ha + w1 Ly hy + 1y Lz ho (8.108)
+ (LZQLZ0h2 + wy LZ2LZIh2)UQ .
The function hy must not depend on ug —this is (8.22)— and hence
Lz,Lzoho = Lz, Lz ha = 0. (8.109)

Now, on one hand, from (8.103)-(8.107)-(8.105), Lz, hy is identically equal to 1, and Lz, h;,
Lz,h1 and Lz,hy are identically zero, so that Lz, z,)h1 and Lz, z,1h1 are obviously zero, and
on the other hand, since Lz, hs is identically zero from (8.103), Lz, Lz hs is equal to Liz, 72,12
and Lz, Lz,h is equal to Lz, 7 he; this and (8.109) above implies :

Lizyzght = Ligyzqhe = 0, (8.110)
Lizy 20t = Lz, z0h2 = 0 . (8.111)

The two independent functions h; and hy are, from (8.110) and (8.103), constant along
the vector fields Zy and [Z;, Z3], which are linearly independent because m; = 3. This implies
that the distribution spanned by these two vector fields is integrable, and therefore that the Lie
Bracket [Za, [Z1, Z2]] is a linear combination of Z and [Z1, Z2]. From (8.102) and (8.104), the Lie
bracket [Z2,[Z1, Zs]] is equal to A\[Za, [X1, Xa]] + (Lx, A\)[X1, Xa] + ((Lx;A\)? — Lx,Lx, M) X.
Hence, [Z2,[X1, X5]] must be a linear combination of X;, X5 and [X1, X2]. This implies, from
the definition of the characteristic vector field X —see (8.35)—that Z is collinear to X :

Zy = aX (8.112)

with a a nonzero function. Since the vector fields annihilating dh; and dho are the linear combi-
nations of Zy and [Z2, Z1], (8.110) and (8.111) imply that [Za, Zy] is a linear combination of Z
and [Z2, Z1], which implies in particular that it is a linear combination of X7, X and [X7, X2].
From (8.112), this implies condition (8.36). We have proved the necessity of condition (8.36).
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Let us now prove that existence of hy and hg with the above properties imply (8.41)-(8.42).
From above, dh; and dho vanish on X and [Z2, X |, and are linearly independent because (h1, h2)
is a pair of linearizing outputs; hence, from the definition of w; and the fact that both X and
[Z2, X | are linear combinations of X, X3 and [X1, X3], the form w; is a linear combination of
dhy and dhg, i.e. there exists some functions A1 and Ao such that

wi = Mdhi + Xodhy . (8.113)
Computing the time-derivative of this yields
w1 = M djll + Ao dhg + }\1 dh; + }\2 dhsy . (8.114)

This implies (8.42) because on one hand the two functions A; and A2 do not vanish simultaneously
because wi does not vanish, and on the other hand dhy, dha, dh; and dhs are linearly independent
because (h1, hs) is a pair of linearizing outputs. Condition (8.40), already proved because it is
equivalent to (8.36) from lemma 8.7.3, implies :

Wi = Mowr + prm + p2n

for some functions po, w1, pe. (8.42) implies that p; and pe do not vanish simultaneously.
Let n be mp if po does not vanish, and 72 if pg vanishes. Then {wq,wr,7n} is another basis for
the annihilator of X. Since dh; and dhg are in the annihilator of {X,[Zs, X|}, they are linear
combinations of wy, wy and 7. Since {dhi,dhs} is a linearizing Pfaffian system, this implies, from
Proposition 8.2.5, that {w1,n} is a linearizing Pfaffian system, and hence that wy, n and all their
time derivatives are linearly independent, and in particular wi,ws, 1,7, n has rank 5, but from
the above construction, it is also the rank of wy, 71,71, 72, 72. This proves (8.41).

According to the remarks just after the proof of lemma 8.7.3, we have now proved the
necessity of either (8.36)-(8.37)-(8.38), or (8.40)-(8.41)-(8.42). Let us prove sufficiency, and at
the same time validity of the way of building linearizing outputs given in the theorem. Again,
from lemma 8.7.3, it is enough to prove sufficiency of (8.40)-(8.41)-(8.42).

From (8.40) and (8.42), equation (8.43) implies

dwi = w1 A I’ + kwi An (8115)
where k is a non-vanishing function and 7 is either 7; or 72, and then (8.41) implies
rank{wy,w1,w1,n,0} = 5. (8.116)

Let a1 and ag be some (non vanishing simultaneously) functions such that {wq, a1w; + agn} is
a basis of the annihilator of { X7, Xs}. Then {w1,w1,n, a1&1 + aan} is a basis of Span{dx} —all
four are in Span{dx} because ajw; + agn vanishes on X; and Xs, and they are independent
from (8.116)— and {w1,w1,&1, 17,7, a1w§3) + agij} is a basis of Span{dx, du} because of (8.116)
and the fact that X; and Xy are supposed to have rank 2, and then an easy induction shows
that ] )
{wi,wr,d1,. .. ,wiﬁz),n, 0,7, ... ,n(j+1), alwgﬁs) + agn(j+2)}

is a basis of Span{dz, du, d,...,dul?} for all j > 0. This implies that {w;,n} is a linearizing
Pfaffian system (see definition 8.2.3).

Let us now build a pair of linearizing outputs as explained in the theorem. If h; is built as
indicated, i.e. such that

Lghy = 0 and rank{w;,w;,dhi} = 3, (8.117)
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the Pfaffian system {dhj,w1} is integrable because (8.115) and the fact that dh; is a linear
combination of wi,wi,n imply dw; A wy A dh; = 0. Let hy be a second function such that
{dhi,dhs} is another basis for {w1,dh;}. These dh; and dhg are obviously linear combinations
of wy, wy and n, but this may be inverted : w; is a linear combination of dh; and dhs, and 7 is, from
(8.117) a linear combination of wy, w1, dhy, and hence of dhy, dho, dhl and dhz. Since {w1,n}
is a linearizing Pfaffian system, (dhi,dhsg) is, from Proposition 8.2.5, also a linearizing Pfaffian
system, and (hq, ho) is a pair of linearizing outputs from Proposition 8.2.3. This completes the
proof of sufficiency.

Let us now prove the assertions concerned with the “normal form”. The normal form itself
is a consequence of the following lemma :

Lemma 8.7.4 (“Engel’s normal form”). Let X1 and X5 be two vector fields in R* and let 7 € R*
be such that

rankg { X1(Z), Xo(z)} = 2,
mnkR{Xl(a?), Xg(i'), [Xl,XQ}(i’)} = 3,
rankg { X1(Z) , Xa(), [X1, Xo](Z), [X1, [X1, Xo]}(2), [Xo, [X1, Xo]](Z) } = 4.

Kl

Then there exists four functions a1, 12, ao1, a2, and a set of coordinates (z1, z2, 23, z24) such
all(a?) 0412(57)

that the matrix < _ _
a1 (x) OéQQ(.CL')

> 1s tnvertible, and, locally around T,

0 0 0 0
X Xy = — — — X Xo = — . 8.118
11 X1 + a1 X2 £ + 23 929 + 24 D25 Q121 + X2 921 ( )
The proof is very classical, see for example [18]. Now, by assumption, the vector fields X
and X, satisfy these assumptions, and the feedback

( uy ) _ ( ail a2 ) < U1 > _ < Lx,z1 ) (8.119)
U2 Q21 Q22 V2 L,z
yields the equations (8.44) in the coordinates given by lemma 8.7.4. The fact that the coordinate-

free and feedback invariant conditions (8.40), (8.41), (8.42) translate into (8.45), (8.46), (8.47)
respectively is a routine computation from

w1 = dZQ — Z3dz1 d)l = de + U1d2’3 — (f3 + Z47)1)d21
m = dz1 s 771 = dvl s
7y = dzz, 9 = dfs + vidzqvy + z4dog .

Alternative proof of Case 6

Here we suppose in addition that we are at Brunovsky-regular point, i.e. the rank condition (8.52)
holds, and we give a proof for case 6 based on the infinitesimal Brunovsky form. To give a thorough
treatment of case 6, one should consider the case when the rank in (8.52) is three in a neighborhood
—then there is a different infinitesimal Brunovsky form, as in the second point of proposition 8.2.7, and
also points where it three, while being 4 in an open dense set of a neighborhood —at such points, an
infinitesimal Brunovsky form does not exist but one might conclude by density. R

Condition (8.52) implies, see proposition 8.2.7, that if two forms w; and w, make up a basis of Dj,
then {w;,ws,ws,ws} is a basis of Span{dx}. In addition, w; may be taken in Mg (i.e. {w;} is the first
derived system of the Pfaffian system {w1,ws}). Then we have :

wa A ((51&)1 + 52@2) modulo wq
v w1 A ws modulo {wy,ws} .

dwl
dWQ

(8.120)
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Since on one hand the rank of My is constant equal to 4, and on the other hand the rank of M, is
constant equal to 3,

61 and do do not vanish simultaneously,
- (8.121)
~y does not vanish.
A computations shows that :
Span{)z} = {w1 , Wo, 01W1 + dows }L . (8.122)

The proof of characterization (8.36) relies on the following lemma, proved further :

Lemma 8.7.5. The following three properties are equivalent :
(i) There exist two invertible matrices J; and Jo of degree zero and three functions a, hy and ha,
all defined on a neighborhood of the point X, such that

dhl . 1 —ai w1
() = a3 5)a(2)

(i1) 62 = 0 on a neighborhood of X.
(i4i) (8.36) holds on a neighborhood of X .

This is enough to conclude. Indeed, sufficiency in case 6 of theorem 8.3.1 is obvious because, from
proposition 8.2.8; point (i) implies z-dynamic linearizability. Let us prove necessity : if system (8.5) is
x-dynamic linearizable in a neighborhood of a point X, then from propositions 8.2.8 and 8.2.9, there is
an open set Ug, dense in a neighborhood of X, such that point (i) holds for all X € Uy. From the lemma,
this implies that d, is zero on Uy. Hence it is zero on a neighborhood of X. This completes the proof of
case 6 of theorem 8.3.1, the normal form being proved the same way as in the first proof.

Proof of lemma 8.7.5 :
(ii)«(iii) : We have, from (8.122) and identity (8.15),

[=9

0 = (01w1 + Jaws )NQ = (B1w1 + dows + 8101 + G, )~(>

+ (w1 + dawz, [Xo + ur X1 + ue Xo, X|)

[a¥

t

which, from the fact that (w;, )Z') and (w1, [X;, )Z']) are identically zero for 7 = 1,2, yields

01 (wr, [Xo, X)) + 02 (wa, [Xo+ w1 X1 +upXp, X]) = 0 (8.124)

which implies, since §; and d3 do not vanish simultaneously and [X¢ + u1 X1 + ug X2, X] does not vanish,
that d; = 0 is equivalent to (wy, [Xo, X]) =0, i.e. to (8.36).
(if)=(i) : Since §2 = 0, (8.120) implies that {w;,ws,w;} is the characteristic system of wy and therefore

is integrable. In particular, there exists a function ho such that

dhg = )\0&)1 + )\1(;)1 + )\20)2

with a non-vanishing Ao ; then B
dw; = 61dhe Aw modulo w;

which implies that {wy,dhs} is integrable and in particular that there exists a function hy such that

dhy _ 1o p2 wi M1 H2 1 0 w1
dhsy 0 1 dhs 0 1 Mo+ wo
where 1 \1 does not vanish. This is point (i).
(i)=(ii) : Let Q1, Q2 and Q3 be defined by

( & > = 7 ( 2 ) ) (8.125)



8.7. PROOFS 193

(82):(é_i$>(g;>:(ﬁlg—ba92)- (8.126)

then (8.123) implies that {3, €2} is integrable and hence, for some 1-forms I'; ;,

dQQ = QQ A 1—‘2’2 + 93 A ngg = Ql A F2’3 + Q2 AN ].—‘272 — GQQ A ].—‘2’3 (8 127)
ng = QQ A Fgﬁg + Qg AN ].—\373 = Ql A F213 + Qg A ].—‘272 — aQQ A F273 ’
Taking the time-derivative of the second equation yields
dQQ = /\I.‘273 + Ql /\Fg,g
: : : . . (8.128)
+ QQ /\].—‘2,2 + QQ AN (FQ_’Q - aI‘273 - CLFQ_’;;) - GQQ /\].—‘273
and finally, since dQ0; = d(23 + aflg) = dQ3 + adQs — Qs A da,
d, = U A (Fg,g + af‘273) + Q3 A <F272 + afg,g)
+ an /\F273 + QQ AN (— aI‘273 + QFQ’Q - G2F273 - ad].—‘273 — da) (8129)
- a2 Qz A F273
ng = Ql A F2’3 + QQ A F272 - CLQQ N F2,3

From (8.125), {Q1,Q2} is the same differential system as {w;,ws} and therefore, from (8.120), d§2; =
Aif21 A Q2 modulo {Qq,Qs} for ¢ = 1,2 and A; certain functions; from the second equation in (8.129),
this implies that I's 3 is a linear combination of €, 9, Ql, QQ, from the first equatlon in (8.129), it is

actually a linear combination of 1, Qs, 5 because the O-term would produce a 5 A Qp-term in the
last term of d€2; (it cannot be canceled by another term because there is no Qs in ~2,3) ; this implies, if

Fos = M+ X0 + )\OQQa
dQy = QoA fg’g + ()\0 + a)\l)Ql A QQ (8130)

where f272 contains I's o plus other terms. This implies in particular that dQ = 0 modulo {4, 22} which
implies that 5 is in the first derived system of {21,052} (i.e. in the annihilator of {X;, X, [X1, X2]})
and therefore that it is collinear to wy, or in other terms that matrix Js is triangular :

(g;)<ﬁalﬂ02>(gl> (8.131)

where a5 does not vanish. Then (8.120) yields

dQ2 = EQI ((51 6;52

By comparing this and (8.130), we see that doa = 0 which implies that d is identically zero because «
does not vanish.

)Qg + 625 ) modulo Q5 (8.132)
2

8.7.2 Proof of the results on (z,u)-dynamic linearizability

In this section, we prove theorem 8.4.1 and proposition 8.4.4. They are proved together
because we are not able to prove the intrinsic condition of theorem 8.4.1 without the help of the
coordinates of the normal form (8.60). In the course of the proof, we will need the four following
technical lemmae (lemmae 8.7.6, 8.7.7, 8.7.8 and 8.7.9), that are proved further.

Lemma 8.7.6. Let wy and wy be chosen according to (8.53). Let b and Jy be respectively a scalar
smooth function and a 2 x 2 invertible matriz (of degree zero) with entries smooth functions,
defined on a neighborhood of a point ) and let 21 and Q23 be defined by

(&) - (—Ijgt (1)>J2<z;> : (8.133)
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The forms 1 and Q3 satisfy the following relations :

A = 0 modulo {Q1, Q3, Q3} (8.134)
dQs = 0 modulo {Q3, U AQ3} (8.135)

on a neighborhood of Y if and only if there exist smooth functions hi, hy and a, and a 2 x 2
invertible matriz Jy with entries smooth functions defined on a neighborhood of Y, such that

dhy 1 —ad 1 0 ( w1 >
= J dt J:
<dh2> 1(0 1 ><—bgt1 2\ w
d
1 —a% Ql
= J dt . 8.136
1 ( Lo ) (o) (8.136)

Lemma 8.7.7. Let w; and wa be some 1-forms satisfying (8.53), and hence (8.55), around a
point where v and 5%,2 do not vanish (implied by the rank assumptions (8.48)-(8.49)-(8.50)-
(8.51)-(8.52)).

1. There cannot exist functions a, b, hy, hy and two invertible 2 X 2 matrices of degree zero
J1 and Jo, all defined on a neighborhood of the considered point, such that

1 0 w dhy
J1< i a2 )Jg( 1) = < ) (8.137)
—aa—b% 1 w2 dh2

2. There cannot exist functions «, a, b, h1, ho and an invertible 2 X 2 matrix of degree zero
J1, all defined on a neighborhood of the considered point, such that

(5 ) (g D)) - () e

Lemma 8.7.8. Let w1 and wy be some 1-forms satisfying (8.53), and hence (8.55). If, for some
functions A1, Ao and A3, one has

dwy = 0 modulo {wy,Q, N}

with @ = AMwi + Aows + Asws , (8.139)
then A1 and A3 are related to the functions appearing in (8.55) by :
A3 (2yA1 + 65, 23) = 0. (8.140)

Lemma 8.7.9. Let f and g be two smooth functions from an open subset O C R* to R. The

following two assertions are equivalent :

88794 does not vanish on O and f and g are solutions of the following equations on O :

dg 03¢ 0%g 2
999 _3(L9) = 141
Dzy 073 ? ((%2 0 (8.141)
3 2 2
2@8—";—3@8—"0 = 0. (8.142)

— There exists ag, a1, az, by, b1, cy and cq, seven smooth functions of z1, z9, z3 defined on O
(i.e. on its projection on R?®) such that

bo b1

0 o (21, 22, 23)

co(z1, 22, 23) + z4c1(21, 22, 23)  and

do not vanish on O and f and g are given by (8.63) on O.
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Proof of theorem 8.3.1 and proposition 8.4.4 : Let us consider a point
X = (Z, U, y...... ) such that conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold at (z,u). Let the
forms wy and wy be defined according to (8.53) and the functions d3 ; and ~ by (8.55). Let also
(21, 22, 23, 24) be some coordinates in which system (8.5) has the form (8.60) (they exist from
Proposition 8.4.3), and the functions f and g be defined accordingly from an open subset of R*
to R.
We have to prove the following :
1. The following three properties are equivalent :
— (2, u)-dynamic linearizability of system (8.5) at point X, or of (8.60) at the corresponding
point in terms of (z,v,0,...),
— conditions of proposition 8.4.4 on the functions f and g,
— condition in terms of Pfaffian systems of theorem 8.4.1.

2. When they are satisfied, the possible pairs of linearizing outputs depending on x and u
are these described in theorem 8.4.1.

The (easy) proof of the second point will be given at the very end when equivalence is totally
understood.

From proposition 8.2.8, (z,u)-dynamic linearizability is equivalent to existence of a matrix
P(%) whose entries are polynomials in % of degree at most 2, which has an inverse of the same
type (except we do not need to know whether the degree of the entries of the inverse is also at
most 2), and transforms the pair of forms (w;,w2) into a pair that defines an integrable Pfaffian
system. Now use the second point of proposition 8.2.9; it allows four possible decompositions of
the matrix P (%), but only on an open dense set of points of the neighborhood of X where P(%)
is defined, and X might not belong to this open dense set. Around these points though, lemma
8.7.7 states that three of the four decompositions proposed by proposition 8.2.9 are impossible
due to the form of dw; and dws given by (8.54)-(8.55), so that only the last one is possible. If
the decomposition of proposition 8.2.9 was available at all points, item 1 of the following lemma
would be equivalent to (z,u)-dynamic linearizability, and the following lemma would end the
proof.

Lemma 8.7.10. Let wy and ws be chosen according to (8.53), the functions 5571 and vy be defined
by (8.55), and some coordinates z1, z2, z3, z4 be fized according to Proposition 8.4.3, in which
system (8.5) has the form (8.60), and the functions f and g be defined accordingly from an open
subset of R* to R. The following four assertions are equivalent :

1. There exists an invertible matriz Jy of degree zero and six functions «, A\, a, b, hy and
ho, all defined on a neighborhood of the point Y, such that b does not vanish on this
neighborhood and

() oo #) (g D)D) e

2. There exist three functions a, A and b, all defined on a neighborhood of Y, such that b does
not vanish on this neighborhood and, with

(2) = (g DO D) e

A = 0 modulo {Q1, Q3, Q3} (8.145)
dQs = 0 modulo {Q3, 0 AQ3} (8.146)

S8

one has
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3. 5571 does not vanish at Y and the first derived system of the Pfaffian system {w; —
52%—71@2 , wa} has rank 1 and is integrable, i.e. there exists a (unique) function o such that
(8.58) is satisfied.

4. The function 5%,1 does not vanish at Y and, in the normal form (8.60), the functions f
and g are, on a neighborhood of Y, of the form (8.63) where ag, a1, aa, by, b1, co and ¢1

are functions of z1, z2, z3 only, which satisfy (8.64).

If one of these conditions is met (and therefore all of them), X\, o and b in (8.143) and (8.144)
are uniquely defined :

A=0, b= 52Tfy ., is uniquely defined by (8.58) . (8.147)
2,1

This lemma contains the real technical difficulties of the paper. The proof is given further
(page 201), let us however sketch it. Equivalence between 1 and 2 is given by lemma 8.7.6, it is
a manipulation on Pfaffian systems, and only needs the fact that the Pfaffian system {wi,wa}
may be written in four variables (the coordinates of x). It is very simple to prove that 3 implies
2, but the converse is not obvious : since we were not able to prove it directly, we used the
coordinates z of the normal form, and instead of proving that 2 implies 3, we prove that 2
implies 4 by writing (8.145)-(8.146) in the coordinates (z,v,?,...) of the normal form (8.60) as
some differential relations on the functions «;, A and b with the functions f and g as parameters,
eliminating the unknowns «, A and b, and obtaining some PDEs on f and g that imply the
form of f and g given by point 4 above (or by proposition 8.4.4), these computations have been
conducted with the computer algebra system “Maple” (version 5.2). The fact that 4 implies 2
is a simple computation in coordinates, made easier by proposition 8.4.5.

Unfortunately, the conclusion of proposition 8.2.9 is not valid at all point, so that the results
we want to prove do not follow from the above lemma 8.7.10, proposition 8.2.9 and lemma 8.7.7.
Let us however prove that (z,u)-dynamic linearizability at point X is equivalent to one of the
four equivalent conditions of lemma 8.7.10 being satisfied at point X. This will end the proof
that (z,u)-dynamic linearizability, the conditions of proposition 8.4.4 on the functions f and g
(item 4 of lemma 8.7.10) and the condition in terms of Pfaffian systems of theorem 8.4.1 (item
3 of lemma 8.7.10) are equivalent.

Point 1 of lemma 8.7.10 implies (z, u)-dynamic linearizability from proposition 8.2.8 because
the matrix applied to (wi,ws2) in (8.143) is obviously invertible and of degree 2. Conversely,
suppose that there exists a pair of linearizing outputs (hi, hs) depending only on x and wu,
defined around X, and let us prove that item 3 of lemma 8.7.10 holds on a neighborhood of X.

From proposition 8.2.8, there exists P(%) € A(U), with U a neighborhood X, such that

P(%) is invertible in A(U)

degP < 2 onU

rab () = (o)

Since v does not vanish at X and the rank assumptions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold
at X, we may suppose, by possibly restricting U, that

(8.148)

~ does not vanish on U
(8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold on U . (8.149)
deg P = 2 on an open dense subset of U .

The last statement is implied by the second one because if degP is strictly less than 2 on an
open set, the system is z-dynamic linearizable and this contradicts (8.51) from theorem 8.3.1.
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Then, from proposition 8.2.9, there is an open dense subset Uy of U such that, for all Y € Uy,
the matrix P(%) may be decomposed according to one of the four forms (8.18)-(8.19)-(8.20).
From lemma 8.7.7 three of these four forms are forbidden, because conditions (8.48)-(8.49)-
(8.50)-(8.51)-(8.52) hold at point ). Hence, around each point J € Uy, there exists functions
a, A, a, b, and a matrix Ji, defined on a neighborhood of ) such that (8.143) is true on a
neighborhood of ). By restricting possibly the open sense set Uy, we may suppose that b does
not vanish on Up (b cannot vanish on an open set, because then P would have degree at most
1 on this open set, and therefore the linearizing outputs would depend on x only, and this
would, from theorem 8.3.1, contradict (8.51). Then the conditions of point 1 of lemma 8.7.10
are satisfied on Uy. By applying lemma 8.7.10 at each point ) in Uy, one has, for all Y € Uy, a
neighborhood of ) such that

- (5%71 does not vanish on this neighborhood,

— there is a unique function ay defined on this neighborhood such that

2 2
d|w + aywy — T’YWQ VAN w1 + ayws — T’ng = 0, (8150)
52 1 62 1

— there are a smooth scalar function ay and an invertible matrix J;y with entries some
smooth functions, all defined on this neighborhood, so that, on this neighborhood,

dh 1 —ay—d 1 0 <O 1 ><w1>
= J dt . 8.151
< dhsy ) LY < 0 1 ) < - 752;1 7(?‘5 1 1 ay w2 ( )

The last point is obtained by substituting the functions A and b by the value they must have
from (8.147). The second point implies in particular, by making the wedge product of both sides
by ws and multiplying by (5%71)2, that

d ((5571001 — 2’)/@2) A (5%71011 — 2’)’@2) Nwo + Cky(sil dwso A ((5%71w1 — 27@2) ANwy = 0. (8.152)

but on the other hand, the differential form of degree 4 dws A ((%le — 27&)2) A wo is, from
(8.55), given by

. 1oy . - .
dwa A wa A (5571w1 —2ydr) = wi A (55%,1% — YW2) Awa A (—2yw2) ,

and therefore does not vanish on U. Existence of ay satisfying (8.152) may be translated in
some determinants made with the coefficients of the two differential forms of degree 4 being
zero, but if these determinants are zero on an open dense subset Uy, they are zero all over U,
and therefore, since dwy A ((5%’1w1 — 27&)2) A wo does not vanish, there is a function v, uniquely
defined all over U, such that

d (03 w1 — 29w2) A (83 w1 — 29d2) Awz + vdwy A (63 w1 — 276n) Awy = 0. (8.153)

Of course, since on the neighborhood of each point ), the function ay is uniquely defined, it
must coincide with 5% where it is defined.
2,1
Then, let us define the form ws by

wg = 5%71w1 + vwy — 27wy ; (8.154)

equation (8.151) reads

dh w a 1 w 5%1 w
2 — 1 W3 T g \oWs
() = DI CNE (8155)

1
w3
031
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and therefore, dhy and dhs are linear combinations of we, w3 and w3 on a neighborhood of each
point Y € Uy. This implies that the rank of {dh;, dho,ws,ws,ws} is at most 3 on the open dense
Uy, it is therefore also at most 3 on all U. Since the rank of {ws,ws,ws} is three all over U
(because v does not vanish on U, see (8.149)), there are six functions p; j, (uniquely) defined all
over U, such that

dh; = pigwe + pigws + pi3ws3

for ¢ = 1,2, or in other words

(dh1> _ (ma M1,2+M1,3(§t (WQ> (5.156)
dhe P2y p22 + 23 g w3

which implies, from (8.154),

< dhy ) B H1,1 N1,2+M1,3(§5 0 1 . < w1 )
dhz P21 p22 + 23 gy 5%71 v =27 w2

which implies, from (8.148), and because wq, wo and all their time-derivatives are linearly inde-

pendent, that
d
d Hi1 M2+ p13ar 0 1
P(dt) - ié[c o v —2 4
H21  H22 + p23 g 2,1 Tdt

This implies that (5%71 must not vanish on U because P(%) could not be invertible in the

neighborhood of the zeroes of 5%,1, where the first column of the second factor would vanish.

Since (5%,1 does not vanish on U, the function « = is defined all over U, coincides with

|14

031
each ay where these are defined; this and (8.150) imply that (8.58) is satisfied on Uy with
this definition of «; since Uy is dense in U, (8.58) is even satisfied all over U. This proves that
(z,u)-linearizability implies item 3 of lemma 8.7.10, and ends the proof of equivalence between
(z,u)-dynamic linearizability, the conditions of proposition 8.4.4 on the functions f and g and
the condition in terms of Pfaffian systems of theorem 8.4.1.

To end the proof of theorem 8.4.1 and proposition 8.4.4, there only remains to prove that the
possible pairs of linearizing outputs depending on x and w only are these described in theorem
8.4.1. We have proved above that an arbitrary pair of linearizing output has to satisfy (8.155)
around all points ) in an open and dense subset of a neighborhood of X, with w3 = 5%7193
(compare (8.154), the fact that o = v/d5 ; as noticed just after (8.153), and the definition of Q3
in theorem 8.4.1). This implies that dh; and dhg are two independent linear combinations of {23
and wy — af3 for a certain function a. This is exactly the form of a pair of linearizing outputs
described in theorem 8.4.1. |

We now prove the four technical lemmae (lemmae 8.7.6, 8.7.7, 8.7.8 and 8.7.9) and then

proceed with the proof of lemma 8.7.10 that was the cornerstone of the above proof.
Proof of lemma 8.7.6 : Suppose that 23 and Qg3 satisfy the identities (8.134)-(8.135) on
a neighborhood of ). Then the Pfaffian system {1, 3, Qg} is completely integrable because
(8.134)-(8.135) obviously imply that dQ; and d3 are zero modulo {Q;,Q3,Q3}, and (8.135)
implies that, for a certain 1-form I's and a certain function k, dQ23 = Q3 A's + kQ1 A Qg, but
taking the time-derivative of both sides yields

dQs = Q3ATs + Q3ATs + EQLAQs + kL AQs + QA

which obviously implies that df23 is zero modulo {Qy,Q3,€3}. Integrability of this Pfaffian
system implies that there exists a function hy defined on a neighborhood of ) such that

dhy = MY+ Q3 + A3
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with A1, A2, A3 some functions, A; nonzero at . Then {Q3,dh;} is integrable because (8.135)
implies that dQ3 is zero modulo {Q3,dh; A Qg}, and hence modulo {{23,dh;}. Hence there is a
second function hy such that

dhy = pidhy + p2fls

with w1, pe some functions, e nonzero at ). The functions hi, he built above, together with

_ _( 1 0 A Az .
a=—MX3/A1 and J; = ( i ) ( 0 1 ) satisfy (8.136).

Conversely, suppose that (8.136) holds. Let us define Q1, Q9, Q3, Q4 by

<g;> - J2<Z;> ) (8.157)
<g§>:<(l)_i(i><—;§t ?)(8:) (8.158)

Q3 = Q9 — by (8.159)
Q4 = Ql — an = Ql —a <QQ - le - le) (8160)

i.e.

We shall use the following basis (over smooth functions) for the space of all 1-forms :

{Ql7 QZ; 937 QQ) 947 Q4a

0y, b , (8.161)
4 5 6
o o oo }

where, in addition, {Q, Qg, Q3,Q} is a basis of Span{dx}.
Then (8.143) implies that the Pfaffian system (€3, 4) is completely integrable and therefore
that there exists some 1-forms I'; ; such that

A3 = Q3AT33 + QA3 } (8.162)

dQyy = Q3 A F473 + QA F474

It is possible to express the 1-forms I'; ; in (8.162) as (finite) linear combinations of the forms
in (8.161), and it is always possible to choose them such that, for i = 3,4,

I'; 3 has no 3 term, }

I'; 4 has no Q3 term and no Q4 term. (8.163)

Taking the exterior derivative of (8.160) yields
dQ; = dQ4 + adQs — Q3 Ada,
and taking the time-derivative of the first equation in (8.162) yields

dQs = Q3AT33 + Q3 AT33 + QUATss + QuATsy

and finally, the two above equations yield, since 23 = %,

d )
dy = A <F3,3 - ;L) + Q3 A (F4,3 + GF3,3>

. da .
+ Q4 A <F474 - Fg’g + CLF374 + (I) + afly /\F3’4 . (8.164)
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On the other hand, since (£21,) = (X1, X5)*, the Pfaffian system defined by (£1,Q2) can
be defined with the help of the variable x (i.e. the four coordinates of x) only, and therefore (see
(8.192) in the Appendix), its Cartan characteristic system is at most Span{dx}, i.e. at most
{04, Q9, O3, Qg}, which implies that, for some functions k1 and ko,

d
dQe

k1 Q3 A QQ
ko Q3 A Qo

}modulo {1, 2} . (8.165)

The first equation above implies, from (8.164) and (8.163), and using the fact that the 1-forms
in (8.161) are a basis for all 1-forms, that I'y 3 + af373 is a linear combination of Q;, Qa, O3,
and Qy, I'y 4 —T'33+ af3,4 + % is a linear combination of €21, {22, €23 and 4, and I'3 4 is a linear
combination of €2q, 29 and Q4, with the coefficient of 4 in 'y 3 + CLI—‘373 equal to the coefficient
of Q3 in F4,4 — F3,3 + af‘g,4 + % :

F4,3 + afg’g = M + 20 + 303 + 6492 + d3fly (8.166)

. d
F474 — F3,3 + CLF374 + Za = di + dofly + d3Qz + dsQy (8.167)
I'sy = e + ey + 6304 (8168)

5

and finally, (8.164) yields

d, = Ql/\A1+QQ/\A2+C4Q3/\Qz
witp | A1 = Tss - da Q3 — diQ — aerly (8.169)
Ag = — CQQg — d294 — a6294

Now, from (8.159), ‘ '
dQs = dQ3 + bd)y + dbAQ

which allows, getting d23 from (8.162) and dQ; from (8.169)’s time-derivative, and using the
fact that € = Q2EQ3 and Q3 = %, to compute d€2o and, forgetting the exterior products
starting with 1, Qs or 3, to obtain

dQ), = b(%4 —do) Qo AQy — abesQa AQy + e3Q AQy modulo {Q1,9,0Q3}  (8.170)
which, since the second identity in (8.165) implies d€22 = 0 modulo {1, Q9, Q3}, yields
cs = ady and ey = e3 = 0. (8.171)

We get (8.134) from (8.169) with e; = 0 after substituting €4 for Q; — af3. The same

substitution in (8.160)-(8.168) with ex = ez = 0 yields (8.135). |
Proof of lemma 8.7.7 :
Point 1 : First, let us notice that b cannot be identically zero around the considered point, be-
cause this would imply z-dynamic linearizability, which, from theorem 8.3.1, contradicts (8.51).
Define ©; and Qs by (21,Q22)7 = Jo(w1,ws)? ; then (8.137) implies that the Pfaffian system
{01, — a2y — by} is completely integrable, which implies

d2; = 9 AT + (Qg—an—bﬁl)/\Fz,

for some 1-forms I';y and I's. On the other hand, because {{21,€9} span the annihilator of
{X1, X5}, the characteristic system of this Pfaffian system is included in Span{dx} (see (8.192)
in the Appendix), and hence one must have dQ2; = kn; A ne modulo {Q1,Q9} with k a function
and 7 and 72 two form in Span{dx}. This implies, since b does not vanish and () is not in
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Span{dx}, that, in the above relation, I's is a linear combination of €, 25 and al + b€y, which
in turn implies, for a certain function k,

dQ; = kQa A (aQy +b8y) modulo © .

This implies that €; is in the derived system of the Pfaffian system {€;, Qs }, and therefore, from
(8.54)-(8.55), that € is collinear to w;. The above relation with € collinear to w; contradicts
(8.54) because an + le is not a linear combination of wi, ws and ws.
Point 2 : Suppose that (8.137) holds. From, lemma 8.7.6, the identities (8.134)-(8.135) must
hold locally with
M = w
Q3 = w2 + awr — bwl

and in particular, this would imply that
dw; = 0 modulo {wy,ws — bwy,wa + (@ — b)wl — by }

which is impossible, because, from (8.54),
dwi Awg A (WQ — bd)l) A (LUQ + (Oz — b)w1 - bd)l) = b2(5%72 wo ANwy Awi Awy A wq. [ |
Proof of lemma 8.7.8 : The expression for €2 in (8.139) implies

AMwy = Q)\QOJQ — )\SUJQ;

- . . 8.172
Awp = —)\1(4)1 + O — )\QWQ — ()\34—)\2)&)2 — A3y . ( )

Using the above relations in (8.55), one obtains that Afdws is equal to A3 (63 1 A3 +27A1) w2 Ao
modulo {wy,Q, Q}. This proves the lemma. |
Proof of lemma 8.7.9 : By simple substitution, it is clear that the forms of f and g given
in (8.63) satisfy equations (8.141)-(8.142). Let us prove the converse. Since 8z # 0, one may

define h = 1/8%. Equation (8.141) then yields

Oh \? d%h
=2} —2n=— =0
<8Z4> 027 ’

whose non-vanishing solutions are exactly the squares, and opposite of squares of nonzero poly-
nomials in z4 of degree at most 1, with coefficients function of z1, 29 and z3; if the degree is 0, g
is affine in zy4, if it is 1, g is homographic in z4, still with coefficients function of z1, zo and z3, this
yields the form for g given in (8.63). Substituting g for its expression given by (8.63) in equation
(8.142) yields (co + 012’4) Pf 4 301a [ = 0, which states that (co + ¢124)f is a polynomial of
degree at most 2 in z4 and therefore 1Inp11es that f is of the form given in (8.63). |
Proof of lemma 8.7.10 :
1<-2 : This is an obvious consequence of lemma 8.7.6 because (8.145)-(8.146) are identical to
(8.134)-(8.135).
3=-2 : Let b be defined by (8.147) :

27

b= =

03,1
and « be the one from relation (8.58). Define 2 and 23 as in (8.144), with A = 0. Relation
(8.58) implies d23 = 0 modulo €23, so it implies a fortiori (8.146). Now (8.145) is equivalent here
to

dwy =0 modulo {ws, w; —bws, w1 + (o — b)wg — bws }

but a simple computation from (8.55) show that this is true when b = 521—7.
2,1
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4=3 : From proposition 8.4.5, if point 4 is true, then some other coordinates may be found
where the system has the simpler form (8.66). We shall compute in these coordinates with the
following choice

wr = d@ — (dG

wy = d¢s — (g0 +Caq1)dG — (p1+ wigr)wi (8.173)

On one hand, one has
dws = 0 modulo {wy,d¢;,dw;} (8.174)

by computing the exterior derivative of we given by (8.173) and replacing d¢; and dw; with zero
and d¢s with (pl -+ wlql) d¢s.
On the other hand, from (8.52), {w1,wa,ws} is a basis of {d(1, d(2, d{3} and hence one has

d¢i = Mwi + Aws + Azw2

for some functions A1, A and A3. Applying lemma 8.7.8 for {2 = d(y, and noticing that A3 cannot
vanish because w; A wa A d¢; does not vanish from (8.173) yields, from (8.174) :

29\ + 03, h3 = 0.

The above two relation imply, since by assumption 55,1 does not vanish, that d(; is a linear

combination of we and w; — 52%—71@2, and this clearly implies point 3.

2=>4 : This is the long and difficult part of the proof. It is all done using the symbolic
computation system Maple, version 5, release 3, with the package “liesymm” to manipulate
differential forms, in the coordinates of the normal form (8.60).

We are now working in coordinates, with system (8.60) for some f and g. We make the

following choice for wy and wo :

wp = dZQ — ngZl

8.175
wy = dzg — gdz — (887]044_7}168794)“}1 . ( )

The idea of the proof is quite straightforward : We suppose that there exists functions a;, A
and b satisfying (8.145)-(8.146), we write these equations explicitly in terms of a, A and b, and
we eliminate a, A and b to obtain the conditions on f and g are as described in point 4.

Step 1. With the choice (8.175) for w1 and wa, we have the following decomposition of dw, and
dws, more precise than (8.54) and (8.55) in proposition 8.4.1 :

dwr = wi A (07 wa+ 07 60) + 6gwa A, (8.176)
dwy = w1 A (5871w2 + 5%,1&')1 + 53710')2 — "}/(IJQ) + wa A (5%72(,211 + 5%72(,212) (8 177)
+ ywi Aws ’

for some functions 5& and 7y that may be computed explicitly using f, g and some of their partial
derivatives.

Indeed, (8.54) reads
dwi = wi ATy + 5%’2012 Awa ,

for some form I'y, but dw; = dz; A dzg and {w1,ws, w2} is a basis of {dz1,dz2,dz3} —because
it is the characteristic system of {w;} from the above equation— so that I'; must be a linear
combination of w1, wy and wy. This implies (8.176).
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Also, (8.55) reads
dwy = woAT9 + w1 A ((5871w2 + (55’10:)1 + (53’1&')2 — ")/(I)Q) + ywi Awa

for a certain form I'y, but

0 0 0 0
dwy = dz; Adg — (ai%—vlai)dm/\dzz% - d(aiﬁLUlai)/\wl

and hence dws is, modulo {w; }, a linear combination of dzj, dzg, dzg and dzy, i.e. of wy, wa, wy
and ws ; this implies that 'y must be a linear combination of wq, wo, w1 and wsy, and therefore
(8.177).

Step 2. If a, A and b satisfy (8.145)-(8.146), then

A may depend ONn z1, 22, 23, 24, V2 — Ulf(zl,ZQ,Z3,Z4) Only7

a and b may depend on z1, z2, 23, 24, V1, V2, U1, U2 only. (8.178)
Relations (8.157) and (8.159) imply :
U = wy + Awp (8.179)
Dy = wi+ay = 1+aNw + aws (8.180)
Qs = w+ad - = a(wg+Awy) — b (d}g + Awy + (/\ — ll))w1> (8.181)
Oy = (Ma=b8)—b) w1 + d(ws+wn)
+ (1 =260 01 + (@—Db) (w2 + An) — b(@g + Ain) (8.182)

Taking the exterior derivative of (8.181) and (8.179) yields

dQ3 = dw; + adQ — bdQ; + daAQp — dbA QO (8.183)
with dQ; = dws + Adw; + dAAw; (8.184)
dQ; = din + Adw; + Adoy + dAAw; + dA AW (8.185)

Relation (8.183) implies :
dQs = (14 aX—bA)dw; + adws + adX Awy — b (dag + Aday + dA A wp +dA A @)
Q3 — w; — a(ws + Aw)
b
Taking the time-derivative of both sides in (8.176) and (8.177), we have

+da A (w2 + Awy) + dbA

din = wi A (80 w0+ (00 + 82 ) + 03,100
+ wa A (— 5971d)1 + 5%2&)2 + 5%72@2)
+ 5%’1 w1 N\ wa
. - 0 1 - 0 ) . 1 - 2 N (3)
dwy = wi A (g w2 + 65 w1 + (05 + 031 )wa + 03101 + (631 — V)2 — Ywy
+ w2 A <(55,2 - 53’1)@ + 5%,2@ + 5%,2@1 + 5%,2‘;’2)
+ w2 A ((*5%,1 + 5%,2 — )iy — i)

(8.186)
)

Equation (8.146) implies in particular that dQ23 = 0 modulo {w1, 1,3}, i.e. —see (8.181)—
modulo {wy, wa,ws + Aw; }. Equations (8.176), (8.177) and (8.186) imply

0
Aywi A @1

0 dw;
0 dws

dwl
dWQ

} modulo {w1,ws,ws + Aw1}.
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Then, from (8.183), (8.184), (8.185),
dQs = —b(AMywi Adr +dAAwp) modulo {wy,ws,ws + A1},
which in turn implies
d\ + M@ = 0 modulo {wy,ws,wi,wa} .
Since {dz1,dz2,dz3,dz4} is another basis for {wi,ws, w1, ws} and, from (8.175) and (8.60),

w = dzg + videg — (f +vig)dey

01 = d(ve— fv1) + widf + 91dzg + (f + v1g + 2'119) dz1 , (8.187)
that dA is a linear combination of d (ve — fv1), dz1, dz2, dzs and dz4 ; this proves the statement
on A in (8.178).

Replacing w; and &y with zero and wy with ( )\)wl + Fw2 in the expression of 1 A Qg
obtained from (8.179) and (8.182) obviously yields only some terms in w; A wa, wi A W2 and
wsy A Wo, hence

14a)
b

Ql/\Qg = 0 modulo {Qg,djl,d}l,wl A wa, Wi A Wa, wo /\u')'g} .

Therefore, Equation (8.146) implies in particular that d€23 = 0 modulo {Qs, w1, 01, w1 Awa,wy A
Wa, W2 /\(,JQ}, i.e. modulo {bwg — Oé((dz + )\(4)1) + (b)\ — 1)W1, w1, W1, w1 Awa, w1 AWsa, ws /\u'J'Q}. From
(8.176), (8.177) and (8.186), we have :

dvi = 0 dvy = 0
dws = 0 dwy = —fywl/\w2(3)

modulo {bws — a(w2 + Awr) + (b)\ — w1, w1, @1, w1 Awa, w1 A Wa,ws Ada}. Hence, from (8.183),
(8.184), (8.185)

dQs = wi A <bw2(3> — ad) + bddA + d:)
a
+ (w4 dwr) A (Edb - da>
This implies in particular that
. db
byw! — adX + bddh + = = S
b modulo {w1, ws,wr,ws,d,Ws} . (8.188)

%db—da = 0

We have already shown above that d\ is a linear combination of wy,ws, w1, ws, @1 ; hence dA is a

linear combination of w1y, ws, w1, ws, &1, Ws, W1(3)' This and the above equations imply that db and

. . e e 3 3 .
da are linear combinations of wy, wo, wy, wo, W1, Wo, W1( ), w2( ). This yields the second statement

1(3),w2(3)} is another basis for {dz1,dza,dz3,dz4, dvy, dve,

in (8.178) for {wl,w2,w1,w2,d}1,d}2,w
doy, dog}.
Note that the second relation in (8.188) actually implies that adb—bd« is a linear combination

of wy,we,w,ws, W1,0e, i.e. that a/b depends on z1, 29, 23, 24, v1, v2 only (and not on 01, 02).

Step 3. If o, A and b satisfy (8.145)-(8.146) with b non vanishing, then X\ must be identically
zero.
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We prove, in coordinates, that (8.145)-(8.146) implies A = 0, in a symbolic computation
session conducted with Maple V, release 3, using the package 1iesymm.
We are omitting the Maple session here; it is in the original paper.

Step 4. If a, X and b satisfy (8.145) with X identically zero, then 55,1 cannot vanish and b must
be given by

b = =L (8.189)

Since A = 0, we have 01 = w9, {3 = w1 — bws + aws, but from lemma 8.7.6, d§2; satisfies
(8.134), i.e.
dwy = 0 modulo {ws, Q3, 3}

From lemma 8.7.8 with = Q3, Ay = 1, A = a and A3 = —b, the above relation implies that
b (bd3  —2) is identically zero on U, but we assume here that b does not vanish, hence 55%,1 — 2y

must be identically zero, and therefore (5%71 does not vanish (because v does not vanish), and b
is given by (8.189).

Step 5. If a, A and b satisfy (8.145)-(8.146) with X identically zero and b is given by b = ——,

there is a unique possible value for «, and f and g must be of the form (8.63)-(8.64)

This computation was in the same Maple V, release 3 session, that we are omitting.
Substituting A and b, (8.145)-(8.146) yields three equations. One is linear with respect
to a and yields «a; substituting in the two others yields two equations that simplify
into the PDEs (8.141)-(8.142).

8.8 Conclusion

The present paper provides, for the 4-dimensional affine system (8.5), some new necessary and
sufficient conditions for existence of linearizing outputs depending on x and u. These conditions
are easily computable. They also allow one to treat 3-dimensional non-affine systems. This is
very much related to dynamic feedback linearization, or flatness, as explained in section 8.2, but
this paper is however not a general answer to dynamic feedback linearizability of 4-dimensional
systems with 2 inputs, for the following three reasons that are subjects for future research to
end the study of this small dimension.

One restriction comes from the regularity assumptions. The example presented in section
8.5 shows that they are not necessary. A thorough treatment of singularities, or at least a clear
identification of the real singularities of dynamic feedback linearization is therefore not achieved.

We also restrict our attention to “endogenous feedback”. See [68, 40] for a discussion of
general dynamic feedback and endogenous dynamic feedback. Note that the authors of this
latter reference have announced a proof of the fact that general dynamic linearizability would
imply linearizability by endogenous dynamic feedback, at least away from some singularities.

We have further restricted the class of dynamic linearization by requiring that the linearizing
output depend on = and u only. The natural follow-up to this work is to decide whether systems
which are not (z, u)-dynamic feedback linearizable are simply not dynamic feedback linearizable
(at least endogenously), or if some are (z,u,u)-dynamic linearizable for example... In fact, no
example of a system of these dimensions which admits no pair of linearizing outputs depending
on x and u but admits some depending on more time-derivatives of v has ever been exhibited.
Since these dimensions are usually these of academic examples —because it is the smallest
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non-trivial ones— and have been studied a lot, it may seem reasonable to conjecture that the
systems that are proved in the present paper to be non (z,u)-dynamic linearizable are indeed
not linearizable by endogenous dynamic feedback.

Let us finally make a remark on the method of the proofs. In a sense, the present results
amount to giving conditions for some nonlinear partial differential equations to have solutions
(see section 8.2.6). Since the PDEs are high order —see (8.21)-(8.22), and for (z,u)-dynamic
linearization, the order is higher— one might think that some sophisticated tools for checking
integrability, like Spencer cohomology, should be involved. It turns out however that the proofs
are all elementary, and never make use of more sophisticated tools than Frobenius theorem.
Actually, when using the infinitesimal Brunovsky form and writing the equations for the coeffi-
cients of decomposition in elementary transformations of the invertible transformation “P (%)”’
instead of writing directly the equations for the linearizing outputs, as in the proof of theorem
8.4.1 or the “alternative” proof of case 6 in theorem 8.3.1, we use Frobenius theorem to write the
equations in a convenient way (like the equation (8.144)-(8.145)-(8.146) for theorem 8.4.1), but
then the arguments used to give conditions for existence of solutions to these equations are in a
sense even not first order like Frobenius theorem, but “zeroth order”, i.e. the solutions (a, A and
b in the case (8.144)-(8.145)-(8.146) may be explicitly computed (expression involving functions
in the equations of the system) from part of the equations, and the compatibility conditions are
obtained by substituting these expressions in the remaining equations. It is of course tempting
to ask whether in general when using the infinitesimal Brunovsky form to test for existence of
linearizing outputs depending on a pre-defined number of time-derivatives of the inputs, this fea-
ture always appears —the equations for the coefficients of the invertible transformation contain
enough non-differential equations to obtain them solving non-differential equations— or if this
is particular to the small dimensions considered here.

Appendix : Some facts on Pfaffian systems

In this section, we recall some very basic definitions on Pfaffian systems, and some precise
facts we are going to use. For details or proofs, see e.g. [100] or [18].

A Pfaffian system I of rank r around a point can be defined as a module (over smooth
functions) of differential 1-forms which is generated by r 1-forms which are point-wisely linearly
independent around this point, or also as an ideal of differential forms (of arbitrary degrees,
with the exterior product as “multiplication”), which has the peculiarity of being generated by
independent 1-forms. It is defined by giving r independent 1-forms. r 1-forms which generate
the same module define the same Pfaffian system.

A congruence like Q1 = Qy modulo {7, 72,...} where the €;’s are 2-forms and the n;’s
are 1-forms (we only need this) means modulo the ideal generated by {n1,n2, ...}, i.e. it means
that there exists some forms «; such that 1 — € = 91 Aag +1m2 Aag + ... it is equivalent to
(Ql—Qg)/\nl/\ng/\...:O

A Pfaffian system also defines an “orthogonal distribution”, spanned by the vector fields
which annihilate these 1-forms.

We will only be interested in the case m = 1 or m = 2, and we therefore speak of the Pfaffian
system [ = {w} or I = {wy,ws}.

It is completely integrable if it is, locally, generated by 1 (resp 2) exact 1-forms, or
equivalently, by Frobenius theorem, if dw = 0 modulo {w} (resp. dw; = 0 modulo {w;,ws} for
i = 1,2), or also if the orthogonal distribution being closed under Lie brackets. We call first
integral of the Pfaffian system, or of the orthogonal distribution a function A such that dh # 0
and dh € I.
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Derived System

For a given Pfaffian system I, consider the module made of the forms of degree 1 which are
in I and whose exterior derivative (form of degree 2) is also in I ; at points where it has constant
rank, this module defines a Pfaffian system called the derived system IV of T. Iterating this
process, one ends either with the zero Pfaffian system or with an integrable one. A Pfaffian
system is equal to its first derived system if and only if it is integrable. In the case of a Pfaffian
system of rank 1, either it is integrable or its derived system is zero; in the case of a Pfaffian
system of rank 2 {w;,ws}, either it is integrable, or there exists (non both zero) functions A;
and A9 such that

Adw; + Aodws = 0 modulo {wy,ws}

and in this case the first derived system is {\jw; + Aaw2} or there exists no such functions
(i.e. the restrictions of dw; and dws to the annihilator of {wi, w2} are two linearly independent
bilinear forms), and then the derived system is zero. The orthogonal distribution to the derived
system of a given Pfaffian system is spanned by the orthogonal distribution to this system plus
all the Lie brackets between two vector fields in this distribution :

IO = (1

Cartan Characteristic System

The Cartan characteristic system C(I) of a given Pfaffian system I may be defined through
the vectors that it annihilates :

cHt = {Xelt)[ X, 1t cIt}. (8.190)

It is always integrable if it has constant rank, and a Pfaffian system is integrable if and only if
it is equal to its Cartan characteristic system.

There is a basis of the Pfaffian system whose elements are linear combination of some d;,
with coefficients functions of the on ;’s only, where the 1);’s are all first integrals of C(I), and
C(I) is the smallest Pfaffian system having this property.

For a non-integrable system of rank 1 {w}, it is always possible, where the rank of the charac-

teristic system is constant, to find 2p independent 1-forms n; such that the rank of {w,n1,...,m2p}
is 2p+ 1 and

dw = mAne + n3An + ... + N2p—1 A2 modulo {w} (8.191)
and the characteristic system is then {w,n1,...,m2p} (and this is automatically completely in-
tegrable).

For a non-integrable system of rank 2 {wy,ws}, all we need is the following : if it is possible to
express this Pfaffian system with 4 variables x1, x2, x3, x4 (i-e. there exists a basis of this Pfaffian
system made of two 1-forms which are linear combinations of dx1, dx2, dxs, dx4 with coefficients
functions of x1, x2, X3, x4 only), then its characteristic system is {dx1,dx2,dxs,dx4}, and for
any forms 7; and 72 such that {wy,ws,n1,7m2} spans the same module as {dxi,dx2,dxs,dxa},
we have

dwp = wi AT + wa AT + A Ane (8.192)

for some 1-forms I';, ; and some functions \y.






Chapitre 9

Reproduction de I’article:

D. Avanessoff et J.-B. Pomet, “Flatness and
Monge parameterization of two-input systems,
control-affine with 4 states or general with 3 states”,

ESAIM Control Optim. Calc. Var., vol. 13 , pp. 237-264, 2007.

Abstract. This paper studies Monge parameterization, or differential flatness, of
control-affine systems with four states and two controls. Some of them are known to
be flat, and this implies admitting a Monge parameterization. Focusing on systems
outside this class, we describe the only possible structure of such a parameterization
for these systems, and give a lower bound on the order of this parameterization,
if it exists. This lower-bound is good enough to recover the known results about
“(x,u)-flatness” of these systems, with much more elementary techniques.

9.1 Introduction

In control theory, after a line of research on exact linearization by dynamic state feedback
[53, 22, 23], the concept of differential flatness was introduced in 1992 in[37] (see also [40, 41]).
Flatness is equivalent to exact linearization by dynamic state feedback of a special type, called
“endogenous” [37], but, as pointed out in that reference, it has its own interest, maybe more
important than linearity. An interpretation and framework for that notion is also proposed in
Chapters 6 and 7 or in [104]; see [71] for a recent review.

The Monge problem (see the the survey article [111], published in 1932, that mentions the
prominent contributions [48] and [20], and others) is the one of finding explicit formulas giving
the “general solution” of an under-determined system of ODEs as functions of some arbitrary
functions of time and a certain number of their time-derivatives (in fact [111] allows to change
the independent variable, but we keep it to be time). Let us call such formulas a Monge para-
meterization, its order being the number of time-derivatives.

The authors of [37] already made the link with the above mentioned work on under-determined
systems of ODEs dating back from the beginning of 20'" century ; for instance, they used [48, 20]
to obtain, in [88, 73] some results on flatness or linearizability of control systems.

Let us precise the relation between flatness and Monge parameterizability : flatness is exis-
tence of some functions —we call this collection of functions a flat output— of the state, the
controls and a certain number j of time-derivatives of the control, that “invert” the formulas of
a Monge parameterization, i.e. a solution t — (z(t),u(t)) of the control system corresponds to
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only one choice of the arbitrary functions of time appearing in the parameterization, given by
these functions. Let us call j the order of the flat output.

Characterizing differential flatness, or dynamic state feedback linearizability is still an open
problem [42], apart from the case of single-input systems [22, 20]. The main difficulty is that
the order of a parameterization or a flat output, if there exists any, is not known beforehand :
for a given system, if one can construct a parameterization, or a flat output, it has a definite
order, but if, for some integer j, one prove that there is no parameterization of order j, then it
might admit a parameterization of higher order, and we do not know any a priori bound on the
possible j’s. In the present paper, we consider systems of the smallest dimensions for which the
answer is not known ; we do not really overcome the above mentioned “main difficulty”, in the
sense that we only say that our class of systems does not admit a parameterization of order less
than some numbers, but the description of the parameterization that we give, and the resulting
system of PDEs is valid at any order.

Consider a general control-affine system in R* with two controls, where ¢ € R? is the state,
wy and wy are the two scalar controls and Xy, X7 and X5 are three smooth vector fields :

€= Xo(&) + X1 (&) + W Xo(€) .

In Chapter 8, one can find a necessary and sufficient condition on Xy, X1, X2 for this system
to admit a flat output depending on the state and control only (j = 0 according to the above
notations). Systems who do not satisfy this conditions may or may not admit flat outputs
depending also on some time-derivatives of the control (j > 0). This is recalled and commented
in section 9.2.4 and 9.5.

Instead of the above control system, we study a reduced equation (9.3) ; let us briefly explain
why it represents, modulo a possibly dynamic feedback transformation, all the relevant cases.
Systems for which the iterated Lie brackets of X7 and X5 do not have maximum rank can be
treated in a rather simple manner, see the first cases of Theorem8.3.1 ; if on the contrary iterated
Lie brackets do have maximum rank, it is well known (Engel normal form for distributions of
rank 2 in R*, see [18]) that, after a nonsingular feedback (w; = £°(&) + B4 (&)wy + B52(€)we,
i=1,2, with g113%2 — g1232.1 -£ (), there are coordinates such that the system reads

G=wi, &=71,6,8,8)+&ur, & =06(6,8,8,8) +&wr, & =w (9.1)

with some smooth functions v and §. One can eliminate w; and we and, renaming &1, &2, &3,&,
as x,y, z, w, obtain the two following relations between these four functions of time :

y=v(z,y,z,w) + 22, Z=90zy,zw)+wE (9.2)

(this can also be seen as a control system with state (x,y,z) and controls w and ). If ~v
does not depend on w, this system is always parameterizable, and even flat (see Chapter 8 or
Example 9.2.5 below). If, on the contrary, v does depend on its last argument, one can, around
a point where the partial derivative is nonzero, invert v with respect to w, i.e. transform the
first equation into w = g(x,y, 2,y — 2&) for some function g, and obtain, substituting into the
last equation, a single differential relation between x,y, z written as (9.3) in next section.

Note that (9.3) also represents the general (non-affine) systems in R?® with two controls that
satisfy the necessary condition given in [88, 96], i.e. they are “ruled” ; we do not develop this
here, see [7] or a future publication.

The paper technically focuses on Monge parameterizations of (9.3). The problem is unsolved
if g and h are such that system (9.1) does not satisfy the above mentioned necessary and
sufficient condition. We do not give a complete solution, but our results are more general than
—and imply— these of Chapter 8. The techniques used in the present paper, derived from the
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original proof of non-parameterizability of some special systems in [48] (see also [87]), are much
simpler and elementary that these of Chapter 8 : recovering the results from that paper in this
way has some interest in itself.

9.2 Problem statement

9.2.1 The systems under consideration

This paper studies the solutions ¢ — (x(t),y(t), 2(t)) of the scalar differential equation
2 = h(z,y,2,\) + g(z,y,2,\)&  with A=g—zz (9.3)

where g and h are two real analytic functions Q — R, € being an open connected subset of
R*. We assume that g does depend on \; more precisely, associating to g a map G : Q — R*
defined by G(z,y,2,\) = (z,y,2,9(x,y,2,\)), and denoting by g4 the partial derivative of g
with respect to its fourth argument,

g4 does not vanish on 2 and G defines a diffeomorphism Q — G(Q) . (9.4)
We denote by Q the open connected subset of R® defined from € by :
(2,9,2,8,9) €Q & (0,29 — 24) € Q. (9.5)

From ¢g and h one may define v and ¢, two real analytic functions G(2) — R, such that
G Yz,y, z,w) = (2,9, 2,7(z,y, z,w)) and § = ho G~L, i.e.

w=g(z,y,2,A) & A= y(z,y,2,w0) , (9.6)
h(z,y,z,\) =6(z,y,2,9(x,y,2,A)), ie (z,y,z,w)=h(zy,z vy zw). (9.7)

Then, one may associate to (9.3) the control-affine system (9.1) in R* with two controls, that
can also be written as (9.2) ; our interest however focuses on system (9.3) defined by g and h as
above. Let us set some conventions :

The functions v and § when using the notations ~ and 9, it is not assumed that they are
related to g and h by (9.6) and (9.7), unless this is explicitly stated.

Notations for the derivatives We denote partial derivatives by subscript indexes. For func-
tions of many variables, like p(u,...,u® v,...,v®) in (9.10), we use the name of the
variable as a subscript : ¢, means D /v ; Dy (k—1) Teans 9%p/dxdu =1 in (9.16-b).
Since the arguments of g, h, 7,  and a few other functions will sometimes be intricate func-
tions of other variables, we use numeric subscripts for their partial derivatives : ho stands
for Oh/0y, or gy 44 for 93g/ON3. To avoid confusions, we will not use numeric subscripts
for other purposes than partial derivatives, except the subscript 0, as in (xo, Yo, 20, 0, J0)
for a reference point.

The dot denotes, as usual, derivative with respect to time, and () the 7" time-derivatives.

The following elementary lemma —we do write it for the argument is used repeatedly throu-
ghout the paper— states that no differential equation independent from (9.3) can be satisfied
identically by all solutions of (9.3) :

Lemma 9.2.1. For M € N, let W be an open subset of R3*?M and R : W — R a smooth
function. If any solution I — R3, t — (x(t),y(t), 2(t)), with I some time interval, of sys-
tem (9.3) such that (2(t),z(t),..., M (t),y(t),... yM)(t)) is in W for all t in I, satisfies
R(z(t),y(t), ...,y M (), z(t),..., M) (t)) = 0 identically, then R is identically zero on W.
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Proof. For any X € W there is a germ of solution of (9.3) such that (z(0),z(0),...,z*)(0),
y(0),...,y™M)(0)) = X. Indeed, take e.g. for x(.) and y(.) the polynomials in ¢ of degree M
that have these derivatives at time zero; Cauchy-Lipschitz theorem then yields a (unique) z(.)
solution of (9.3) with the prescribed z(0). O

9.2.2 The notion of parameterization

In order to give rigorous definitions without taking care of time-intervals of definition of
the solutions, we consider germs of solutions at time 0, instead of solutions themselves. For O
an open subset of R", the notation C§°(R, O) stands for the set of germs at ¢ = 0 of smooth
functions of one variable with values in O, see e.g. [43].

Let k, ¢, L be some non negative integers, U an open subset of R¥+¢+2 and V' an open subset
of R2E+3. We denote by U C CS°(R,R?) (resp. V C C°(R,R?) ) the set of germs of smooth
functions t — (u(t),v(t)) (resp. t — (z(t),y(t),z(t)) ) such that their jets at ¢ = 0 to the order
precised below are in U (resp. in V) :

U = {(u,v) € CCR,R?)|(u(0),u(0),...,u"(0),0(0),...,09(0)) e U}, (9.8)
V = {(x,y,2) € Cg(R,R)|(2(0),y(0), 2(0), £(0), 5(0), ..., =" (0), 4" (0)) € V'}. (9.9)

These are open sets for the Whitney C* topology [43, p. 42].

Definition 9.2.2 (Monge parameterization). Let k, ¢, L be non negative integers, L > 0, k < £,
and X = (mo,yo,zo,jjo,yo,...,xéL), y(()L)) be a point in O x R2L-2 ((AZ is defined in (9.5)). A
parameterization of order (k,£) at X for system (9.8) is defined by

— a neighborhood V' of X in O x R2L-2

— an open subset U C RFtH+2 gnd

— three real analytic functions U — R, denoted @, ¥, x,
such that, with U and V defined from U and V according to (9.8)-(9.9), and T : U — C§° (R, R3)
the map that assigns to (u,v) € U the germ I'(u,v) at t =0 of

x(t) o(u(t),u(t),. .. ,ulk) (t),v(t),o(t),..., v (1))
t— [ y@t) | = v@),w),.. . . uB@),v@),od),...,000) |, (9.10)
2(t) x(u(t), w(t), ..., u® @), v(t),0(t),...,v0())

the following three properties hold :
1. for all (u,v) belonging to U, I'(u,v) is a solution of system (9.3),
2. the map T is open and T'(U) DV,

3. the two maps U — R? defined by the triples (Puk)> Vyk) s Xy ) and (@@, Yy s Xy0) are
identically zero on no open subset of U.

Remark 9.2.3 (On ordering the pairs (k,¢)). Since u and v play a symmetric role, they can
always be exchanged, and there is no lack of generality in assuming k < £. This convention is
useful only when giving bounds on (k,£). For instance, k > 2 means that both integers are no
smaller than 2.

Example 9.2.4. Consider the equation 2 =1y + (y — z&)% , i.e. (9.3) with g =\, h =1y (and
Q= R3). At any (w0, Yo, 20, T0, Y0, T0, 4o) such that o + i3 # 1, a parameterization of order
(1,2) is given by :

%+ 1 (1 —6)u + i

. o vutu o _U-vudou 9.11
S R S R | (0.11)
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It is easy to check that (x,y, z) given by these formulas does satisfy the equation, point 2 is true
because the above formulas can be “inverted” by u = —z+yx, v = x (this gives the “flat output”
see section 9.7), point 3 is true because 1y, Vi, Xo and Xy are nonzero rational functions. Here,
L =2 and V can be taken the whole set of (x,vy,z,&,1,%,9) € RT such that & + &3 # 1 and U
the whole set of (u, 1, v,0,9) € R® such that © + v # 1.

Example 9.2.5. Suppose that the function v in (9.2) depends on x,y,z only (this is treated
by case 6 of Theorem8.3.1). For such systems, eliminating w does not lead to (9.3), but to the
simpler relation § — z& = y(x,y, z). One can easily adapt the above definition replacing (9.3) by
this relation. This system y — z& = ~(x,y,2z) admits a parameterization of order (1,1) at any
(o, Yo, 20, Z0, Yo) such that o + v3(zo, Yo, 20) 7# 0.

Proof. In a neighborhood of such a point,, the map (x,&,y,2) — (x,%,y,v(x,y,2) + 2&) is a
local diffeomorphism, whose inverse can be written as (z,%,y,y) — (z,%,y, x(x,2,v,9)), thus
defining a map x. Then x = u,y = v,z = x(u, 4, v,0) defines a parameterization of order (1,1)
in a neighborhood of these points.

Remark 9.2.6. The integer L characterizes the number of derivatives needed to describe the
open set where the parameterization is valid. For instance, in Fxamples 9.2.4 and 9.2.5, L must

be taken no smaller than 2 and 1 respectively. Obviously, a parameterization of order (k,f) at
S (L) (L) (L+1) | (L+1) (L)
(x07y07z07$0>y03"'7m0 5.

Yo ) is also, for L' > L and any (zq " 7,y cnxy Ly ), a
parameterization of the same order at (xo, Yo, 20, €0, Yo, - - - ,xéL/), y(()L/)).
The above definition is local around some jet of solutions of (9.3). In general, the idea of
a global parameterization, meaning that I' would be defined globally, is not realistic; it is not
realistic either to require that there exists a parameterization around all jets (this would be
“everywhere local” rather than “global”) : the systems in example 9.2.5 admit a local paramete-
rization around “almost every” jets, meaning jets outside the zeroes of a real analytic function
(namely jets such that & + v3(x,y,2) # 0). We shall not define more precisely the notion of
“almost everywhere local” parameterizability, but rather the following (sloppier) one.

Definition 9.2.7. We say that system (9.3) admits a parameterization of order (k, ) somewhere

in Q if there exist an integer L and at least one jet (xo, Yo, 20, 0, Yo, - - - ,l‘(()L), y(()L)) € () x R2L-2
with a parameterization of order (k,{) at this jet in the sense of Definition 9.2.2

In a colloquial way this is a “somewhere local” property. Using real analyticity, “somewhere
local” should imply “almost everywhere local”, but we do not investigate this.

9.2.3 The functions S, T and J

Given g, h, let us define three functions .S, T' and J, to be used to discriminate different cases.
They were already more or less present in Chapter 8. The most compact way is as follows : let
w, w' and 7 be the following differential forms in the variables x,y, z, A :

w' = dy—zdz, = 20 de+ (gaaha — grhaa)w' —gaa(dz —gda) | (9.12)

w
n = dz—gdr — hgw' .

From (9.4), wAw!'An = 2¢g42 dzA dyA dz # 0. Decompose dwAw on the basis w,w!,n, d\, thus
defining the functions S, T" and J (we say more on their expression and meaning in section 9.4) :

S T
dwhw = —<2gd)\/\n—|—2d)\/\w1+,]w1/\77>/\w. (9.13)
4
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Example 9.2.8. Le us illustrate the computation of S, T and J on the following three parti-
cular cases of (9.83). For each of them, the table below gives the differential forms w and n, the
decomposition of dwAw on w',w,n, d\ and the resulting S, T, J according to (9.13). System (a)
was already studied in Example 9.2.4.

(a) 2=yt (Gri)i, (b):5=y+(G—2d)G—(2=1)F), (c):%=y+(y—zd)% . (9.14)

T s e b e dwhw | ST
dx
(a) A Yy ds — \do 0 0,0, 0
dy — (z —1)dx
(b) A Y+ A2 dzz/—g\d:c —)2)\w1 wIAnAw | 0,0, -1
2
(c) A2 Y Zﬁtiédjx %d)\/\n/\w —12, 0, 0

9.2.4 Contributions and organization of the paper

fS=T=J=0,1ie dwAw =0, system (9.3) admits a parameterization of order (1,2),
at all points except some singularities. This is stated further as Theorem 9.4.3, but was already
contained in Chapter 8. We conjecture that these systems are the only parameterizable ones of
these dimensions, i.e. system (9.3) admits no parameterization of any order if (S, T, J) # (0,0, 0),
ie. if dwAw #0.

This is unfortunately still a conjecture, but we give the following results, valid if (S, T, J) #
(0,0,0) (recall that k < ¢, see Remark 9.2.3) :

— system (9.3) admits no parameterization of order (k,¢) with k < 2 or k = ¢ = 3 (Theo-

rem 9.5.4),

— a parameterization of order (k,¢) must come from a solution of the system of PDEs Skwf
(Theorem 9.5.1),

— since a solution of this system of PDEs is also sufficient to construct a parameterization
(Theorem 9.3.7), the conjecture can be entirely re-formulated in terms of this system of
partial differential relations.

Note that this allows one to recover the results from Chapter 8 on (z,u)-flatness’. See Re-
mark 9.5.6 for details.

The paper is organized as follows. Section 9.3 is about the above mentioned partial differential
system 5,326 . Section 9.4 is devoted to some special constructions for the case where S =T =0,
and geométric interpretations. The main results are stated in Section 9.5, based on sufficient
conditions obtained in Sections 9.3 and 9.4, and necessary conditions stated and proved in
Section 9.6. Section 9.7 and 9.8 comment on flatness versus Monge parameterization and then
give a conclusion and some perspectives.

9.3 A system of partial differential equations

This section can profitably be skipped or overlooked in a first reading ; the reader will come
back when needed to this material that might appear, at first sight, somehow disconnected from
the thread of the paper.

It defines 5&6 and its “regular solutions”, proves that a regular solution induces a parame-
terization of order (k, /), and that no regular solution exists unless k > 3 and ¢ > 4.

!The term “dynamic linearizable” in Chapter 8 is synonymous to “flat” here.
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9.3.1 The equation S,Qf, regular solutions

For k£ and ¢ some positive integers, we define a partial differential system in k& + ¢ + 1
independent variables and one dependent variable, i.e. the unknown is one function of k& +
{ + 1 variables. The dependent variable is denoted by p and the independent variables by
ity uF Y v b, oD, Although the names of the variables may suggest “time-derivatives”,
time is not a variable here.

In RFt+1 with the independent variables as coordinates, let F' be the differential operator
of order 1

k-2 5 -2 5
_ (i+1) (i+1)
F = Z%u O] + ng EROR (9.15)

where the first sum is zero if £ <1 and the second one is zero if £ < 1. N

Let © be an open connected subset of R* and ~,d two real analytic functions Q — R such
that 4 (pai"tial derivative of v with respect to its 4" argument, see end of section 9.2.1) does not
vanish on €). Consider the system of two partial differential equations and three inequations :

Putc—1 (FPe — 8(%, D, Da, Pa)) — Pyute—1) (FP — (2,0, P2, Paa)) =0, (a)
Putk=1) Pyp(e=1) — Pgyh—1) Pye—1) = 0, (b)
EL) S purn £0, () (9.16)
Py # 0, (d)
Y1+ V2 Px + V3 Dz +’Y4px:c:(:_6?é0- (e)

To any p satisfying Ek'yf , we associate two functions ¢ and 7, and a vector field F :

_ Dy p = TP E@ PP ) g d 0

: = . 9.17
Putk—1) Pute-1) T out 1 T gD (9-17)

We also introduce the differential operator D (see Remark 9.3.2 on the additional variables
&, .. Dy
k+0—2

oy 0
_ _9 (i+1)_9_
D=F+1orf—5+ ; R NOR (9.18)

Definition 9.3.1 (Regular solutions of Elz’f ). A regular solution of system 5,1’46 1s a real analytic
function p : O — R, with O a connected open subset of REMH1 such that the image of O by
(z,p, Pz, Pza) 15 contained in Q, (9.16-a,b) are identically satisfied on O, the left-hand sides of
(9.16-c,d,e) are not identically zero, and, for at least one integer K € {1,...,k+ ¢ — 2},

ED%p#£0 (9.19)

(not identically zero, as a function of u,. .. cuD g o 0D g 2B on O x RK).

We call it K-regular if K is the smallest such integer, i.e. if ED'p =0 for alli < K — 1.

Remark 9.3.2 (on the additionnal variables i, . . . k1) gy D). These variables appear in the
expression (9.18). Note that D is only applied (recursively) to functions of u, ..., u* =1 z v, ... vl
only ; hence we view it as a vector field in RFTHL with these variables as parameters. In fact,
D is only used in ED'p, 1 < i < k+ /¢ — 1. This is a polynomial with respect to the variables
&, %, ..., 29 with coefficients depending on u, ..., u'* "V z. v, ... 0 via the functions p, v,
§ and their partial derivatives. Hence ED'p = 0 means that all these coefficients are zero, i.e. it
encodes a collection of differential relations on p, where the spurious variables &, %, ..., z™ no
longer appear. Likewise, ED'p # 0 means that one of these relations is not satisfied.

0—1)
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Definition 9.3.3. We say that system 5,]25 admits a regular (resp. K-regular) solution somew-

sz-i—f—i—l

here in if there exist at least an open connected O C and a regular (resp. K-regular)

solution p : O — R.

Remark 9.3.4. [t is easily seen that p is solution of Slgf if and only if there exist o and T such
that (p,o,T) is a solution of

Fp—i_Tpu(k*l) :7(x7p7pr7pxx) Ep:07 0'33207

9.20
pr + Tp;mu(k—l) = 5(:U>p7px7pxx) Dy (k—1) 7£ 07 Tx 7& 07 g # 0 ( )

Indeed, (9.16) does imply the above relations with o and T given by (9.17) ; in particular, T, # 0
is equivalent to (e) and o # 0 to (d); conversely, eliminating o and T in (9.20), one recovers
5,]’@6. Note also that, with g and h related to v and 6 by (9.6) and (9.7), any solution of the
above equations and inequations satisfies

Dpy = h(z,p, pa, Dp — po) + g(@, P, Pz, Dp — pai)d . (9.21)
The following will be used repeatedly in the paper :

Lemma 9.3.5. If p is a solution of system 5137(6 and
1. either it satisfies a relation of the type p, = a(z,p) with a a function of two variables,
2. or it satisfies a relation of the type py, = oz, p,py) with o a function of three variables,

3. or it satisfies two relations of the type ppax = (T,D,Pa,Paz) and Fpyy + TD 0 k-1) =
(x, P, Pry Paz), With ¥ and o two functions of four variables,

then it satisfies ED'p = 0 for all i > 0 and hence is not a regular solution of S;f .

Proof. Point 1 implies point 2 because differentiating the relation p, = a(x, p) with respect to =
yields pye = ag(x, p) + prop(z, p). Likewise, point 2 implies point 3 : differentiating the relation
Pzx = a(m,p,px) with respect to x yields Prxx = ax(a:,p,px) +pxozp(l’,p,px) +p:carapz (x,p,px)
while differentiating it along the vector field F + 79/0u*~Y and using (9.20) yields Fp,, +

TPyguth—1 = V(& P; Pz, Paa) (T, P, Da) + 0(2, P, Doy Paw) O, (T, P, Do)
Let us prove that point 3 implies ED'p = ED'p, = ED'p,, = 0 for all ¢ > 0, hence the
lemma. It is indeed true for ¢ = 0 and the following three relations

Dp = ~(x,p, pzs Do) ¥ E Dz s Dpz = 6(x, P, Dzy Daa)+E Doz, DPaz = V(2 D, Pzy Daa)+3 (X, D, Py D)

that are implied by (9.18), (9.20) and the two relations in point 3 allow one to go from ¢ to ¢+ 1
(ED'z = Ex') = 0 and ED' = Fx(+1) = 0 from the very definition of D and E). O]

9.3.2 The relation with Monge parameterizations

Let us now explain how a Monge parameterization for system (9.3) can be deduced from a
regular solution p : O — R of 5,:7’@5. This may seem anecdotal but it is not, for we shall prove
(cf. sections 9.5 and 9.6) that all Monge parameterizations are of this type, except when g and
h are such that dw Aw =0 (see (9.12)-(9.13)).

We saw in Remark 9.3.4 that (9.16-e) is equivalent to 7, # 0; let (uo, . .. ,u((]kfl), 0, VO, - - -
v((f*l)) € O be such that 7, (u, ... ,u(kfl),:vo,vo, . ,v(()éfl)) # 0. Choose any (ugk),v((f)) € R?
(for instance with v(()e) = 0) such that

u(()k) —o(ug,. .., u(()k_l), Vg, . . . ,v((f_l)) v(()ﬁ) = 7(ug, ... ,u(()k_l),:co,vo, e ,U(()K_l ) . (9.22)
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Then, the implicit function theorem provides a neighborhood V' of (uy, ... ,uék), V0, - - - 7@(()@)) in
R*++2 and a real analytic map ¢ : V' — R such that o(ug, . .. ,u((]k), v, . - - ,v((f)) = ¢ and
T(u, . .. a1 o(u--- v(e)), v,... 70(4—1)) = u® — o(u,..., w1y, ,v(z_l)) v(l@9.23)

identically on V. Two other maps V' — R may be defined by

w(u,...,u(k),v,...,v(g)) = p(u,...,u(kfl),go(u-),v,...,v(gfl)), (9.24)
,v,...,v(g)) = pz(u,...,u(k_l),gp(n-),v,...,v(g_l)). (9.25)

From these ¢, ¥ and y, one can define a map I' as in (9.10) that is a candidate for a
parameterization. We prove below that, if p is a regular solution of Slzf, then this I' is indeed
a parameterization, at least away from some singularities. The following lemma describes these
singularities; it is proved at the end of the paper, page 231.

Lemma 9.3.6. Let O be an open connected subset of RFHH and p : O — R be a K-regular
solution of system 51326 , see (9.16). Define the map m: O x RE — RE+2 py

px(u ce (kfl) x v - U(£71)>
p(uu(k_l)’x v - ,U(E ))
W(uu(k_l)’x,fuU(e_l)’mx(K)) — Dp(uu(k_l),$ v - 'U(K ) )

(9.26)
There exist two non-negative integers io < k and jo < ¢ such that io + jo = K +2 and
det <6u(k—io) 7 Guk—1) gyle—do) 7 6@({_1)> (9'27)

is a nonzero real analytic function on O x RX.

We can now state precisely the announced sufficient condition. Its interest is discussed in
Remark 9.5.5.

Theorem 9.3.7. Let p : O — R, with O C R¥HL open, be a K -regular solution of system
Sk 55, and ig, jo be given by Lemma 9.3.6. Then, the maps p,v,x constructed above define a
pammetemzatwn T of system (9.3) of order (k,f) (see Definition 9.2.2) at any jet of solutions

(:Eo,yo,zo,:vo,...,:c(() ),yo,...,yé )) such that, for some uo,...,u(()k_ ),vo,..., (= 1),
(ug, . .. ,u(()k_l),xo,vo, o ,v[()f_l)) €0,
k— —
ZO.:px(UOw"vu(() 1),’1)0,...,11(() 1)7x0>7 ) (928)
y(()l) = D'p(uo, ..., u(()k_l), Vo v(()é_l),xg, e ,m(()z)) 0<i<K,
the left-hand sides of (9.16-c,d,e) are all nonzero at (ug, .. .,u(k_l),xo,vo, . 77)(@—1) , and the
0 0
function EDXp and the determinant (9.27) are nonzero at point
(uo, - . . u(()k 1) 0,...,x(()K),vo,...,véz_l)) €0 xRE .

Proof. Let us prove that I given by (9.10), with the maps ¢, ), x constructed above, satisfies
the three points of Definition 9.2.2. Differentiating (9.23) with respect to u*) and v yields
O Tz =1, 0Ty = —0o, hence the point 3 (o # 0 from (9.20)). To prove point 1, let u(.),v(.)
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be arbitrary and z(.),y(.), z(.) be defined by (9.10). Differentiating (9.10) with respect to time,
using relations (9.24) and (9.25), taking u(*)(¢) from (9.23), one has

§(t) = Fp+ pyen + 0O Ep+i(t) (1), 2(t) = Fpo + oy g1 + v () Epy + & (t) paa

where F is given by (9.15) and the argument (u(t) ... u* =D (), z(t),v(t) ... v D(t)) for Fp, Fp,
Ep, Epe, T, Dy yy(k-1)5 Pyk—1) and p,, is omitted. Then, (9.20) implies, again omitting the argu-
ments of prs, ot has §{t) = 7(x(t), y(t), (1), pra) + () (1), and 2(t) = 3(2(2), (1), 2(t), paz) +
Pra®(t). The first equation yields py, = g(x(t),y(t), z(t),y(t) — z(t)&(t)) with g related to v by
(9.6), and then the second one yields (9.3), with h related to ¢ by (9.7). This proves point 1.
The rest of the proof is devoted to point 2.

Let t — (z(t),y(t),2(t)) be a solution of (9.3). We may consider I'(u,v) = (z,y,2) (see
(9.10)) as a system of three ordinary differential equations in two unknown functions u, v :

u® —o(u, . uF D v DO B e, o)) = 0, (9.29)
plu, ..., u® D g o oEDYy =y (9.30)
Doty ..., u VD g v, v(é_l)) = z. (9.31)

Differentiating (9.30) K +1 times, substituting u*) from (9.29), and using the fact that ED’p = 0
for i < K (see Definition 9.3.1), we get

_dy
T dti
vO(t) EDEp (u(t), ..., u* V@), 0),..., 0 V@), 2(t),..., 250 1))

Dp (u(t), ..., u™ V@), v(),..., 0" V@), z),...,20()) ), 1<i<K, (9.32)

B B dK+1y
+ DXy (u(@), ..., u* V@), o), .. 0EV@), 2(), ..., 2 ET(@) = (1) (9:33)
Equations (9.30)-(9.31)-(9.32) can be written .
Y
ﬂ(u,...,...,u(kfl),az,v,...,v(gfl),:t,...,x(K)) = Y (9.34)
y )

with 7 given by (9.26). From the implicit function theorem, since the determinant (9.27) is
nonzero, (9.30)-(9.31)-(9.32) yields u(k=%) . y*=1) y=do) (=1 a5 explicit functions of

wy .. ukmio=) o do=) g () y,...,y(K) and z. Let us single out these giving
the lowest order derivatives :

u(kiio) — fl(u’ . ’u(kflfiofl)
p—io) — f2(u, o 7u(k—l—z‘o—l)

I

,...,v(e’jofl),x,...,x(K),z,y,...,y(

" Y
RN o Lt I GO N VR T GO0 (9.35)

Let us prove that, provided that (z,y, z) is a solution of (9.3), system (9.35) is equivalent to
(9.29)-(9.30)-(9.31), i.e. to I'(u, v) = (x,y, z). It is obvious that any t — (u(t), v(t), z(t), y(t), z(¢))
that satisfies (9.3), (9.29), (9.30) and (9.31) also satisfies (9.35), because these equations were
obtained from consequences of those. Conversely, let t — (u(t),v(t), z(t), y(t), z(t)) be such that
(9.3) and (9.35) are satisfied ; differentiating (9.35) and substituting each time z from (9.3) and
(ulF=0) y(¢=30)) from (9.35), one obtains

wb=to+d) = fLi(y, . yk—1=i0=1) o pl=do=1) g p(KHD) g yEF)) e N,

piotd) = 20 (y, ... ub—1=00=1) g o pWdo=l) g () gy g (KHD)) e N
(9.36)
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Now, substitute the values of u(*=) k) 4(t=jo)  ® from (9.36) into (9.29), (9.30)
and (9.31); either the obtained relations are identically satisfied, and hence it is true that any
solution of (9.3) and (9.35) also satisfies (9.29)-(9.30)-(9.31), or one obtains at least one relation
of the form (recall that k < ¢) :

R(u, ... ,uF=1=0=0 o pmi0=h) g (BHO oy Ly D) = 0.

This relation has been obtained (indirectly) by differentiating and combining (9.3)-(9.29)-(9.30)-
(9.31). This is absurd because (9.29)-(9.30)-(9.31)-(9.32)-(9.33) are the only independent rela-
tions of order k,¢ obtained by differentiating and combining? (9.29)-(9.30)-(9.31) because, on
the one hand, since D¥p # 0, differentiating more (9.33) and (9.29) will produce higher order
differential equations in which higher order derivatives cannot be eliminated, and on the other
hand, differentiating (9.31) and substituting z from (9.3), u®) from (9.29) and ¢ from (9.32) for
i = 1 yields the trivial 0 = 0 because p is a solution of Ekvf , see the proof of point 1 above.
We have now established that, for (z,y, z) a solution of (9.3), I'(u,v) = (x,y, 2) is equivalent
to (9.35). Using Cauchy Lipschitz theorem with continuous dependence on the parameters, one
can define a continuous map s : V — U mapping a germ (x, y, z) to the unique germ of solution of
(9.35) with fixed initial condition (u,...,u*=%0=1 y . 0=y = (y,, ..., u(()kfiofl), V0, -+ -

v((]f_jo_l)). Then s is a continuous right inverse of I', i.e. I' o s = Id. This proves point 2. O

9.3.3 On (non-)existence of regular solutions of system E,gf

Conjecture 9.3.8. For any real analytic functions v and § (with 4 # 0), and any integers k, ¢,
the partial differential system Eky’f (see (9.16)) does not admit any regular solution p.

An equivalent way of stating this conjecture is : “the equations ED'p = 0, for 1 < i <
k 4 ¢ — 2, are consequences of (9.16)”. Note that “EDp = 0” in fact encodes several partial
differential relations on p; see Remark 9.3.2. If v and § are polynomials, this can be easily
phrased in terms of the differential ideals in the set of polynomials with respect to the variables
oo uB D e 0D with 4+ 0+ 1 commuting derivatives (all the partial derivatives
with respect to these variables).

This is still a conjecture for general integers k and ¢, but we prove it for “small enough” k, ¢,
namely if one of them is smaller than 3 or if £ = ¢ = 3. The following statements assume k < ¢
(see remark 9.2.3).

Proposition 9.3.9. If system 5,325 , with k < £, admits a reqular solution, then k > 3, £ > 4
and the determinant 7

Dy k-1) Dy (k—2) Dy (k-3)

Pautk=1)  Dgyk—2)  Payy(h—3) (9.37)

Prauw®-1  Pray®=2) DPygy(k—3)

is a nonzero real analytic function.

Proof. Straightforward consequence of Lemma 9.3.5 and the three following lemmas, proved
pages 232 through 237. O

2 In other words, (9.29)-(9.30)-(9.31)-(9.32)-(9.33), as a system of ODEs in u and v, is formally integrable (see
e.g. [18, Chapter IX]). This means, for a systems of ODEs with independent variable ¢, that no new independent
equation of the same orders (k with respect to w and ¢ with respect to v) can be obtained by differentiating
and combining these equations. It is known [18, Chapter IX] that a sufficient condition is that this is true when
differentiating only once and the system allows one to express the highest order derivatives as functions of the
others. Formal integrability also means that, given any initial condition (u(0),...,u™ (0),v(0),...,v*(0)) that
satisfies these relations, there is a solution of the system of ODEs with these initial conditions.
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Pyk—1)  Pyk-2) —0
- b

Ppy(k=1)  Dgy(k—2)
then around each point such that p,u—1) # 0, there exists a function o of two variables such that

a relation p, = a(x,p) holds identically on a neighborhood of that point.

Lemma 9.3.10. If p is a solution of system 8,2%5 and either k =1 or

Lemma 9.3.11. Suppose that p is a solution of Ekvf with

(>k>2, p,e-1#0, R

0. 9.38
pq}u(k_l) pq}u(k_Q) # ( )

If either k = 2 or the determinant (9.37) is identically zero, then, around any point where the
two quantities in (9.38) are nonzero, there exists a function « of three variables such that a
relation py o = oz, p, pe) holds identically on a neighborhood of that point.

Lemma 9.3.12. Let k = ¢ = 3. For any solution p of 53755 , in a neighborhood of any point where
the determinant (9.37) is nonzero, there exist two functions o and ¥ of four variables such that
Pazz = T, D, Pz, Paz) and Fpye + 7Dy 1) = V(X D, Pa, Paa) identically on a neighborhood of
that point.

9.4 Remarks on the case where S =7 = 0.

9.4.1 Geometric meaning of the differential form w and the condition
S=T=0

For (z,y,z) such that the set A = {\ € R, (z,y,2,\) € Q} is nonempty, (9.3) defines, by
varying ) in A and & in R, a surface ¥ in [the tangent space at (z,v, 2) to] R®. Fixing X in A and
varying 4 in R yields a straight line Sy (direction (1, z, g(z,y, 2, A))). Obviously, ¥ = (Jycx Si;
> is a ruled surface. For each A € A, let Py be the osculating hyperbolic paraboloid to % along
Sy, i.e. the unique® such quadric that contains Sy and has a contact of order 2 with ¥ at all
points of Sy. Its equation is, omitting the argument (z,y, z, A) of h and g,

. . . (ha4gs — gaahs) . . gaa . . > i—gi—h hy,. )
—zr— AT+ —zk— A+ z—gt—h) | ———F+— (Y —22—A) =0.
=z =) (4 PO gy B (o gp ) EEEEER M Gy

With w, w!, n defined in (9.12) and ¢ the vector with coordinates &, 7, 2, the above equation

reads ) )

(W, &) + (haags — gaasha) N\ + guh (0, §) —h _
2g4* 94

- ("8 - 0,

that can in turn be rewritten (w!,€)(w,€) — (W3, €) — a® = 0, with w® and a° some differential
form and function; w, w? and a® are uniquely defined up to multiplication by a non-vanishing
function ; they encode how the “osculating hyperbolic paraboloid” depends on x,y, z and A.

We will have to distinguish the case when S and T, whose explicit expressions derive from
(9.12) and (9.13) :

S =2g19a44 — 3944>, T =2gshsaa — 39s4haa, (9.39)

3General hyperbolic paraboloid : (audc +a'?Y + alSZ) (ami +a??Y + a2SZ) +a3i+a®?Y +a3Z+a° =0,

where the matrix [a%] is invertible and Y, Z stand for § — z& — ), 2 — g& — h. It contains Sy if and only if a*! =
31 _ 0 _ 13 _ 33 _ _ 12 21 327 _ 33 22 _ 1 21 2

a”" =a = 0. Contact at order 2 means a™> =0, a™ = —a "a” /g4, a°° = —h4a™, 0™ = 507 (gahas — gaaha)/ga~,
23 _ 1,21

_ 2 s 12 21 _
a” = 3a g44/g4 . Normalization : ¢ = o = 1.
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are zero. From (9.13), it means that the Lie derivative of w along 9/0\ is co-linear to w, and
this is classically equivalent to a decomposition w = k&? where k # 0 is a function of the four
variables x,y, z, A but &2 is a differential form in the three variables x,, z, the first integrals of
0/0\. Then, one can prove that the form &3 = w?/k and the function a° = a"/k also involve the
variables z,y, z only. From w’s expression, one can take for instance k = g44 or k = ggas — 294>
(they do not vanish simultaneously because g4 does not vanish). Hence S = T = 0 if and only
if, for each fixed (x,y, z), the osculating hyperbolic paraboloid Py in fact does not depend on A
i.e. the surface X itself is a hyperbolic paraboloid, its equation being

(W, & &) + (@& +a’ =0, (9.40)

where £ is the vector of coordinates #,7, 2. This yields the following proposition?, where the
functions a°, a', a2, b°, b', &, ¢! of x,y, 2 are defined by

w . wd a®
W% = o= blde +a’w! —éldz, &% = = Wde+alw! —Pdz, a° = = (9.41)
Proposition 9.4.1. If S and T, given by (9.12)-(9.13), or (9.39), are identically zero on €2,
then, for any (xo,v0, 20, Ao) in Q, there exist an open set W C R3, an open interval I C R, with
(20, %0, 20, \o) € W x I C Q, and seven smooth functions W — R denoted by a°, a', a2, v, b,
&, et such that & + &'\ does not vanish on W x I, el0 — b1éY does mot vanish on W, and, for

(z,y,2,\) e W x I, % €R and 2 € R, equation (9.3) is equivalent to

A (B @,y 20 + @2, y, 2N = My, 2)2 )+ (e, 2)i + 0l (2,9, 2)A = & (w,y,2)2 ) 42,5, 2) = 0.

9.4.2 A parameterization of order (1,2) if S=T=J=0

It is known Chapter 8 that system (9.3) is (z, u)-flat (see section 9.7) if S =T = J = 0. For
the sake of completeness, let re-state this result in terms of parameterization. We start with the
following particular case of (9.3) :

z=k(z,y,2) XN+ a(z,y,2) A+ b(z,y,2) &+ c(z,y,z) with A\=9— 22 (9.42)

where k does not vanish on the domain where it is defined. Note that Example 9.2.4 was of this
type with k =1, a = b = 0, ¢ = y. For short, define the following vector fields :

X0=c— Xlzg—i—zg—i—bg, X2:£+CL2, XSZHQ.
z oy 0z 0z

Note that, for h an arbitrary smooth function of =, y and z, X°h, X'h, X2h, X3h also depend
on x, ¥, z only.

Lemma 9.4.2. System (9.42) admits a parameterization of order (1,2) at any
(170, Yo, =0, jjOv y(]v jOv yﬂ) such that

kio+r7EG+ (X 'k — X3+ 2ak) i+ (X a+ Xk — X3c— X?b+a®)dg+ X%a— XPc # 0. (9.43)

* We introduced the osculating hyperbolic paraboloid because it gives some geometric insight on w, S and T,
but it is not formally needed : Proposition 9.4.1 can be stated without it, and proved as follows, based on (9.39)
(see also [7]) : the general solution of S = 0 is a linear fractional expression g = (Z;O + I;I)\)/(éo +ét )\) where 8°,
b', &°, é' are functions of z, y, z only —this is known, for S/(g4)? is the Schwartzian derivative of g with respect
to its 4" argument, but anyway elementary— and g4 # 0 translates into poet — bte® # 0; then T = 0 yields
h= (do +a' A+ d2A2)/(éO + él)\) with a°, @', &2 functions of x,y, z. With such ¢ and h, multiplying both sides
of (9.3) by &° 4 '\ yields the equation in Proposition 9.4.1.
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Proof. From (9.43), the two vector fields Y = X?+#X3 and Z = [ X"+ X!, X2+ X3]+5X3
are linearly independent at point (zo, Yo, 20, €0, Zo). Let then h be a function of (z,y, z, &) such
that Yh = 0 and Zh # 0; its “time-derivative along system (9.42)”, given by h = X +
(th)x' + (Yh))\ + (8h/89’c)5é, does not depend on A : it is a function of (x,y, 2,4, &) ; also,
since Yh = 0, one has Yh = Zh; finally, Zh # 0 implies that dh A dh A dz A di A dF #
0. In turn, this implies that (z,vy, z,&,%) — (h(x,y,z,a’t),iz(x,y,z,a'c,jj),a:,j:,i) defines a local
diffeomorphism at (xg, yo, 20, To, Zo). Let 1) and x be the two functions of five variables such that
the inverse of that local diffeomorphism is (u, @, v,0,9) — (v, ¥ (u, @, v, 0,9), x(u, @, v, 0,9), 0, V).
The parameterization (9.10) is given by : x = v,y = ¥ (u, 4, v,0,9), z = x(u, u, v, 0, V). O

Theorem 9.4.3. If S =T =J =0, then system (9.3) admits a parameterization of order (1,2)
at any (xo, Yo, 20, o, Yo, Lo, o) € (Q X RQ) \ F, where F C Q x R? is closed with empty interior.

Proof. From Proposition 9.4.1, (9.3) and (9.40) are identical. Since d@? A @% = 0 (see (9.13)-
(9.41)), there is a local change of coordinates (%,7,2) = P(x,y,z) such that &? = k’dZ and
w! = K'(dy — 2dz) with k" # 0, k¥ # 0. Hence P transforms (9.40) into (9.42), for some
K,a,b,c. Lemma 9.4.2 gives ¢, 1, x defining a parameterization of order (1,2) for this system.
Then P~ o ¢, P71 01, P71 o x define one for the original system (9.3), or (9.40) ; (ﬁ X RQ) \ F
is the inverse image by P of the set defined by (9.43). O

9.4.3 A normal form if S=T =0 and J #0

Proposition 9.4.4. Assume that the functions g and h defining system (9.3) are such that S
and T defined by (9.13) or (9.39) are identically zero on 2, and let (xo, Yo, 20, Ao) € 2 be such
that J(SL‘Q, Yo, 20, )\0) 75 0.

There exist an open set W C R® and an open interval I C R such that (xo,%0, 20, \o) €
W x I C Q, a smooth diffeomorphism P from W to P(W) C R3 and siz smooth functions
P(W) — R denoted k, «, 3, a, b, ¢ such that, with the change of coordinates (Z,7,2) = P(z,y, z),
system (9.3) reads

=k(2,3,2) (§— a(d,9,2)2) ( — B(Z,5,2) %) + a(Z,§,2) T +b(&,7,2)§+ c(&,7,2) (9.44)
and none of the functions k, o — 3, az and B3 vanish on W.

Proof. From Lemma 9.4.1, we consider system (9.40). Let P!, P? be a pair of independent first
integrals of the vector field ¢! <a% + z%) + 51%; from (9.41), w!',&? span the annihilator of

this vector field, and hence are independent linear combinations of dP' and dP? : possibly
interchanging P! and P? or adding one to the other, there exist smooth functions k', k2, f1, f2
such that &' = k' (dP2 — f dPl), fL—f240, k' 40,3 =1,2. Now, take for P? any function
such that dP' A dP? A dP3 # 0; decomposing &3, we get three smooth functions p°, p*, p? such
that @3 = p° (— dP3 + ptdP! + p? dPQ), p° # 0. The change of coordinates P = (P!, P2, P3)
does transform system (9.40) into (9.44) with

kK2 a0
K= 0 oP7l a=floP™t, g=f20Pl a=ploP™t b=p?oP7} C:FOP_l.

x and a — (3 are nonzero because f' — f2, k' and k% are. a3 and (3 are nonzero because the
inverse images of agdZ A djj A dZ and B3dZ A dij A dZ by P are dP' A dP?2 A df? fori = 1,2,
that are equal, by construction, to dw! Aw!/(k!)? and d@? A ©?/(k?)?, which are both nonzero
(the second one because J # 0). O
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Note that (9.44) is not in the form (9.3) unless « = Z or # = Z. This suggests, since a3 # 0
and f3 # 0, the following local changes of coordinates A and B, that both turn (9.44) to a new
system of the form (9.3) :

(z,9,2) — A(2,7,2) = (2,9,a(Z,9,2)) and (Z,9,2)— B(Z,9,2) = (Z,9,3(Z,9,2)) . (9.45)

These two systems of the form (9.3) correspond to two choices h', g' and h?, g? instead of the
original h, g, and they yield, according to (9.6) and (9.7), two possible sets of functions v and 4.
These will be used in Theorem 9.6.5; let us give their explicit expression :

w — mi’o(x, Y, 2)

i i 00 il i2.2
_ ) ) ) 12 '4
vz, y, z,w) = Ty 8 =n"" + 0ty 40"y i€ {1,2} (9.46)

with (these are obtained from each other by interchanging o and f3) :

m'0 = (a1 +aaz+(@a+ba)jaz)o A7, mM = (kaz(a—f)) oA,
0 =az0A"l, pbl = (g +bag)oA™, n'?=(kaz)oA™!,

m*0 = (By + B o+ (a+bP) B3) 0 B, m>! = (wfs (8 — )0 BV,
n*0=pB30B7', n?l = (By+bB3) 0B, n*?=(kfB3)0oB .

(9.47)

Example 9.4.5. System (9.14-b) in Example 9.2.8 is already as in (9.44). The above choices
are, for this system :

71($ayaz7w):w7 51($,y,Z,IU):y—|-’LU2, 72(l'7y7z’w):_w7 52($7y7z7w):y+w2'
(9.48)

9.5 Main results

We gather here our main results in a synthetic manner. They rely on precise local results
from other sections : sufficient (sections 9.4 and 9.3.2) or necessary (section 9.6) conditions for
parameterizability, results on solutions of the partial differential system Elgf (section 9.3.3) and
on the relation between flatness and parameterizability (section 9.7). We are not able to give
local precise necessary and sufficient conditions at a given point (jet) because singularities are
not the same for necessary and for sufficient conditions ; instead, we use the “somewhere” notion
as in Definitions 9.3.3 and 9.2.7.

Theorem 9.5.1. System (9.3) admits a parameterization of order (k,{) somewhere in  if and
only if
1. either S=T =J =0 on Q (in this case, one can take (k,¢) = (1,2)),
2. 0or S =T =0 on Q) and one of the two systems 5,;’2’51 or 512’2’52 with ¢, 8 given by
(9.46)-(9.47), admits a regular solution somewhere inf\l. ’
3. or S and T are not both identically zero, and the system E,]f with v and § defined from

g and h according to (9.6) and (9.7) admits a regular solution somewhere in Q.

Proof. Sufficiency : the parameterization is provided, away from an explicitly described set of
singularities, by Theorem 9.4.3 if point 1 holds, and by Theorem 9.3.7 if one of the two other
points holds. For necessity, assume that there is a parameterization of order (k,¢) at a point
(z,y,2,2,7,...,2F) L)) in (Q X RQL—Q)\F. From Theorems 9.6.2 and 9.6.5, it implies that
one of the three points holds. ]
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Example 9.5.2. Consider again systems (a), (b) and (c) in (9.14). From point 1 of the theorem,
system (a) admits a parameterization of order (1,2), see also Example 9.2.4. System (b) is
concerned by point 2 of the theorem : it has a parameterization of order k, £ if and only one of
the two systems of PDEs

Pt (FPz — P = Paz?)) — Pyutv—1) (FP £ Daw)) = Pute—1) Dyu(e—1) — Dguth1) Pye-1) =0,
Dy (k—1) 7é 0 s Dyle—1) 7é 0 , P+ p$x2 + Pzxzx 7é 0
(9.49)
admits a “reqular solution”. Point 3 of the theorem is relevant to system (c) because S # 0 : (c)
admits a parameterization of order k,f if and only there is a “reqular solution” p to

pu(k_l) (pr _p)) _pxu(k_l) (Fp - V pzx)) = pu(k_l) pz'y([_l) _pmu(k_l) pv(g_l) = 0 9y (9 50)
Dy (—1) 7é 0 ’ Dye—1) 7é 0 , P— pxmc/zv Pz ?é 0.

If Conjecture 9.3.8 is true, neither system (b) nor system (c) admits a parameterization of any
order.

Theorem 9.5.1 gives a central role to the system of PDEs 5,326. It makes Conjecture 9.3.8
equivalent to Conjecture 9.5.3 below. Theorem 9.5.4 states that the conjecture is true for k, ¢
“small enough”.

Conjecture 9.5.3. If dwAw (or (S,T,J)) is not identically zero on Q, then system (9.3) does
not admit a parameterization of any order at any point (jet of any order).

Theorem 9.5.4. If system (9.3) admits a parameterization of order (k,?), with k < ¢, at some
jet, then either S=T=J=0o0rk >3 and { > 4.

Proof. This is a simple consequence of Theorem 9.5.1 and Proposition 9.3.9. O

Remark 9.5.5. If our Conjecture 9.5.8 is correct, the systems 5,:25 never have any regular
solutions, and the sufficiency part of Theorem 9.5.1 (apart from case 1) is essentially void,
and so is Theorem 9.3.7. However, Conjecture 9.3.8 is still a conjecture, and the interest of
the sufficient conditions above is to make this conjecture, that only deals with a set of partial
differential equalities and inequalities, equivalent to Conjecture 9.5.8 below. For instance, if one
comes up with a reqular solution of some of these systems Esz , this will yield a new class of
systems that admit a parameterization.

Remark 9.5.6 (on recovering the results of Chapter 8). The main result in that reference can
be phrased :
“(9.1) is (x,u)-dynamic linearizable (i.e. (x,u)-flat) if and only if S =T =J =0 ".

Sufficiency is elementary in Chapter 8; Theorem 9.4.8 implies it. The difficult part is to prove
that S = T = J = 0 is necessary; that proof is very technical in Chapter 8 : it relies on
some simplifications performed via computer algebra. From our Proposition 9.7.4, (x,u)-flatness
implies existence of a parameterization of some order (k,{) with k < 3 and ¢ < 3. Hence
Theorem 9.5.1 does imply the above statement.

9.6 Necessary conditions

9.6.1 The case where S and T are not both zero

The following lemma is needed to state the theorem.
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Lemma 9.6.1. If (S,T,J) # (0,0,0) and system (9.3) admits a parameterization (¢,v,x) of
order (k,0) at point (xg,yo,zo,...,x((]L),y((]L)) € R2LH3, then ¢, u) is a monzero real analytic
function.

Proof. Assume a parameterization where ¢ does not depend on u(*). Substituting in (9.3) yields

Since ¢ does not depend on uwk+1), differentiating twice with respect to uk+1) yields

Xt = Vo) (s + ga9) , 0=, (haa + ga4) -

If 9,k was zero, then, from the first relation, x,# would too, and this would contradict
point 3 in Definition 9.2.2; hence the second relation implies that hs4 + g44¢ is identically
zero. From point 2 in the same definition, it implies that all solutions of (9.3) satisfy the rela-
tion : hya(x,y, 2,9 — 2&) + gaa(z,y, 2,9 — 2z&)& = 0. From Lemma 9.2.1, this implies that h4 4
and g44 are the zero function of four variables, and hence S = T' = J = 0. This proves the
lemma. O]

Theorem 9.6.2. Assume that either S or T is not identically zero on 2, and that system (9.3)

admits a parameterization of order (k,¢) at X = (xo, Yo, 20, 0, Yo, - - .,xéL),y(()L)) €0 x R2L=2
with k, ¢, L some integers and p,1),x defined on U C RFHF2,
Then k > 1, £ > 1 and, for any point (ug,. .. ,uék),vo, ceey U(()Z)) € U (not necessarily sent to

X by the parameterization) such that

0, (o, - - -, u(()k), V0, - .. ,v(gz)) #0,
there exist a neighborhood O of (ug,. .. ,u(k_l), o(ug - -+ v(()e)) , U0, - - ,v(g_l)) in RFFAHL gnd a
reqular solution p : O — R of Sl;’f , related to p, v, x by (9.23), (9.24) and (9.25), the functions
v and 0 being related to g and h by (9.6) and (9.7).

Remark 9.6.3. The regular solution p is K-reqular for some positive integer K < k + £ — 2.

If L > K, Theorem 9.3.7 implies, possibly away from some singular values of (xo, Yo, 20, 05 Y0, - - -

x((]K),y((]K)), that system (9.3) also admits a parameterization of order (k,f) at (xo,yo, 20,0,

70, - - - ,ng),y((]K)). See also Remark 9.2.6.

Proof. Assume that system (9.3) admits a parameterization (¢, 1, x) of order (k, ¢) at (xo, yo, 20, 0,
(L) (L)

Yo, ---, Ty 5 Yo ). Since ¢, k) does not vanish, one can apply the inverse function theorem to
the map
(u,,... P v, ,v(e)) — (u,... ,u(kfl),go(u, cou® oy ,v(e)),v, .. 71)(2))

and define locally a function r of k£ + ¢ + 2 variables such that
o(u,t, . .. G A ,U(Z)) =z < r(u,q,... D g b, ,U(Z)) =k (9.51)

Defining two functions p, ¢ by substitution of v(¥) in ¢, x, the parameterization can be re-written
implicitly as

y:p(u,u,...,u( ),x,v,i;,...,v(z)),
z = q(u, 1, u* =Dz v 0, .. 00), (9.52)
u®) = r(u,a, . u D 00, 00)
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We now work with this form of the parameterization and u, @, . .., u* Y 2 &, &, ... v,0,..., 00,
oD instead of u, 1, . .., uFD R
tions, let us agree that, if £ = 0, the list u, 4, ... cutk—1) g empty and any term involving the
index k — 1 is zero (same with £ — 1 if £ = 0). Let us also define P and Q by

c 0,0, 0@ oD In order to simplify nota-

P =Fp+rp,x-1 +U(2)pv(£71) +U(Z+1)pv(z) , Q= Fq+rq,mw +U(£)qv(@,1) +U(e+1)qv<e) , (9.53)

with F' given by (9.15). P and Q depend on u, 1, . .. Lu D v o, oD but not on @ Fp
and Fq depend neither on & nor on v“*1). When substituting (9.52) in (9.3), using § = P + @p,
and z = Q + %q,, one obtains :

Q+ &g, = hx,p,q, \) + g(x,p,q, )& with X =P+ &(p, — q). (9.54)

Differentiating each side three times with respect to &, one obtains :

¢e = (ha(z,p, ¢, ) + g4(z,p, ¢, \)T) (P2 — @) + 9(x,p, ¢, N), (9.55)
0= (haa(x,p,q,\) + gaa(z,p,q, &) (px — @)% + 294(z, p, ¢, \) (P — q), (9.56)
0= (haaa(z,p,q\) + ga4.4(z,p, ¢, \)E) (px — 9)° + 3ga.4(x,p, 4, \) (P2 — 9)*. (9.57)

Combining (9.56) and (9.57) to cancel the first term in each equation, one obtains (see S and T'
in (9.39)) :

(T(w,p,q, A) + S(z,p,q, >\)50> (pz — q)*> =0. (9.58)

The second factor must be zero because, if T+ Sz was identically zero as a function of
..., u* D 2z v .. v then, by Definition 9.2.2 (point 2), all solutions (z(t),y(t), z(t))
of (9.3) would satisty T'(z,y, 2,9 — z&) + ©S(x,y, 2,y — z4) = 0 identically, and this would imply
that S and T are identically zero functions of 4 variables, but we supposed the contrary. The
relation ¢ = p, implies

A=P=Fp+rp,x— + 'U(Z)pv(é—l) + U(Z'H)pv(z) (9.59)
and (9.55) then yields p;» = g(z, p, s, A), or, with v defined by (9.6),

A= ’Y(xapu px;px:c) . (960)

Since neither p nor Fp nor r depend on vt (9.59) and (9.60) yield Py = 0, ie. pisa
function of u, ..., u* Y 2, v,..., D only. Then (9.59) and (9.60) imply (9.109) with f = 7.
Furthermore, since ¢, ) 7 0 (point 3 of Definition 9.2.2), (9.51) implies 7, # 0. Also, if p was
a function of z only, then all solutions of (9.63) should satisfy a relation y(¢) = p(x(t)), which is
absurd from Lemma 9.2.1. We may then apply Lemma 9.9.2 (page 238) and assert that k > 1,
(> 1, py-1) # 0, pye—1) # 0.

Since p does not depend on v, (9.60) implies that the right-hand side of (9.59) does not
depend on v either ; since Puk—1) 7 0, 7 must be affine with respect to o0 e

r=1+o00v, (9.61)

with o and 7 some functions of u,...,u* Y 2z v,... .0V Since p, ¢ = p, A and ¢z = pye do
not depend on v, (9.54) implies that Q does not depend on v® either; with p, = ¢, and r
given by (9.61), the expression of Q, ) is op,,k-1) + Dype—1) While, from (9.59), the expression
of P, . Collecting this, one gets

TPy k—1) F Dye—1) = OPpy(k—1) + Dype-1) = 0. (9.62)
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Since p,x-1) # 0 and p,e-1) # 0, (9.62) implies Eo = 0, and also o, = 0, 0 # 0. Then,
since 75 # 0 (see (9.51)), (9.61) implies 7,, # 0. With the above remarks, (9.59) yields P = A =
Fp + 7p, -1 and hence, from (9.60), the first relation in (9.20). In a similar way, (9.53) yields
Q = Fp; + 7p,, 1), and substituting in (9.54), one obtains (the terms involving & disappear
according to (9.60)) Fpg — 6(x, p, Pzs Pax) + Dpye-»T = 0 with & defined by (9.7). This proves
that p satisfies (9.20), equivalent to (9.16) according to Remark 9.3.4, and hence that p is a
solution of 8,3’; )

To prove by contradiction that it is K-regular for some K < k+ /41, assume that ED'p = 0
for 0 < i < k+ £. Then py,p,...,DETEDp o 2F+H=1) are 2k + 20 + 1 functions in the
2k+2¢ variables u, ..., u* =V v .. oD g 26+ A¢ points where the Jacobian matrix
has constant rank, there is at least one nontrivial relation between them. From point 2 of
Definition 9.2.2; this would imply that all solutions of system (9.3) satisfy this relation, say
R(z(t),y(t),...,y*+t=0(t), x(t),..., 2%+ (¢)) = 0, which is absurd from Lemma 9.2.1. [

9.6.2 The case where S and T are zero

Here, the situation is slightly more complicated : we also establish that any parameterization
“derives from” a solution of the system of PDEs (9.16), but this is correct only if J is not zero,
and there are two distinct (non equivalent) choices for v and 4. If J # 0, we saw, in section 9.4,
that possibly after a change of coordinates, system (9.3) can be written as (9.44), which we
re-write here without the tildes :

2 =k(z,y,2)(y—a(x,y,2)2) (v — Blx,y,2)2) + alx,y,2) &+ b(z,y,2)y+ c(x,y,2), (9.63)

where s, «, 3, a, b, ¢ are real analytic functions of three variables and x # 0, a—f # 0, da/dx # 0,
08/0z # 0. We state the theorem for this class of systems, because it is simpler to describe the
two possible choices for v and ¢ than with (9.3), knowing that S =T = 0.

Lemma 9.6.4. If system (9.63) admits a parameterization (v, 1, x) of order (k,¢) at a point,
then @, ) is a nonzero real analytic function.

Proof. After a change of coordinates (9.45), use Lemma 9.6.1. O

Theorem 9.6.5. Let (z0,Yo,20) be a point where k, o — 3, ag and (3 are nonzero, and k, ¢, L
three integers. If system (9.63) has a parameterization of order (k,f) at X = (x0,yo, 20, %0,

yo,...,x(()L),y(()L)) with ¢, v, x defined on U C RFHH2 then k > 1, £ > 1 and, for any point
(uo, . .. ,u(()k),vo, e v(()z)) € U (not necessarily sent to X by the parameterization) such that
k l
QOu(k)(U(),. . .,Ué )aU()v" . ,’U(() )) 7& 07

there exist a neighborhood O of (ug,. .. ,u(k_l), o(ug -+ v((f)) , U0, - - ,v(()é_l)) in RFEAHL gnd a

reqular solution p : O — R of one of the two systems 5,]’2’61 or 5,];’62 with v*, 6 given by
(9.46)-(9.47), such that p, p,, x are related by (9.23), (9.24) and (9.25).

Remark 9.6.3 applies to this theorem in the same way as theorem 9.6.2.

Proof. Like in the beginning of the proof of Theorem 9.6.2, a parameterization (p, v, x) of order
(k,€) with ¢, &) # 0 yields an implicit form (9.52). Substituting in (9.63), one obtains an identity
between two polynomials in v+ and 4. The coefficient of (U(Hl))2 in the right-hand side must
be zero and this yields that p cannot depend on v® : the linear term in v*1) then implies that
¢ does not depend on v either. To go further, let us define, as in the proof of Theorem 9.6.2,

P =Fp+rpyo-n +v9peny, Q=Fq+rgu1 +v9q0, (9.64)
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with F as in (9.15). Still substituting in (9.63), the terms of degree 0, 1 and 2 with respect to &
then yield

Q = k(z,p,q)P? + b(z,p,q)P + c(z,p, q),
¢z = k(z,p,q) 2pe — a(z,p,q) — B(x,p,q)) P+ a(z,p,q) + b(z,p,q)ps , (9.65)
0= (pz — a(z,p,q)) (p= — B(,p,q)) -

The factors in the third equation cannot both be zero because o — 3 # 0. Let us assume

pw_a(xvpaQ) :Ov pm_ﬁ(xapvq) #0 (966)

(interchange the roles of a and 3 for the other alternative). Since as # 0, the map A defi-
ned in (9.45) has locally an inverse A~!, and the equation in (9.66) is equivalent to (x,p,q) =
A~Y(x,p,py); by differentiation an expression of ¢, as a function of x,p,p., pse is obtained;
solving the second equation in (9.65) for P and substituting ¢ and ¢,, one obtains P =
Yz, p, Px, Pez) With 41 defined by (9.46)-(9.47). If one had chosen the other alternative in
(9.66), A and y' would be replaced by B and 2.

Since P is also given by (9.64), the relation (9.109) holds with f = ~4!; also, for the same
reasons as in the proof of Theorem 9.6.2 (two lines further than (9.60)), r,«) is nonzero and it
would be absurd that p depends on z only. One may then apply Lemma 9.9.2 (page 238) and
deduce that £ > 1, 0> 1, p,x-1) # 0, pye—1) # 0.

Since neither p nor P = y'(x,p, ps, pzz) depend on v® and k-1 7 0, the first equation
in (9.64) implies that r assumes the form (9.61) with ¢ and 7 some functions of the k + ¢ +
1 variables w,,...,u Y z v, 0,..., 0% Y and that two relations hold : on the one hand
Py k—1) + Pye—1) = 0, i.e. one of the relations in (9.20), and on the other hand the first relation
in (9.20) with v = 4. Similarly, the second equation in (9.64) yields oq,x-1) + gye-1) = 0 and
Fq+7q,0-1) = Q = kP?+bP +c. Applying F+79/0u*~Y and F to the first relation in (9.66)
and using the four relations we just established, one obtains on the one hand the second relation
in (9.20), with 6 = §' (6! defined in (9.46)-(9.47)) and on the other hand op,,,x—1) +Pyye-1) = 0.
The relations 0, = 0, 0 # 0 and 7, # 0 are then obtained exactly like at the end of the proof
of theorem 9.6.2; hence p satisfies (9.20) with v = 4! and § = 6'; this proves, thanks to

Remark 9.3.4, that p is a solution of 5,3;’51 (it would be 8,32’62 if one had chosen the other
alternative in (9.66)). The last paragraph of the proof of Theorem 9.6.2 can be used to prove
that this solution is K-regular with K <k + ¢+ 1. O

9.7 Flat outputs and differential flatness

Definition 9.7.1 (flatness, endogenous parameterization [37]). A pair A=(a,b) of real analytic
functions on a neighborhood of (zo, yo, 20, - - .,x[()j),y(()j)) in Q x R%=2 s q flat output of order
jat X = (xo,yg,ZO,...,x(()L),yéL)) (with L > j > 0) for system (9.3) if there exists a Monge
parameterization (9.10) of some order (k,¢) at X such that any germ (x(.),y(.), z(.),u(.),v(.)) €
VxU (with U,V possibly smaller than in (9.10)) satisfies (9.67) if and only if it satisfies (9.68) :

o (ut) i(t), ..., u® (1), v(1),0(0), ..., 0O() = a(t)
B(u(t), i), .., u® (), 0(8), 5(8),... . v (D)) = y(t) 3 (9.67)
X(U(t),ib(t), 7u(k)(t)7v<t)7®(t)7 ,'U(Z)Of)) = Z(t)
5(8) = h(a(), (), 2(8), GO —=(Oa()) + g(w(t), y(t), 2(0), Y —=(Di(t) ) #(t)
u(t) = a((t), y(b), (), #(8), §(8), (1), (D), ... 2D (£), y O (1)) (9.68)
o(t) = b((@ (), y(2), 2(8), £(t), 9(1), (D), (D), .., 2D (1), yD (1))
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System (9.3) is called flat if and only if it admits a flat output of order j for some j € N. A
Monge parameterization is endogenous® if and only if there exists a flat output associated to this
parameterization as above.

In control theory, flatness is a better known notion than Monge parameterization. For general
control systems, it implies existence of a parameterization (obvious in the above definition), and
people conjecture [42] that the two notions are in fact equivalent, at least away from some
singular points. In any case, our results are relevant to both : systems (9.3) that are proved
to be parameterizable are also flat and our efforts toward proving that the other ones are not
parameterizable would also prove that they are not flat.

Theorem 9.3.7 gave a procedure to derive a parameterization of (9.3) from a regular solution
p of 5,3’@6, and we saw in Section 9.5 that, unless S =T = J = 0, these are the only possible
parameterizations. One can tell when such a parameterization is endogenous :

Proposition 9.7.2. Letp: O — R, with O C RFHFL open, be a regular solution of system 5&5 .
The parameterization of order (k,f) of system (9.3) associated to p according to Theorem 9.3.7
is endogenous if and only if p is exactly (k+ € — 2)-reqular; then, the associated flat output is of
order j <k+/{—2.

Proof. In the end of the proof of Theorem 9.3.7, it was established that (9.67), written I'(u,v) =
(x,y, 2), is equivalent to (9.35) if (z,y, z) is a solution of (9.3). If either iy < k or jo < £ in (9.35),
then there are, for fixed z(.),y(.), 2(.)), infinitely many solutions u(.),v(.)) of (9.35) while there
is a unique one for (9.68). Hence i = k and jo = ¢ if (9.67) is equivalent to (9.68); then
K =i9p+jo—2=k+{—2so that pis (k+ ¢ — 2)-regular and (9.35) (where u and v do not
appear in the right-hand side) is of the form (9.68) with j = K =k + ¢ — 2. O

The main result in Chapter 8 is a necessary condition for “(z,u)-dynamic linearizability”
((x, u)-flatness might be more appropriate) of system (9.1). For system (9.1), it means existence
of a flat output whose components are functions of &', ¢2, €3 ¢4 w!, w?; for system (9.3), it
translates as follows. The functions v and 0 in (9.1) are supposed to be related to g and h in
(9.3) according to (9.6) and (9.7).

Definition 9.7.3. System (9.1) is “(x,u)-dynamic linearizable” is and only if system (9.5)
admits a flat output of order 2 of a special kind : A(z,y, z,&,79,%,4) = a(x,y, z, \, &, \) for some
smooth a.

The following proposition is useful to recover the main result from Chapter 8, see Re-
mark 9.5.6.

Proposition 9.7.4. If system (9.1) is “(z,u)-dynamic linearizable” in the sense of Chapter 8,
then (9.3) admits a parameterization of order (k,¢) with k <3 and £ < 3.

a(‘/'vﬂ y’ Z? >\’ x" ).\)
d(x7 y7 z? )\7 jj? A7 ji" A.)
a(z,y, z, A, &, A z® )\(3))
al®)(z,y, 2, \, PO A(4))
Its Jacobian is 8 x 12, and has rank 8, but the 8 x 8 sub-matrix corresponding to derivatives with
respect to z, AL 2™ A® has rank 4 only. Hence z, y, z, and A can be expressed as functions
of the components of a, &, d, al®), yielding a Monge parameterization of order at most (3,3). O

Proof. Consider the map (z,y, 2z, A, &, Ao 2W) )\(4)) —

5 This terminology (endogenous vs. exogenous) is borrowed from the authors of [37, 68]; it usually qualifies
feedbacks rather than parameterizations, but the notion is exactly the same.
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9.8 Conclusion

Let us discuss both flatness (see Section 9.7) and Monge parameterization. For convenience,
assume k < ¢ and call F-systems the systems (9.3) such that S =T = J = 0 and C-systems all
the other ones.

F-systems are flat ; this was proved in Chapter 8. This paper adds that they admit a Monge
parameterization of order (1,2), but does not prove differential flatness of any system not known
to be flat up to now : C-systems are not believed to be flat. It does not either prove non-flatness
of any system : it only conjectures that no C-system admits a parameterization, and hence none
of them is flat. To the best of our knowledge, no one knows whether simple systems like (9.14-b)
or (9.14-c) are flat of not.

The first contribution of the paper is to prove that a C-system admits a parameterization
of order (k,¢) if and only if the PDEs 5,;7725 , for suitable =, §, admit a “regular solution” p. The

second contribution is to prove that, for any +,d, there is no regular solution to 8,3’46 if either
k <2 or k =/ =3 (this does not contradict existence of parameterizations of order (1,2) for
F-systems : these do not “derive from” a solution of these PDEs). We guess, in Conjecture 9.3.8,
that even for higher values of the integers k, ¢, none of these PDEs have any regular solution;
this would imply that C-systems are not flat.

Besides recovering the results from Chapter 8 with far more natural and elementary argu-
ments, we believe that some insight was gained on Monge parameterizations of any order for
“C-systems”, by reducing non-parameterizability to non-existence of solutions to a systems of
PDEs that can easily be written for any k, /.

The main perspective raised by this paper is to prove Conjecture 9.3.8. The only theoreti-
cal difficulty is, in fact, that no a priori bound on the integers k, £ is known. Indeed, as explained
in Section 9.3.3, for fixed k, £, ~, §, it amounts to a classical problem. To prove Proposition 9.3.9,
we solved, in a synthetic manner, that problem for k < 2 or kK = ¢ = 3 and arbitrary v and 6. We
lack a non-finite argument, or a better understanding of the structure, to go to arbitrary k,¢.
Let us comment more on the (non trivial) case where v and ¢ are polynomials, for instance the
very simple ones in (9.49). For fixed k, ¢, the question can be formulated in terms of differential
polynomial rings : does the differential ideal generated by left-hand sides of the equations (9.49)
contain the polynomials ED’p? Differential elimination (see [86] or the recent survey [49]) is
relevant here; finite algorithms have been already implemented in computer algebra. Although
we have not yet succeeded (because of complexity) in carrying out these computations, even on
example (9.49) for (k,¢) = (3,4), and although it will certainly not provide a bound on k, ¢, we
do believe that computer algebra is a considerable potential help.

Another perspective is to enlarge the present approach to higher dimensional control
systems. For instance, what would play the role of our system of PDEs E,]’f when, instead
of (9.3), one considers a single relation between more than three scalar functions of time (this
captures, instead of (9.1), control affine systems with n states and 2 controls, n > 4) 7 We have
very little insight on this question : the present paper strongly takes advantage of the special
structure inherent to our small dimension ; the situation could be far more complex.
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9.9 Proofs

Proof of Lemma 9.3.6

For this proof only, the notation F; ; (0 <1i < k, 0 < j < ) stands either for the following
family of i 4 j vectors in RX*2 or for the corresponding (K + 2) x (i + j) matrix :

oo on om or om
BT g k=0) T gy k=1) " 9p—3) T ye-1)

with the convention that if ¢ or j is zero the corresponding list is empty; F;; depends on
wy . uB oD g 2B Let us first prove that, at least outside a closed subset of
empty interior,

rankFr, = K+2. (9.69)

Indeed, if it is smaller at all points of O x R¥, then, around points (they form an open dense
set) where it is locally constant, there is at least one function R such that a non-trivial identity
R(pe,p,...,D5p,x,. .. ,x(K)) = 0 holds and the partial derivative of R with respect to at least
one of its K + 2 first arguments is nonzero. Since p is K-regular, applying E to this relation,
shows that R does not depend on D®p, and hence does not depend on z5) either. Then,
applying ED, ED? and so on, and using the fact that, according to (9.21), Dp, is a function
of pz,p, Dp, z, &, we get finally a relation R(p,,p,z) = 0 with (R,,, R,) # (0,0). Differentiating
with respect to u*~1), one obtains Ry, Dy -1 + Rpp, -1y = 0; hence, from the first relation
in (9.16-c), R,, # 0, and the relation R(ps,p,z) = 0 implies, in a neighborhood of almost any
point, p, = f(p,x) for some smooth function f. From Lemma 9.3.5, this would contradict the
fact that the solution p is K-regular. This proves (9.69).

Let now W, (1 < s < K + 2) be the set of pairs (i,j) such that i + j = s and the rank of
Fi; is s at least at one point in O x RE | i.e. one of the s x s minors of Fi j is a nonzero real
analytic function on O x R¥. The lemma states that W is nonempty ; in order to prove it
by contradiction, suppose that Wi o = @ and let 5 be the smallest s such that Wy = &. From
(9.16-c), W contains (1,0), hence 2 <5 < K+ 2 < k+ £+ 1. Take (i, ) in Ws_y; Fy j has
rank 4’ + 4 (i.e. is made of i’ 4 j' linearly independent vectors) on an open dense set A C O x RX,
Let the i1 < k and j1 < £ be the largest such that F;, ; and Fy ; have rank s —1 on A. On the
one hand, since i’ + j' =35 — 1 < k + /¢, one has either i < k or j/ < £. On the other hand since
Wy is empty, it contains neither (i +1,5") nor (i’, j 4+ 1) ; hence the rank of Fy 1 j is less than
i"+ 7 +1ifi' <k, and so is the rank of Fy ji4q if j' < L.

To sum up, the following implications hold : ¢/ <k =14 >i+1 and j/</l=j1 >j +1.
From (9.69), one has either i1 < k or j; < {. Possibly exchanging u and v, assume i; < k;
all the vectors dr/du*—"), ... O /ou*—"+D ox/out=) . or/0u*~7+) are then linear
combinations of the vectors in Fy j, while O/ ouF=1=1 is not

0
rankFy =i’ + 5, rankF;, ;, =i+, rank <8u(k—7’rl—1) ; ﬂgj/) =i +j +1 (9.70)

on an open dense subset of O x RX, that we still call A although it could be smaller. In
a neighborhood of any point in this set, one can, from the third relation, apply the inverse
function theorem and obtain, for an open Q C RFFHE+L o map O — RYH7+1 that expresses
wk=) k=D =30 (D) and w1 ag functions of

L . L o
u, ... uFmn2) ki) (k=) D g ()

s Uyevn
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and 7'+ j'+1 functions chosen among py, p, Dp, . .., DXp (i'4 /41 columns defining an invertible
minor in (é)w/@u(k_”_l) , ]—'Z-/J-/)). Focusing on =171 one has

w1 = p (u, ... ,u(k_il_m, u(k_il), .. ,u(k_i/_l),v, - ,U(Z_j/_l), z,... ,x(K),px,p, ... ,DKp)

(9.71)
where B is some smooth function of k + ¢ + 2K + 2 — ¢/ — j’ variables and we have written all
the functions py, p, Dp, ..., DX~ 1p although B really depends only on i’ + j' + 1 of them.

Differentiating (9.71) with respect to wk=1) kD =3 (1) one has, with ob-
vious matrix notation, gTi %—f e (”?TB_%J Fir.j» = 0, where the right-hand side is a line-vector

of dimension i’ 4 j'; from (9.70), this implies

0B 0B 0B
<(9px TR 8DK_1p) Finjo = 0, (9.72)

where the right-hand side is a now a bigger line-vector of dimension i1 + j;. Differentiating (9.71)
with respect to ub=1) . qt="'=1) (=0 (=71 and using (9.72) yields that B does
not depend on its arguments wk=i) (k== and (a0 ,v(e_j/_l). B cannot depend
on DX p either because ED®p # 0 and all the other arguments of B are constant along E ; then
it cannot depend on 2 either because () appears in no other argument ; (9.71) becomes

ub—-1) = B (u, . ,u(k_il_Q),v, . ,U(Z_jl_l),a:, . ,x(K_l),pm,p, ey DK_1p> .

Applying D, using (9.21) and substituting «*==1) from above, one gets, from some smooth C,

wlk—i1) — C(U, a2 ) e 2 ,DKp) . (9.73)
—_—
rm empty if j1=¢
Differentiating with respect to wk=1) kD) (=0 (D) yields
oC oC oC
— = ) Fuy =0,
Op, Op ODEK-1p ’

the right-hand side being a line-vector of dimension i’ + j'. From the first two relations in
(9.70), 877/8u(k_i1_1) is a linear combination of the columns of Fj j/, hence one also has

oCc oC oC or
(o0 30 30°13) i
This implies that the derivative of the right-hand side of (9.73) with respect to u*=1=1 is zero.
This is absurd.

= 0.

Proof of Lemmas 9.3.10, 9.3.11 and 9.3.12

We need some notations and preliminaries. With F'; E and 7 defined in (9.15) and (9.17),
define the vector fields

0 0
X1 =[X,Y], Xo =[X4,Y], Ey =[E)Y], E3=[FEyY]. (9.75)

Then (9.20) obviously implies

Yp = V(vavpmvpm,m) ’ YpCE = 6(xap7vapm,r) ’ Xo = 07 (976)
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and a simple computation yields (we recall E from (9.17)) :

— 0 _ 0 o)
X1=1 Juk—1) Xo =1 Fui—2) + (- )au(k—l) ) (9.77)
— 0 o) _ 0 o) 0
E= 50D T 501 > Ey = oy T O gy t (- )au(k—l) )

Es = gyt + 0 gute=m + (g + () gt

The vector field X and Xy are linearly independent because 7, # 0, see (9.20). Computing the
following brackets and decomposing on X; and X5, one gets

[X, Xl] = X1, [Xl,XQ] = )\/Xl + )\NXQ R (978)
[X, E] =0, [X, EQ] = ,qu , [X, Eg] = ,U,/Xl + ,u,"XQ, [EQ,XQ] = l//Xl + I/NXQ (979)

for some functions X\, N, N, p, p/, i/’ , v/, V",

Proof of Lemma 9.3.10. From (9.16-c), y = p(u,. .. k) zw v(e_l)) defines local coordi-
nates u, ... uk=2), Yy Ty Uyevvy G Composing p, by the inverse of this change of coordinates,
there is a function « of k + ¢ 4 1 variables such that p, = a(u, ..., wWk=2 p g ,v(e_l)) iden-
tically. Since Ep = Ep, = 0 (see (9.20)), applying E to both sides of this identity yields that
o does not depend on its argument v~ Similarly, if & > 2, differentiating both sides of the
same identity with respect to u*~1) and w*=2), the fact that the determinant in the lemma is
zero implies that a does not depend on its argument w*~2). To sum up, p and p, satisfy an
identity
Pz =a(u, ..., u* 3 pozo,. 02,

where the first list is empty if £ = 1 or k£ = 2. Now define two integers m < k—3 andn < {—2 as
the smallest such that « depends on w, ..., u™) 2, y,v,...,v™ with the convention that m < 0
if k=1, k=2, or a depends on none of the variables u, ..., u*3) and n < 0 if a depends on
none of the variables v, ..., v¢=2).

Applying Y to both sides of the above identity yields

m n
Yps =, Yp+ Z ua, o + Z v Da )
i=0 i=0

where, if m < 0 or n < 0, the corresponding sum is empty. Using (9.76), since pz, = o + aay,
one can replace Yp with v(z,y, a, oy + @) and Yp, with §(z,y, o, oy + acoy) in the above
equation, where all terms except the last one of each non-empty sum therefore depend on
Uy .., ul™ x g, v, ..., 0™ only. Differentiating with respect to u(™1) and v("*1) yields a,m) =
o, = 0, which is possible only if m < 0 and n < 0, hence the lemma. O

Proof of Lemma 9.3.11. From (9.38), setting
y=np(u,... D gy 7@(471)), z2=pg(u,... D g 71}(2—1))’ (9.80)

one gets some local coordinates (u, ... ,u(k_g),w,y,z,v, .. .,v(é_l)). In these coordinates, the
vector fields X and Y defined by (9.74) have the following expressions, where y and « are some
functions, to be studied further :

0 0 0
X = — 4z +a-— 81
6x+zay+aaz’ (9.81)

k—4 -1
0 0 0 , 0 , B
_ v v v (i+1) Y (i+1) Y
Y 783/ + 587: + X@u(k*3) + ; U 0 + ; v 50 (9.82)



234 CHAPITRE 9. “FLATNESS AND MONGE PARAMETERIZATION...”

In the expression of Y, the third term is zero if £ = 2, the fourth term (Zf:_él .-+ ) is zero if

k =2 or k = 3, and the notations v and ¢ are slightly abusive : v stands for the function

k—3)

(u,... ,u(k_3),x, Y, 2,0, ..., U(Z_l)) — y(z,y, 2, au, . .. ,u( ST Yy 2, U,y ,v(é_l))) ,

and the same for 6. With the same abuse of notations, (9.16-e) reads

X~y —4§#0. (9.83)
The equalities (Uau(‘,?_l) + av(‘?_n )u(kfz) = (%u(k”) = au(ﬁ_nu(k*?) = 0 are obvious in the
original coordinates. Since the inverse of the change of coordinates (9.80) is given by
uk=2) = x(u, ..., uk=3) T,Y, 2,0, ... ,v(e_l)), w1 = Yx(u,... ,u(k_?’), T,Y, 2,0, ... ,v(z_l)),

and E, X and X; are given by (9.77), those equalities imply
Ex=Xx=X1x=0. (9.84)

Then, from (9.75), (9.81) and (9.82),

0 0
X, = (X’y—é)a—y + (X(S—Yoz)%, (9.85)
(X, X1] = (X*y-2X0-Ya) aay + (X% - XYa— Xi1a) 862 . (9.86)

With these expressions of X and X7, the first relation in (9.78) implies :

Xy—§ X?’7y-2X5+Ya

X6—Ya X26—XYa-— Xia | 0 (9-87)

The definition of o implies Xz = «. In the original coordinates, this translates into the
identity pre = a(u, ..., u* 3 z p pg,v,...,0¢Y). Since Ep = Ep, = Epz . =0 (see (9.20)),
applying E to both sides of this identity yields that o does not depend on its argument v(¢=1).
Also, if &k > 3, differentiating both sides with respect to w* =D k=2 and 4*-3) we obtain
that the determinant (9.37) is zero if and only if o does not depend on its argument u(*=3). To
sum up, under the assumptions of the lemma,

k—4)

o depends on ..., ul ST Y, 2,0, ,l=2) only (9.88)

with the convention that the first list is empty if & = 2 or & = 3. Now define two integers

m < k—4 and n < £ — 2 as the smallest such that « depends on w,...,u™ z, y,v,..., 0™,

with the convention that m < 0 if k = 2, k = 3, or « depends on none of the variables

u,...,u* Y and n < 0 if & depends on none of the variables v, ..., v 2. We have
m>0 = a,m#0, n>0 = a,mw#0. (9.89)

Since m is no larger that £ — 4, x does not appear in the expression of Yo :

m n
Ya = ~vyay+da, + Z u(”l)au(i) + Z v(”l)av(i) (9.90)
i=0 i=0

where the first (or second) sum is empty if m (or n) is negative.
In the left-hand side of (9.87), all the terms depend only on w,...,u™, z,y,zv,..., 0™,
except Yo, XY o and X that depend on «™*Y if ;> 0 or on o™ if n > 0 (see above) ; the
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determinant is a polynomial of degree two with respect to w(™t1) and v(®*1) with coefficients
depending on u, ..., u™) z.y, z,v,...,v™ only, and the term of degree two, coming from (Ya)?,
is )

(Oéu(m)u(m+1) + Oév(n)v(n+1)) .
Hence (9.87) implies o, m) = a,m) = 0 and, from (9.89), negativity of m and n are negative.
By definition of these integers, this implies that o depends on (z,y,z) only : in the original
coordinates, one has py, = a(z,p,ps). O

Before proving Lemma 9.3.12, we need to extract more information from the previous proof :

Lemma 9.9.1. Assume, as in Lemma 9.5.11, that p is a solution of 8,:’45 satisfying (9.38), but
assume also that ¢ > k > 3 and the determinant (9.37) is nonzero. Then [X, Es] = [X, E3] = 0.

Proof. Starting as in the proof of Lemma 9.3.11, one does not obtain (9.88) but, since (9.37) is
nonzero,
« depends on wu, ... ,u(k_4),:n,y, Z,0, ... ,’U(Z_Z) and o, k-3 #0 . (9.91)

Since Ep = Ep, = 0, one has E = 3/0v~Y in these coordinates. The first equation in (9.84)
then reads x, 1) =0, and (9.75) and (9.82) yield

0 0

= 5= (X, Bs] = — aye-2) = -

E
2 0z

Since [X, Ea] = pX1 (see (9.79)), relations (9.85) and (9.83) imply that a2, u, and the
bracket [X, Es| are zero, and prove the first part of the lemma. Let us turn to [X, E3] : from
(9.75) and (9.82), one gets, since Fy and X commute, and Xy = 0,

0 0 0

= X, -2) 9u—3) + o=3) [X, Eg] = —(E;),Oé) — (9.92)

E .
3 0z

In order to prove that Esa = 0, let us examine equation (9.87). For short, we use the symbol
O to denote any function that depends on wu, ... ,u(k_3),x,y, z0,...,0¢3) only. For instance,
X~ —9 =0, and all terms in the determinant are of this nature, except the following three :

Ya = X QU (k—3) + ’U(£72)OZU(Z73) + O,
XYa = xXa,mw-3 + U(€72)XOZU(@73) + O,
Xia = —a, <X Oy (k—3) T U(z_z)av“_?’)) + O

(we used Xx = 0). Setting ¢ = x a,k-3) + U(Z*Z)av(e_g), one has

X Xa oo
= SN -4 p D with b = Xaye s — aye s —tt (9.93)

A, (k—3) Q, (k—3)

X¢

and equation (9.87) reads
C+0—(Xy=8Hbu2 10 = 0. (9.94)
Differentiating with respect to X and using (9.93) yields

o XUt 2| (2602 +0)c+0vED v 0 = 0.

A (k=3)
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Then, eliminating ( between these two polynomials yields the resultant

1 @, —(Xy=0bo2 40 0
0 1 o —(Xy=0bv2 40
7)??::?) 2bo(=2) 4 O 0v=2 40 0 =0.
0 Xoes) 2b v + O Ov=2 4+ O
Q (k—3)

This is a polynomial of degree at most three with respect to v(¢=2), the coefficient of (v(e_Q))?’
being —4b?(X~ — §). Hence b = 0 and, from (9.94), ¢ does not depend on v(*~2). This implies
Esa = 0 because, from (9.92) and the definition of ¢, one has (2 = Ezc. O

Proof of Lemma 9.3.12. The independent variables in 531;)5 are u, u, i, r,v, v, . Since the deter-
minant (9.37) is nonzero, one defines local coordinates (z,y, z,w,v,v,?) by

y = p(u, 0, i, x,0,0,0), 2z =pg(u,,i,x,v,0,0), W= Dpye(u,,i,x,v,0,0). (9.95)

In these coordinates, X and Y, defined in (9.74), have the following expressions, with 1) and «
some functions to be studied further :

0 0 0 0
X = S 4z twe—ta— :
ox +Zé?y e T Y (9-96)
0 0 0 .0 .0
Yy = 78—y+5£+¢%+v%+v%. (9.97)

Then, using, for short, the following notation I" :

' =Xy—0 # 0, (9.98)
one has
0 0 0
X = I'—+X6—9Y)—+ Xy —Ya) — .
L= T (X8 ) o (X0 - Ya) o (999)
(X, X1] = (XF—X&+¢)2+(X26—2sz+Ya)ﬁ—|— (X* — XYa - X1a) Qg.mo)
oy 0z ow
Also,
0 0 0 0 0
E = %7 E2 - [ElaY] - ¢U% + %7 [Xa EQ] - 7/%@ + (X,(ﬁu(k*l) - E2a) %

but, from Lemma 9.9.1, one has [X, Fy] = 0, hence 13 = 0, E3 = 9/00 and ay, = 0. Then

0 0 0 0 0
E3_[%7Y]_w11%+%7 [X,Eg}—d)vaﬁ—(va—EgOé)%,

but, from Lemma 9.9.1, one has [X, F3] = 0, hence ¢, = 0, E3 = /v and a,, = 0. To sum up,

0 0 0

E = — Eyo— —  Fqa—= —
v’ 2790 BT ou’

(9.101)
a depends at most on (z,y, z,w) only and ¢ on (z,y, z,w,v).

Notation : until the end of this proof, O stands for any function of z,y, z, w only. For instance,
a=0,7v=0,6=0,T=0,XI'=0, X6 =0 and X?6 = O.
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From (9.78), (9.99) and (9.100), one has YT — I);é Lo X2 f;;;;ﬁ Vo | = 0 . Hence
X = %uﬁ + 0+ 0. (9.102)

We now write the expression (9.99) of X as
X1 = X} + X1 +° X7 (9.103)
with X} = F5y+0(§z+0£u, Xll_—guo% X%:%%. (9.104)

Note that X?, X{ and X? are vector fields in the variables x,y, z, w only. Now define :

_ 1 Y9 _ 0 AN
U = X5 T 5w — 22 ((’) )8w (9.105)
0 0 2
_ 0_.2yv2 _ .9 o
V = Xj—-¢°Xj F6y+08z+ ((’) 2F> e (9.106)
so that
=V —yU (9.107)

and, from (9.97) and (9.103) one deduces the following expression of Xy = [X;,Y] :

0 0 0 0
Xy = (YY) U+ (X19) o +zp32F2 50 TV <2m + 0o +08w> + X3 + X9 (9.108)

where X4 and X3 are two vector fields in the variables x,y, z, w only.

This formula and (9.101) imply [E2, X2] = (Yzb)qJ U = 1, U ; hence, from the last relation in
(9.79), either 1, is identically zero or U is a linear combination of X; and Xs. We assume, until
the end of the proof, that U is a linear combination of X; and Xjy. This implies, using (9.107),
that X9 and X; are linear combinations of U and V ; hence U,V is another basis for X7, Xo.
Also, from (9.78) [U, V] must be a linear combination of U and V. From (9.105) and (9.106),

X1 0 2., 0 1 0
UV=————-9v"0 — W+ W
Y ' ow v ow TYW
where W' and W are two vector fields in the variables x, %, z, w only, and, finally, with Z!' and
Z° two other vector fields in the variables x,y, z, w only, one has, from (9.108)

B 0 o
_ _ 3 2 1 0
Xo— (YY)U-T[U,V] = ¢ r2 aw 9 <2m + 05+ 0 >+1/1Z +2°.

This vector field is also a linear combination of U and V. Computing the determinant in the
basis 0/0y, 0/0z, /0w, one has, using (9.105) and (9.106),

det (U, V, Xy — (Y)U — T[U, V]) :;%¢4+0¢3+0¢2+0¢+0:0.

It is assumed from the definition of S,Zf that the partial derivative of + with respect to its
fourth argument is nonzero; hence v, # 0 and the above polynomial of degree 4 with respect
to v is nontrivial ; its coefficients depend on z,y, z, w only, hence ¢ cannot depend on v.

We have proved that, in any case, both « and ¢ depend on z,y, z,w only, and this yields
the desired identities in the lemma. O
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A technical lemma

Lemma 9.9.2. Let p be a smooth function of u,...,u* Y z v, ... . 0% r a smooth function
of u,...,u* V) z v, ... 00 with ry@ 7 0, and f a smooth function of four variables such that
k—2 -1
Z u(1+1)pu(i) + TPy e-1) + Z U(Z+1)pv(i) = f(x’ p,px,pxx) (9109)
i=0 i=0

where, by convention, rp, k-1 is zero if k = 0 and the first (resp. last) sum is zero if k < 1
(resp. £ =0). Then either p depends on x only or

k > 17 l > 17 Dyk-1) 7é 07 Dye-1) 7é 0. (9110)

Proof. Let m < k—1 and n < £—1 be the smallest integers such that p depends on u, ..., u(m),
z,v,...,0: if p depends on none of the variables w, ..., u* "1 (or v,..., o) take m < 0
(or n < 0). Then p,m) # 0 if m > 0 and p,m) # 0if n > 0.

The lemma states that either m <0and n <Oor k>1,¢>1and (m,n)=(k—1,0—1).
This is indeed true :
-ifm=k—1and k> 1thenn =/—1 and ¢ > 1 because if not, differentiating both sides in
(9.109) with respect to v® would yield 7,0 Pyk—1) = 0, but the lemma assumes that r ) # 0,
-if m <k —1orm=0,(9.109) becomes : 31" uVp o + 30" 0+ p o = f(@,p,Pa Puz) ;
if m > 0, differentiating with respect to u(™+1) yields pymy = 0 and if n > 0, differentiating
with respect to u(™t1) yields p,) = 0; hence m and n must both be negative. ]
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