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par

Jean-Baptiste Pomet

Sujet :
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manuscrit auquel il ne me restait plus qu’à rajouter le contenu du chapitre 1, autant dire une
citrouille en carrosse ! Je le remercie de cela et d’avoir accepté un an de délégation à l’INRIA ;
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Avant-propos

Pour garder une certaine unité à ce mémoire, on s’est cantonné à un seul sujet : les trans-
formations et l’équivalence des systèmes de contrôle.

Une liste et une brève notice scientifique de l’ensemble des travaux de l’auteur et candidat
ont tout de même été insérées en annexe au chapitre 1 (page 21), totalement indépendante du
reste du mémoire ; la bibliographie de fin de mémoire ne reprend que les publications nécessaires
au texte.

Huit articles publiés sont reproduits aux chapitres 2 à 9, avec seulement quelques modifica-
tions pour améliorer la manière dont ils se référencent les uns les autres. Ils sont précédés d’un
chapitre 1 – le seul original – dont le but est de présenter de manière unifiée les résultats et la
problématique de ces articles.





Chapitre 1

Un tour d’horizon des problèmes
d’équivalence en contrôle

On cherche ici à énoncer de manière unifiée et synthétique les résultats contenus
dans les articles reproduits aux chapitres suivants. C’est aussi le prétexte à une
présentation –en partie originale– des différentes notions d’équivalence des systèmes
de contrôle, qui peut être instructive pour le lecteur, mais qui ne prétend pas à l’ex-
haustivité : ce chapitre n’est pas un « survey1 » des résultats sur le sujet ; la biblio-
graphie est très partielle.
Les résultats donnés comme théorèmes sont des énoncés simplifiés de résultats conte-
nus dans les articles reproduits aux chapitres 2 à 9 ; la référence est à chaque fois
indiquée.

1.1 Introduction

On s’intéresse aux systèmes donnés par une équation de la forme

ẋ = f(x, u) , x ∈ Rn , u ∈ Rm . (1.1)

Le point désigne la dérivée par rapport à une variable indépendante t que l’on appelle le temps ;
x est l’état et u le contrôle ou la commande, ou l’entrée. C’est l’équation d’un système de
contrôle en temps continu et à m contrôles scalaires u = (u1, . . . , um) en représentation d’état
de dimension finie n. Le diagramme

- ẋ = f(x, u) -
u x (1.2)

indique que l’entrée est une quantité libre, décidée par un utilisateur ou un dispositif de com-
mande, et que le système produit un comportement, c’est-à-dire une évolution des variables
d’état, qui dépend de cette entrée.

Le problème qui nous intéresse ici est de savoir déterminer si deux systèmes de ce type se
ressemblent. Cela est bien vague et doit être précisé. Bien sûr l’idéal serait une classification
pour une relation d’équivalence pertinente, et le plus souvent, une telle relation d’équivalence
est définie par une classe de transformations sur les systèmes, deux systèmes étant équivalents
si ils sont transformés l’un en l’autre par une transformation de la classe.

On s’intéresse aux différentes notions d’équivalence, et on fait quelques contributions sur
leurs significations pour le contrôle, les conditions d’équivalence, et en particulier les conditions
de linéarisation (équivalence à un système linéaire).

1Le lecteur aura noté que ce chapitre est rédigé en français, et il se rendra compte par la suite que les autres
le sont en anglais. Les mots anglais dans le texte français n’ont d’autre but que de l’accoutumer un peu.
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Motivations. Il est tout d’abord très naturel, une fois définie un classe d’objets, de vouloir les
« classifier ». Ce n’est pas seulement une manie de mathématicien, c’est aussi une appréhension
de la connaissance.

Point de vue du contrôle. Savoir qu’un système est équivalent à un autre, plus simple ou
pour lequel un problème a déjà été résolu, peut permettre de transposer la solution du problème
pour l’un en solution pour l’autre, qu’il s’agisse de stabiliser un point d’équilibre, de rejeter
des perturbations ou de commande optimale. On ne s’intéresse ici à aucun de ces problèmes de
contrôle par eux-mêmes, mais exclusivement à leurs transformations.

Point de vue modélisation / identification. On a appelé (1.1) un système, mais c’est plutôt
un modèle mathématique qu’un système physique. C’est l’équation dont on espère qu’elle repro-
duit les comportements du système physique, et sur la base duquel on va chercher à construire
des lois de contrôle. Il serait plus juste de dire qu’un classification des équations de type (1.1)
est une classification des modèles. Ce point de vue est très important, et une telle classification,
même sommaire, sous-tend toute théorie de « l’identification non-linéaire » cohérente, si cela
peut exister un jour. Le succès de l’identification linéaire, véritable corps de doctrine, est bâti
sur une solide compréhension de la structure des systèmes linéaires.

Qu’est-ce qu’un système ? Il y a de très nombreuses réponses à cette question. Le point de
vue entrée-sortie a longtemps prévalu en contrôle linéaire et correspond à une réalité (domaine
fréquentiel, fonction de transfert). L’équation (1.1) est déjà une représentation d’état et on
pourrait objecter (surtout au vu du « point de vue modélisation / identification ») que ce n’est
peut-être pas le bon choix ; en tout cas il y en aurait sûrement d’autres.

Pour se cantonner à l’équation (1.1), on peut encore la voir de plusieurs manières.
– C’est, pour chaque t 7→ u(t) donné, une équation différentielle instationnaire, qui produit

une solution t 7→ x(t) dès que l’on se donne une condition initiale x(0). Sorte de point de vue
entrée-sortie, ou plutôt entrée-état, adopté parfois en contrôle optimal ou commandabilité.

– C’est un poly-système dynamique, ou une famille de champs de vecteurs, obtenus par
exemple en prenant différentes valeurs de u constant. Point de vue fécond pour la com-
mandabilité, à cause du sens géométrique des champs et de leurs flots.

– C’est une équation différentielle sous-déterminée qui lie les fonctions du temps t 7→ (x(t), u(t))
(n équations scalaires liant n+m fonctions du temps).

– C’est l’ensemble des solutions de cette équation différentielle sous-déterminée.
Nous adoptons les deux derniers points de vue. Le point de vue de J. Willems [109] est le

dernier puisque, dans sa « behavioral approach », il définit l’ensemble des solutions par une série
d’axiomes, sans recourir a priori à une équation ; le point de vue de M. Fliess [33], qui utilise
l’algèbre différentielle pour définir et étudier cela, est également centré sur les deux derniers.

Poursuivons maintenant, en développant un point de vue forcément partial, et des résultats
obtenus ces dernières années.

1.2 Systèmes

1.2.1 Le cas « sans contrôle »

Si m = 0, l’équation (1.1) devient ẋ = f(x), équation différentielle ordinaire déterminée,
ou système dynamique différentiable. Une solution est une application t 7→ x(t) qui satisfait
l’équation pour (presque) tout temps.

Il est connu que la solution est entièrement déterminée par sa condition initiale, et qu’être
solution force une certaine régularité : même si l’on admet a priori comme solution des ob-
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jets peu différentiables en prenant la dérivée en un sens généralisé, une solution est forcément
aussi différentiable que f elle-même. On peut définir un flot à chaque temps t qui est un
difféomorphisme, associant à une condition initiale la valeur au temps t de la solution cor-
respondante.

Les véritables systèmes de contrôle sont ceux pour lesquels m n’est pas nul ; on suppose
maintenant m ≥ 1.

1.2.2 Systèmes de contrôle et équations différentielles sous-déterminées.

Revenons à l’équation (1.1), qui représente les systèmes que nous étudions ici. On peut
voir (1.1) comme un système de n équations différentielles liant n + m fonctions du temps, les
coordonnées de t 7→ (x(t), u(t)). Par solution de (1.1) on entend une application I → Rn+m (I
un intervalle de temps)

t 7→ (x(t) , u(t) ) , (1.3)

qui satisfasse l’équation (1.1) pour tout temps, ou presque tout temps. C’est un système d’équa-
tions différentielles sous-déterminé car sa « solution générale » dépend d’au moins une fonction
arbitraire du temps, ici m fonctions arbitraires du temps. Avec cette définition –imprécise à plus
d’un titre– des solutions,

on appelle B l’ensemble des solutions de (1.1). (1.4)

Notons que B est la première lettre de behavior, en référence sans doute à [109] ; le lecteur
soucieux de la préservation et du rayonnement de la langue française sera rassuré en trouvant en
(1.11) un second système dont l’ensemble des solutions s’appellera C, comme « comportement ».

Si l’on choisit m fonctions du temps et n constantes, c’est-à-dire t 7→ u(t) mesurable, voire
lisse (voir section 1.2.2.2) pour la régularité et x(0), on définit une unique solution x(t). L’en-
semble des solutions est donc beaucoup plus « gros » que pour les systèmes sans contrôle, où il
était de dimension finie.

On n’a précisé ni la régularité des solutions, ni leur intervalle de définition. Les articles
reproduits plus loin sont beaucoup plus rigoureux sur ces points. Les remarques ci-dessous
reviennent sur ces deux points, et d’autres ; leur but est surtout de nous débarrasser de tout
scrupule et de pouvoir énoncer les résultats sans donner tous les détails.

1.2.2.1 Régularité et caractère local pour le système

Vu que l’on ne s’intéresse en général qu’à des propriétés locales, il n’y a pas de raisons de
s’embarrasser de variétés différentiables : tout sera énoncé dans Rn.

Dans tout ce chapitre, f est supposée analytique réelle (Cω) pour simplifier et ne plus se
soucier de sa régularité. L’application f pourrait n’être définie que sur un voisinage du point
(x̄, ū) autour duquel est menée l’étude locale, et en tout état de cause, seule sa restriction à un
tel voisinage arbitrairement petit importera ; on pourrait parler de germes de systèmes [43].

1.2.2.2 Remarques sur la régularité des solutions

Il faut bien sûr suffisamment de régularité pour donner un sens à x(t), ẋ(t) et u(t), au moins
presque partout, dans l’équation (1.1). Rappelons que, pour ce qui est de l’équation elle-même,
on a supposé f lisse. Le minimum habituellement requis est d’exiger que u(.) soit mesurable en
donnant à l’équation (1.1) le sens suivant : pour tous t1, t2 dans I,

x(t2)− x(t1) =
∫ t2

t1

f(x(τ), u(τ))dτ ; (1.5)
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x(.) est alors forcément absolument continue. On est loin du cas « sans contrôle » de la sec-
tion 1.2.1 où toutes les solutions sont au moins aussi différentiables que l’équation ; ici aucune
régularité de u(.) n’est imposée par l’équation, on choisit seulement un classe qui permette de
donner un sens à l’équation, et x(.) est forcément un peu plus différentiable que u(.).

Dans la suite, on ne demande pas toujours la même régularité aux éléments de B. f étant
supposée lisse, on peut par exemple ne s’intéresser qu’aux solutions lisses, c’est-à-dire celles pour
lesquelles t 7→ (x(t), u(t)) est infiniment différentiable ; c’est le cas à la section 1.5.

On ne s’intéresse absolument pas à la régularité minimum pour donner un sens à l’équation,
mais plutôt à mettre dans B une classe assez riche pour caractériser le système et pour être stable
par les transformations envisagées plus tard. Par exemple, si on choisit que B ne contienne que
les solutions lisses, on laisse clairement de côté un grand nombre de contrôles possibles, ce qui
serait préjudiciable si B devait être utilisé comme un vivier dans lequel puiser la solution d’un
problème de contrôle, mais nous sera tout-à-fait suffisant, pour peu que les transformations
envisagées préservent cette lissité, car deux systèmes lisses qui ont les mêmes solutions lisses
sont identiques, par exemple parce que les contrôles lisses approchent suffisamment bien les
contrôles mesurables. On précisera à chaque fois, implicitement ou explicitement, la régularité
des « solutions » que l’on admet dans B.

1.2.2.3 Remarques sur l’intervalle de définition des solutions.

Une autre question est celle de l’intervalle de définition (en temps) des solutions. On ne peut
pas toujours prendre R tout entier car certaines solutions explosent en temps fini. En toute
rigueur un élément de B devrait être défini par l’intervalle I et l’application (x(.), u(.)). Il n’y a
pas de raison de considérer la restriction d’une solution à un sous-intervalle comme une solution
différente ; on pourrait donc au moins se contenter des solutions sur leur intervalle de définition
maximal... Se souvenant que l’on cherche surtout à mettre dans B une classe qui « représente »
le système, on se contentera presque toujours de solutions sur des « petits » intervalles autour de
zéro (comme nos systèmes ne dépendent pas explicitement du temps, on peut toujours appeller
0 l’instant initial).

Au Chapitre 9, on formalise cela en considérant que B est formé de germes en t = 0 de
solutions ; cela consiste à identifier deux solutions qui cöıncident sur un voisinage de 0, voir
par exemple [43] pour une définitions précise. Au Chapitre 2, au contraire, on considère des
solutions définies sur tout R, mais avec l’habituel subterfuge d’annuler la dynamique en dehors
d’un compact.

Les intervalles ne sont donc pas précisés dans ce chapitre, pour rendre l’exposé plus fluide ;
les articles reproduits aux chapitres 2 à 7 contiennent à chaque fois les précisions nécessaires.

1.2.2.4 Le contrôle fait partie de la solution

On peut considérer, par exemple au vu du diagramme (1.2), que la commande est un signal
exogène et que c’est la variable d’état x qui décrit le système... on est tenté alors de dire
qu’une « solution » est plutôt un x(t) possible qu’un (x(t), u(t)) possible comme on l’a fait en
(1.3). L’ensemble des solutions serait alors la projection de l’ensemble B défini plus haut sur la
composante x. Cela est discuté plus avant dans la sous-section 3.3.5.2.

Pour la plupart des systèmes, la commande produisant un t 7→ x(t) possible est unique
(inversibilité) et on peut « reconstituer » u(.) à partir de x(.) si bien que la projection de B est
aussi riche que B lui-même, et les deux choix s’équivalent. Pour les systèmes ne possédant pas
cette propriété d’inversibilité, il n’en est pas ainsi ; par exemple, pour le système ẋ = u1 + u2

(x, u1, u2 scalaires), le points de vue (1.3) considère comme deux solutions distinctes (constantes)
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(x, u1, u2) = (0, 0, 0) et (x, u1, u2) = (0, 1,−1) alors que l’autre point de vue ne les distingue pas ;
de ce même autre point de vue qui « oublie la commande », l’ensemble des solutions de ce système
est le même que celui du système à un seul contrôle ẋ = u, ce que nous voulons éviter.

Insistons donc sur le fait que B est fait de fonctions t 7→ (x(t), u(t)) et non t 7→ x(t). Un
système est l’ensemble des évolutions commande-état possibles.

1.2.2.5 Systèmes différentiels sous-déterminés plus généraux.

Bien sûr, (1.1) n’est pas la forme la plus générale d’équation différentielle sous-déterminée.
Le fait qu’elle soit d’ordre 1 ne nuit pas à la généralité : on se ramène de l’ordre k > 1

à l’ordre 1 en rajoutant de nouvelles variables, les dérivées d’ordre 1 à k − 1, et de nouvelles
équations qui disent que ces variables sont les dérivées les unes des autres.

En revanche, la forme (1.1) a ceci de particulier qu’elle est explicite : elle exprime les
dérivées de certaines variables (x) en fonction des variables non dérivées. Un système d’équations
différentielles général F (Ẋ(t), X(t)) = 0 se ramène, localement et en dehors de certaines singu-
larités (là où le rang du Jacobien partiel de F par rapport aux variables Ẋ est égal au nombre
d’équations), à la forme (1.1) grâce au théorème des fonctions implicites, et par un changement
de coordonnées sur X suivi d’une partition des nouvelles variables en deux groupes x et u.

Toutefois, autour d’un point où le rang du dit jacobien chute, on peut avoir affaire à un
système singulier qui ne se ramène pas à (1.1), et si le rang de ce jacobien est constant mais
inférieur au nombre d’équations, le système F (Ẋ(t), X(t)) = 0 dissimule des équations non
différentielles et ne se ramène pas non plus, ou pas immédiatement, à un système explicite de
type (1.1). Ceci est abordé à la section 5.3.1, page 116. Dans la suite, on ne considère que des
système de contrôle (1.1).

1.2.3 Systèmes linéaires

Le système (1.1) est dit linéaire si il est de la forme

ẋ = Ax+Bu (1.6)

où A est une matrice n× n, B une matrice n×m, u un vecteur colonne de taille m. Bien sûr la
structure linéaire de Rn importe ici ; la propriété d’être un système linéaire n’est pas préservée
par changement de coordonnées arbitraire.

Donnons un bref aperçu de classification des systèmes linéaires (formes normales de Bru-
novský [17]) ; on trouvera plus de détails à la section 3.4 ou dans des manuels comme [61]. On
définit le rang de commandabilité

r = rank{B,AB, . . . , An−1B} (1.7)

(rang de la collection des colonnes de ces matrices). Considérons d’abord le cas « mono-entrée »
où, dans (1.6), u est scalaire (et B est un vecteur colonne de taille n) :

Proposition (m = 1). Il existe un changement de coordonnées linéaire z = Px et un change-
ment de contrôle v = Kx+ qu, avec K un vecteur ligne, q un scalaire non nul et P une matrice
inversible, tel que le système linéaire mono-entrée (1.6) s’écrive

ẋ1 = x2
...

ẋr−1 = xr
ẋr = v

ŻII = ÃZII

où ZII =

zr+1
...
zn

 . (1.8)
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avec Ã une matrice constante (n− r)× (n− r).
Si r < n, le système contient une partie qui est en elle-même une équation différentielle

autonome, dont l’évolution est indépendante du contrôle ; on dit qu’il n’est pas commandable.
Si r = n, il n’y a pas de partie « autonome » et le système dit simplement que les coordonnées
de z sont les dérivées les unes des autres et que (z1)(n) = v.

Pour les systèmes à plus d’une entrée, on a la même partie « autonome » de dimension n− r
que ci-dessus si r < n ; on suppose r = n (commandabilité) pour simplifier l’enoncé suivant :

Proposition. Pour un système linéaire (1.6) à m entrées avec r = n, il existe des entiers
r1, . . . , rm, un changement de coordonnées linéaire z = Px et un changement de contrôle v =
Kx + Qu, avec K une matrice n × m et P et Q des matrices carrées inversibles, tels que le
système s’écrive

żsi+1 = zsi+2
...

żsi+ri−1 = zsi+r1
żsi+ri = vi

1 ≤ i ≤ m (1.9)

où s1 = 0, s2 = r1, . . . , si = r1 + · · ·+ ri−1.

Trivialité des systèmes linéaires commandables. On vient de voir que, sauf si il contient
une partie non commandable, un système linéaire est « trivial » : après un changement de
variables linéaire, il dit simplement que les variables en présence sont les dérivées les unes des
autres ; les solutions au sens de (1.3) sont faciles à décrire : les variables xsi+1 sont des fonctions
arbitraires du temps et les autres variables en sont des dérivées.

On peut considérer que les auteurs de [37], en introduisant la notion de platitude, ont reconnu
cette « trivialité » des systèmes linéaires commandables comme une propriété plus importante
que la linéarité elle-même. Voir un peu plus loin, section 1.5.2.
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1.3 Équivalence

1.3.1 Cadre général

Dans [19], Élie Cartan se pose la question de la notion la plus générale ou naturelle d’équivalence
entre deux systèmes d’équations différentielles sous-déterminés2 et écrit (page 17) :

(1.10)

Adoptons ce point de vue, et discutons des différents champs fonctionnels dans lesquels on peut
choisir cette correspondance. Pour être plus spécifiques, considérons deux systèmes Σ et Σ′

(Σ) ẋ = f(x, u) , x ∈ Rn, u ∈ Rm,

(Σ′) ż = g(z, v) , z ∈ Rn′ , v ∈ Rm′ ,
(1.11)

candidats à être «équivalents».
Comme en (1.4), appelons B et C l’ensemble des solutions de Σ et Σ′ respectivement, voir à

la section 1.2.2 des remarques sur la définition de cet ensemble de solutions. Pour que Σ et Σ′

soient équivalents, il faut donc qu’il existe, au minimum, une bijection Φ :

B
Φ−→ C . (1.12)

Si l’on se contente d’une bijection, sans autre propriété, son existence équivaut à ce que B et
C aient le même cardinal. A cette aune, tous les systèmes avec contrôle (m > 0) sont équivalents,
mais les équations différentielles ordinaires (m = 0) ne sont pas équivalentes aux systèmes avec
contrôle ; en effet, dans le cas sans contrôle, l’ensemble des solutions a le cardinal de Rn, et dans
le cas avec contrôle le cardinal de (Rm)Rn .

Cette remarque n’est pas très profonde. Elle nous convainc que les systèmes dynamiques
« déterminés » ne sont pas des cas particuliers de systèmes de contrôle, mais sont d’une autre
nature, et qu’en tout cas dans n’importe quelle étude d’équivalence, ils doivent être étudiés à
part. Elle nous convainc aussi qu’il est effectivement judicieux de restreindre quelque peu le
« champ fonctionnel » dans (1.10) si l’on veut sortir des trivialités.

Un grand champ fonctionnel (on vient d’essayer le plus grand possible) donne de grandes
classes d’équivalences et l’espoir d’une classification simple, mais a l’inconvénient que deux
systèmes déclarés équivalents risquent de peu se ressembler ; le paragraphe précédent illustre cela
jusqu’à la caricature. A l’inverse, il est clair qu’un champ fonctionnel petit et constitué de trans-
formations très bien identifiées fera que deux systèmes équivalents se ressemblent réellement, et
que les transformations permettent sans doute de traduire un loi de contrôle élaborée pour l’un
en une loi de contrôle pour l’autre, mais aura l’inconvénient d’un très grand nombre de classes
d’équivalence, donc d’invariants.

2 Élie Cartan ne parle pas de contrôle, et représente les systèmes différentiels sous-déterminés par des systèmes
de Pfaff, les solution étant les courbes qui annulent ce système de Pfaff. On a vu à la section 1.2.2.5 que les systèmes
de contrôle sont des systèmes sous-déterminés un peu particuliers en ce qu’ils sont « explicites », c’est-à-dire que
l’on particularise des variables dont la dérivée est exprimée par l’équation. Le système F (X, Ẋ) = 0 est plus
général car les variables dépendantes sont indifférenciées, mais on a fixé la variable indépendante, qu’on appelle
le temps, alors que dans le point de vue des systèmes de Pfaff, dans [19], elle n’est pas fixée a priori. L’ensemble
des solutions est donc plus riche dans [19] qu’ici, mais le principe demeure, voir la prochaine note de bas de page.
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On va donc exiger que Φ soit beaucoup plus qu’une bijection au sens ensembliste. En particu-
lier, on aimerait que cette transformation, a priori définie sur des ensembles de fonctions, dérive
en réalité de transformations sur des ensembles plus petit, idéalement d’une transformation
ponctuelle sur un espace de dimension finie.

Ces remarques sont sans objet pour les systèmes sans contrôle, dont l’ensemble de solutions
est déjà de dimension finie.

1.3.2 Cas des systèmes sans contrôle

On vient de voir que les systèmes sans contrôle ne sont jamais équivalents aux systèmes avec
contrôle, tout-au-moins pas pour une notion d’équivalence conforme à (1.10) et à la définition
de solution que nous avons donnée. Cela justifie de les traiter à part !

Habituellement, la conjugaison entre deux systèmes dynamiques (Σ et Σ′ avec m = m′ = 0)
provient d’une transformation ponctuelle z = φ(x) et on dit que deux systèmes sont conjugués
par φ si les solutions t 7→ z(t) de Σ′ sont exactement données par z(t) = φ(x(t)) où x(.) décrit
toutes les solutions de Σ, et vice-versa. Dans le langage de (1.10)-(1.12), on cherche Φ de la
forme (naturelle) d’une composition à gauche par une transformation φ : Rn → Rn′ (notons que
si φ est bi-continue, ce qui est le moins que l’on exige, on doit avoir n = n′) :

Φ(x(.) ) = φ ◦ x(.) .

Autrement dit Φ « dérive » d’une transformation ponctuelle φ : Rn → Rn′ ; plus savamment, le
diagramme suivant commute

B
Φ−→ C

πt ↓ ↓ πt
Rn φ−→ Rn′

, (1.13)

dans lequel les projections πt consistent à prendre la valeur au temps t d’une solution. Le
diagramme commute pour tout t avec le même φ, bien sûr.

C’est une notion d’équivalence très naturelle : si un tel φ existe, le portrait de phase d’un
système est l’image du portrait de phase de l’autre par φ, et il est clair que le comportement
qualitatif des deux systèmes est similaire. Si φ est différentiable, la conjugaison se traduit par
la formule : g(φ(x)) = φ′(x)f(x).

Cette classification des systèmes dynamique a été très étudiée. On en donne section 3.2 un
résumé très bref et orienté : elle ne concerne que la classification locale et prépare le terrain pour
l’étude des systèmes de contrôle. En bref :

– Localement autour de points où f et g ne s’annulent pas, il existe toujours un φ, difféo-
morphisme de la même classe de différentiabilité que les systèmes, qui les conjugue.

– Autour d’un point d’équilibre, tout difféomorphisme préserve le spectre du linéarisé ; on
se pose la question de l’équivalence entre le système et son linéarisé ; cette question, qui
a occupé de grands esprits depuis le début du vingtième siècle, est très difficile et sub-
tile (résonances, convergence des séries formelles qui conjuguent...), mais le théorème de
Grobman-Hartman –voir Théorème 2.1.1– donne une réponse simple si l’on accepte de
relâcher la différentiabilité : tous les systèmes sont conjugués leur linéarisé aux point hy-
perboliques quand on se contente d’un homéomorphisme, et d’ailleurs les spectres ne sont
pas conservés mais seulement le signe des parties réelles des valeurs propres (c’est-à-dire
le nombre de directions stables et instables autour du point d’équilibre hyperbolique.

Ces deux items sont disjoints car φ préserve les points d’équilibre c’est-à-dire doit envoyer un
zéro de f sur un zéro de g.
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1.3.3 Différentes équivalences pour les systèmes de contrôle

Donnons ici différentes classes possibles de « correspondances » (cf. (1.10))3, qui donnent
lieu à des équivalences très différentes. Ces classes ne se distinguent pas pour les équations
différentielles sans contrôle du fait de la dimension finie des ensembles de solutions. Les résultats
concernant ces équivalences sont énoncés ensuite, sections 1.4 et 1.5.

1.3.3.1 Transformations ponctuelles naturelles, feedback statique.

Si l’on reprend la même idée que dans le cas sans contrôle, et que l’on recopie la notion
d’équivalence très naturelle dont on vient de parler, on est amené à faire « dériver » les trans-
formations Φ du schéma (1.10)-(1.12) d’une transformations φ : Rn+m → Rn′+m′ telle que le
même diagramme commute pour tout temps t :

B
Φ−→ C

πt ↓ ↓ πt
Rn+m φ−→ Rn′+m′

, (1.14)

où les projections πt sont toujours celles qui associent une solution sa valeur au temps t :
πt( (x(.), u(.)) ) = (x(t), u(t)).

En d’autres termes, les systèmes Σ et Σ′ sont équivalents si il existe une transformation
φ : Rn+m → Rn′+m′ tel que l’ensemble des solutions t 7→ (z(t), v(t)) soit exactement donné par
(z(t), v(t)) = φ(x(t), u(t)) où (x(.), u(.)) décrit l’ensemble des solutions de Σ et vice-versa.
On dit qu’ils sont conjugués par φ.

On requiert au minimum que φ soit bi-continue –un homéomorphisme– et on dit que les
systèmes sont topologiquement équivalents s’il existe un tel φ. On peut requérir que φ soit un
difféomorphisme C∞ ou analytique, les systèmes sont alors différentiablement équivalents.

Théorème 1.1 (Proposition 3.3.6). Si φ est un homéomorphisme qui conjugue Σ à Σ′, alors
– n = n′, m = m′ et
– φ a nécessairement une structure triangulaire, c’est dire que (z, v) = φ(x, u) s’écrit

z = φI(x) , v = φII(x, u). (1.15)

Cette structure triangulaire fait de φ ce que l’on appelle habituellement une transformation
par feedback statique, illustrée sur le schéma suivant.

- ẋ = f(x, u) -
u x

Σ
u = φ−1

II (x, v)

6

φI
-

v
-
z

Σ′

(1.16)

Du point de vue du contrôle, si les systèmes sont conjugués par un tel φ, on peut obtenir l’un en
appliquant un pré-compensateur –feedback prenant une nouvelle entrée v et la mesure de l’état
pour construire u– à l’autre.

Dès que φ est différentiable, la conjugaison se traduit par la formule

φI
′(x)f(x, u) = g(φI(x) , φII(x, u) ) .

3 Dans [19], la variable indépendante n’est pas spécifiée à l’avance, voir la note 2 au bas de la page 9, et les
transformations sont aussi plus générales qu’ici ; ceci est par exemple étudié dans [104]. Il n’est pas difficile de
voir qu’on se restreint ici, par rapport à [19], aux transformations « qui préservent la variable indépendante »,
c’est-à-dire le temps.
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L’étude de cette équivalence a suscité de très nombreux travaux en contrôle, que nous n’avons
pas l’ambition de passer en revue ici. Notons que les invariants sont de grande dimension (la
« codimension » des classes d’équivalence est très grande, en tout cas infinie la plupart du temps),
et notons aussi que la classe des systèmes équivalents à des systèmes linéaires commandables est
parfaitement identifiée depuis [57, 50, 103], voir la section 3.5.2.

Nos résultats concernant cette notion d’équivalence sont donnés à la section 1.4 ci-dessous.

1.3.3.2 Transformations fonctionnelles.

On vient de dire que « peu » de systèmes sont équivalents au sens ci-dessus. . . d’où l’envie
d’élargir la classe des transformations Φ. On s’est déjà prêté au jeu des transformations très
générales juste après (1.12) en demandant seulement que Φ soit une bijection. On peut et doit
bien sûr être un peu plus exigeant.

On a a priori affaire à des transformations fonctionnelles, c’est-à-dire telles que l’image
Φ( (x(.), u(.)) ) de la solution (x(.), u(.)) de Σ dépende des valeurs passées et futures de (x(.), u(.)).
B et C sont des ensembles de fonctions (dont on peut préciser la nature, voir section 1.2.2.2),
des parties d’espaces fonctionnels sur lesquels il y a au moins une topologie, parfois une no-
tion de différentiabilité. La continuité ne suffit pas à obtenir une relation d’équivalence très
discriminante, comme on le voit sur l’exemple suivant.
Exemple4. On peut toujours bâtir un Φ bi-continu qui conjugue Σ et Σ′ dès que n = n′ et
m = m′ : il suffit d’associer une solution (x(.), u(.)) de Σ l’unique solution (z(.), v(.)) de Σ′ telle
que v(t) = u(t) pour tout t et z(0) = x(0).
Ici, on n’a à nouveau pas assez restreint le champ fonctionnel évoqué en (1.10) !

On voit qu’il est difficile de manipuler ce type de transformations sans tomber dans des
tautologies. Il y a peut-être des choses intéressantes de ce type à faire, mais, comme le disait
E. Cartan il y a bientôt un siècle dans le même article [19], un peu plus bas que (1.10), cela
reste une « notion très large qu’il est difficile de soumettre telle quelle aux recherches dans l’état
actuel de l’Analyse »...

1.3.3.3 Transformations fonctionnelles restreintes

On peut revenir à un schéma du type (1.14), qui avait l’avantage de décrire les transforma-
tions Φ au travers de simples transformations ponctuelles en dimension finie, et chercher à le
« généraliser » :

B
Φ−→ C

Πt ↓ ↓ Πt

X
φ−→ Y

. (1.17)

Ici, les Πt projettent une information « au temps t » sur la solution, plus générale que sa simple
valeur au temps t, et X et Y sont des espaces de dimension plus petite que B et C, idéalement
de dimension finie. On va voir deux occurrences de ceci.

A la section 1.4.2, les X et Y ne sont pas de dimension finie, mais sont un espace sur lequel
le système de contrôle donne lieu à un flot, voir (1.20), et on a établi (article reproduit au
chapitre 2) une sorte de théorème de Grobman-Hartman dans ce contexte.

A la section 1.5, on définit des transformations –celles utilisées par E. Cartan dans [19], à la
restriction près des notes 2 et 3 au bas des page 9 et 11– qui sont réellement descriptibles avec
des X et Y de dimension finies et sont en même temps plus générales que (1.14) : les X et Y

4Ceci est aussi valable pour les systèmes sans contrôle et revient à composer un flot par l’inverse de l’autre ;
tous les flots de la même dimension sont alors conjugués par de telles transformations (qui dépendent du temps).
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sont des espaces de jets, et les projections retiennent un certain nombre de dérivées à l’instant
t, mais on ne peut pas réaliser Φ et Φ−1 avec les mêmes φ, X et Y ; voir (1.21).

1.4 Autour d’un théorème de Grobman-Hartman pour les
systèmes de contrôle

On expose ici les résultats des articles reproduits aux chapitres 3 et 2. Celui reproduit au
chapitre 4 en est une brève discussion.

On suppose toujours les deux systèmes Σ et Σ′ dans (1.11) analytiques ; le cas C∞ est aussi
traité dans les articles.

La motivation et le point de départ était une question de modélisation, ou d’identification
non-linéaire, exposée à la section 4.1. Si l’on considère un système de contrôle (1.1), par exemple
autour d’un point d’équilibre (f(0, 0) = 0) :

ẋ = f(x, u) = Ax+Bu+ ρ(x, u) (1.18)

ou la fonction ρ est d’ordre 2 en zéro, et si l’on suppose que les matrices A et B sont telles que
le système linéaire

ż = Az +Bv (1.19)

soit commandable, ce dernier système linéaire est-il un modèle suffisant de (1.18) pour tout ce
qui est local autour de (0, 0) ?

La réponse semble être positive du point de vue de la conception des lois de contrôle, qui
se fondent sur le modèle (1.19) s’il est commandable, si bien que les systèmes (1.18) et (1.19)
se ressemblent énormément, et on est tenté de croire à l’affirmation (4.2). On est aussi tenté
de formaliser cette croyance, et d’essayer d’établir une conjugaison entre les deux ; on sait que
la conjugaison différentiable est rare –on connâıt bien les conditions sur f pour qu’il y ait
conjugaison différentiable, voir section 1.3.3 (ou 3.5.2 pour plus de détails)– mais il est tentant
d’essayer d’établir un résultat « mou » comme le théorème de Grobman-Hartman pour les
équations différentielles sans contrôle.

1.4.1 Linéarisation par transformations ponctuelles

On s’intéresse ici à une conjugaison possible par les transformations décrites à la sec-
tion 1.3.3.1.

Les systèmes (1.18) et (1.19) sont-ils toujours conjugués au moins par un homéomorphisme
φ au sens de (1.14) dès que le second est contrôlable ? Les auteurs de [9, 10] ont posé la question
autour d’eux, en 1998 ou 1999, et ont obtenu davantage d’avis « évidement oui » que « évidement
non »5. La réponse est en réalité négative d’après le Théorème 3.5.2, et très fortement puisque,
contrairement au cas des équations sans contrôle, on ne gagne a peu près rien à relâcher la
différentiabilité de la transformation qui conjugue.

Théorème 1.2 (Théorème 3.5.2). Supposons que (1.18) et (1.19) soient topologiquement équin-
valents localement autour de l’origine. Si le rang de ∂f/∂u est localement constant, les systèmes
sont aussi conjugués par un difféomorphisme analytique ; sinon, ils sont conjugués par un φ tel
que φI (voir (1.15)) soit un difféomorphisme analytique.

5Sondage non officiel réalisé informellement auprès d’un échantillon partial et non représentatif. Peut-être
l’auteur s’est-il compté trois fois ?...
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La cas où le rang de ∂f/∂u n’est pas localement constant est entièrement précisé dans le
Théorème 3.5.2 énoncé au chapitre 3, et discuté abondamment à la section 3.5 ainsi que dans
le chapitre 4. Savoir si l’on peut toujours prendre φ analytique, voire C∞, pose une question
ouverte intéressante de topologie différentielle, voir la section 3.5.1 page 74 et la section 4.4.

Ce résultat ne clôt pas la question posée autour de (1.18) et (1.19), et laisse ouverte la
question de phénomènes qualitatifs et locaux autour de l’origine qui distingueraient ces deux
systèmes.

Par ailleurs, la preuve de ce théorème exploite beaucoup la structure linéaire contrôlable du
second système. Est-il vrai que si deux systèmes quelconques6 sont topologiquement équivalents,
ils sont aussi conjugués par un difféomorphisme analytique, ou au moins un homéomorphisme
φ tel que φI soit un difféomorphisme analytique ? Cela reste ouvert.

1.4.2 Associer un flot à un système de contrôle...

Le théorème de Grobman-Hartman est un théorème de conjugaison de flots, et toute tentative
de « généraliser » sa preuve aux systèmes de contrôle est vaine si l’on ne dispose pas de ce flot.
On peut imaginer deux cadres qui associent un flot à un système de contrôle.

1. Si le contrôle est généré par un système dynamique de dimension finie (2.4) : ζ̇ = g(ζ),
u = h(ζ) (ζ ∈ Rq), le système combiné génère évidemment un flot dans Rn+q. Bien sûr on a
un peu triché en restreignant énormément les contrôles possibles : l’ensemble des solutions
de ce système est beaucoup plus petit que l’ensemble B initial.
Ce générateur de contrôle pourrait être un oscillateur ou un autre générateur de signaux
tests pour une sorte d’identification fréquentielle généralisée.

2. Dans [25] ou [26, section 4.3], Colonius et Kliemann associent à un système de contrôle
(1.1) un flot sur le produit Rn×U où U est l’espace fonctionnel des contrôles, par exemple
l’ensemble des fonctions mesurables R → Rm. Le flot au temps t associe à x(0) et un
contrôle (fonction du temps définie sur tout R), la valeur de x(t) si l’on applique ce contrôle
et le même contrôle avec un argument (temps) décalé de t (la dynamique sur U est le
« time-shift »). Ceci est précisé à la section 2.3.2.

On établit dans l’article reproduit au chapitre 2 des « théorèmes de Grobman-Hartman »
dans chacun de ces deux cas. Dans le premier, Le Théorème 2.3.1 nous dit que l’on peut conjuguer
les deux équation différentielles ẋ = f(x, h(ζ)), ζ̇ = g(ζ) et ẋ = Ax + Bh(ζ)), ζ̇ = g(ζ) par un
homéomorphisme qui préserve la variable ζ et l’équation qui génère le contrôle.

Développons davantage le second cas, car il ne restreint pas les solutions et rentre dans le
programme (1.10)-(1.12). On cherche précisément, pour deux systèmes (1.11) –on oublie pour
un moment que l’un des deux est le linéarisé de l’autre– et leurs flots associés sur Rn × U et
Rn′ × V, à les conjuguer par une transformation φ : Rn × U → Rn′ × V, c’est-à-dire que l’on
cherche une transformation Φ qui fasse commuter le diagramme

B
Φ−→ C

πt ↓ ↓ πt
Rn × U φ−→ Rn′ × V

, (1.20)

où les projections πt consistent à prendre la valeur de x(.) au temps t et à retenir tout le contrôle
u(.), mais en décalant le temps de telle façon que le temps t en haut corresponde au temps 0

6On a tout de même besoin de commandabilité : si les deux systèmes ont des parties non commandables, ces
parties auront, autour d’un point d’équilibre, des invariants différentiels (valeurs propres, résonances...) qui ne se
voient pas topologiquement à cause du théorème de Grobman-Hartman classique.
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en bas. Pour ce qui nous intéresse, n = n′, U = V, et le second système est le linéarisé du
premier. On prend U = Lp(R,Rm), p ∈ [1,∞]. On a le théorème suivant, énoncé de manière
approximative, voir le Chapitre 2 pour la version techniquement correcte.

Théorème 1.3 (Théorème 2.3.7). si A est hyperbolique, il existe un homéomorphisme φ :
Rn×U → Rn×U qui conjugue (1.18) et (1.19) localement. De plus il préserve la composante sur
U , c’est-à-dire que φ(x, u(.)) = (H(x, u(.)), u(.) ) pour une certaine application H : Rn×U → Rn.

Cette conjugaison dit-elle que les deux systèmes se ressemblent ? Il est un peu hasardeux de
l’affirmer, ce d’autant plus que l’on peut aussi, par ce type de transformation, faire disparâıtre
le terme Bu et conjuguer (1.18) à ẋ = Ax : l’effet du contrôle est alors tout entier rejeté dans
les transformations. Le résultat n’est pas pour autant une tautologie et a une incidence sur la
théorie des systèmes telle que vue par [26].

1.5 Résultats sur l’équivalence et la linéarisation dynamique

1.5.1 Les transformations dynamiques

Les transformations dynamiques, ou par feedback dynamique endogène, sont à mi-chemin
entre les transformations « statiques » de la section 1.3.3.1, dont on a vu que même en ne de-
mandant pas de différentiabilité, elles donnent une équivalence très rigide, et les transformations
fonctionnelles très générales qui donnent une équivalence difficilement exploitable.

Continuons ce que l’on a ébauché en (1.17). Les transformations que l’on va définir consistent
effectivement à définir la correspondance Φ en projetant à chaque instant t une information de
dimension finie et en faisant porter la transformation –stationnaire– sur cette donnée de dimen-
sion finie. Il n’est cependant pas vrai que l’on ait, comme suggéré en (1.17), une transformation
inversible en dimension finie φ. Le véritable schéma est le suivant (JK et JK′ sont notés JK(M)
et JK

′
(M ′) dans l’article reproduit au chapitre 5) :

B
Φ−→ C

ΠK
t ↓ ↓ πt
JK φ−→ Rn′ × Rm′

,
B

Φ−1←− C

πt ↓ ↓ ΠK′
t

Rn × Rm ψ←− J ′K′
, (1.21)

où φ et ψ ne sont pas inversibles en général. Les projections envoient les solutions dans des
espaces de jets d’ordre K ou K ′ en prenant simplement les K ou K ′ premières dérivées au
temps t (les dérivées de x ou z ne sont pas nécessaires car elles sont exprimées par (1.11)). Cette
notion d’équivalence est exactement celle de la Définition 5.3.8 du chapitre 5, à ceci près que
- la définition 5.3.8 est plus précise et donne une notion locale,
- les notations sont différentes : ce qui est noté ici φ est noté Φ au chapitre 5, et ce qui est noté
ici Φ est noté DK

Φ au chapitre 5.

Ces transformations demandent de dériver les solutions un nombre de fois non défini à
l’avance, et il faut donc, ici, nécessairement exiger que les élément de B et C, « les solutions »
par définition, soient infiniment différentiables. Cela n’est pas une difficulté puisque, comme on
l’a remarqué à la section 1.2.2.2, un système est entièrement caractérisé par ses solutions lisses.

Bien sûr, les entiers K et K ′ ne sont pas connus, ou majorés, à l’avance, si bien que ces
schémas sont en fait potentiellement infinis. Un point de vue très légèrement différent sur ces
transformations, peut-être formellement plus élégant mais rigoureusement équivalent, consiste
à utiliser des espaces de jets infinis, au lieu des espaces finis ci-dessus. C’est ce que l’on expose
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dans l’article reproduit au chapitre 6. C’est le point de vue des « diffiétés », pour reprendre un
terme introduit en contrôle dans [38, 41]. On a alors un schéma du type

B
Φ−→ C

Π∞t ↓ ↓ Π∞t
J∞ φ∞−→ J ′∞

, (1.22)

au lieu de (1.21). L’application φ∞ est inversible, c’est même un difféomorphisme, entre espaces
de jets infinis ; ces espaces ont une structure de variété « de dimension infinie » qui fait que les
applications différentiables dépendent nécessairement d’un nombre fini de variable, ce qui est
exactement traduit par les deux diagrammes (1.21).

1.5.2 Feedback dynamique, linéarisation, platitude et paramétrisabilité

Historiquement [53, 22], la notion de linéarisation dynamique consistait à généraliser le
schéma (1.16) en s’autorisant, au lieu de la boite « statique » qui donne u en fonction du
nouveau contrôle v et de l’état x par une simple formule, un système dynamique –ayant son
propre état– avec ces mêmes entrées, et en autorisant la boite de sortie à utiliser aussi cet état
du pré-compensateur.

Le traduire en termes de transformations utilisant des dérivées revient à [68, 37]. En réalité,
cette notion de linéarisation par feedback dynamique n’entrâıne pas l’existence d’une transfor-
mation Φ inversible, mais d’une application Φ du type suivant :

L
Φ−→ B

ΠK
t ↓ ↓ πt
JK φ−→ Rn × Rm

, (1.23)

où L est l’ensemble des solutions d’un système linéaire commandable Λ, mais Φ n’est pas
forcément inversible ; on demande seulement qu’elle soit surjective (elle atteint toutes les so-
lutions de Σ) et que les fibres soient de dimension finies, c’est-à-dire que fixer une solution
de Σ et chercher ses antécédents revient à résoudre une équation différentielle dont la solution
générale ne dépend que d’un nombre fini de constantes. On appelle aussi φ une « paramétrisation
de Monge » ; pour une définition très précise, voir la Définition 9.2.2 dans l’article reproduit au
chapitre 9 ; cette définition est donnée seulement pour les systèmes à deux états et trois entrées
(n = 3,m = 2 dans (1.1)) mais n’est pas spécifique à ces dimensions.

Parmi ces feedbacks dynamiques, ou paramétrisations de Monge, on distingue, à la suite de
[37, 68, 40], ceux qui se traduisent par une application (1.23) qui soit en réalité inversible comme
en (1.21) en les qualifiant d’endogènes. Un système conjugué à un système linéaire commandable
par une telle transformation est dit linéarisable par feedback dynamique endogène ou encore plat,
ou simplement dynamiquement linéarisable.

Il est à noter que les feedback non nécessairement endogènes ne définissent ni une classe de
transformations ni une notion d’équivalence convenable sur les systèmes.

Ordre d’une paramétrisation. Dans (1.23), on peut supposer le système linéaire « tri-
vial » de gauche sous forme canonique –voir section 1.2.3– et on appellera ordre de la pa-
ramétrisation φ le nombre de fois que les fonctions arbitraires du temps (les coordonnées
numéro si + 1, 1 ≤ i ≤ m, dans la forme (1.9)) sont dérivées après avoir tout exprimé en fonc-
tion de ces dernières ; ce n’est pas forcément le K du schéma car les variables du système linéaire
peuvent déjà contenir des dérivées de ces fonctions arbitraires du temps. Au chapitre 9, on raffine
cet ordre en indiquant par un m-uplet d’entiers combien de fois chaque fonctions arbitraires est
dérivé, et pas seulement le maximum.
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Sorties plates. Quand un système est plat, c’est-à-dire si Φ dans (1.23) peut être inversé
comme dans (1.21), l’inverse de Φ est donné par un ψ dont les coordonnées numéro si + 1,
1 ≤ i ≤ m –on suppose à nouveau le système linéaire sous la forme (1.9))– forment un m-uplet
de fonctions de x, u, u̇, . . . , u(K′) que l’on appelle une sortie plate (dans l’article reproduit au
chapitre 8, on disait linéarisantes au lieu de plates). Il se peut qu’elles dépendent de moins de
dérivées que cela. On dit que le système est x-plat si il existe une sorties plates qui ne dépend
que de x, (x, u)-plat si il existe une sortie plate qui ne dépend que de x et u... et ainsi de suite.

1.5.3 Conditions de platitude, de paramétrisabilité ou d’équivalence
dynamique

Étant donné un système, comment décider si il est plat ? si il admet une paramétrisation de
Monge ?

Étant donnés deux systèmes, comment décider si ils sont dynamiquement équivalents ?

L’article reproduit au chapitre 7 donne une re-formulation de la première question ci-dessus :
un système est plat si et seulement si un certain système de formes différentielles, dont la
construction est tout-à-fait explicite, peut être rendu exact à l’aide d’un « facteur intégrant »
qui n’est pas une simple matrice inversible à coefficients fonctions scalaires mais un opérateur
différentiel inversible, dont l’ordre joue le même rôle que les entiers K et K ′ de la section
précédente. Insistons sur le fait qu’il ne s’agit pas d’une solution du problème de platitude,
mais d’une simple re-formulation, utilisée dans l’article reproduit au chapitre 8, et discuté en
section 1.5.5.

Revenons aux deux question initiales.
– Exhiber la transformation φ qui remplit les conditions prouve évidement que les systèmes

sont plats, ou équivalents, et cette information, ainsi que la transformation explicite, peut
se révéler très utile pour résoudre des problèmes de contrôle.

– En revanche, prouver qu’un système n’est pas plat, ou que deux systèmes ne sont pas
équivalents est une tâche très difficile. Par exemple nul ne sait si le système (9.14), qui
s’écrit aussi, pour ressembler davantage à (1.1) :

ẋ1 = u1

ẋ2 = u2 + x3 u1

ẋ3 = x2 + u1 u2
2

(1.24)

est plat ou non. La difficulté est précisément, pour cet exemple comme en général, que les
entiers K ou K ′ ne sont pas connus à l’avance. On peut en principe prouver qu’il n’existe
pas transformations avec K fixé, mais tant que l’on n’a pas de moyen de majorer K a
priori, on n’a pas de moyen de preuve fini.

1.5.4 Conditions nécessaires pour l’équivalence dynamique

Un premier invariant est le nombre d’entrées m ; cela peut se prouver de bien des manières ;
ce nombre est par exemple, dans le langage de [33], le degré de transcendance différentielle. Le
résultat est prouvé de manière élémentaire au chapitre 6.

Théorème 1.4 (Théorème 6.2). Si les deux systèmes (1.11) sont dynamiquement équivalents,
alors m = m′.

Systèmes mono-entrée (m = m′ = 1). Il est prouvé dans [23] qu’un système à une seule
entrée qui est linéarisable par feedback dynamique (ou admet une paramétrisation de Monge,
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cf. section 1.5.2) est nécessairement linéarisable par feedback statique. Cela se généralise à
l’équivalence de systèmes quelconques, si bien que, pour les systèmes mono-entrée, l’équivalence
dynamique n’est pas plus riche que l’équivalence statique :

Théorème 1.5 (Théorème 6.3). Si m = m′ = 1 et si les deux systèmes (1.11) sont dynamique-
ment équivalents, alors ils sont statiquement équivalents.

Critère de variété réglée. La seule condition nécessaire générale de platitude connue à
l’heure actuelle est la suivante : un système plat est réglé (Théorème 5.4.1).
La condition est aussi nécessaire pour l’existence d’une paramétrisation de Monge. Le résultat
est prouvé par Rouchon dans [88] (où il est aussi utilisé pour montrer que la platitude n’est pas
générique, ce qui montre sa généralité) et indépendamment, mais avec une notion plus restrictive
de la platitude (la classe des transformations Φ est réduite), par Sluis dans [96].

Rappelons qu’un système (1.1) est réglé si, pour tout x, l’ensemble décrit en faisant varier
u est une sous-variété réglée de l’espace affine TxRn (qui n’est autre que Rn bien sur, mais on
note TxRn pour souligner que sa structure d’espace affine (et même linéaire) est préservée par
changement de coordonnées et demeure si on travaille sur une variété).

La condition suivante, prouvée au chapitre 5, est en quelque sorte une extension de ce critère
à l’équivalence entre systèmes généraux.

Théorème 1.6 (Théorème 5.4.2). Si les deux systèmes (1.11), supposés analytiques, sont dy-
namiquement équivalents, alors

- si n < n′, Σ′ est réglé,

- si n = n′, soit Σ et Σ′ sont réglés tous les deux soit ils sont statiquement équivalents.

1.5.5 Des résultats pour les systèmes de petite dimension

On a étudié la plus petite dimension où le problème de déterminer quels systèmes sont plats,
ou paramétrables, ne soit pas résolue simplement. Il faut pour cela au moins deux entrées d’après
le Théorème 1.5 ci-dessus, et un état de plus pour que le système ne soit pas trivial. On est donc
ramené aux systèmes à trois états et deux entrées que nous étudions dans l’article reproduit au
chapitre 9 ; le Théorème 1.6 indique que seuls les systèmes réglés sont susceptibles d’être plats, et
cette propriété permet de se ramener aux systèmes définis par trois champs de vecteurs dans R4,
c’est-à-dire les systèmes à quatre états et deux entrées qui ont la particularité que la dépendance
en u du membre de gauche dans (1.1) est affine ; ces systèmes sont l’objet de l’article reproduit
au chapitre 8.

On passe d’un système réglé à trois états à un système affine à quatre états en « ajoutant
un intégrateur » ; il y a en revanche plusieurs façons de « couper un intégrateur » pour passer
d’un système affine à quatre états à un système réglé à trois états. Cela est bien expliqué, par
exemple, dans la thèse [7].

L’article du chapitre 8 est le plus ancien. Il utilise la re-formulation du chapitre 7 dont
on parle plus haut, et une décomposition des opérateurs différentiels inversibles en opérateurs
élémentaires. Le résultat principal caractérise les systèmes « (x, u)-plats » (voir la section 1.5.2)
de ces dimension, ce qui est déjà très difficile et calculatoire. L’article est long et les preuves
très techniques ; par exemple, certaines simplifications sont obtenues sur des formes normales
en coordonnées en utilisant Maple. Comme on l’a indiqué à la section 1.5.3, il est très difficile
de montrer qu’un système n’est pas plat. L’article montre que toute une classe de systèmes
de cette dimension ne sont pas « (x, u)-plats ». Mais certains d’entre eux sont-ils par exemple
(x, u, u̇)-plats ? Aucune réponse n’est donnée, mais on est amené à faire la conjecture suivante.



1.5. RÉSULTATS SUR L’ÉQUIVALENCE ET LA LINÉARISATION DYNAMIQUE 19

Conjecture. Aucun des systèmes dont on montre au chapitre 8 qu’ils ne sont pas (x, u)-plats
n’est plat.

L’étude du chapitre 9 est plus récente, et n’utilise pas du tout les mêmes outils. Elle retrouve
les mêmes résultats, et en montre de plus généraux pour trois raisons :

– On y étudie la paramétrisabilité plutôt que la platitude, ce qui est a priori plus général.
– On va un peu plus loin en termes d’ordre de dérivation, quoi que les comparaisons ne

soient pas aisées vues les représentations différentes ; les relations entre les deux sont
décrites à la section 9.7. Les systèmes (x, u)-plats du chapitre 8 admettent, au chapitre 9
une paramétrisation d’ordre (1,2), et on peut montrer que les autres n’admettent ni pa-
ramétrisation d’ordre (2, k) pour k arbitraire, ni paramétrisation d’ordre (3,3).

– Le chapitre 9 ne reste pas muet sur les ordres supérieurs et donne, pour toute paire (k, `)
un système d’équations aux dérivées partielles qui a des solutions si et seulement si le
système admet une paramétrisation d’ordre (k, `).

De plus, les techniques du chapitre sont beaucoup plus élémentaires et les preuves lisibles.

Ce chapitre ne sait toutefois ni infirmer ni confirmer la conjecture suivante, Conjecture 9.5.3
au chapitre 9, et qui n’est pas très loin de la précédente :

Conjecture. Aucun des systèmes dont on montre au chapitre 9 qu’ils n’admettent pas de pa-
ramétrisation d’ordre (1,2) n’admet de paramétrisation de quelque ordre que ce soit.
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résumé de ces travaux. Comme indiqué dans l’avant-propos, le mémoire, par soucis
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les trois thèse suivantes.
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Notice des travaux scientifiques

Travail antérieur à la thèse. La publication [1] étudie la solution radiale d’une EDP elliptique sur
un anneau fin et donne une estimation –en fonction de l’épaisseur de cet anneau– de son indice en tant
que point critique d’une certaine fonctionnelle. La motivation de cette estimation était de distinguer cette
solution radiale évidente d’autres solutions mises en évidence par des méthodes variationnelles.
La suite de mes travaux n’a pas de rapport direct avec cette contribution à l’analyse des EDP.

Rappel succinct du sujet de thèse et des résultats obtenus.
Titre : Sur la commande adaptative des systèmes non-linéaires. Soutenue en septembre 1989.

Son sujet était, en bref : si on a une famille de systèmes contrôlés ẋ = f(p, x, u), où p est un
paramètre de dimension finie (en pratique on se trouve devant l’un de ces systèmes mais la valeur de p
n’est pas connue), et si l’on connaı̂t, pour chaque valeur du paramètre, une loi de commande stabilisante,
peut-on (et comment) construire un contrôleur stabilisant valable pour tous les systèmes de la famille.
Ce problème avait déjà été étudié lorsque chaque système peut être rendu linéaire par un feedback bien
choisi, puis stabilisé par des méthodes linéaires ; on est sorti de ce cadre en ne faisant pas d’hypothèse
a priori sur le type de contrôle utilisé « à paramètres connus ». On suppose en général une dépendance
affine en les paramètres.

Les résultats sont publies dans les articles [2, 3, i, ii, 4, 5] ; ils sont décrits et mis en perspective à la
section 1.1 ci-dessous et dans une moindre mesure à la section 2.1.

1 Problèmes de contrôle, feedback, stabilisation

On considère des systèmes contrôlés ẋ = f(x, u), où x est l’état, ici de dimension finie, et u le
contrôle, la fonction f décrivant la dynamique supposée suffisamment lisse.

Cette fonction f peut être mal connue, elle est en elle-même un paramètre du problème ; on peut
mettre en évidence une incertitude de plus petite dimension en écrivant ẋ = f(p, x, u), où p est un
paramètre (constant, en général de dimension finie).

Si une partie seulement de l’état est mesurée, on écrit y = h(x), où y représente la sortie mesurée.
Le problème de contrôle auquel on s’intéresse est essentiellement la stabilisation, c’est-à-dire à

la construction de contrôles, dépendant de l’état entier, ou de la sortie, qui rendent stable un point
d’équilibre ou une trajectoire, et permettent de les rallier asymptotiquement, ou en temps fini. Le problème
est l’existence et la construction de contrôleurs, qui peuvent être eux-mêmes des systèmes dynamiques,
réalisant cet objectif.

1.1 Commande adaptative

On se demande ici si il est possible de construire de tels contrôleurs sans une connaissance totale de
la dynamique f , c’est-à-dire un contrôleur indépendant du paramètre p qui fonctionne pour “toutes” les
valeurs de p. On suppose pour cela donnée –sauf dans le premier paragraphe– une famille de contrôleurs,
dépendant de p, telle que chaque contrôleur stabilise le système correspondant.

Le travail [3] concerne plutot la commande adaptative “linéaire”, c’est-à dire que les systèmes sont
linéaires (en les états et les entrées) ; les contrôleurs adaptatifs pour de tels cas sont assez bien connus,
mais non-linéaires en général. Dans cet article, on n’est pas tout-à fait dans le cadre ci-dessus en ce sens
que l’on applique ce contrôleur à un système qui n’appartient pas à la famille paramétrée par p : on a
étudié l’effet d’un contrôleur adaptatif linéaire appliqué à un système d’ordre plus grand que le contrôleur
ne le prévoit. Le système bouclé est alors un système dynamique non linéaire qui, en général, peut avoir
des comportements à peu près quelconques, cf. une littérature assez abondante. On montre ici que l’on
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peut malgré tout prédire, si l’on désire suivre un signal périodique en sortie, l’existence d’une solution
périodique stable pour le système bouclé. L’article [2], lui, étudie la (non)-robustesse de la propriété
« toute trajectoire est bornée et rentre en temps fini dans un compact ».

Ces deux résultats sont des préliminaires qui ne figurent pas explicitement dans la thèse.

On décrit dans [4] un apport important de cette thèse, qui consiste à utiliser explicitement dans
l’algorithme d’estimation des paramètres une fonction de Lyapunov correspondant aux systèmes bouclés
« à paramètres connus ». On montre que cela fournit une pondération des l’estimation très adaptée à la
stabilisation et fournit, sous certaines conditions, des résultats globaux. On obtient ainsi « aussi bien »
que les résultats précédemment connus quand on peut employer des commandes linéarisantes. Cette
publication contient aussi une méthode de projection des paramètres qui a beaucoup été utilisée par la
suite. L’article [5] est un survey qui reprend et développe toute cette partie de la thèse.

On a aussi étudié la structure des familles de systèmes paramétrées ; on peut trouver dans [4], et
surtout dans [ii], des résultats beaucoup plus forts lorsque l’on a des restrictions, en quelque sorte, sur
les directions dans lesquelles la dynamique dépend des paramètres, ce qui permet de compenser ces
effets par un contrôle. La formulation de ces restrictions est toutefois très implicite a priori ; une étude
structurelle des familles de systèmes a permis une caractérisation géométrique, [7, iii], sur lesquels nous
reviendrons à la section 2.1.

Contrôleur universel. Dans [iv], on s’intéresse à la question de l’information suffisante sur un système
pour le stabiliser, ou le problème du “contrôleur universel”. Existe-t-il un contrôleur qui stabilise “tous”
les systèmes ? Cette référence donne une construction de recherche dense, déja utilisée en contrôle
linéaire, qui n’a pas d’intêret pratique mais pousse à se demander si il y a vraiment des conditions
nécessaires pour qu’une famille de système soit stabilisable par un même contrôleur sans restriction sur
celui-ci.

1.2 Contrôle de sortie / observateurs

Avec des techniques proches, de [4] et de la thèse, j’ai obtenu des résultats de stabilisation par retour
de sortie, où l’on ne dispose que de mesures partielles [6].

1.3 Stabilisation instationnaire

Certains systèmes non linéaires, disons ẋ = f(x, u) avec f(0, 0) = 0, quoique contrôlables, ont des
points d’équilibre (ici x = 0) qui ne peuvent être stabilisés par un contrôle qui dépende continûment de
l’état ; c’est-à-dire qu’il y a une obstruction de nature topologique1 à l’existence de α continu tel que le
point d’équilibre 0 pour ẋ = f(x, α(x)) soit asymptotiquement stable.

De nombreux systèmes mécaniques contrôlés, en robotique mobile (contraintes non-holonomes),
sont dans ce cas ; celà avait été noté, et il avait été proposé2, pour deux cas de tels systèmes mécaniques,
d’utiliser des contrôles qui dépendent non seulement de l’état, mais aussi du temps (périodiquement).
Dans [8], il est montré que ce moyen de contourner l’obstruction à la stabilisation par une retour continu
d’état «pur» fonctionne pour une classe générale de systèmes présentant ladite obstruction, et une construc-
tion très explicite est donnée. Dans [v], on a donné un exemple de synthèse de telles lois sur un système
simple de robotique mobile déjà étudié dans la référence mentionnéee ci-dessus, mais où l’on laisse plus
de libertés dans la loi de commande pour satisfaire, en plus, certains critères.

1R. W. Brockett, «Asymptotic Stability and Feedback Stabilization», in Differential geometric control theory, Birkäuser,
1983, p. 181-191.

2C. Samson, «Velocity and torque feedback control of a nonholonomic cart», in Proc. in Advanced Robot Control, vol. 162,
Springer-Verlag, 1991.
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L’article [8] fut, avec [J.-M. Coron, 1992]3, le départ d’une nombreuse littérature sur la stabilisation
instationnaire : stabilisation de systèmes généraux, application à des systèmes concrets, études de robus-
tesse, méthodes explicites de synthèse. Ce fut l’objet d’un exposé plénier [ix] à la Conférence Européenne
de Contrôle en 1998. Dans [13], on donne une loi stabilisante pour le contrôle de l’attitude d’un satellite
en mode dégradé. Ce système n’appartient pas à la classe de systèmes traités dans [8] et la construction
du contrôle fait appel à une technique différente. Dans [14], on donne une méthode constructive (mais
complexe) très générale utilisant l’idée classique d’approximer un déplacement selon le crochet de Lie
de 2 champs de vecteurs par une oscillation entre les deux champs.

1.4 Control Lyapunov functions, Robustesse

Les fonctions de Lyapunov contrôlées (CLF) sont non seulement un outil d’analyse, comme les
fonctions de Lyapunov pour la stabilité des équations différentielles, mais aussi un puissant outil de
synthèse de contrôleurs pour la stabilisation des systèmes contrôlés. Elles sont utilisées dans la plupart
des travaux décrits ci-dessus, mais un sujet d’intérêt4 est de systématiser la construction de CLF. Nous
avons proposé [16, 15, xi], [thèse de L. Faubourg] des méthodes en ce sens. [16] construit des CLF
(voir §1.b) pour des systèmes qui sont stabilisables par la méthode «de Jurdjevic-Quinn» (aussi appelée
damping control). Voir aussi [15], où l’on donne un grand nombre d’exemples.

1.5 Contrôle en poussée faible, moyennation

Pour un système conservatif avec un “petit” contrôle, il y a naturellement des variables lentes (les
intégrales premières de la dérive) et des variables rapides. C’est le cas par exemple d’un satellite en
orbite autour d’un corps central muni d’un moteur à poussée faible. Il y a longtemps que des techniques
de moyennation (averaging en anglais) sont utilisées dans ce genre de situations, y compris en contrôle
optimal en moyennant les équations données par le Principe du Maximum de Pontryagin.

L’originalité de [xii] est de proposer un système de contrôle moyen, c’est-à-dire de faire la moyenna-
tion avant de décider du type de contrôle utilisé. Cela a un intérêt conceptuel certain, et permet aussi, par
exemple, de montrer une conjecture sur le développement asymptotique du temps minimum de transfert
en fonction de la très faible poussée, voir [23].

2 Étude structurelle, transformations, classification

D’un point de vue mathématique, les systèmes contrôlés sont des systèmes sous-déterminés d’équations
différentielles ordinaires, c’est-à-dire dont la solution générale dépend non seulement d’un certain nombre
de conditions initiales mais aussi de fonctions arbitraires du temps. La notions d’équivalence entre deux
tels systèmes peut résulter, comme pour les équations différentielles déterminées de la conjugaison des
solutions par une transformation sur un espace de dimension finie, mais aussi, vue la présence d’au moins
une fonction du temps arbitraire, par une transformation dépendant fonctionnellement des solutions, par
exemple via un certain nombre de dérivées.

Du point de vue du contrôle, les transformation du premier type sont les transformations par “feed-
back statique”, qui outre un changement de coordonnées sur l’espace d’état, re-paramètrent les contrôles
via une transformation ponctuelle dépendant aussi de l’état, et celles du second type, lorsque la dépendance
fonctionnelle se fait au travers d’un nombre fini de dérivées, sont les transformations par “feedback
dynamique”, où ce ce re-paramétrage se fait au travers d’un système dynamique, qui fait partie de la
transformation.

3 Math. of Control, Signals and Systems, vol. 5 (1992), p.295-312. Voir [vi] pour une comparaison entre ce travail et [8], et
une manière de marier les deux techniques.

4Ceci est développé dans l’introduction de [15], par exemple
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On s’intéresse à l’action sur les systèmes contrôlés de ces diverses transformations. L’intérêt est
double : d’une part les feedbacks statiques ou dynamiques peuvent être “implémentés”, c’est-à-dire que
la solution d’un problème de contrôle pour un système produit automatiquement une solution pour le
système transformé, donc une stratégie de contrôle peut être étendue d’un système à tous les systèmes
équivalents ; d’autre part, si l’on voit —et c’est le bon point de vue— les système mathématiques comme
des modèles de vrais systèmes physiques, cette classification des modèles est presque un pré-requis à
une théorie de la modélisation qui serait fondée non pas sur des modèles de connaissance mais sur des
observations.

2.1 Équivalence par feedback statique

Familles paramétrées Considérant une famille paramétrée de systèmes contrôlés, [7] donne une condi-
tion géométrique pour qu’ils soient tous équivalents par feedback statique, via une transformation qui,
bien sûr, dépend du paramètre. On caractérise aussi (et même beaucoup plus explicitement) les familles
telles que ces transformations satisfassent des conditions sous lesquelles les algorithmes de stabilisa-
tion adaptative donnent les meilleurs résultats, cf. section 1.1. Dans [iii], on donne des conditions sous
lesquelles ces transformations s’étendent globalement.

Forme de contact partielle, forme chaı̂née On trouve dans [vii] une caractérisation de l’équivalence
par feedback statique à une forme particulière de système : «chain form» étendue (motivation : robo-
tique mobile), qui revient à la conjugaison d’un système de Pfaff à un système de contact “partiellement
prolongé”. La caractérisation a été obtenue indépendamment par d’autres auteurs5.

Linéarisation topologique. On s’est posé la question suivante : y a-t-il, pour les systèmes contrôlés, un
équivalent du théorème de Grobman-Hartman ? Est-il vrai que, localement autour d’un point d’équilibre
pas trop dégénéré, un système contrôlé soit conjugué à un système linéaire, par exemple son approxima-
tion linéaire ?

Il se trouve que le théorème de Grobman-Hartman démontre une conjugaison de flots, et c’est donc
dans un contexte où un système contrôlé admet un flot qu’il est naturel —cela parait tout-au-moins naturel
a posteriori !— de le généraliser : dans [22] on montre, via un théorème de point fixe, que le flot engendré
par un système de contrôle sur un produit de l’espace d’état par l’espace fonctionnel des contrôles, avec
le décalage en temps comme dynamique, est bien localement conjugué au flot d’un système linéaire, via
une transformation sur un espace fonctionnel. Cela ne revêt peut-être qu’une signification pratique assez
limitée, vu que la transformation dépend de tout l’histoire passée et future.

Si en revanche on cherche à conjuguer un système contrôlé lisse (resp. analytique) à un système
linéaire commandable via un homéomorphisme sur un espace de dimension finie, alors on montre dans
[xiv, 18] que la conjugaison via un tel homéomorphisme implique la conjugaison via un difféomorphisme
lisse (resp. analytique), ce qui est connu pour être très rare.

2.2 Équivalence par feedback dynamique, platitude

Deux systèmes peuvent être équivalents pas feedback dynamique sans l’être par feedback statique ;
les transformations par feedback statique sont un cas particulier de transformations par feedback dyna-
mique. La notion d’équivalence elle-même n’est pas évidente dans le cas du feedback dynamique car
le fait d’appliquer un compensateur dynamique donne un système bouclé de dimension strictement plus
grande (sauf s’il est statique).

5W. Pasillas-Lépine, W. Respondek, «Contact systems and corank one involutive subdistributions», Acta Appl. Math., vol.
69 (2001), pp. 105–128.
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On a proposé dans [9] un cadre géométrique qui fait apparaı̂tre ces transformations comme des
sortes de difféomorphismes dans des espaces de jets infinis. Ces transformations sont aussi appelées Lie-
Bäcklund dans le cas des EDP. On retrouve une approche similaire indépendante par d’autres auteurs6.
Deux systèmes sont équivalents si ils sont conjugués par une transformation ou les nouveaux états et
contrôle s’expriment en fonction des anciens et d’un nombre fini K de leurs dérivées par rapport au
temps et réciproquement. Pour décider si deux systèmes donnés sont équivalents, la grande difficulté
est que l’on ne connaı̂t pas de borne a priori pour cet entier K, c’est-à-dire le nombre de dérivées qui
interviennent dans la transformation.

Intéressons-nous désormais à la platitude, c’est-à-dire la propriété pour un système d’être équivalent
à un système linéaire commandable. Décider si un système est plat présente bien sûr la même difficulté.
C’est une version théorie des systèmes du “problème de Monge”, posé il y a plus d’un siècle, qui consiste
à décider si la solution générale d’un système différentiel donné peut s’exprimer en fonction d’un cer-
tain nombre de fonctions du temps arbitraires et de leur dérivées jusqu’à un certain ordre. La platitude
demande de surcroı̂t que ces fonctions arbitraires correspondent chacune à une et une seule solution.

On a proposé dans [10, 11] une reformulation du problème, qui consiste à rechercher une sorte
d’opérateur différentiel inversible intégrant (par analogie à “facteur intégrant”) pour un système de
formes différentielles que l’on peut construire explicitement. Cela n’évite pas la majoration de l’en-
tier K mentionné ci-dessus ; il est en quelque sorte remplacé par l’ordre de l’opérateur différentiel en
question.

Les systèmes à 4 états et 2 contrôles, affines en ces contrôles, ou 3 états et 2 contrôles non affines,
sont les plus «petits» pour lesquels le problème de la platitude ne soit pas résolu. L’article [12] donne une
description très explicite des systèmes qui ont cette propriété (platitude), mais en bornant artificiellement
K. En jargon : on ne donne pas une condition pour que ces systèmes soient plats, mais pour qu’ils soient
«(x, u)-plats», alors qu’un système plat général serait (x, u, u̇, ü, . . . , u(L))-plat pour un certain L non
nécessairement nul (les entiers L et K ne sont pas les mêmes mais sont une fonction croissante l’un
de l’autre). On conjecture que tous les systèmes plats de cette dimension sont en réalité (x, u)-plats.
L’article [12], qui utilise la formulation donnéee dans [10, 11], est long (80 pages) et technique, et la
preuve du résultat principal a nécessité le recours au calcul formel, ceci est détaillé dans [viii].

Plus récemment, la thèse de D. Avanessoff a porté sur ce difficile problème. Dans [21], on regarde
à nouveau les systèmes de la même petite dimension, mais on étudie le problème de Monge stricto
sensu, et des résultats plus forts que dans [12] sont donnés, avec des preuves beaucoup plus élémentaires
(en tout cas lisibles par un humain sans recourir au calcul formel !). Mentionnons enfin une tentative
de s’affranchir de la connaissance a priori de l’entier K en essayant de mettre sur pied un théorie de
l’intégrabilité formelle “à une infinité de variables” adaptée à ce problème ; cela est relaté dans [xiii].

2.3 Structure of trajectories, controllability

Une étude topologique de l’espace des trajectoires [17] caractérise les courbes qui peuvent être ap-
prochées par des trajectoires admissibles d’un ysstème affine. Cela a des répercussions en trajectographie,
et en calcul stochastique via le théorème du support (Strook et Varadhan) d’une diffusion.

6M. Fliess, J. Lévine, P. Martin, P. Rouchon, «A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems»,
IEEE Trans. Automat. Control, vol. 44, 1999, p. 922–937.
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Abstract. We consider the problem of locally linearizing a control system via topo-
logical transformations. According to chapter 3, a generic control system cannot be
linearized using pointwise transformations on the state and the control values. Allo-
wing the transformations to depend on the control at a functional level, we prove a
version of the Grobman-Hartman theorem for control systems.

2.1 Introduction

Our point of departure will be a brief review of the classical Grobman-Hartman theorem,
following for instance [47]. Consider the differential equation

ẋ(t) = f(x(t)), (2.1)

where f ∈ C1(U,Rn) and U is an open subset of Rn. Assume that x0 ∈ U is an equilibrium, i.e.
f(x0) = 0. The linearized system associated to (2.1) near x0 is

ẋ(t) = Ax(t)−Ax0 (2.2)

where A = Df(x0) is the derivative of f at x0. The equilibrium x0 is said to be hyperbolic if the
matrix A has no purely imaginary eigenvalue. Systems (2.1) and (2.2) are called topologically
conjugate at x0 if there exist neighborhoods V,W of x0 in U and a homeomorphism h : V →W
mapping the trajectories of (2.1) in V onto the trajectories of (2.2) in W in a time-preserving
manner : for each x ∈ V , we should have

h ◦ φt(x) = eAt
(
h(x)− h(x0)

)
+ h(x0) (2.3)

provided that φρ(x) ∈ V for 0 ≤ ρ ≤ t, where φt denotes the flow of (2.1). The Grobman-
Hartman theorem now goes as follows [47] :

Theorem 2.1.1 (Grobman-Hartman). If x0 is an hyperbolic equilibrium point, then (2.1) is
topologically conjugate to (2.2) at x0.

More general versions and a precise study of Ck-linearizability with finite k can be found
in [16]. See also [89] for a discussion of infinitely differentiable and analytic linearizability. This

33



34 CHAPITRE 2. “A GROBMAN-HARTMAN THEOREM FOR CONTROL SYSTEMS”

theorem entails that the only invariant under local topological conjugacy around a hyperbolic
equilibrium is the number of eigenvalues with positive real part in the Jacobian matrix, counting
multiplicity. Indeed, it is well-known (cf [5]) that the linear system ẋ = Ax where A has no
pure imaginary eigenvalue is topologically conjugate to the linear system ẋ = DX where D
is diagonal with diagonal entries ±1, the number of occurrences of +1 being the number of
eigenvalues of A with positive real part, counting multiplicity.

When trying to extend this result to a control systems ẋ = f(x, u), with state x ∈ Rn and
control u ∈ Rm, one has first to decide what the meaning of “topologically conjugate” should be,
i.e. what kind of map should play the role of the homeomorphism h in (2.3). The simplest idea
is to ask for a pointwise transformation on the n+m variables x, u, i.e. a local homeomorphism
of Rn+m ; this is investigated in Chapter 3 where it is shown that no extension of Theorem 2.1.1
to control systems may hold with this kind of conjugating homeomorphisms : unpredictability of
future control values forces a rather rigid triangular structure on conjugating homeomorphisms
that ultimately results in their “almost” smoothness, and hence they would preserve too many
special features of linear control systems, that are highly non-generic among control systems.

Theorem 2.1.1 is about conjugating flows while, since the control is an arbitrary function of
time whose future values are not determined by past ones, a control system does not generate
a flow on Rn+m or any finite dimensional manifold. The present paper is devoted to notions
of local linearization of control systems that do amount to conjugating “flows”. Analogs to
the Grobman-Hartman theorem for control systems are derived in two different contexts : either
(section 2.3.1) when the control is generated by a finite dimensional dynamical system or (section
2.3.2) when one associates to a control system a flow on a suitable functional space in the style of
[25]. These results do not contradict these of Chapter 3 because the notion of conjugacy is here
much weaker ; they are consequences of an abstract principle, established in Section 2.2, saying
that if the controls are generated by a one parameter group of homeomorphism (flow) on some
general topological space, then, under hyperbolicity assumptions, the system can be linearized
via transformations that are continuously parameterized by elements of this topological space.

Related bibliography. In [76], dynamics on general abstract spaces are studied to derive
results on the dependence upon various data of solutions of integral equations ; the dynamical
issues addressed there are very related to our section 2.2. Let us also mention [27], that states
a Hartman Grobman for “random dynamical systems” where, roughly speaking, the role of the
topological space mentioned above is played by a probability space. As for the view on control
system that we adopt in Section 2.3, it is very inspired by [25] (see also the monograph [26]) : to
a control system, one associates naturally a flow on a “skew product” ; see these references for
many properties of this flow ; we allow a slightly more general picture by not requiring continuity
of that flow, thus allowing L∞ topology for the controls even for non-affine systems.

2.2 An abstract Grobman-Hartman Theorem

We shall prove an abstract result on the linearization of dynamical systems which implies the
local linearizability properties of control systems stated in sections 2.3.1 and 2.3.2. The proof
closely follows that of the classical Grobman-Hartman theorem for ODEs as given by Hartman
in [47, chap. IX, sect. 4, 7, 8, 9], and we tried to stick to his notations as much as possible.
Nevertheless, we provide a detailed argument because the modifications needed to handle the
dynamics of the control are not straightforward. Like [47], we state Theorem 2.2.1 below as a
global linearizability property for a linear equation perturbed by a suitably normalized additive
term. In sections 2.3.1 and 2.3.2, we shall use this result to derive local linearizability results for
systems that locally coincide with a normalized one.
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Let us mention in passing that the Grobman-Hartman Theorem for “random dynamical
systems” given in [27] is similar in spirit to Theorem 2.2.1 : there, the set E of control parameters
is a probability space instead of a topological space, and the conjugating transformation H is
only required to be measurable with respect to ζ ∈ E but need not be continuous. Both can be
viewed as Grobman-Hartman Theorem “with parameters”.

Consider a topological space E endowed with a one-parameter group of homeomorphisms
(Sτ )τ∈R. The space E is to be regarded as an abstract collection of input-producing events for a
control system, these events being themselves subject to the dynamics of the flow Sτ . To describe
the action of such an event on the system we simply let ζ enter as a parameter in the differential
equation describing the evolution of the state variable x :

ẋ = Ax + G(x, ζ, t) , (2.4)

where the linear term at the origin Ax was singled out for convenience (but without loss of
generality). Here, G : Rn × E ×R→ Rn is assumed to be measurable with respect to t for fixed
x, ζ, and of class C1 with respect to x for fixed ζ, t. To ensure the compatibility between the
dynamics of ζ and that of x (see (2.7) below), we also require the condition

G(x,Sτ (ζ), t) = G(x, ζ, t+ τ) (2.5)

to hold for all (x, ζ, τ, t) ∈ Rn×E ×R×R. Now, if we suppose that to each (x, ζ) ∈ Rn×E there
is a locally integrable function φx,ζ : R → R+ satisfying G(x, ζ, t) ≤ φx,ζ(t) for all t ∈ R, and
that to each ζ ∈ E there is a locally integrable function ψζ : R→ R+ satisfying ∂G/∂x (x, ζ, t) ≤
ψζ(t) for all (x, t) ∈ Rn × R, then for each ζ ∈ E the solution to (2.4) with initial condition
x(0) = x0 ∈ Rn uniquely exists for all t ∈ R, cf. [98, Theorem 54, Proposition C.3.4, Proposition
C.3.8]. Subsequently, denoting by

x̂(τ, x0, ζ) (2.6)

the value of this solution at time t = τ , it follows from (2.5) that

x̂(t+ τ, x0, ζ) = x̂(t, x̂(τ, x0, ζ),Sτ (ζ)) (2.7)

and thus

Φ̂t(x0, ζ) = ( x̂(t, x0, ζ) , St(ζ) ) (2.8)

defines a flow on Rn × E , the group property being a consequence of (2.7) and of the group
property of Sτ . We call (Φ̂t)t∈R the flow of system (2.4).

We also define the partially linear flow Lt by the formula :

Lt(x0, ζ) = ( etAx0 , St(ζ) ) ; (2.9)

it is the flow of (2.4) when G = 0, and the whole point in this subsection is to give conditions
on G for Φ̂t and Lt to be topologically conjugate over Rn × E .

We will assume throughout that the n × n matrix A is hyperbolic, hence it is similar to a
block diagonal one :

A ∼
(
Ae 0
0 Al

)
(2.10)

where Ae and Al are e × e and l × l real matrices, with e + l = n, whose eigenvalues have
strictly negative and strictly positive real parts respectively. Now, there exist Euclidean norms
on Re and Rl for which eAe and e−Al are strict contractions, because their eigenvalues have
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modulus strictly less than 1 and any square complex matrix is similar to an upper triangular
one having the eigenvalues of the original matrix as diagonal entries while the remaining entries
are arbitrarily small, see e.g. [5, ch.3, sec.22.4, Lemma 4]. Therefore, combining (2.10) with a
suitable linear change of variable on each factor in Rn = Re × Rl, we can write

A = E−1

(
P 0
0 Q

)
E, (2.11)

where E is some nonsingular n× n real matrix while P and Q are e× e and l × l real matrices
such that eP and e−Q are strict contractions for the standard Euclidean norm :

c
∆= ‖eP ‖O < 1 and

1
d

∆= ‖e−Q‖O < 1 , (2.12)

where ‖.‖O designates the familiar operator norm of a matrix. Subsequently, we define the real
numbers

b1
∆= ‖e−P ‖O + ‖e−Q‖O =

1
d

+ ‖e−P ‖O , (2.13)

c1
∆=

∥∥EAE−1
∥∥

O
= max{ ‖P‖O , ‖Q‖O}. (2.14)

Besides the operator norm, we shall make use of another norm on real matrices, namely the
Frobenius norm ‖.‖F which is the square root of the sum of the squares of the entries. Let us
record the elementary inequalities, valid for any two real square matrices M,N :

‖M‖O ≤ ‖M‖F , ‖MN‖F ≤ min{‖M‖O‖N‖F, ‖M‖F‖N‖O}. (2.15)

As usual, we keep the symbol ‖.‖ to indicate the standard Euclidean norm on Rj irrespectively
of j. Now, our main result is the following :

Theorem 2.2.1. Let the hyperbolic matrix A and the numbers c, d, b1 and c1 be as in (2.11),
(2.12), (2.13) and (2.14). Assume that the topological space E, its one-parameter group of ho-
meomorphisms (Sτ ), and the map G : Rn × E × R→ Rn satisfy the following conditions :

– Equation (2.5) holds for all (x, ζ, τ, t) ∈ Rn × E × R× R.
– For fixed ζ ∈ E, the map τ 7→ Sτ (ζ) is Borel measurable R→ E, that is to say the inverse

image of an open subset of E is measurable in R.
– The map x 7→ G(x, ζ, t) is continuously differentiable Rn → Rn for fixed (ζ, t) ∈ E × R,

the map t 7→ G(x, ζ, t) is measurable R→ Rn for fixed (x, ζ) ∈ Rn × E, and to each ζ ∈ E
there are locally integrable functions φζ , ψζ : R → R+ such that, for all (x, t) ∈ Rn × R,
one has :

‖G(x, ζ, t)‖ ≤ φζ(t) , ‖∂G
∂x

(x, ζ, t)‖F ≤ ψζ(t) . (2.16)

– Defining the flow x̂ of (2.4) as in (2.6), the map (x0, ζ) 7→ x̂(t, x0, ζ) is continuous Rn ×
E → Rn for fixed t ∈ R.

– There are real numbers M > 0 and η > 0 such that

∀ζ ∈ E , ‖φζ‖L1([0,1]) ≤ M , (2.17)
‖ψζ‖L1([0,1]) ≤ η ; (2.18)

Moreover, the number η in (2.18) is so small that, putting

θ
∆= η ‖E‖O ‖E−1‖O

and then
α1

∆= θec1
(

1 + eθ+c1 (θ + c1)
)
,

one has
0 < b1α1 < 1 and α1(1 + 1/d) + max(c, 1/d) < 1 . (2.19)
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Then, there exists a homeomorphism

H : Rn × E → Rn × E

of the form
(x, ζ) 7→ H(x, ζ) = (H(x, ζ), ζ),

that conjugates Φ̂t defined in (2.8) to the partially linear flow (2.9), namely H◦ Φ̂t = Lt ◦H or,
equivalently,

H( Φ̂t(x, ζ) ) = etAH(x, ζ) (2.20)

for all (t, x, ζ) ∈ R× Rn × E.

To establish Theorem 2.2.1, we shall rely on two lemmas. The first one runs parallel to [47,
chap. IX, lemma 8.3], and gives us sufficient conditions for perturbations of a map (x, ζ) 7→
(Lx,Sτ (ζ)) to be topologically conjugate on Rn × E , when τ is fixed and the linear map L :
Rn → Rn is the product of a dilation and a contraction. This lemma is the mainspring of the
proof, in that it will provide us with the desired conjugating H when applied to the flows (2.8)
and (2.9) evaluated at t = 1 (this arbitrary value comes from the normalization of the constants
c and d through (2.12)). The proof of the lemma is similar to that of [47, chap. IX, lemma 8.3],
except that we need to keep track more carefully of uniqueness and continuity issues here ; it
uses the shrinking lemma on Lipschitz-small perturbations of hyperbolic linear maps, a classical
device to build conjugating homeomorphisms that has many other applications, see [47, chap.
IX, notes]. The reader will notice that the statement of the lemma redefines the constants c, d,
b1, and α1 that were already fixed in the statement of Theorem 2.2.1. We allow ourself this minor
incorrection, because we feel it helps following the argument since the lemma will be applied
precisely with the previously defined constants.

Lemma 2.2.2. Let us be given a homeomorphism T : E → E and two non-singular real matrices
C,D of size e× e and l × l respectively, such that c = ‖C‖ < 1 and 1

d = ‖D−1‖ < 1.
For i = 1, 2, let Yi : Re × Rl × E → Re and Zi : Re × Rl × E → Rl be two pairs of bounded

continuous functions satisfying

max{‖∆Yi‖, ‖∆Zi‖} ≤ α1(‖∆y‖+ ‖∆z‖), (2.21)

where ∆Yi and ∆Zi stand respectively for Yi(y + ∆y, z + ∆z, ζ)− Yi(y, z, ζ) and Zi(y + ∆y, z +
∆z, ζ)−Zi(y, z, ζ), and where α1 is a constant such that, if we put a = ‖C−1‖ and b1 = a+1/d,
then 0 < b1α1 < 1 and α1(1 + 1/d) + max(c, 1/d) < 1. If we define for i = 1, 2 the maps

Ti : Re × Rl × E → Re × Rl × E
(y, z, ζ) 7→ (Cy + Yi(y, z, ζ), Dz + Zi(y, z, ζ), T (ζ)),

then there exists a unique map R0 : Re × Rl × E → Re × Rl × E of the form

R0(y, z, ζ) = (H0(y, z, ζ), ζ) (2.22)

such that :
– H0(y, z, ζ)− (y, z) is bounded on Re × Rl × E,
– one has the commuting relation :

R0T1 = T2R0. (2.23)

Moreover, R0 is then necessarily a homeomorphism of Re × Rl × E.



38 CHAPITRE 2. “A GROBMAN-HARTMAN THEOREM FOR CONTROL SYSTEMS”

The second lemma that we need in order to prove Theorem 2.2.1 is of technical nature and
ensures that, under the hypotheses stated in that proposition, we can indeed apply Lemma 2.2.2
to the flow (2.8) evaluated at t = 1. Recalling from (2.6) the definition of x̂, it will be convenient
to define a map Ξ : R× Rn × E → Rn by the equation :

x̂(t, x0, ζ) = exp(tA)x0 + Ξ(t, x0, ζ) . (2.24)

Thus the map Ξ capsulizes the deviation of the flow of (2.4) from the flow of the linearized
equation ẋ = Ax.

Lemma 2.2.3. Under the assumptions of Theorem 2.2.1, the map Ξ defined by (2.24) is bounded
on [0, 1]×Rn×E, it is of class C1 with respect to x0 for fixed t, ζ, and it satisfies, for all (t, x0, ζ)
in [0, 1]× Rn × E, the inequality :

‖ ∂Ξ
∂x0

(t, x0, ζ)‖F ≤ η e‖A‖O
(

1 + eη+‖A‖O (η + ‖A‖O)
)
. (2.25)

Assuming Lemma 2.2.2 and Lemma 2.2.3 for a while, let us proceed immediately with the
proof of Theorem 2.2.1.

Proof. Proof of Theorem 2.2.1. Performing on Rn the change of variables x 7→ E x and taking
(2.15) into account, we may assume upon replacing M by M‖E‖O in (2.17) and η by θ in (2.18)
that E = In, the identity matrix of size n. Then c1 = ‖A‖O and the right-hand side of (2.25)
is just α1. Moreover (2.11) expresses that A assumes a block-diagonal form, according to which
we block-decompose the flow Φ̂t(x0, ζ) defined by (2.8) into y0

z0

ζ

 7→
 etP y0 + Y (t, y0, z0, ζ)

etQz0 + Z(t, y0, z0, ζ)
St(ζ)

 (2.26)

where (yT0 , z
T
0 )T is the natural partition of x0 ∈ Rn ∼ Re×Rl, and where Y and Z are respectively

the first e and the last l components of the map Ξ defined in (2.24). Still taking into account
the block decomposition induced by (2.11) where E = In, the partially linear flow Lt defined by
(2.9) in turn splits into

Lt : Re × Rd × E → Re × Rd × E
(y0, z0, ζ) 7→ (exp(Pt) y0, exp(Qt) z0,St(ζ)).

We shall apply Lemma 2.2.2 with T = S1 to T1 = Φ̂1 and T2 = L1, that is to say we choose
C = eP , D = eQ, Y2 = 0, Z2 = 0, and we define Y1 and Z1 by Y1(y, z, ζ) = Y (1, y, z, ζ) and
Z1(y, z, ζ) = Z(1, y, z, ζ) where Y , Z are as in (2.26). The hypotheses on C and D are satisfied
by (2.12), while the hypotheses on Y2 and Z2 are trivially met. As to Y1 and Z1, we observe
that :
- their continuity, i.e. the continuity of (x0, ζ) 7→ Ξ(1, x0, ζ), follows via (2.24) from the continuity
of (x0, ζ) 7→ x̂(1, x0, ζ) which is part of the hypotheses (see point 4 in the statement of the
proposition) ;
- their boundedness, i.e. the boundedness of (x0, ζ) 7→ Ξ(1, x0, ζ), follows from Lemma 2.2.3 ;
- the inequalities on the Lipschitz constants of Y1 and Z1 required in Lemma 2.2.2 follow from the
mean-value theorem and Lemma 2.2.3, equation (2.25), granted (2.19), (2.15), and the triangle
inequality.

Therefore Lemma 2.2.2 does apply, providing us with a homeomorphism of Re × Rl × E =
Rn ×E of the form R0 = H0 × id, which is such that H0(x, ζ)− x is bounded on Rn ×E and, in
addition, such that

R0 ◦ Φ̂1 = L1 ◦R0. (2.27)
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Equation (2.27) expresses that H0 conjugates the flow Φ̂t(x, ζ)) to the partially linear flow Lt at
time t = 1, whereas we want these flows to be conjugate at any time t. For this, we use the same
averaging trick (originally due to S. Sternberg) as in [47, chap. IX, sec. 9], namely we define
H : Rn × E → Rn by the integral formula :

H(x, ζ) =
∫ 1

0
e−rAH0(Φ̂r(x, ζ)) dr (2.28)

where H0, being the first factor of R0, satisfies by virtue of (2.27) :

H0(Φ̂1(x, ζ)) = eAH0(x, ζ). (2.29)

We need of course show that (2.28) is well-defined. Firstly, let us check that the integrand is a
measurable function of r. As H0 is continuous Rn × E → Rn, this reduces to showing that the
map

r 7→ Φ̂r(x, ζ) = ( x̂(r, x, ζ) , Sr(ζ) ) (2.30)

is measurable R 7→ Rn × E . Now, the map r 7→ x̂(r, x, ζ) is a fortiori measurable since it is
absolutely continuous, and the map r 7→ Sr(ζ) is also measurable by assumption (see point 2
in the statement of the proposition). Hence the inverse image under (2.30) of an open rectangle
is measurable in R. But any open subset of Rn × E is a countable union of open rectangles
because Rn has a countable basis of open neighborhoods, and this establishes the measurability
of (2.30). Secondly, the integrand in (2.28) is bounded, for ‖H0(Φ̂r(x, ζ))−x̂(r, x, ζ)‖ is majorized
uniformly with respect to r, x, and ζ since H0(x, ζ)− x is bounded on Rn×E by the properties
of R0, while the continuous function r 7→ x̂(r, x, ζ) is bounded for fixed x and ζ on the compact
set [0, 1]. Therefore, the integral on the right-hand side of (2.28) indeed exists.
Observe now that H(x, ζ)− x is also bounded on Rn × E . Indeed, by definition of Φ̂r via (2.8)
and of Ξ via (2.24), we can write

H(x, ζ)− x =
∫ 1

0
e−rA

(
H0( x̂(r, x, ζ) , Sr(ζ) )− x̂(r, x, ζ)

)
dr

+
∫ 1

0
e−rA Ξ(r, x, ζ) dr, (2.31)

and since both integrals on the right-hand side are bounded (the first because H0(x, ζ) − x is
bounded on Rn×E and the second because Ξ is bounded on [0, 1]×Rn×E by Lemma 2.2.3), we
get the desired boundedness of H(x, ζ)− x. Next, we claim that (2.20) holds, and once we have
proved this the proposition will follow because, specializing (2.20) to t = 1, we shall conclude
by the uniqueness part of Lemma 2.2.2 that H × id = R0 and therefore that R0, which is a
homeomorphism of Rn×E with the desired form, will meet R0 ◦ Φ̂t = Lt ◦R0, not just for t = 1
as we knew already but in fact for all t. Thus it will be possible to take H = R0.

To establish the claim, we use the group property of the flow to write

e−tAH( Φ̂t(x, ζ) ) =
∫ 1

0
e−(t+r)AH0(Φ̂t+r(x, ζ) ) dr,

and we set t+ r = τ to convert the above integral into∫ t+1

t
e−τAH0(Φ̂τ (x, ζ) ) dτ =

∫ 1

t
. . . dτ +

∫ t+1

1
. . . dτ, (2.32)

where the dots indicate that the integrand is repeated in each integral. Now, putting λ = τ − 1,
the last integral in the right-hand side becomes∫ t

0
e−(λ+1)AH0(Φ̂λ+1(x, ζ) ) dλ =

∫ t

0
e−λAH0(Φ̂λ(x, ζ) ) dλ,
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where we have used the group property of the flow again together with (2.29). Plugging this into
(2.32), we recover back

∫ 1
0 e
−tAH0(Φ̂t(x, ζ) )dt on the right-hand side, so that finally e−tAH ◦

Φ̂t = H as claimed.

Let us now tie the loose ends in the proof of Theorem 2.2.1 by establishing Lemma 2.2.3 and
Lemma 2.2.2.

Proof. Proof of Lemma 2.2.3 From (2.4) and (2.24), we see that t 7→ Ξ(t, x0, ζ) is the solution
to

ξ̇(t) = Aξ(t) +G
(
ξ(t) + etAx0 , ζ , t

)
with initial condition ξ(0) = 0. Since ‖G(x, ζ, t)‖ is bounded by φζ(t) with ‖φζ‖L1([0,1]) ≤M by
(2.16) and (2.17), we get

‖ξ(t)‖ ≤M +
∫ t

0
‖A‖O‖ξ(s)‖ ds, t ∈ [0, 1],

and finally, by the Bellman-Gronwall lemma, ‖ξ(t)‖ ≤M et‖A‖O . This entails that ξ is bounded
on [0, 1] ; hence Ξ is bounded on [0, 1]× Rn × E .

To prove (2.25), we consider for fixed x0, ζ the matrix-valued function R(t) = ∂bx
∂x0

(t, x0, ζ),
whose existence and continuity with respect to x0 for fixed t, ζ depend on (2.16), (2.17) and
(2.18) (cf Lemma 2.4.3), inducing in turn the existence and continuity with respect to x0 of
Q(t) = ∂Ξ

∂x0
(t, x0, ζ) via (2.24). The variational equation for ∂bx

∂x0
(see again Lemma 2.4.3) yields :

Ṙ(t) =
[
A+

∂G

∂x

(
x̂(t, x0, ζ), ζ, t

)]
R(t) , R(0) = In ,

and, since R(t) = Q(t) + etA by (2.24), we have that

Q̇(t) =
[
A+

∂G

∂x

(
x̂(t, x0, ζ), ζ, t

)]
Q(t) +

∂G

∂x

(
x̂(t, x0, ζ), ζ, t

)
etA , Q(0) = 0.

Put ρ(t) = ‖Q(t)‖F. Due to the definition of the Frobenius norm, ρ(t) is locally absolutely conti-
nuous and, by the Cauchy-Schwartz inequality, one has ρ̇(t) ≤ ‖Q̇(t)‖F. Thus, the differential
equation satisfied by Q(t) together with (2.16) yield :

ρ̇ ≤ (ψζ(t) + ‖A‖O) ρ(t) + ψζ(t) e‖A‖O , ρ(0) = 0,

where we have used (2.15) and the elementary fact that ‖etA‖O ≤ e‖A‖O for all t ∈ [0, 1].
Integrating this inequality and applying the Bellman-Gronwall lemma yields, taking (2.18) into
account, that ρ is bounded on [0, 1] by ηe2‖A‖O+η. This implies (2.25) by definition of ρ.

Proof. Proof of Lemma 2.2.2 If we endow Re×Rl with the norm ‖(y, z)‖ = ‖y‖+ ‖z‖, it follows
from (2.21) that, for fixed (y, z, ζ) ∈ Re×Rl ×E , the map Ty,z,ζ : Re×Rl → Re×Rl defined by

Ty,z,ζ(y′, z′) = (C−1y,D−1z)− (C−1Y1(y′, z′, ζ) , D−1Z1(y′, z′, ζ)
)

is a shrinking map with shrinking constant b1α1 < 1, whose fixed point is the unique (ȳ, z̄) ∈
Re×Rl satisfying T1(ȳ, z̄, ζ) = (y, z, T (ζ)). In addition, it holds that (ȳ, z̄) = limk→∞ T

k
y,z,ζ(y

′, z′)
for any (y′, z′), and this classically implies that (ȳ, z̄) is continuous with respect to y, z, and
ζ. Indeed, the continuity of Y1 and Z1 entails that Ty,z,ζ(y′, z′) is continuous with respect to y,
z and ζ for fixed y′, z′. Therefore, if we write ȳ(y, z, ζ), z̄(y, z, ζ) to emphasize the functional
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dependence, and if we choose y0, z0, ζ0 together with ε > 0, there is a neighborhood V0 of
(y0, z0, ζ0) in Re × Rl × E such that (y, z, ζ) ∈ V0 implies :

‖Ty,z,ζ(ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))− (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))‖ =

‖Ty,z,ζ(ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))− Ty0,z0,ζ0((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))‖
< ε.

Consequently, for (y, z, ζ) ∈ V0, we have by the shrinking property that∥∥(ȳ(y, z, ζ), z̄(y, z, ζ)
)− (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0)

)∥∥
= ‖ lim

k→∞
T ky,z,ζ((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))− (ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))‖

≤
∞∑
k=0

‖T k+1
y,z,ζ((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))− T ky,z,ζ((ȳ(y0, z0, ζ0), z̄(y0, z0, ζ0))‖

≤ ε

1− b1α1

which implies the desired continuity. Then, (x, y) 7→ (ȳ(y, z, ζ), z̄(y, z, ζ)) is, for fixed ζ, the
inverse of the concatenation of the first two components of T1, and it is continuous with respect
to (x, y), and to ζ. Moreover, we see from the definition of Ty,z,ζ and the fixed point property of
ȳ, z̄ that

(ȳ, z̄) = (C−1y,D−1z)− (C−1Y1(ȳ, z̄, ζ) , D−1Z1(ȳ, z̄, ζ))

and, since Y1 and Z1 are continuous and bounded, this makes for a relation of the form

(ȳ(y, z, ζ), z̄(y, z, ζ)) = (C−1y + Ŷ1(y, z, ζ), D−1z + Ẑ1(y, z, ζ))

where Ŷ1, Ẑ1 are in turn continuous and bounded on Re × Rl × E with values in Re and Rl

respectively. All this yields the existence of an inverse for the map T1 itself, namely

T−1
1 (y, z, ζ) = (C−1y + Ŷ1(y, z, T −1(ζ)), D−1z + Ẑ1(y, z, T −1(ζ)), T −1(ζ)). (2.33)

Let us now seek the map H0 in (2.22) in the prescribed form, namely

H0(y, z, ζ) = ( y + Λ(y, z, ζ) , z + Θ(y, z, ζ) ), (2.34)

where the unknowns are bounded maps Λ and Θ with values in Re and Rl respectively. Using
(2.33), one checks easily that (2.23) is equivalent to the following pair of equations :

Λ = C
[
Ŷ1 + Λ(T−1

1 )
]

(2.35)

+Y2

(
C−1y + Ŷ1 + Λ(T−1

1 ), D−1z + Ẑ1 + Θ(T−1
1 ), T −1(ζ)

)
,

Θ = D−1[Z1 + Θ(Cy + Y1, Dz + Z1, T (ζ))− Z2(y + Λ, z + Θ, ζ)], (2.36)

where the argument of Λ,Θ, Yi, Zi, Ŷi, Ẑi, T−1
1 , when omitted, is always (y, z, ζ). The existence

of Λ and Θ will follow from another application of the shrinking lemma, this time in the space
B of bounded functions Re × Rl × E → Re × Rl endowed with a suitable norm. More preci-
sely, letting (Λ1,Θ1) denote an arbitrary member of B acting coordinate-wise as (y, z, ζ) 7→
(Λ1(y, z, ζ),Θ1(y, z, ζ)) where Λ1 and Θ1 are bounded Re and Rl-valued functions respectively,
we define its norm to be

|||(Λ1,Θ1)|||+ = |||Λ1|||+ |||Θ1|||,
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where |||.||| indicates the sup norm of a map Re × Rl × E → Rk, irrespectively of k ; this makes
(B, |||.|||+) into a a Banach space. Now, to each (Λ1,Θ1) ∈ B, we can associate another member
(Λ2,Θ2) of B where Λ2 : Re × Rl × E → Re and Θ2 : Re × Rl × E → Rl are defined by

Λ2 = C
[
Ŷ1 + Λ1(T−1

1 )
]

(2.37)

+Y2

(
C−1y + Ŷ1 + Λ1(T−1

1 ), D−1z + Ẑ1 + Θ1(T−1
1 ), T −1(ζ)

)
,

Θ2 = D−1
[
Z1 + Θ1(Cy + Y1, Dz + Z1, T (ζ))− Z2(y + Λ1, z + Θ1, ζ)

]
, (2.38)

the argument (y, z, ζ) being omitted again for simplicity. The fact that (Λ2,Θ2) is indeed well-
defined and belongs to B is a consequence of the preceding part of the proof. Consistently
designating by a subscript 2 the effect of the right hand-side of (2.37) an (2.38) on some initial
map, itself denoted with a subscript 1, we see from (2.21)) by inspection on (2.37) and (2.38)
that, if (Λ1,Θ1) and (Λ′1,Θ

′
1) are two members of B, then

|||Λ2 − Λ′2||| ≤ c |||Λ1 − Λ′1|||+ α1|||(Λ1 − Λ′1,Θ1 −Θ′1)|||+, (2.39)

|||Θ2 −Θ′2||| ≤
1
d

(|||Θ1 −Θ′1|||+ α1|||(Λ1 − Λ′1,Θ1 −Θ′1)|||+
)
. (2.40)

Adding up (2.39) and (2.40), we obtain

|||(Λ2 − Λ′2,Θ2 −Θ′2)|||+
≤ [α1(1 + 1/d) + max(c, 1/d)] |||(Λ1 − Λ′1,Θ1 −Θ′1)|||+
= α |||(Λ1 − Λ′1,Θ1 −Θ′1)|||+

where by assumption α < 1. This means that (Λ1,Θ1) 7→ (Λ2,Θ2) is a shrinking map on B
whose fixed point (Λ,Θ) provides us with the unique bounded solution to (2.35) and (2.36).
Equivalently, if H0 is defined through (2.34) and R0 through (2.22), then R0 is the unique map
Re × Rl × E → Re × Rl × E of the form (H, id), where id is the identity map on E , such that
H − (y, z) ∈ B and such that the commuting relation (2.23) holds. It remains for us to show
that R0 is a homeomorphism. For this, notice first that R0 is continuous, because H0 turns out
to be continuous : indeed, iterating the formulas (2.37) and (2.38) starting from any initial pair
(Λ1,Θ1) yields a sequence of maps converging to (Λ,Θ) in B, and if the initial pair is continuous
(we may for instance choose the zero map) so is every member of the sequence hence also the limit
since |||.|||+ induces on B the topology of uniform convergence. Next, if we switch the roles of T1

and T2, the above argument provides us with a continuous map R′0 : Re×Rl ×E → Re×Rl ×E
of the form (H ′, id)) with H ′ − (y, z) ∈ B, satisfying R′0T2 = T1R

′
0. Then, the composed map

R = R′0R0 satisfies RT1 = T1R, and since it is again of the form (H ′′, id)) with H ′′ − (y, z) ∈ B,
we get R = id by the uniqueness part of the previous proof. Similarly R0R

′
0 = id, so that finally

R0 is invertible with continuous inverse R′0 hence a homeomorphism.

2.3 Grobman-Hartman theorems for control systems

We consider a control system of the form :

ẋ = f(x, u) , x ∈ Rn , u ∈ Rm , (2.1)

and we suppose that f(0, 0) = 0, i.e. we work around an equilibrium point that we choose to be
the origin without loss of generality. We assume that f is continuous, and throughout we also
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make the hypothesis that ∂f/∂x(x, u) exists and is jointly continuous with respect to (x, u).
Subsequently, we single out the linear part of f by consistently setting A = ∂f

∂x (0, 0), so that
(2.1) can be rewritten as

ẋ = Ax + P (x, u)

with P (0, 0) =
∂P

∂x
(0, 0) = 0 .

(2.2)

If in addition f happens to be continuously differentiable with respect to u as well, we set
B = ∂f

∂u(0, 0) and we further expand (2.2) into

ẋ = Ax + Bu + F (x, u)

with F (0, 0) =
∂F

∂x
(0, 0) =

∂F

∂u
(0, 0) = 0 .

(2.3)

Since (2.3) is derived under the stronger hypothesis that f is of class C1 with respect to both
x and u, one would expect stronger results to hold in this case. We want to stress that, deceptively
enough, local linearization of (2.3) will turn out to be a consequence of local linearization of
(2.2) although the latter was derived without differentiability requirement with respect to u.
This is due to the – even more surprising – fact that (2.2) will be locally conjugate to the non
controlled system ẋ = Ax, that is to say the influence of the control can be entirely assigned to
the linearizing homeomorphism. Compare Theorems 2.3.1 and 2.3.3, and see also Remark 2.3.8.

2.3.1 Prescribed dynamics for the control

We investigate in this subsection the situation where, in system (2.1), the control function
u(t) is itself the output of a dynamical system of the form :

ζ̇ = g(ζ),
u = h(ζ),

(2.4)

where ζ(t) ∈ Rq, while g : Rq → Rq is locally Lipschitz continuous and h : Rq → Rm is continuous
with, say, h(0) = 0. In particular, u(t) is entirely determined by the finite-dimensional data ζ(0)
and, from the control viewpoint, this is a particular instance of feed-forward on system (2.1) by
system (2.4) where the input may only consist of Dirac delta functions.

Assume first that f is of class C1 with respect to x and u so that (2.3) holds. Plugging (2.4)
into the latter yields an ordinary differential equation in Rn+q :

ẋ = Ax + Bh(ζ) + F (x, h(ζ)),
ζ̇ = g(ζ).

(2.5)

To motivate the developments to come, observe that if g is continuously differentiable with
g(0) = 0, if A and ∂g/∂ζ(0) are hyperbolic, and if h is continuously differentiable, then we can
apply the standard Grobman-Hartman theorem on ordinary differential equations to conclude
that the flow of (2.5) is topologically conjugate, via a local homeomorphism (x, ζ) 7→ (z, ξ)
around (0, 0), to that of (

ż

ξ̇

)
=

(
A B ∂h

∂ζ (0)
0 ∂g

∂ζ (0)

)(
z
ξ

)
.

However, the hyperbolicity requirement on ∂g/∂ζ(0) is more stringent than it seems. Indeed, it
is often desirable to study non-trivial steady behaviors, which usually entail oscillatory controls.
This is why we rather seek a transformation of the form (x, ζ) 7→ (H(x, ζ), ζ) that linearizes
the first equation in (2.5) but preserves the second one. This can be done, as asserted by the
following result which does not require hyperbolicity nor even continuous differentiability on g.
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Theorem 2.3.1. Suppose in system (2.5) that g : Rq → Rq is locally Lipschitz continuous, that
h : Rq → Rm is continuous with h(0) = 0, that F : Rn ×Rm → Rn is continuously differentiable
with F (0, 0) = ∂F/∂x(0, 0) = 0, and that A is hyperbolic. Then, there exist two neighborhoods
V and W of 0 in Rn and Rq respectively, and a map H : V ×W → Rn with H(0, 0) = 0, such
that

H × Id : V ×W → Rn ×W
(x, ζ) 7→ (H(x, ζ), ζ)

is a homeomorphism from V ×W onto its image that conjugates (2.5) to

ż = Az + Bh(ζ),
ζ̇ = g(ζ).

(2.6)

Remark 2.3.2. In Theorem 2.3.1 (resp. Theorem 2.3.3 to come), we assume for convenience
that all the functions involved, namely F (resp. P ), g, and h, are globally defined. However,
since the conclusion is local with respect to x and ζ, the same holds when these functions are
only defined locally on a neighborhood of the origin, as a partition of unity argument immediately
reduces the local version to the present one.

Although it looks natural, the above theorem deserves one word of caution for the homeo-
morphism H depends heavily on g and h, and in a rather intricate manner. In fact, it is possible
to entirely incorporate the influence of the control into the change of variables, so as to obtain a
statement in which the term Bh(ζ) does not even appear in the transformed system. This will
follow from Theorem 2.3.3 to come, for which we no longer assume in (2.1) that f is differentiable
with respect to u. Accordingly, we plug (2.4) into (2.2) rather than (2.3), and we obtain instead
of (2.5) the following ordinary differential equation in Rn+q :

ẋ = Ax + P (x, h(ζ)),
ζ̇ = g(ζ),

(2.7)

whose flow will be denoted by (t, x0, ζ0) 7→ (x(t, x0, ζ0), ζ(t, ζ0)).

Theorem 2.3.3. Suppose in system (2.7) that g : Rq → Rq is locally Lipschitz continuous,
that h : Rq → Rm is continuous with h(0) = 0, that P (x, u) is continuous Rn × Rm → Rn

with P (0, 0) = 0, that ∂P/∂x exists and is continuous Rn × Rm → Rn×n with ∂P/∂x(0, 0) = 0,
and that A is hyperbolic. Then, there exist two neighborhoods V and W of 0 in Rn and Rq

respectively, and a map H : V ×W → Rn with H(0, 0) = 0, such that

H × Id : V ×W → Rn ×W
(x, ζ) 7→ (H(x, ζ), ζ)

is a homeomorphism from V ×W onto its image that conjugates (2.7) to

ż = Az,

ζ̇ = g(ζ),
(2.8)

i.e. for all t, x0, ζ0 such that (x(τ, x0, ζ0), ζ(τ, ζ0)) ∈ V ×W for all τ ∈ [0, t] (or [t, 0] if t < 0),
one has

H(x(t, x0, ζ0), ζ(t, ζ0)) = etAH(x0, ζ0).

Theorem 2.3.1 is a consequence of Theorem 2.3.3 because the latter implies that (2.5) and
(2.6) are both conjugate to (2.8). As to Theorem 2.3.3 itself, we will show that it is a consequence
of Theorem 2.2.1. This will require an elementary lemma enabling us to normalize the original
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control system. To state the lemma, we fix, once and for all, a smooth function ρ : [0,+∞) →
[0, 1] such that

∀t, |ρ̇(t)| < 3,
0 ≤ t ≤ 1

2 ⇒ ρ(t) = 1,
1
2 < t < 1 ⇒ 0 < ρ(t) < 1,

1 ≤ t ⇒ ρ(t) = 0,

 (2.9)

and we associate to any map β : Rn × Rm → Rn a family of functions Gs : Rn × Rm → Rn,
indexed by a real number s > 0, using the formula :

Gs(x, u) ∆= ρ

(‖x‖2
s2

)
β(x, u). (2.10)

Since the context will always make clear which β is involved, our notation does not explicitly
indicate the dependency of Gs on the map β. The symbol ‖.‖, in the statement of the lemma,
denotes the norm, not only of a vector, but also of a matrix ; the result does not depend on a
specific choice of this norm. Also, B(x, r) stands for the open ball of radius r, centered at x, in
any Euclidean space.

Lemma 2.3.4. Let β(x, u) be continuous Rn × Rm → Rn and ∂β/∂x continuously exist Rn ×
Rm → Rn×n, with β(0, 0) = ∂β/∂x(0, 0) = 0. Then Gs(x, u) defined by (2.10) is in turn conti-
nuous and continuously differentiable with respect to x for every s > 0, and to each η > 0 there
exist σ > 0 and θ > 0 such that

∀(x, u) ∈ Rn ×B(0, θ) , ‖∂Gσ
∂x

(x, u)‖ ≤ η . (2.11)

Proof. For the proof, we use the standard Euclidean norm on Rn, Rm, and the familiar operator
norm on matrices. Clearly Gs is continuous and continuously differentiable with respect to x for
every s > 0, and we have :

∂Gs
∂x

(x, u) = ρ

(‖x‖2
s2

)
∂β

∂x
(x, u) +

2
s2
ρ′
(‖x‖2

s2

)
β(x, u) xT , (2.12)

where xT is the transpose of x. Since β is continuously differentiable and ∂β/∂x (0, 0) = 0, we
get for s > 0 small enough that ‖∂β/∂x (x, u)‖ < η/14 as soon as ‖x‖, ‖u‖ < s. Let σ be an s
with this property. Since β is continuous with β(0, 0) = 0, we can in turn pick θ with 0 < θ ≤ σ
such that ‖β(0, u)‖ < ησ/12 whenever ‖u‖ < θ. Altogether, we get that

‖x‖ < σ
‖u‖ < θ

}
⇒

{ ‖∂β∂x (x, u)‖ < η
14 ,

‖β(0, u)‖ < ησ
12 .

(2.13)

Now, we need only check (2.11) when ‖x‖ < σ for otherwise Gσ is identically zero ; therefore
we restrict ourselves to pairs (x, u) where ‖x‖ < σ and ‖u‖ < θ. On this domain, we get from
(2.13) and the mean value theorem that

‖β(x, u)‖ ≤ η

14
σ +

ησ

12
=

13ησ
84

.

Using this together with (2.13) and the inequalities |ρ| ≤ 1, ‖ρ′‖ ≤ 3, as well as ‖xT ‖ < σ,
formula (2.12) with s = σ yields :

‖∂Gσ
∂x

(x, u)‖ ≤ η

14
+

6
σ2

13ησ
84

σ = η.
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Proof. Proof of Theorems 2.3.1 and 2.3.3. We already mentioned that Theorem 2.3.1 is a conse-
quence of Theorem 2.3.3. To establish the latter, consider the following “renormalized” version
of (2.7) :

ẋ = Ax + ρ
(
‖x‖2
σ2

)
P
(
x, ρ

(
‖h(ζ)‖
θ

)
h(ζ))

)
,

ζ̇ = ρ(‖ζ‖) g(ζ),
(2.14)

where ρ is as in (2.9) and where σ, θ are strictly positive real numbers to be adjusted shortly.
Because the flows of (2.14) and (2.7) do coincide as long as ‖x‖ < σ/

√
2, ‖ζ‖ < 1/2, ‖h(ζ)‖ <

θ/2, and since these inequalities define a neighborhood (0, 0) in Rn ×Rm by the continuity of h
and the fact that h(0) = 0, it is enough to prove the theorem when (2.7) gets replaced by (2.14)
for some pair of strictly positive σ, θ. To this effect, we shall apply Theorem 2.2.1 with E = Rq

endowed with the flow of ρ(‖ζ‖) g(ζ), namely Sτ (ζ0) is the value at t = τ of the solution to the
second equation in (2.14) whose value at t = 0 is ζ0, and with

G(x, ζ, t) = ρ

(‖x‖2
σ2

)
P

(
x, ρ

(‖h(St(ζ))‖
θ

)
h(St(ζ))

)
.

We now proceed to check that the assumptions of Theorem 2.2.1 are fulfilled if σ and θ are
properly chosen. Firstly, since g is locally Lipschitz continuous while ρ is smooth with compact
support on [0,+∞), we see that ζ 7→ ρ(‖ζ‖) g(ζ) is a bounded Lipschitz continuous vector field
on Rq hence it has a globally defined flow, which is continuous by Lemma 2.4.1. This tells us
that (τ, ζ) 7→ Sτ (ζ) is continuous R × Rq → Rq, so Sτ is indeed a one-parameter group of
homeomorphisms on Rq and τ 7→ Sτ (ζ) is certainly Borel measurable since it is even continuous.
The continuity of (τ, ζ) 7→ Sτ (ζ) also makes it clear that G(x, ζ, t) is continuous and continuously
differentiable with respect to x granted the continuity of h, the smoothness of ρ, and the fact
that P itself is continuous and continuously differentiable with respect to the first variable. A
fortiori then, x 7→ G(x, ζ, t) is continuously differentiable and t 7→ G(x, ζ, t) is measurable.

Secondly, observe since ρ is bounded by 1 and vanishes outside [0, 1] that ‖ρ(θ−1‖u‖)u‖ < θ
for all u ∈ Rm, consequently G takes values in the smallest ball centered at 0 that contains
P (B(0, σ), B(0, θ)) ; this last set is relatively compact by the continuity of P hence G is bounded.
The same argument shows that ∂G/∂x is also bounded, in other words we can choose φζ and ψζ
to be suitable constant functions in (2.16), independently of ζ. In particular, (2.17) and (2.18)
will hold. Moreover, if we set β(x, u) = P (x, u), we have with the notations of (2.10) that

G(x, ζ, t) = Gσ

(
x, ρ

(‖h(St(ζ))‖
θ

)
h(St(ζ))

)
. (2.15)

Since ρ(θ−1‖h(v)‖)h(v) lies in B(0, θ) for all v ∈ Rq so in particular for v = St(ζ), we deduce
from (2.15) and Lemma 2.3.4 that ∂G/∂x can be made uniformly small for suitable σ and θ.
That is to say, the number η in (2.18) can be made arbitrarily small upon choosing σ and θ
adequately, in particular we can meet (2.19).

Thirdly, the condition (2.16) that we just proved to hold (actually with constant functions
φζ and ψζ independent of ζ) entails that the first equation in (2.14) has a unique solution given
initial conditions x(0) and ζ(0) (cf for instance [98, Theorem 54, Proposition C.3.4, Proposition
C.3.8]) and, since the same holds true for the second equation as was pointed out when we
defined Sτ (ζ), we conclude that the whole vector field in the right hand-side of (2.14) has a flow
on Rn+q = Rn ×Rq, which is continuous by Lemma 2.4.1. As x̂, defined in (2.6), is nothing but
the projection of this flow onto the first factor Rn, we conclude that (τ, x0, ζ) 7→ x̂(τ, x0, ζ) is
continuous. Finally, notice that (2.5) is immediate from the group property of Sτ . Having verified
all the hypotheses of Theorem 2.2.1, we apply the latter to conclude the proof of Theorem
2.3.3.
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2.3.2 Control systems viewed as flows

In [25], a general way of associating a flow to a control system is proposed, based on the
action of the time shift on some functional space of inputs. Before giving the proper framework
for our results, let us first carry out a few measure-theoretic preliminaries.

For arbitrary exponents p ∈ [1,∞], we denote by Lp(R,Rm), or simply by Lp for short, the
space of measurable functions Υ : R→ Rm such that

‖Υ‖p =
(∫

R
‖Υ(t)‖p dt

)1/p

<∞ if p <∞,
‖Υ‖∞ = ess. sup

t∈R
. ‖Υ(t)‖ <∞ if p =∞.

In the above, measurability and summability were implicitly understood with respect to
Lebesgue measure. The same definitions can of course be made for any positive measure. We only
consider measures defined on the same σ-algebra as Lebesgue measure (namely the completion
of the Borel σ-algebra with respect to sets of Lebesgue measure zero). We explicitly indicate the
dependence on the measure µ of the corresponding functional spaces and norms by writing Lp,µ
and ‖.‖p,µ.

Remark 2.3.5. If µ is a positive measure on R as above, and if µ and Lebesgue measure are
mutually absolutely continuous, then for any Lebesgue measurable (hence also µ-measurable)
function Υ it holds that ‖Υ‖∞ = ‖Υ‖∞,µ. Indeed, we have that ‖Υ‖∞ ≤ α if, and only if, the
set Eα of those x ∈ R for which ‖Υ‖(x) > α has Lebesgue measure zero. Since the latter holds
if, and only if, µ(Eα) = 0, it is equivalent to require that ‖Υ‖∞,µ ≤ α as announced.

For any p ∈ [1,∞] and τ ∈ R, we define the time shift Θτ : Lp → Lp by

Θτ (Υ)(t) = Υ(τ + t) . (2.16)

It is well known that, for fixed Υ ∈ Lp, the map τ 7→ Θτ (Υ) is continuous R→ Lp if 1 ≤ p <∞
[90, Theorem 9.5]. When p =∞ it is no longer so, but the map is at least Borel measurable :

Lemma 2.3.6. For fixed Υ ∈ L∞, consider the map TΥ : R→ L∞ defined by TΥ(τ) = Θτ (Υ).
If V is open in Lp, then T−1

Υ (V ) is measurable in R.

Proof. Set for simplicity TΥ(τ) = Υτ , and fix arbitrarily v ∈ L∞ together with ε > 0. It is
enough to show that the set

E = {τ ∈ R; ‖Υτ − v‖∞ > ε}
is measurable. Let µ be the measure on R such that dµ(t) = dt/(1 + t2). In view of Remark
2.3.5, we can replace ‖.‖∞ by ‖.‖∞,µ in the definition of E. Now, since µ is finite, the functions
Υτ and v belong to L1,µ, which is to the effect that

lim
p→∞

‖Υτ − v‖p,µ = ‖Υτ − v‖∞,µ, (2.17)

see e.g. [90, Chap. 3, Ex.4]. In particular, if we let

Ep,µ = {τ ∈ R; ‖Υτ − v‖p,µ > ε},
we deduce from (2.17) that

E =
∞⋂
k=1

∞⋃
j=k

Ej,µ
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where k and j assume integral values, so we are left to prove that Ej,µ is measurable. But since
translating the argument is a continuous operation R → Lp,µ when p < ∞ [90, Theorem 9.5]1,
each Ej,µ is in fact open in R thereby proving the lemma.

Endowed with ‖.‖p-balls as neighborhoods of 0, the set Lp is a topological vector space but
it is not Hausdorff ; identifying functions that agree almost everywhere, we obtain the familiar
Lebesgue space Lp of equivalence classes of Lp-functions ; it is a Banach space, whose norm,
still denoted by ‖.‖p, is induced by ‖.‖p defined in Lp, and whose topology coincides with the
quotient topology arising from the canonical map Lp → Lp. The time shift Θτ : Lp → Lp defined
by (2.16) induces a well defined map Θτ : Lp → Lp. In what follows, results are stated in terms
of Lp, but we do make use of Lp for the proof because point-wise evaluation makes no sense in
Lp.

Let us now come back to our control system, namely (2.2), which is obtained from (2.1) by
singling out the linear term in x around the equilibrium (0, 0) ∈ Rn × Rm. This time, however,
we emphasize the functional dependence on the control by writing

ẋ = Ax + P (x,Υ(t)), (2.18)

where, as in the preceding subsection, P : Rn × Rm → Rn is continuous and has continuous
derivative with respect to the first argument ∂P

∂x : Rn×Rm → Rn×n. We fix some p ∈ [1,∞] and
we consider controls Υ ∈ Lp(R,Rm). Thus, when p < ∞, we shall have to handle unbounded
values for Υ(t), and this will necessitate an extra assumption. Namely, if 1 ≤ p <∞, we assume
that to each compact set K ⊂ Rn, there are positive constants c1(K), c2(K) such that

‖P (x, u)‖+ ‖∂P
∂x

(x, u)‖ ≤ c1(K) + c2(K) ‖u‖p, (x, u) ∈ K × Rm, (2.19)

where we agree, for definiteness, that the norm of a matrix is the operator norm. Classical results
imply (see e.g. [98, Theorem 54, Proposition C.3.4]) that the solution to (2.18) uniquely exists
on some maximal time interval once x(0) = x0 and Υ ∈ Lp are chosen. This solution we denote
by

t 7→ x(t, x0,Υ) .

This allows one to define a flow on Rn × Lp, or on Rn × Lp, the flow at time τ being given by

(x0,Υ) 7→ (x(τ, x0,Υ) , Θτ (Υ) ) . (2.20)

The main result in this subsection is the theorem below. It is of purely open loop character,
that is to say the linearizing transformation (x,Υ) 7→ (z,Υ) operates at a functional level where
z depends not only on x, but also on the whole input function Υ : R 7→ Rm. That type of
linearization is intriguing in the authors’ opinion, but its usefulness in control is not clear unless
the structure of the transformation is thoroughly understood. Unfortunately our method of proof
does not reveal much in this direction, which may deserve further study.

Theorem 2.3.7. Suppose in (2.18) that P (x, u) is continuous Rn×Rm → Rn with P (0, 0) = 0,
that ∂P/∂x exists and is continuous Rn × Rm → Rn×n with ∂P/∂x(0, 0) = 0, and that A is
hyperbolic. Let p ∈ [1,∞], and,if p < ∞, assume that, to each compact set K ⊂ Rn, there are
positive constants c1(K), c2(K) such that (2.19) holds. Then, there exist two neighborhoods V

1The proof is given there for Lebesgue measure only, but it does carry over mutatis mutandis to any complete
regular Borel measure on R, hence in particular to µ.
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and W of 0 in Rn and Lp(R,Rm) respectively, and a map H : V ×W → Rn with H(0, 0) = 0,
such that

H × Id : V ×W → Rn ×W
(x,Υ) 7→ (H(x,Υ),Υ)

(2.21)

is a homeomorphism from V ×W onto its image that conjugates (2.18) to

ż = Az, (2.22)

i.e. for all (t, x0,Υ) ∈ R× Rn × Lp(R,Rm) such that (x(τ, x0,Υ),Υ) ∈ V ×W for all τ ∈ [0, t]
(or [t, 0] if t < 0) one has

H(x(t, x0,Υ)) = etAH(x0,Υ). (2.23)

Remark 2.3.8. The above theorem parallels Theorem 2.3.3 of section 2.3.1, in that we initially
wrote ẋ = f(x, u) in the form (2.2), assuming that f is continuously differentiable with respect
to x, to finally conclude, under suitable hypotheses, that (2.18) is locally conjugate in some
appropriate sense to the non-controlled linear system (2.22). We might as well have stated an
analog to Theorem 2.3.1 where, assuming this time that f is of class C1, we write ẋ = f(x, u) in
the form (2.3) with hyperbolic A, assuming in addition if p <∞ that for any compact K ⊂ Rn

one has
‖F (x, u)‖+ ‖∂F

∂x
(x, u)‖ ≤ c1(K) + c2(K) ‖u‖p, (x, u) ∈ K × Rm, (2.24)

to conclude that ẋ = Ax+BΥ(t) +F (x,Υ(t)) is conjugate via z = H(x,Υ) to ż = Az+BΥ(t),
where H × Id is a local homeomorphism at 0 × 0 of Rn × Lp. Again, although the presence of
the control term BΥ(t) in the linearized equation makes it look more natural, the result we just
sketched is a logical consequence of Theorem 2.3.7 just like Theorem 2.3.1 was a consequence of
Theorem 2.3.3.

To prove Theorem 2.3.7 we shall again apply Theorem 2.2.1 to a suitably normalized version
of (2.18), the normalization step depending on the following lemma which stands analogous to
Lemma 2.3.4 in the Lp context. For convenience, we denote below by BLp(v, r) the ball centered
at v of radius r in Lp, and by L1

loc(R,Rm) (or simply L1
loc if no confusion can arise) the space of

locally integrable functions, namely those whose restriction to any compact K ⊂ R belongs to
L1(K,Rm).

Lemma 2.3.9. Let β(x, u) be continuous Rn × Rm → Rn and ∂β/∂x continuously exist Rn ×
Rm → Rn×n, with β(0, 0) = ∂β/∂x(0, 0) = 0. Assume for some p ∈ [1,∞) that, to each compact
set K ⊂ Rn, there are positive constants c1(K), c2(K) such that

‖β(x, u)‖+ ‖∂β
∂x

(x, u)‖ ≤ c1(K) + c2(K) ‖u‖p, (x, u) ∈ K × Rm. (2.25)

Then, Gs being as in (2.10), it holds that for every s > 0 and any Υ ∈ Lp(R,Rm) we have
Gs(x,Υ) ∈ L1

loc(R,Rn) and ∂Gs/∂x(x,Υ) ∈ L1
loc(R,Rn×n) for fixed x ∈ R. Moreover, to each

η > 0 there exist σ > 0 and θ > 0 such that Gσ satisfies :

∀Υ ∈ BLp(0, θ) , there exists ψΥ ∈ L1
loc(R,R) such that

‖ψΥ‖L1[0,1] ≤ η and, ∀x ∈ Rn , ‖∂Gσ∂x (x,Υ)‖ ≤ ψΥ. (2.26)

Proof. For fixed x ∈ R, it is clear from (2.25) that both Gs(x,Υ) and ∂Gs/∂x(x,Υ) belong
to L1

loc(R,Rn) when Υ ∈ Lp(R,Rm), measurability being ensured by the continuity of Gs and
∂Gs/∂x. To prove (2.26), first apply Lemma 2.3.4 to find σ > 0 and θ0 > 0 such that

∀(x, u) ∈ Rn ×B(0, θ0) , ‖∂Gσ
∂x

(x, u)‖ ≤ η/2 . (2.27)
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Next, let c1 = c1(B(0, σ)) and c2 = c2(B(0, σ)) be defined after (2.25), and observe that

∀(x, u) ∈ Rn × Rm, ‖∂Gσ/∂x (x, u)‖ ≤ (1 + 6/σ)(c1 + c2‖u‖p) (2.28)

because when ‖x‖ < σ this follows from (2.12), (2.25) and the fact that |ρ′| < 3, whereas Gσ
vanishes anyway when ‖x‖ ≥ σ. Introduce now the set

EΥ,θ0 = {t ∈ [0, 1], ‖Υ‖ < θ0}. (2.29)

Letting ψΥ(t) = η/2 for t ∈ EΥ,θ0 and ψΥ(t) = (1 + 6/σ)(c1 + c2‖Υ(t)‖p) otherwise, it is clear
that ψΥ ∈ L1

loc(R,R) and it follows from (2.29), (2.27), and (2.28) that ‖∂Gσ0/∂x(x,Υ)‖ ≤ ψΥ

for any x ∈ Rn. In another connection, let ν be the measure on R given by dν(t) = |Υ(t)|pdt.
By absolute continuity of ν with respect to Lebesgue measure, there is ε > 0 such that∫

E
‖Υ‖p dt < η

4c2(1 + 6/σ)
as soon as |E| < ε, (2.30)

where |E| denotes the Lebesgue measure of a measurable set E ⊂ R [90, Theorem 6.11]. Pick
θ > 0 so small that

θ

θ0
< max

{
ε,

η

4(1 + 6/σ)c1

}
. (2.31)

Then, if ‖Υ‖p < θ, the set [0, 1] \EΥ,θ0 has measure at most θ/θ0 hence, by definition of ψΥ, we
get in view of (2.30) and (2.31) the estimate :

‖ψΥ‖L1[0,1] ≤
η

2
+

θ

θ0
(1 + 6/σ)c1 +

η

4

which is less that η/2 + η/4 + η/4 = η by (2.31) again, as desired.

We are now in position to establish Theorem 2.3.7.

Proof. Proof of Theorem 2.3.7 For the proof we can replace Lp by Lp, because if we find a local
homeomorphism of Rn × Lp at 0× 0, of the form H̃ × Id, that conjugates (2.18) to (2.22), the
fact that x(τ, x0,Υ) depends only on the equivalence class of Υ in Lp implies that the same
holds true for H̃(x0,Υ), and therefore H̃ × Id will induce a quotient map H × Id around 0× 0
in Rn × Lp that is still a local homeomorphism by definition of the quotient topology. To prove
the Lp version, we consider the following “re-normalization” of (2.18) :

ẋ = Ax + ρ

(‖x‖2
σ2

)
P

(
x, ρ

(‖Υ‖p
θ

)
Υ
)
, (2.32)

where ρ is as in (2.9) and σ, θ are strictly positive real numbers to be fixed. Because the right-
hand sides of (2.32) and (2.18) agree as long as ‖x‖ < σ/

√
2 and ‖Υ‖p < θ/2 which defines a

neighborhood (0, 0) in Rn ×Lp, it is enough to prove the theorem when (2.18) gets replaced by
(2.32) for some pair σ, θ. To this effect, we shall apply Theorem 2.2.1 with E = Lp, endowed
with the one-parameter group of transformations Sτ = Θτ defined by (2.16), and

G(x, ζ, t) = ρ

(‖x‖2
σ2

)
P

(
x, ρ

(‖ζ‖p
θ

)
ζ(t)

)
.

Let us check that the assumptions of Theorem 2.2.1 are met if σ and θ are suitably chosen.
Firstly, it is obvious that Sτ is continuous (hence a homeomorphism since S−1

τ = S−τ ) because
it is a linear isometry of Lp. In addition, τ 7→ Sτ (ζ) is certainly Borel measurable, because it is
even continuous when p <∞ [90, Theorem 9.5] while Lemma 2.3.6 applies if p =∞.
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Secondly, it follows immediately from the assumptions on P and the smoothness of ρ that
G(x, ζ, t) is continuously differentiable with respect to x for fixed ζ and t, while the measurability
of t 7→ G(x, ζ, t) follows from the continuity of P and the measurability of ζ. To prove the
existence of φζ and ψζ in (2.16), we distinguish between p <∞ and p =∞. If p <∞, by (2.19)
and the fact that ρ is bounded by 1 and vanishes outside [0, 1], a valid choice for φζ is

φζ(t) = c1(B(0, σ) ) + c2(B(0, σ) ) ρp
(‖ζ‖p

θ

)
‖ζ(t)‖p

and, since by the properties of ρ we have that∥∥∥ρ(‖ζ‖p
θ

)
ζ
∥∥∥
p
≤ θ ∀ζ ∈ Lp, 1 ≤ p ≤ ∞, (2.33)

it follows that (2.17) is met with

M = c1(B(0, σ) ) + c2(B(0, σ) ) θp.

As to ψζ , observe if we set β(x, u) = P (x, u) that, with the notations of (2.10), one has

G(x, ζ, t) = Gσ

(
x, ρ

(‖ζ‖p
θ

)
ζ(t)

)
, (2.34)

so Lemma 2.3.9 ensures the existence of ψζ and also that the number η in (2.18) can be made
arbitrarily small upon choosing σ and θ adequately ; in particular we can meet (2.19). If p =∞,
we let

φζ(t) = sup
x∈B(0,σ)

∥∥∥∥∥P
(
x, ρ

(‖ζ‖p
θ

)
ζ(t)

)∥∥∥∥∥
so that the first half of (2.16) holds by the properties of ρ. By (2.33) we also have that

‖φζ‖∞ ≤ sup
(x,u)∈B(0,σ)×B(0,θ)

‖P (x, u)‖, (2.35)

so that φζ ∈ L∞(R,R) hence it is locally summable, and the right-hand side of (2.35) may serve
as M in (2.17). As to ψζ , observe that (2.34) still holds for p =∞, again with β(x, u) = P (x, u),
so we can set

ψζ(t) = sup
x∈B(0,σ)

∥∥∥∥∂Gσ∂x

(
x, ρ

(‖ζ‖∞
θ

)
ζ(t)

)∥∥∥∥ ,
and using (2.33) once more we get

‖ψζ‖∞ ≤ sup
(x,u)∈B(0,σ)×B(0,θ)

∥∥∥∥Gσ∂x (x, u)
∥∥∥∥ . (2.36)

Thus ψζ ∈ L∞(R,R) hence it is locally summable, and applying Lemma 2.3.4 to the right-hand
side of (2.36) shows that ‖ψζ‖∞ can be made arbitrarily small upon choosing σ and θ adequately.
Consequently η in (2.18) can be as small as we wish and in particular we can meet (2.19).

Thirdly, t 7→ x̂(t, x0, ζ) defined in (2.6) is just the solution to (2.32) corresponding to Υ = ζ
and x(0) = x0, which uniquely exists for all t by (2.16), see e.g. [98, Theorem 54, Proposition
C.3.4, Proposition C.3.8]. The continuity Rn×Lp → Rn of (x0, ζ) 7→ x̂(t, x0, ζ) is now ascertained
by Proposition 2.4.4, once it is observed that F (x, u) = Ax + ρ(‖x‖2/σ2)P (x, u) satisfies the
hypotheses of that proposition by (2.19) and the properties of ρ, and also that Ax + G(x, ζ, t)
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is the composition of F with the continuous map on Rn × Lp given by (x, ζ) 7→ (x, ρ(‖ζ‖p/θ)ζ)
(Proposition 2.4.4 was actually proved for Lp controls, but nothing is to be changed if we work
in Lp).

Finally, notice that (2.5) is immediate by the very definition of Θτ . Thus we can apply
Theorem 2.2.1 to conclude the proof of Theorem 2.3.7.

Remark 2.3.10. It should be noted that, unlike Theorems 2.3.1 and 2.3.3, Theorem 2.3.7 cannot
be localized with respect to u when p < ∞. However, using a partition of unity argument, the
result carries over to the case where, in (2.18), the map P is only defined on V × Rm where V
is a neighborhood of 0 in Rn.

In [25], particular attention is payed to the weak-* topology on L∞ for the control space,
because it makes the flow τ 7→ Θτ (Υ) continuous for fixed Υ. Subsequently, this reference focuses
on systems that are affine in the control : ẋ = X0(x) + C(x)u, where X0 is a C1 vector field
on Rn and C : Rn → Rn×m a C1 matrix-valued function ; the reason for this affine restriction
is that it ensures, in the weak-* context, the sequential continuity of (x0,Υ) 7→ x(τ, x0,Υ) for
fixed τ , whenever the flow makes sense : this is easily deduced from the Ascoli-Arzela theorem
and the fact that weak-* convergent sequences are norm-bounded [91, Theorem 2.5]. Although
the continuity of the flow Θ was never a concern to us (only Borel measurability was required),
it is natural in this connection to ask what happens with Theorem 2.3.7 if we endow L∞ with
the weak-* topology inherited from the (L1, L∞) duality. On the one hand, in case one restricts
his attention, as is done in [25], to a balanced, weak-* compact time-shift invariant subset of
L∞ containing 0, e.g. a ball B̄L∞(0, r), then the conclusions of the theorem still hold if we equip
the subset in question with the weak-* topology. Indeed, the weak-* topology is metrizable on
any compact set E because L1 is separable [91, Theorems 3.16] and, since weak-* convergent
sequences are norm- bounded, it follows if E is balanced that one can find a neighborhood of
0 in E which is included in B̄L∞(0, θ) for arbitrary small θ. In particular we can embed this
neighborhood in W of Theorem 2.3.7, and then it only remains to show that (2.21) remains
continuous if W is equipped with the weak-* topology ; this in turn reduces via (2.23) to the
already mentioned fact that (x0,Υ) 7→ x(τ, x0,Υ) is sequentially continuous for fixed τ when the
topology on Υ is the weak-* one. On the other hand, working weak-* with unrestricted controls
in L∞ raises serious difficulties, for no weak-* neighborhood in L∞ can be norm-bounded. This
results in the fact that, although Θ is now continuous, the domain of definition of the flow
(2.20) may fail to be open : for instance the equation ẋ = x + x2Υ(t) with initial condition
x(0) = x0, where x and Υ are real-valued, cannot have a solution on a fixed interval [0, t] for
every (x0,Υ) ∈ B(0, r) × W0 if W0 is a weak-* neighborhood of 0 in L∞(R,R). Therefore it
is hopeless to build a local homeomorphism by integrating the flow as is done in the proof of
Theorem 2.2.1, and the authors do not know what analog to Theorem 2.3.7 could be carried out
in this context.

Remark 2.3.11. The paper [21] considers transformations Rn × L∞ → Rn × L∞, using for
the input space a topology on L∞ which is intermediate between the weak-* and the strong one.
There the structure of conjugating homeomorphisms is not (2.21) but rather a triangular form :

(x,Υ) 7→ (H(x) , F (x,Υ) )

that combines what is called in this reference “topological static state feedback equivalence” and
“topological state equivalence”[21, Definition 5]. We refer the interested reader to the original
paper for a result on topological linearization of systems with two states and one control, using
this type of transformation, under some global hypotheses.
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2.4 Appendix on the flow of ODEs

Continuity without Lipschitz assumption. Let U be an open subset of Rd. We say that a
continuous vector field X : U → Rd has a flow if the Cauchy problem ẋ(t) = X(x(t)) with initial
condition x(0) = x0 has a unique solution, defined for t ∈ (−ε, ε) with ε = ε(x0) > 0. The flow
of X at time t is denoted by Xt, in other words, with the preceding notations, Xt(x0) = x(t).
It is easy to see that the domain of definition of (t, x) 7→ Xt(x) is open in R × U . Although
there is no clear characterization of the vector fields, or ODEs, that have a flow, they enjoy
special properties, even without assuming the well known sufficient Lipshitz conditions on the
right-hand side. Lemma 2.4.1 below is a special case of [24, Chapter 2, Theorem 4.3] or [47, chap.
V, Theorem 2.1]. Lemma 2.4.2 is an application of [24, chapter 2, Theorem 4.1] (that theorem
refers to a continuous parameter µ instead of the integer k : apply it to X(µ, x) piecewise affine
with respect to µ and such that X(0, x) = X(x) and X(± 1

k , x) = Xk(x)).

Lemma 2.4.1. If X : U → Rd is a continuous vector field that has a flow, the map (t, x) 7→ Xt(x)
is continuous on the open subset of R× U where it is defined.

Lemma 2.4.2. Assume that the sequence of continuous vector fields Xk : U → Rd converges
to X, uniformly on compact subsets of U , and that all the Xk as well as X itself have a flow.
Suppose that Xt(x) is defined for all (t, x) ∈ [0, T ] × K with T > 0 and K ⊂ U compact.
Then Xk

t (x) is also defined on [0, T ] × K for k large enough, and the sequence of mappings
(t, x) 7→ Xk

t (x) converges to (t, x) 7→ Xt(x), uniformly on [0, T ]×K.

Differentiability with measurable dependence on time. Consider a differential equation

ẋ = X(x, t) (2.37)

where the time-dependent vector field X : Rn × R→ Rn satisfies the following properties :
(i) for fixed t ∈ R, the map x→ X(x, t) is continuously differentiable Rn → Rn ;
(ii) for fixed x ∈ Rn, the map t→ X(x, t) is measurable R→ R ;

(iii) for some x1 ∈ Rn there is a measurable and locally integrable function αx1 : R → R+

such that
‖X(x1, t)‖ ≤ αx1(t), for all t ∈ R;

(iv) there is a measurable and locally integrable function ψ : R→ R+ satisfying∥∥∥∥∂X∂x (x, t)
∥∥∥∥

O

≤ ψ(t), for all (x, t) ∈ Rn × R,

where ‖ ‖O denotes the familiar operator norm on n× n real matrices.
The choice of the operator norm in (iv) is only for definiteness since all norms are equivalent
on Rn×n. Note also that, using (iv) and the mean-value theorem, property (iii) immediately
strengthens to :

(iii)’ to each x ∈ Rn there is a measurable and locally integrable function αx : R → R+

such that
‖X(x, t)‖ ≤ αx(t), for all t ∈ R.

Measurability with respect to time and local Lipshitz continuity with respect to the state
(“Caratheodory conditions”) are known to be sufficient for local existence and uniqueness of
solution. Let us state a differentiability result in the not-so-classical case where the dependence
on time is L1 but possibly unbounded. It is proved in [74, chapter III], where one can find
comprehensive results assuming assuming only measurability with respect to time.
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By (i), (ii), (iii)’, and (iv), the solution to (2.37) with arbitrary initial condition x(0) =
x0 ∈ Rn uniquely exists for all t ∈ R (see [74, Theorem 2.1, Chapter III]), in the sense that there
is a unique locally absolutely continuous function x : R→ Rn satisfying (2.37) for almost every
t and such that x(0) = x0. We shall denote by x̂(τ, x0) the value of this solution at time t = τ , in
other words we let (t, x0) 7→ x̂(τ, x0) designate the flow of (2.37). By definition, the variational
equation of (2.37) along the trajectory t 7→ x̂(t, x0) is the linear differential equation :

Ṙ =
∂X

∂x
(x̂(t, x0), t)R (2.38)

in the unknown matrix-valued function R : R→ Rn×n.

Lemma 2.4.3 (Theorem 6.1, Chapter III in [74]). If X : Rn×R→ Rn satisfies properties (i)-
(iv) above, and if x̂ is the flow of (2.37), then x̂(t, x) is continuously differentiable with respect
to x and

t 7→ ∂x̂

∂x
(t, x) (2.39)

is the unique solution of (2.38) with initial condition R(0) = In, where In is the identity matrix
of size n.

Continuity with Lp controls. Consider a differential equation of the form

ẋ = F (x,Υ(t)) (2.40)

where x ∈ Rn while Υ belongs to Lp(R,Rm), the familiar Lebesgue space of (equivalence classes
of) functions R→ Rm whose p-th power is integrable in case p <∞ and whose norm is essentially
bounded if p =∞ ; we endow Lp with the usual norm, namely ‖Υ‖p = (

∫
R ‖Υ‖pdt)1/p if p <∞

and ‖Υ‖∞ = ess.sup.R‖Υ‖, where ‖.‖ denotes the Euclidean norm. Of course, a solution to
the differential equation is understood here in the sense that x(t) is absolutely continuous, and
that its derivative is a locally summable function whose value is given by the right-hand side of
(2.40) for almost every t. Classically, even if F : Rn × Rm → Rn is very smooth, the existence
of solutions to (2.40) when 1 ≤ p <∞ requires some restrictions on the growth of F at infinity.
The following continuity property of the solution with respect to both the initial condition and
Υ ∈ Lp holds :

Lemma 2.4.4 (Theorem 3 in [75], with a = 1). Let F (x, u) be continuous Rn ×Rm → Rn, and
the partial derivative ∂F/∂x exist continuously Rn ×Rm → Rn×n. Let p ∈ [1,∞] and assume if
p <∞ that, to each compact K ⊂ Rn, there are constants c1(K), c2(K), such that :

‖F (x, u)‖+ ‖∂F
∂x

(x, u)‖ ≤ c1(K) + c2(K) ‖u‖p, (x, u) ∈ K × Rm. (2.41)

Then, for any Υ ∈ Lp(R,Rm), the solution t 7→ x(t, x0,Υ) to (2.40) with initial condition
x(0) = x0 uniquely exists on some maximal time interval Ix0,Υ containing 0. Moreover, if K is
a compact subinterval of Ix0,Υ, there is a neighborhood V of (x0,Υ) in Rn×Lp(R,Rm) such that
K ⊂ Ix′0,Υ′ whenever (x′0,Υ

′) ∈ V ; within this neighborhood, it further holds that

lim
(x′0,Υ

′)→(x0,Υ)
x(t, x′0,Υ

′) = x(t, x0,Υ), (2.42)

uniformly with respect to t ∈ K.
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Abstract We consider the problem of topological linearization of smooth (C∞ or Cω)
control systems, i.e. of their local equivalence to a linear controllable system via point-
wise transformations on the state and the control (static feedback transformations)
that are topological but not necessarily differentiable. We prove that local topological
linearization implies local smooth linearization, at generic points. At arbitrary points,
it implies local conjugation to a linear system via a homeomorphism that induces
a smooth diffeomorphism on the state variables, and, except at “strongly” singular
points, this homeomorphism can be chosen to be a smooth mapping (the inverse map
needs not be smooth). Deciding whether the same is true at “strongly” singular points
is tantamount to solve an intriguing open question in differential topology.

3.1 Introduction

Throughout the paper, smooth means of class C∞.
In the early works [57, 50, 103], nice necessary and sufficient conditions were obtained for

a smooth control system ẋ = f(x, u), with state x ∈ Rn and control u ∈ Rm, to be locally
smoothly linearizable, i.e. locally equivalent to a controllable linear system by means of a
diffeomorphic change of variables on the state and the control. The afore-mentioned conditions
require certain distributions of vector fields to be integrable, hence locally smoothly linearizable
control systems are highly non generic among smooth control systems. Similar results hold for
real analytic control systems with respect to real analytic linearizability.

Consider now the topological linearizability of a smooth control system, namely the property
that it is locally equivalent to a controllable linear system via a homeomorphism on the state and
the control which may not, this time, be differentiable. Obviously, smooth linearizability implies
topological linearizability ; the extend to which the converse holds will be the main concern of
the present paper. We address the real analytic case in the same stroke.

In brief, our goal is to describe the class of smooth control systems that are locally topologically
linearizable, yet not smoothly locally linearizable. This class in nonempty : the smooth (even real-
analytic) scalar system

ẋ = u3 u ∈ R, x ∈ R, (3.1)

55
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gets linearized locally around (0, 0) by the homeomorphism (x, u) 7→ (x, u3), whereas the condi-
tions for smooth linearizability fail at this point. However, we observe on this example that the
conjugating homeomorphism has much more regularity than prescribed a priori :
1. it is a smooth (even real-analytic) local diffeomorphism around all points (x, u) such that
u 6= 0,
2. it is triangular and induces a smooth (even real-analytic) diffeomorphism on the state variable
(i.e. the identity map x 7→ x),
3. it is a smooth (even real-analytic) map that fails to be a diffeomorphism only because its
inverse is not smooth.

Theorem 3.5.2 of the present paper states that this example essentially depicts the general
situation. More precisely, if a smooth control system is locally topologically linearizable at some
point (x̄, ū) in the state-control space, then
1′. in a neighborhood of (x̄, ū), the system is locally smoothly linearizable around each point
outside a closed subset of empty interior (an analytic variety of positive co-dimension in the
analytic case),
2′. around (x̄, ū), there is a triangular linearizing homeomorphism that induces a smooth diffeo-
morphism on the state variable,
3′. the above-mentioned homeomorphism is smooth (although its inverse may not), at least if
∂f/∂u has constant rank around (x̄, ū) or if supx,u Rank∂f/∂u(x, u) = m on every neighborhood
of (x̄, ū).

Similar results hold for real-analytic linearization of a real-analytic system.
A homeomorphism satisfying 2′ will be called quasi-smooth (see Definitions 3.3.9, 3.5.1),

hence our main result is that local topological linearizability implies local quasi-smooth linea-
rizability. A point (x̄, ū) where the first rank condition in 3′ is satisfied is called regular, and
at such points local smooth linearizability is equivalent to local topological linearizability (cf.
Theorem 3.5.4). A point (x̄, ū) where none of the rank conditions in 3′ are satisfied is called
strongly singular. Whether the conclusion of 3′ continues to hold at strongly singular points
raises an intriguing question in differential topology, namely can one redefine the last compo-
nents of a local homeomorphism whose first few components are smooth so as to obtain a new
homeomorphism which is smooth ? The answer seems not to be known, see the discussion in
section 3.5.1.

Motivations. They include the following.
1. For systems without controls, i.e. ordinary differential equations, local linearization around
an equilibrium has generated a sizable literature, see Section 3.2 for a small sample. It tells
us that, even for a real analytic o.d.e., linearizability much depends on the admissible class of
transformations (formal, real analytic, Ck or topological). For instance, although analytic li-
nearization requires subtle conditions relying upon a refined analysis of resonances and small
divisors, the Grobman-Hartman theorem says nevertheless that topological linearization is al-
ways possible at a hyperbolic equilibrium. As one might suspect (this is indeed shown in section
3.5.4), no naive analog to the Grobman-Hartman theorem can hold for control systems because
they feature a family of vector fields rather than a single one. However, it might still be expected
that relaxing the smoothness of the allowable transformations increases the class of linearizable
control systems. It is in fact hardly so : we knew already from [57, 50, 103] that C1 lineariza-
bility of a smooth control system implies smooth linearizability, and we prove here that for C0

linearizability this class does not get much bigger. In particular, there are no subtle questions
about resonances and one may say that the most prominent feature of a control system is to be,
or not to be linearizable, regardless of smoothness.
2. Linearizable control systems are systems with linear dynamics, whose nonlinear character
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lies in their input-to-state and state-to-output maps only. Such models are advocated in [58, 95]
for identification (in the discrete-time case), as their reduced complexity makes them more
amenable to standard techniques. It is therefore natural to investigate this class, and topological
equivalence is about the weakest possible from the point of view of identification.
3. From a control engineering point of view, it is common practice to design locally stabilizing
feedback laws for a given system based on its linear approximation when the latter is control-
lable... and to a certain extent one believes that the latter and the former locally “look alike”.
It is therefore legitimate to ask about the relationship between them. Since no discriminating
topological invariants are known, topological conjugacy might appear as a good candidate. The
present paper shows that the relationship is almost never that strong : topological conjugacy to
the linear approximation is almost as rare as differential conjugacy.

Incidentally, a system whose linear approximation is not controllable may still happen to be
locally topologically linearizable, i.e. equivalent to a linear controllable system (which is not its
linear approximation). This phenomenon is clarified in section 3.5.3.

Techniques. The conditions for smooth linearizability derived in [57, 50, 103] come up natu-
rally in some sense. Indeed, to any control system, one may associate a sequence of distributions
defined via a construction using Lie brackets of vector fields attached to the system ; it turns out
that the instance of this sequence of distributions for linear systems yields “constant” –hence
integrable– distributions that span the entire state space in a finite number of steps if the system
is controllable. Since Lie brackets and integrability of distributions are preserved under local dif-
feomorphisms, this translates at once into necessary conditions for smooth linearizability, shown
in [57, 50, 103] to be sufficient. In contrast, homeomorphisms do not allow to pull back Lie bra-
ckets or tangent vector fields ; hence the same conditions need not be necessary for topological
linearization, and the proofs in the present paper are more intricate. Specifically, we have to rely
upon the notion of orbits of families of smooth vector fields rather than integral manifolds. The
proof of Theorem 3.5.2 uses classical results concerning such orbits, first established in [101],
that we recall and slightly expand in Section 3.8. Incidentally, the lack of a theory dealing with
orbits of Ck vector fields (k ∈ N) is the main reason why the results of the present paper restrict
to C∞ or Cω (i.e. real analytic) control systems.

Hopefully our method can be useful to study local topological equivalence to other classes
of systems than linear ones ; this is not investigated here.

Organization of the paper. Section 3.2 recalls classical facts on local linearization of or-
dinary differential equations. Section 3.3 introduces conjugation for control systems (under a
homeomorphism, a diffeomorphism, etc.) and establishes basic properties of conjugating maps.
Section 3.4 reviews (topological, smooth, linear) conjugacy between linear control systems after
[17, 108]. Section 3.5 states the main result of the paper (Theorem 3.5.2), namely that local
topological linearizability implies local quasi-smooth linearizability for smooth control systems
(smooth meaning either C∞ or Cω), and discusses the gap between smooth and quasi-smooth
linearizability, including geometric characterizations thereof. Section 3.6 contains the proofs of
these results ; the proof of Theorem 3.5.2 relies upon section 3.3, results from [101] stated in
Section 3.8, and technical lemmas from Section 3.7.

3.2 Local linearization for ordinary differential equations

Consider the differential equation

ẋ(t) = f(x(t)), (3.2)
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where f ∈ Ck(U,Rn) with U an open subset of Rn and k ∈ N ∪ {∞, ω}, k ≥ 1.
It is well known (the “flow box theorem”, see e.g. [6]) that, around each x0 ∈ U such that

f(x0) 6= 0, there is a change of coordinates of class Ck that conjugates (3.2) to the equation
ẋ1 = 1, ẋ2 = 0, . . . , ẋn = 0. Hence all differentiable vector fields are equivalent to each other, at
points where they do not vanish, via a diffeomorphism having the same degree of smoothness
(including real analyticity).

At a point x0 ∈ U such that f(x0) = 0, i.e. at an equilibrium of the dynamical system (3.2),
its linear approximation is the system

ẋ(t) = Ax(t)−Ax0 (3.3)

where A = Df(x0) is the derivative of f at x0. The equilibrium x0 is said to be hyperbolic if the
matrix A has no purely imaginary eigenvalue.

The problem of locally linearizing (3.2) is that of finding a local homeomorphism h : V →W
around x0 mapping the trajectories of (3.2) in V onto trajectories of (3.3) in W in a time-
preserving manner. In other words, if φt denotes the flow of (3.2), we should have for each
x ∈ V that

h ◦ φt(x) = eAt
(
h(x)− h(x0)

)
+ h(x0)

provided that φρ(x) ∈ V for 0 ≤ ρ ≤ t. When this is the case we say that h conjugates (3.2)
and (3.3), and we speak of topological, Ck, smooth, or analytic linearization depending on the
regularity of h and h−1.

Local linearization at an equilibrium is a very old issue. At the beginning of the twentieth
century, H. Poincaré already identified the obstructions to the existence of a formal change of
variables h that removes all the nonlinear terms when f is analytic. These are the so-called
resonances, see e.g. [47, 6]. In fact, resonant monomials of order ` are obstructions to linearizing
the Taylor expansion of f at order ` and consequently also obstructions to C` linearization.
However, although there exists a formal power series expansion for h when there are no resonant
terms, the existence of a convergent power series for h (analytic linearization) is a delicate issue.
When the eigenvalues of the Jacobian belong to the so-called Poincaré domain, the absence of
resonances indeed implies analytic linearizability (the Poincaré theorem). If it is not the case,
a famous theorem by Siegel gives additional Diophantine conditions on these eigenvalues to the
same conclusion. These conditions are generically satisfied in the measure-theoretic sense [6]. If
no eigenvalue of the Jacobian is purely imaginary, it turns out [89] that the absence of resonances
is also sufficient for smooth (h, h−1 of class C∞) but in general not real analytic linearization.
This is still valid when f is merely of class C∞.

In contrast, if one allows conjugation via a topological but not necessarily differentiable ho-
meomorphism, the Grobman-Hartman theorem asserts that every ordinary differential equation
with no purely imaginary eigenvalue of the Jacobian (hyperbolicity) can be locally linearized
around an equilibrium, that is, resonances are no longer an obstruction. A proof of this classical
result can be found in [47] :

Theorem 3.2.1 (Grobman-Hartman). Under the assumption that x0 is a hyperbolic equilibrium
point, system (3.2) is topologically conjugate to system (3.3) at x0.

In fact, it is proved in [105] that the conjugating homeomorphism h (together with its inverse
h−1) can be chosen Hölder-continuous, and even differentiable at x0 (but not in a neighborhood).
This brings additional rigidity to the mapping h.

The above theorem entails that the only invariant under local topological conjugacy, around
a hyperbolic equilibrium, is the number of eigenvalues with positive real part in the Jacobian
matrix, counting multiplicity. Indeed, as is well-known ( cf. [5]), the linear system ẋ = Ax where
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A has no pure imaginary eigenvalue is topologically conjugate to ẋ = DX, where D is diagonal
with diagonal entries ±1, the number of +1 being the number of eigenvalues of A with positive
real part.

3.3 Preliminaries on topological equivalence for control
systems

3.3.1 Control systems and their solutions

Consider two control systems where n,m, n′,m′ are natural integers :

ẋ = f(x, u) , x ∈ Rn , u ∈ Rm , (3.4)
ż = g(z, v) , z ∈ Rn′ , v ∈ Rm′ , (3.5)

or expanded in coordinates :

ẋ1 = f1(x1, . . . , xn, u1, . . . , um) ż1 = g1(z1, . . . , zn′ , v1, . . . , vm′)
...

...
ẋn = fn(x1, . . . , xn, u1, . . . , um) żn′ = gn′(z1, . . . , zn′ , v1, . . . , vm′)

where x or z is called the state and u or v the control.
Although our main results are stated (in section 3.5) for infinitely differentiable —or real

analytic— control systems, their proofs deal with non-smooth objects because the transfor-
mations we consider are only assumed to be continuous. This leads us to keep smoothness
assumptions to a minimum in the present section. Accordingly, the maps fi : Rn×Rm → R and
gi : Rn′ ×Rm′ → R are assumed to be at least continuous ; any additional regularity assumption
will be stated explicitly. We do not restrict their domains of definition ; this is no real loss of
generality because they could anyway be extended using partitions of unity (real analyticity
plays no role in the present section), and whenever a result is stated, the domain where it holds
true is precisely stated and the value of f and g outside this domain does not matter.

If m is zero or f does not depend on u, equation (3.4) reduces to the ordinary differential
equation (3.2). Of course “genuine” control systems are those whose right hand side does depend
on the control.

Definition 3.3.1. By a solution of (3.4) that remains in an open set Ω ⊂ Rn+m, we mean a
mapping γ defined on a real interval I, say

γ : I → Ω
t 7→ γ(t) = ( γI(t) , γII(t) )

(3.6)

with γI(t) ∈ Rn and γII(t) ∈ Rm, such that :
– γ is measurable, locally bounded, and γI is absolutely continuous,
– whenever [T1, T2] ⊂ I, we have :

γI(T2) − γI(T1) =
∫ T2

T1

f( γI(t) , γII(t) ) dt . (3.7)

Solutions of (3.5) that remain in Ω′ ⊂ Rn′+m′ are likewise defined to be mappings

γ′ : I → Ω′

t 7→ γ′(t) = ( γ′I(t) , γ
′
II(t) )

(3.8)

having the corresponding properties with respect to g.
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If (x̄, ū) is a point in Ω, U a neighborhood of ū such that {x̄} × U ⊂ Ω, J a real interval,
and γII : J → U a measurable and locally bounded map, then, by [24, Ch. 2, Theorem 1.1] and
the continuity of f , there exists, on a possibly smaller interval I ⊂ J , a solution γ of (3.4) that
remains in Ω subject to the initial condition γI(0) = x̄. This solution may not be unique without
further assumptions on f , for instance that it is continuously differentiable, or merely locally
Lipschitz in the first argument.

Remark 3.3.2. Observe that Definition 3.3.1 assigns a definite value to γII(t) for each t ∈ I.
Of course, since γI remains a solution to (3.7) when the control γII gets redefined over a set of
measure 0, one could identify two control functions whose values agree a.e. on I, as is customary
in integration theory. However, these values are in any case subject to the constraint that γ(t) ∈ Ω
for every t ∈ I, and altogether we find it more convenient to adopt Definition 3.3.1.

3.3.2 Feedbacks

In the terminology of control, a solution in the sense of Definition 3.3.1 would be termed open
loop to emphasize that the value of the control at time t is a function of time only, namely that
γII(t) bears no relation to the state x whatsoever. A central concept in control theory, though,
is that of closed loop or feedback control, where the value of the control at time t is computed
from the corresponding value of the state, namely is of the form α(x(t)). To make a formal
definition of a feedback defined on an arbitrary open set, we need one more piece of notation :
if Ω ⊂ Rn × Rm is open, we let πn : Ω → ΩRn the natural projection that selects the first n
components, where ΩRn = πn(Ω) ⊂ Rn.

Definition 3.3.3. Given an open set Ω ⊂ Rn+m, a feedback on Ω is a continuous mapping
α : ΩRn → Rm such that (x, α(x)) ∈ Ω for all x ∈ ΩRn. A C∞(resp. Cω) feedback on Ω is one
of class C∞(resp. Cω).

A feedback is nothing but a mapping α such that x 7→ (x, α(x)) is a continuous section of
the natural fibration πn : Ω → ΩRn . Of course, there are sets Ω whose topology prevents the
existence of any feedback. However, if there is one there are plenty, among which C∞feedbacks
are uniformly dense. This is the content of the next proposition, that will be used in the proof
of Theorem 3.5.2. To fix notations, let us agree throughout that the symbol ‖ ‖ designates the
Euclidean norm on R` irrespectively of the positive integer `, while B(x, r) stands for the open
ball centered at x of radius r and B(x, r) for the corresponding closed ball.

Proposition 3.3.4. Let Ω be open in Rn+m, and α : ΩRn → Rm be a feedback on Ω. To each
ε > 0, there is a C∞feedback β : ΩRn → Rm such that ‖α(x)− β(x)‖ < ε for x ∈ ΩRn.

Proof. Let ∅ = K0 ⊂ K1 · · · ⊂ Kk ⊂ Kk+1 · · · be an increasing sequence of compact subsets of
ΩRn , each of which contains the previous one in its interior, and whose union is all of ΩRn . For
each x ∈ ΩRn , define an integer

k(x) ∆= min{k ∈ N; x ∈ Kk} . (3.9)

To each k, by the continuity of α and the compactness of Kk, there is µk > 0 such that

x ∈ Kk ⇒
{ • B(x, µk)× Conv

{
α
(
B(x, µk)

) } ⊂ Ω ,
• ∀u1, u2 ∈ Conv

{
α
(
B(x, µk)

) }
, ‖u1 − u2‖ < ε ,

(3.10)

where the symbol Conv designates the convex hull. In addition, we may assume that the sequence
(µk) is non increasing.

Denote by
◦
Kk the interior of Kk, set Dk = Kk\

◦
Kk−1 for k ≥ 1, and cover the compact set

Dk with a finite collection Bk of open balls having the following properties :
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– each of these balls is centered at a point of Dk and is contained in the open set
◦
Kk+1 \Kk−2

(with the convention that K−1 = ∅),
– each of these balls has radius at most

µk+1

2
.

The union B =
⋃
k≥1 Bk is a countable locally finite collection of open balls that covers ΩRn ,

and it has the property that every ball in B is included in B(x, µk(x)) as soon as it contains x.
Let Bj , for j ∈ N, enumerate B, and hj be a smooth partition of unity where hj has support
supphj ⊂ Bj . If we pick xj ∈ Bj for each j, the map β : ΩRn → Rm defined by

β(x) =
∑
j∈N

hj(x)α(xj) (3.11)

is certainly smooth. In addition, since by construction xj belongs to B(x, µk(x)) whenever hj(x) 6=
0, we get that β(x) lies in the convex hull of α

(
B(x, r)

)
for some r < µk(x), and therefore, from

(3.10) and (3.9), that (x, β(x)) ∈ Ω and ‖α(x)− β(x)‖ < ε. Hence β is a smooth feedback on Ω
such that ‖α(x)− β(x)‖ < ε for all x ∈ ΩRn .

3.3.3 Conjugacy

We turn to the notion of conjugacy for control systems, which is the central topic of the
paper.

Definition 3.3.5. Let

χ : Ω → Ω′

(x, u) 7→ χ(x, u) = (χI(x, u) , χII(x, u) )
(3.12)

be a bijective mapping between two open subsets of Rn+m and Rn′+m′ respectively. We say that
χ conjugates systems (3.4) and (3.5) if, for any real interval I, a map γ : I → Ω is a solution
of (3.4) that remains in Ω if, and only if, χ ◦ γ is a solution of (3.5) that remains in Ω′.

Although this definition makes sense without any regularity assumption, we only consider
the case when χ and χ−1 are at least continuous. Then Brouwer’s invariance of the domain (see
e.g. [77]) implies that n′+m′ = n+m if (3.4) and (3.5) are conjugate via such a χ. Proposition
3.3.6 below asserts that more in fact is true.

Proposition 3.3.6. If the map χ in (3.12) is a homeomorphism that conjugates (3.4) to (3.5),
then n = n′, m = m′, and χI depends only on x :

χ(x, u) = (χI(x) , χII(x, u) ) . (3.13)

Moreover, χI : ΩRn → Ω′Rn is a homeomorphism. Here, one should recall the notation ΩRn that
was introduced before Definition 3.3.3.

Proof. Let x̄, ū, ū′ be such that (x̄, ū) and (x̄, ū′) belong to Ω. Let further x(t) be a solution1 to
(3.4) with x(0) = x̄ and

u(t) = ū if t ≤ 0,
u(t) = ū′ if t > 0 .

By conjugacy, z(t) = χI(x(t), u(t)) is a solution to (3.5) with v given by v(t) = χII(x(t), u(t)),
for t ∈ (−ε, ε) and some ε > 0. In particular χI(x(t), u(t)) is continuous in t so its values at
0+ and 0− are equal. Hence χI(x̄, ū) = χI(x̄, ū′) so that χI : ΩRn → Ω′Rn′ is well defined and
continuous. Similarly,

(
χ−1

)
I

induces a continuous inverse Ω′Rn′ → ΩRn . By invariance of the
domain n = n′.

1This solution is not necessarily unique since here f and g are merely assumed to be continuous.
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In view of this proposition, we will only consider conjugacy between systems having the same
number of states and inputs. Hence the distinction between (n,m) and (n′,m′) from now on
disappears.

Remark 3.3.7. In the literature, there seems to be no general agreement on what should be
called a solution of a control system, nor on the concept of equivalence. We discuss and compare
some notions in use in section 3.3.5.

Remark 3.3.8. Taking into account the triangular structure of χ in Proposition 3.3.6, one may
describe conjugacy as resulting from a change of coordinates in the state-space (upon setting
z = χI(x)) and then feeding the system with a function both of the state and of a new control
variable v (upon setting u = (χ−1)II(z, v)), in such a way that the correspondence (x, u) 7→ (z, v)
is invertible. In the language of control, this is known as a static feedback transformation, and
two systems conjugate in the sense of Definition 3.3.10 would be termed equivalent under static
feedback.

This notion has received considerable attention (see for instance [54]), albeit only in the dif-
ferentiable case (i.e. when χ is a diffeomorphism). Differentiability has the following advantage :
when χI and (χI)−1 are differentiable, χ conjugates systems (3.4) and (3.5) on some domain if,
and only if

g(χI(x), χII(x, u)) =
∂χI

∂x
(x) f(x, u) (3.14)

holds true on this domain. Hence one may replace Definition 3.3.10, which is based on solutions
to (3.4) and (3.5), by the equality above expressing the way in which χ transforms the equations.
Note that the differentiability of χII is not required.

Various degrees of regularity for χ give rise to corresponding notions of conjugacy in Defini-
tion 3.3.10 below.

Definition 3.3.9. For k ∈ N ∪ {∞, ω}, k ≥ 1, a map χ as in (3.13) is called a quasi-Ck

diffeomorphism if and only of it is C0 homeomorphism and χI is a Ck diffeomorphism ΩRn →
Ω′Rn, i.e. χI and χI

−1 are of class Ck.

Definition 3.3.10. Let k ∈ N ∪ {∞, ω}, k ≥ 1.
Systems (3.4) and (3.5) are topologically (resp. Ck, resp. quasi-Ck) conjugate over the pair

Ω,Ω′ if there exists a homeomorphism (resp. Ck diffeomorphism, resp. quasi-Ck diffeomorphism)
χ : Ω→ Ω′ that conjugates the two systems.

System (3.4) is locally topologically (Ck, quasi-Ck) conjugate to system (3.5) at (x̄, ū) ∈
Rn+m if2 the two systems are topologically (Ck, quasi-Ck) conjugate over a pair Ω, Ω′, where Ω
is a neighborhood of (x̄, ū).

Remark 3.3.11. All definitions are invariant under linear time re-parameterization, namely :
if χ : Ω → Ω′ conjugates systems (3.4) and (3.5), then for any λ ∈ R (if λ < 0, this reverses
time) the map χ also conjugates the systems

ẋ = λf(x, u) and ż = λg(z, v) .

Indeed, this is trivial for λ = 0, otherwise, if t 7→ (x(t), u(t)) is a solution of ẋ = λf(x, u)
on a time-interval [t1, t2], and x̃(t) and ũ(t) denote respectively x(t/λ) and u(t/λ), then t 7→

2It would be more natural to say that system (3.4) at (x̄, ū) ∈ Rn+m is locally conjugate to system (3.5) at
(x̄′, ū′) ∈ Rn+m if the two systems are conjugate over a pair Ω, Ω′, where Ω is a neighborhood of (x̄, ū) and Ω′

is a neighborhood of (x̄′, ū′). However, prescribing (x̄′, ū′) would increase notational burden and add no relevant
information.
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(x̃(t), ũ(t)) is a solution of (3.4) on [λt1, λt2], hence χ sends (x̃(t), ũ(t)) to (z̃(t), ṽ(t)) satisfying
˙̃z(t) = g(z̃(t), ṽ(t)). Consequently, χ maps (x(t), u(t)) to (z(t), v(t)) = ((z̃(λt), ṽ(λt))), which is
a solution of ż = λg(z, v).

In case there is no control ( i. e. m = m′ = 0) so that neither u nor χII appear in (3.12),
Definition 3.3.10 coincides with the usual notion of local conjugacy for ordinary differential
equations.

3.3.4 Properties of conjugating maps

Below we derive some technical facts about conjugacy and feedback that are fundamental to
the proof of Theorem 3.5.2, although they are not needed to understand the result itself.

In the proof of Proposition 3.3.6, we only used conjugacy on a very small class of solutions,
namely those corresponding to piecewise constant controls with a single discontinuity. This
raises the question whether smaller classes of solutions than prescribed in Definition 3.3.1 are
still sufficiently rich to check for conjugacy. Under mild conditions on f and g, as we will see in
the forthcoming proposition, conjugacy essentially holds if it is granted for a class of inputs that
locally uniformly approximates piecewise continuous functions, and this fact will be of technical
use in the proof of Lemma 3.6.3. To fix terminology, we agree that a function I → Rm, where I is
a real interval, is called piecewise continuous if it is continuous except possibly at finitely many
interior points of I where it has limits from both sides and is either right or left continuous. If in
addition the function is constant (resp. affine, resp. C∞) on every open interval not containing
a discontinuity point, we say that it is piecewise constant (resp. piecewise affine, resp. piecewise
C∞).

Proposition 3.3.12 (Conjugacy from restricted classes of inputs). Assume that f and g are
continuous Rn×Rm → Rn and locally Lipschitz-continuous with respect to their first argument3.
Let χ : Ω → Ω′ be a homeomorphism between two open subsets of Rn+m, and denote by ΩII

and Ω′II respectively the open subsets of Rm obtained by projecting Ω and Ω′ onto the second
factor. Let further C and C′ be collections of locally bounded measurable functions R → Rm

whose restrictions C|J and C′|J to any compact interval J contain in their respective closures,
for the topology of uniform convergence, the set of all piecewise continuous functions J → ΩII

and J → Ω′II respectively. If χ maps every solution (3.6) of (3.4) such that γII(t) ∈ C|I to a
solution of (3.5) while, conversely, χ−1 maps every solution (3.8) of (3.5) such that γ′II(t) ∈ C′|I
to a solution of (3.4), then the restriction of χ to any relatively compact open subset O ⊂ Ω
conjugates systems (3.4) and (3.5) over the pair O, χ(O).

Proof. Let us first show that

for any solution γ : I → Ω of (3.4) such that γII is
piecewise continuous, χ ◦ γ is a solution to (3.5).

}
(3.15)

Since the property of being a solution is local with respect to time, we may suppose that I is
a compact interval. Then, there is an open set O and a compact set K such that γ(I) ⊂ O ⊂
K ⊂ Ω. By the hypothesis on C, there exists a sequence of functions γII,k : I → Rm converging
uniformly to γII such that γII,k ∈ C|I . Define for each k ∈ N a time-varying vector field Xk by
Xk(t, x) = f(x, γII,k(t)). By the continuity of f , this sequence converges uniformly on compact
subsets of I × Rn to X(t, x) = f(x, γII(t)) ; moreover, since γII is bounded (being piecewise
continuous) γII,k is also bounded, thus the local Lipschitz character of f(x, u) with respect to x

3This means that each (x̄, ū) ∈ Ω has a neighborhood N such that ‖f(x′, u)− f(x, u)‖ ≤ c ‖x′ − x‖ for some
constant c whenever (x, u) and (x′, u) lie in N .
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implies by compactness that X(t, x) and Xk(t, x) are themselves locally Lipschitz with respect
to x on I×ORn . Pick t0 ∈ I and apply Lemma 3.7.3 with I = [t1, t2], x0 = γI(t0), and U = ORn .
This yields, say for k > K, that the solution γI,k to the Cauchy problem

γ̇I,k(t) = Xk(t, γI,k(t)) , γI,k(t0) = γI(t0) ,

maps I into ORn and that the sequence (γI,k)k>K converges uniformly on I to γI. Hence, if we
let

γk(t) = (γI,k(t), γII,k(t)),

the sequence (γk)k>K converges to γ, uniformly on I. In particular γk(I) ⊂ K ⊂ Ω for k large
enough.

Now, since γk : I → Ω is a solution to (3.4) with γII,k ∈ C|I , it follows from the hypothesis
that χ ◦ γk is a solution to (3.5) that remains in Ω′, i.e. with the notations of (3.12) we have,
for k large enough,

χI ◦ γk(t) − χI ◦ γk(t0) =
∫ t

t0

g(χ ◦ γk(s)) ds, t ∈ I. (3.16)

By the continuity of χ, the convergence of γk(t) to γ(t), and the fact that g remains bounded on
the compact set χ(K), we can apply the dominated convergence theorem to the right hand-side
of (3.16) to obtain in the limit, as k →∞, that

χI ◦ γ(t) − χI ◦ γ(t0) =
∫ t

t0

g(χ ◦ γ(s)) ds, t ∈ I.

Thus χ ◦ γ : I → Rn+m is a solution to (3.5) that remains in Ω′, thereby proving (3.15).
The next step is to observe from (3.15) that, since piecewise constant controls are in particular

piecewise continuous, the proof of Proposition 3.3.6 applies to show that χ : Ω → Ω′ has a
triangular structure of the form (3.13).

With (3.15) and (3.13) at our disposal, let us now prove the proposition in its generality.
Choose an arbitrary open subset O with compact closure O in Ω, and fix two compact subsets
K and K1 of Ω such that

O ⊂ O ⊂ ◦
K ⊂ K ⊂ ◦

K1 ⊂ K1 ⊂ Ω.

where
◦
K stands for the interior of K.

Let γ : I → O be a solution of (3.4). We need to prove that χ ◦ γ is a solution to (3.5) and
again, since the property of being a solution is local with respect to time, we may suppose that I
is compact. Notations being as in (3.6), it follows by definition of a solution that γII is a bounded
measurable function I → Rm. We shall proceed as before in that we again approximate γ by
a sequence γk of trajectories of (3.4) that are mapped by χ to trajectories of (3.5). This time,
however, the approximation process is slightly more delicate, because it is no longer granted by
the hypothesis on C but it will rather depend on general point-wise approximation properties to
measurable functions by continuous ones.

By the compactness of K, there is εK > 0 such that

(x, u) ∈ K ⇒ B
(
(x, u) , εK

) ⊂ ◦K1 . (3.17)

Let uγI : I → Rm be an auxiliary function with the following properties :
(i) uγI is piecewise constant on I,
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(ii) (ξ(t), uγI(t)) ∈
◦
K1 for all t ∈ I and every map ξ : I → Rn that satisfies

sup
t∈I
‖ξ(t)− γI(t)‖ < εK/2. (3.18)

Such a function uγI certainly exists. Indeed, by definition of a solution, γI is absolutely continuous
thus a fortiori continuous I → Rn, and therefore we know for each t ∈ I that the set

γ−1
I

(
B(γI(t), εK/2)

)
is an open neighborhood of t in I, hence a disjoint union of open intervals in I one of which
contains t ; call this particular interval Ut. By the compactness of I, we may cover the latter
with finitely many intervals Utj for 1 ≤ j ≤ ν. Let now j(t) denote, for each t ∈ I, the smallest
index j ∈ {1, . . . , ν} such that t ∈ Utj . Then, the map

uγI(t) = γII(tj(t))

clearly satisfies (i), and since (γI(tj(t)), γII(tj(t))) ∈ O ⊂ K, it follows from (3.17) and the fact
that ‖γI(t)− γI(tj(t))‖ < εK/2 by definition of j(t) that uγI also satisfies (ii).

Next, recall that γII is a bounded measurable function I → Rm so, by Lusin’s theorem [90,
Theorem 2.23] applied component-wise, there is, for every integer k ≥ 1, a continuous function
hk : I → Rm that coincides with γII outside some set Tk ⊂ I of Lebesgue measure strictly less
than 1/k2, and in addition such that

sup
t∈I
‖hk(t)‖ ≤

√
m sup

t∈I
‖γII(t)‖. (3.19)

Put Ek = {t ∈ I; (γI(t), hk(t)) /∈
◦
K}. Since hk is continuous Ek is compact, and since γ(I) ⊂

O ⊂ ◦K it is clear that Ek ⊂ Tk hence Ek has Lebesgue measure strictly less than 1/k2. Conse-
quently, by the outer regularity of Lebesgue measure, Ek can be covered by finitely many open
real intervals Ik,1, . . . , Ik,Nk whose lengths add up to no more than 1/k2.

We now define the sequence of functions γII,k on I by setting, for k ≥ 1,

γII,k(t) = hk(t) if t ∈ I \⋃Nk
j=1 Ik,j ,

γII,k(t) = uγI(t) if t ∈ ⋃Nk
j=1 Ik,j .

(3.20)

By construction γII,k is piecewise continuous, and uniformly bounded independently of k in view
of (3.19) and the fact that uγI , being piecewise constant, is bounded. Moreover, as

∑
k≥1 1/k2 <

∞, the measure of the set ∪Nkj=1Ik,j is the general term, indexed by k, of a convergent series,
hence almost every t ∈ I belongs at most to finitely many of these sets so that γII,k converges
point-wise a.e. to γII on I as k →∞.

Redefine now Xk(t, x) = f(x, γII,k(t)), X(t, x) = f(x, γII(t)), and observe from what we just
said and the continuity of f that Xk(t, x) converges to X(t, x) when k →∞, locally uniformly
with respect to x ∈ ORn , as soon as t /∈ E where E ⊂ I is a set of zero measure which is
independent of k. Moreover, again from the boundedness of γII,k, γII and the local Lipschitz
character of f , we have that Xk(t, x), X(t, x) are locally Lipschitz with respect to x. Pick t0 ∈ I
and apply Lemma 3.7.3 with U = ORn , I = [t1, t2], and x0 = γI(t0). We get, say for k > K, that
the solution γI,k to the Cauchy problem

γ̇I,k(t) = Xk(t, γI,k(t)) , γI,k(t0) = γI(t0) ,

is defined over I, maps the latter into ORn , and that the sequence (γI,k)k>K converges uniformly
on [t1, t2] to γI.
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We claim that γk(t) = (γI,k(t), γII,k(t)) lies in
◦
K1 for all t ∈ I when k is so large that

sup
t∈I
‖γI,k(t)− γI(t)‖ < εK/2. (3.21)

Indeed, if t ∈ ∪jIk,j , this follows automatically from definition (3.20) by property (ii) of uγI ; if

t /∈ ∪jIk,j , then (γI(t), hk(t)) ∈
◦
K by the very definition of ∪jIk,j , and since γk(t) = (γI,k(t), hk(t))

in this case, we deduce from (3.17) and (3.21) that γk(t) ∈
◦
K1. This proves the claim.

Altogether, we have shown that γk : I → ◦K1 is a solution of (3.4) as soon as k is large enough,
with γII,k a piecewise continuous function on I by construction. By (3.15), we now deduce that,
for k large enough, γ′k = χ ◦ γk is a solution of (3.5) that stays in Ω′. Let us block-decompose
γ′k into

γ′I,k(t) = χI( γI,k(t) ) , γ′II,k(t) = χII( γI,k(t) , γII,k(t) ) ,

where we have taken into account the triangular structure of χ. That γ′k : I → Ω′ is a solution
of (3.5) means exactly that

γ′I,k(t) − γ′I,k(t0) =
∫ t

t0

g( γ′I,k(s) , γ
′
II,k(s) )ds, t ∈ I. (3.22)

Due to the continuity of χ, the functions γ′I,k and γ′II,k respectively converge uniformly and point-
wise almost everywhere to γ′I = χI◦γI and γ′II = χII◦γ on I. Since g is bounded on the compact set
χ(K1) that contains γk(I) for k large enough, we get on the one hand, by dominated convergence,
that the right-hand side of (3.22) converges, as k → ∞, to

∫ t
t0
g( γ′I(s) , γ

′
II(s) )ds, and on the

other hand that the left-hand side converges to γ′I(t)− γ′I(t0). Therefore (γ′I, γ
′
II) = χ◦γ : I → Ω′

is a solution of (3.5).
This way we have shown that χ maps any solution of (3.4) that stays in a relatively compact

open subset O of Ω to a solution of (3.5) that stays in Ω′. This achieves the proof, for the converse
is obtained symmetrically upon swapping f and g, C and C′, and replacing χ by χ−1.

The triangular structure of conjugating homeomorphisms asserted by Proposition 3.3.6 is to
the effect that any such homeomorphism χ : Ω→ Ω′ is a fiber preserving map from the bundle
Ω→ ΩRn to the bundle Ω′ → Ω′Rn . Since feedbacks are naturally associated to sections of these
bundles by Definition 3.3.3, χ gives rise to a natural transformation from feedbacks on Ω to
feedbacks on Ω′. This transformation will prove important enough to deserve a notation : to any
feedback α on Ω, we associate a feedback χ α on Ω′ by the formula

χ α(z) ∆= χII(χ−1
I (z), α(χ−1

I (z))) . (3.23)

We leave it to the reader to check that the properties of an action are satisfied, and in particular
that

χ−1 (χ α) = α . (3.24)

Naturally associated to a control system (3.4) and a feedback α is the following continuous
vector field fα on ΩRn :

fα(x) = f(x, α(x)) . (3.25)

If the homeomorphism χ in (3.13) conjugates system (3.4) to system (3.5), then it is clear that χI

maps the solutions of the ordinary differential equation ẋ = fα(x) to the solutions of the ordinary
differential equation ż = gχ α(z). Indeed if x(t) is a solution of the former, then (x(t), α(x(t))) is
a solution of the control system (3.4) in the sense of Definition 3.3.1 so the conjugacy assumption
implies that (χI(x(t)), χII(x(t), α(x(t)))) is a solution of (3.5), and setting z(t) = χI(x(t)) one
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clearly has χII(x(t), α(x(t)))) = χ α(z(t)) ; hence z(t) is a solution to ż = gχ α(z) because
(z(t), χ α(z(t))) is a solution of (3.5).

Now, if α1 and α2 are two feedbacks on Ω, and the two vector fields fα1 and fα2 are defined
on ΩRn by (3.25), we denote their difference by δfα1,α2 :

δfα1,α2 = fα1 − fα2 . (3.26)

Such vector fields are similar to the difference vector fields used in [60], except that we consider
arbitrary feedbacks instead of constant ones. To us, these vector fields will play an essential role.
The next proposition states that a homeomorphism that conjugates two control systems also
conjugates the integral curves of such difference vector fields.

Proposition 3.3.13 (preservation of difference vector fields). Suppose that f and g in (3.4)
and (3.5) are continuous and locally Lipschitz continuous with respect to their first argument.
Assume they are locally topologically conjugate at (0, 0) over the pair Ω,Ω′. Then, notations for
χI and χII being as in Proposition 3.3.6, we have for every pair of feedbacks α1, α2 on Ω that χI

conjugates any solution of
ẋ = δfα1,α2(x) (3.27)

that remains in ΩRn to a solution of

ż = δgχ α1,χ α2(z) (3.28)

that remains in Ω′Rn.

It is perhaps worth emphasizing that the solutions of (3.27) and (3.28) need not be unique
since α is merely assumed to be continuous.

Proof. Let η : [t1, t2]→ ΩRn be an integral curve of δfα1,α2 , and set

u1(t) = α1(η(t)) , u2(t) = α2(η(t)) . (3.29)

Let further f̂ : Rn+m → Rn be bounded, continuous and Lipschitz continuous with respect to
its first argument, and coincide with f on some compact neighborhood of

η([t1, t2])×
(
α1(η([t1, t2]))

⋃
α2(η([t1, t2]))

)
.

Such a f̂ is easily obtained upon multiplying f by a function of class C∞with compact support.
For ` ∈ N, let η` be the solution to the Cauchy problem

η`(t) = η(t1) +
∫ t

t1

G`(τ, η`(τ))dτ , (3.30)

with
G`(t, x) = 2 f̂(x, u1(t))

if t ∈ [t1 + j
` (t2 − t1), t1 + ( j` + 1

2`)(t2 − t1)),

G`(t, x) = −2 f̂(x, u2(t))
if t ∈ [t1 + ( j` + 1

2`)(t2 − t1), t1 + j+1
` (t2 − t1)),

G`(t2, x) = −2 f̂(x, u2(t2)), 0 ≤ j ≤ `− 1.

(3.31)

The definition of η` is valid because, since G`(t, x) is bounded and locally Lipschitz with respect
to the variable x, the solution to (3.30) uniquely exists.
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From Lemma 3.7.4 applied to the case where X1,`(t, x) = f̂(x, u1(t)) and X2,`(t, x) =
f̂(x, u2(t)) are in fact independent of `, any accumulation point of the sequence (η`), say η∞, is
a solution to

η̇∞(t) = f̂(η∞(t), u1(t)) − f̂(η∞(t), u2(t)) , η∞(t1) = η(t1) .

Since f̂ is locally Lipschitz continuous with respect to its first argument, the solution to this
Cauchy problem is unique and, since f and f̂ coincide at all points (η(t), u1(t)) and (η(t), u2(t)),
this entails η∞ = η. Thus (η`) converges uniformly to η on [t1, t2] and, for ` large enough, η`

remains a solution of (3.30) if f̂ is replaced by f in (3.31). Moreover, η`([t1, t2]) ⊂ ΩRn for ` large
since the same is true of η. Since χ conjugates the two systems, hence also by Remark 3.3.11
the systems where f and g are multiplied by 2 or −2, the map χI ◦ η` : [t1, t2] → Ω′Rn is, for `
large enough, a solution to

χI ◦ η`(t) = χI ◦ η(t1) +
∫ t

t1

G̃`(τ, χI ◦ η`(τ))dτ (3.32)

with
G̃`(t, z) = 2 g(z, χII(χ−1

I (z), u1(t)))
if t ∈ [t1 + j

` (t2 − t1), t1 + ( j` + 1
2`)(t2 − t1)),

G̃`(t, z) = −2 g(z, χII(χ−1
I (z), u2(t)))

if t ∈ [t1 + ( j` + 1
2`)(t2 − t1), t1 + j+1

` (t2 − t1)),

G̃`(t2, z) = −2 g(z, χII(χ−1
I (z), u2(t2))).

(3.33)

Since (χI ◦ η`) converges uniformly to χI ◦ η by the continuity of χ, replacing g by a bounded
and continuous ĝ : Rn+m → Rn that coincides with g on a compact neighborhood of

χI ◦ η([t1, t2])×
(
χII(η([t1, t2]), α1(η([t1, t2])))

⋃
χII(η([t1, t2]), α2(η([t1, t2])))

)
does not affect the validity of (3.32)-(3.33) for ` large enough. Lemma 3.7.4 now implies that all
accumulation points of the sequence (χI ◦ η`) in the uniform topology on [t1, t2] are solutions of

ż = g(z, χII(χ−1
I (z), u1(t))) − g(z, χII(χ−1

I (z), u2(t))).

Because χI ◦ η is such an accumulation point, it is by (3.29) a solution to

ż = g(z, χII(χ−1
I (z), α1(χ−1

I (z))) − g(z, χII(χ−1
I (z), α2(χ−1

I (z))) ,

which is nothing but (3.28).

3.3.5 Alternative notions of conjugacy and equivalence

3.3.5.1 Transformations in functional spaces

Following [25], one may view the control system (3.4) as a flow on the product space Rn×U ,
where U is a functional space of admissible controls whose dynamics is induced by the time-
shift. Transformations on Rn×U then naturally arise ; they involve the future and the past of the
control, unlike the mere homeomorphisms on finite dimensional spaces that we consider here.
The corresponding notion of equivalence is obviously rather weak. In Chapter 2, a “Grobman-
Hartman theorem” theorem is proved in this setting, i.e. generic control systems (3.4) are locally
conjugate to a linear system via this kind of transformation. With the much stronger notion of
equivalence that we use here, we shall see (section 3.5.4) that “almost” no system is conjugate
to a linear system.

Let us also mention [21], where control systems are maps (x(0), u(.)) 7→ x(.) that satisfy
certain axioms, without reference to differential equations, and where the notion of topological
equivalence involves transformations on the product Rn × U .
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3.3.5.2 x-conjugacy

Let us call x-solution of system (3.4) any map t 7→ γI(t) such that there exists a map γII

for which γ = (γI, γII) is a solution in the sense of Definition 3.3.1 ; the set of x-solutions is the
projection on the x factor of the set of solutions. Let then x-conjugacy be defined in the same
way as Definition 3.3.10 defines conjugacy, except that we replace solutions by x-solutions and
the homeomorphism χ that acts on state and control with a homeomorphism x 7→ z = h(x) on
the state only.

In the literature, both notions are used (without the prefix “x-”). For instance [108], devoted
to the topological classification of linear control systems (see section 3.4.2) relies on x-conjugacy.
We favor Definitions 3.3.5 and 3.3.10 of conjugacy and solutions because results have to be stated
locally with respect both to x and u for nonlinear control systems.

Conjugacy implies x-conjugacy : use Proposition 3.3.6, take h = χI and ignore χII. The
converse is not true in general, as the reader may check easily.

3.4 The case of linear control systems

3.4.1 Kronecker indices

A linear control systems is a special instance of (3.4), of the form

ẋ = Ax + Bu (3.34)

where A and B are constant n × n and n ×m matrices respectively. When dealing with linear
systems, it is natural to consider an equivalence relation similar to that of Definition 3.3.10, but
where χ is restricted to be a linear isomorphism :

Definition 3.4.1. Two linear systems

ẋ = Ax + Bu and ż = Ãz + B̃v

are linearly conjugate if and only if any of the following two equivalent properties is satisfied :
1. There is a nonempty open set Ω ⊂ Rn+m, and a linear isomorphism χ of Rn+m whose

restriction Ω→ χ(Ω) conjugates the two systems in the sense of Definition 3.3.10.
2. There exist matrices P ∈ Rn×n, Q ∈ Rm×m and K ∈ Rn×m, with P and Q invertible, such

that
Ã = P (A−BK)P−1 ,

B̃ = PBQ−1 .
(3.35)

Since, by Proposition 3.3.6, a linear conjugating homeomorphism is necessarily of the form
(x, u) 7→ (Px,Kx + Qu), the equivalence between properties (1) and (2) follows at once from
differentiating the solutions. Provided it exists, Ω plays absolutely no role in this context since
(3.35) implies that the two systems are in fact linearly conjugate on all of Rn+m.

Linear conjugacy actually defines an equivalence relation on linear control systems or equi-
valently on pairs (A,B), for which (3.35) can be read as “(A,B) is equivalent to (Ã, B̃)”. The
classification of linear systems under this equivalence relation is well-known [17], and goes as
follows. Each equivalence class contains a pair (Ac, Bc) of the form (block matrices) :

Ac =


Ac0 0 · · · 0

0 Ac1
. . .

...
...

. . . . . . 0
0 · · · 0 Acm

 , Bc =


0 · · · 0

bc1
. . .

...

0
. . . 0

... 0 bcm

 (3.36)
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where

Aci =



0 1 0 · · · 0
...

. . . . . . . . .
...

... 0
. . . 1

0 · · · · · · 0


,

(κi×κi)

bci =


0
...
...
0
1

 ,

(κi×1)

1 ≤ i ≤ m. (3.37)

The integers (κ1, . . . , κm) are called the controllability indices of the control system, also known
as the Kronecker indices of the matrix pencil (A,B), while Ac0 is a square matrix of dimension
n− (κ1 + · · ·+κm) that may be assumed in Jordan canonical form. Note that κ1 + · · ·+κm ≤ n,
and if κ1 + · · · + κm = n there is no Ac0 ; also, it may well happen that κi = 0, in which case
Aci and bci are empty and do not occur in (3.36) to the effect that there are less than m blocks
beyond Ac0. Normalizing so that

κ1 ≥ · · · ≥ κm ≥ 0,

and ordering the Jordan blocks arbitrarily, there is one and only one such normal form per
equivalence class. A complete set of invariants is then the list of Kronecker indices and the
spectral invariants of the matrix Ac0.

With the natural partition z = (Z0, Z1, . . . , Zm) corresponding to the block decomposition
(3.36), the control system associated to the pair (Ac, Bc) reads

Ż0 = A0Z0 , Ż1 = A1Z1 + u1b
c
1 , · · · , Żm = AmZm + umb

c
m ,

where Z0 is missing if κ1 + · · ·+ κm = n and Zi is missing if κi = 0. Because it is not influenced
at all by the controls, Z0 is sometimes called the non-controllable part of the state. In this paper,
we are only interested in controllable linear systems, namely :

Definition 3.4.2. A linear control system (3.34) is said to be controllable if, and only if, the
following two equivalent properties are satisfied :

1. There is no bloc Ac0 in the associated normal form (3.36).

2. Kalman’s criterion for controllability :

Rank(B,AB, . . . , An−1B) = n.

To see the equivalence of the two properties, observe that the n − κ1 − · · · − κm first rows
of the matrix P that puts (A,B) into canonical form (i.e. z = Px) form a basis of the smallest
dual subspace that annihilates the columns of B and at the same time is invariant under right
multiplication by A, i.e. they are a basis of the left kernel of (B,AB, . . . , An−1B). For controllable
linear systems, the only invariant under linear conjugacy is thus the ordered list of Kronecker
indices. These can be computed from (B,AB, . . . , An−1B) as follows : if we put

rj = Rank(B,AB, . . . , Aj−1B) , j ≥ 1 , r0 = 0, r−1 = −m ,
sj = rj − rj−1 , j ≥ 1 , s0 = m ,

(3.38)

then sj does not increase with j and a moment’s thinking will convince the reader that the
number of Kronecker indices that are equal to i is si − si+1, or equivalently that sk is the
number of κj ’s that are no smaller than k.

To us, it will be more convenient to use as normal form the following permutation of the
previous one. Let ρ be the smallest integer such that sρ = 0, so that

0 = sρ < sρ−1 ≤ sρ−2 ≤ · · · ≤ s1 ≤ s0 = m ,
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with
∑
j≥1

sj = n. From these we define, for 0 ≤ i ≤ ρ :

σi =
∑
j≥i

sj = n− ri−1 , (3.39)

so that in particular σρ = 0, σρ−1 = sρ−1 > 0, σ1 = n and σ0 = n+m. Note that, from (3.38),
σi = n− ri−1 for i ≥ 1. We shall write our controllable canonical form as ż = Acz +Bcv with

Ac=



0

0

0

0

0

J
sρ−1
sρ−2

J
sρ−2
sρ−3

J
sρ−3
sρ−4

Js2s1

p p p p p p
p p p p p p



, Bc=



0

Js1s0



(3.40)

where for any integers r and s with s ≤ r, Jsr is the s× r matrix

Jsr =

 Is 0

 (3.41)

where Is is the s× s identity matrix.

3.4.2 Topological classification of linear control systems

In [108], which is devoted to the topological classification of linear control systems and uses
the notion of x-conjugacy rather than conjugacy ( cf. Section 3.3.5), the following result is
proved :

Theorem 3.4.3 (Willems [108]). If two linear control systems ẋ = Ax+Bu and ż = Ãz + B̃v
are topologically x-conjugate, then they have the same list of Kronecker indices, and the non-
controllable blocks Ac0 and Ãc0 in their respective canonical forms (3.36) are such that the two
linear differential equations Ẋ0 = Ac0X0 and Ż0 = Ãc0Z0 are topologically equivalent.

As pointed out in Section 3.3.5, topological conjugacy implies topological x-conjugacy but not
conversely. However, for linear control systems having the same number m of inputs, Theorem
3.4.3 implies that these notions are equivalent. Indeed, if two systems are respectively brought
into their canonical form (3.36) by a linear change of variable on Rn+m, and if in addition
they are x-conjugate, then their non-controllable parts are topologically equivalent while the
remaining blocks are identical by equality of the Kronecker indices. Hence, both in the above
theorem and in the corollary below, one may use indifferently “x-conjugate” or “conjugate”
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Corollary 3.4.4. If two linear systems ẋ = Ax + Bu and ż = Ãz + B̃v are topologically
conjugate and one of them is controllable, then the other one is controllable too and they are
linearly conjugate.

Proof. Controllability is preserved, since Kronecker indices are by the theorem. Linear conjugacy
follows, as we saw that the list of Kronecker indices is a complete invariant for controllable
systems under linear conjugacy.

In some sense, the results of section 3.5 can be viewed as a generalization of Corollary 3.4.4
to a local setting where only one of the two systems is linear.

3.5 Local linearization for control systems

In this section, we consistently assume that the map f defining system (3.4) is either smooth
or real-analytic.

Definition 3.5.1. Let k ∈ {∞, ω}. The system (3.4) is said to be locally topologically (resp. Ck,
resp. quasi-Ck) linearizable at (x̄, ū) ∈ Rn+m if it is locally topologically (resp. Ck, resp. quasi-
Ck) conjugate, in the sense of Definition 3.3.10, to a linear controllable system ż = Az + Bv
(cf. Definition 3.4.2).

This definition of smooth linearizability coincides with linearizability by smooth static feed-
back as described in the textbooks [52, 79]. In subsection 3.5.2, we recall classical necessary and
sufficient geometric conditions for a system to be smoothly (resp. analytically) linearizable, and
we complement them with a characterization of quasi-smooth (resp. quasi-analytic) linearizabi-
lity.

3.5.1 Main result

If a smooth control system is locally topologically linearizable, then the conjugating ho-
meomorphism has a lot more regularity than required a priori. This is in contrast with the
Grobman-Hartman theorem for ODE’s and constitutes the central result of the paper :

Theorem 3.5.2. Let k ∈ {∞, ω} and assume that f is of class Ck on an open set Ω ⊂ Rn+m.
Then system (3.4) is locally topologically linearizable at (x̄, ū) ∈ Ω if, and only if, it is locally
quasi-Ck linearizable at (x̄, ū).

Proof. See at the end of the paper, page 81.

Observe from (3.14), that a quasi-Ck diffeomorphism χ is a linearizing homeomorphism if
and only if it satisfies

∂χI

∂x
(x) f(x, u) = AχI(x) + B χII(x, u) . (3.42)

Hence quasi-smooth linearizability is much easier to handle than topological linearizability, that
relies on conjugating solutions rather than equations.

System (3.1) of the introduction is topologically, quasi-Cωand quasi-C∞linearizable at (0, 0)
but fails to be even C1 linearizable ; hence quasi-Ck cannot be replaced with Ck in Theorem 3.5.2.
To study the gap between Ck and quasi-Ck linearizability, note that (3.42) imposes additional
regularity on a linearizing quasi-Ck diffeomorphism :
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Proposition 3.5.3. Let k ∈ {∞, ω} and f in (3.4) be Ck. If χ : Ω → Ω′ is a quasi-Ck

diffeomorphism that conjugates (3.4) to the linear system ż = Az +Bv, then :
1. the map BχII : Ω→ Rm is of class Ck,
2. for any (x, u) ∈ Ω in the neighborhood of which the rank of ∂f/∂u is constant, one has

Rank
∂f

∂u
(x, u) = RankB.

3. for any open subset O of Ω, one has sup
(x′,u′)∈O

Rank
∂f

∂u
(x′, u′) = RankB.

Proof. Point (1) is direct consequence of (3.42) and the smoothness of χI and f . To establish
(2) and (3), differentiate (3.42) with respect to u to obtain

∂χI

∂x
(x)

∂f

∂u
(x, u) =

∂(BχII)
∂u

(x, u) . (3.43)

Let V ⊂ Ω be open and such that Rank ∂f/∂u(x, u) = ρ some integer ρ and all (x, u) ∈ V. Define
φ : V → Rn+m by φ(x, u) = (χI(x), BχII(x, u)). On the one hand, since χI is a diffeomorphism,
(3.43) implies that the rank of the Jacobian of φ is n+ ρ, hence, by the constant rank theorem,
φ(V) is a (n + ρ) dimensional immersed sub-manifold of Rn+m ; on the other hand, since χ is
open, φ(V) is an open subset of the (n + RankB)-dimensional linear range of In × B ; hence
ρ = RankB. This proves point 2, and at the same time point 3 because any O ⊂ Ω contains
an open subset on which the rank of ∂f/∂u is constant while (3.43) clearly implies that, for all
(x, u) ∈ Ω, the rank of ∂f/∂u(x, u) is no larger than RankB.

Based on Proposition 3.5.3, let us divide the points of Ω into three classes.
– A point (x̄, ū) ∈ Ω is called regular if it has a neighborhood on which ∂f/∂u has constant

rank. It is easy to see that regular points form an open dense subset of Ω.
– If (x̄, ū) is not regular, it is termed weakly singular if each neighborhood O ⊂ Ω of this

point satisfies

sup
(x,u)∈O

Rank
∂f

∂u
(x, u) = m. (3.44)

– A point (x̄, ū) ∈ Ω which is neither regular nor weakly singular is said to be strongly
singular. This means it has a neighborhood O ⊂ Ω, such that

sup
(x,u)∈O

Rank
∂f

∂u
(x, u) = m′ < m , Rank

∂f

∂u
(x̄, ū) < m′ . (3.45)

The distinction between topological and smooth linearizability may now be approached via the
following theorem that complements Theorem 3.5.2.

Theorem 3.5.4. Let k ∈ {∞, ω} and f be of class Ck on an open set Ω ⊂ Rn+m.
– System (3.4) is locally Ck linearizable at (x̄, ū) ∈ Ω if, and only if it is locally topologically

linearizable at (x̄, ū) and the latter is a regular point.
– If (3.4) is locally topologically linearizable at (x̄, ū) and the latter is a weakly singular

point, then a linearizing homeomorphism around (x̄, ū) may be chosen to be a map of class
Ck, although not necessarily a Ckdiffeomorphism (its inverse may fail to be Ck).

Proof. The first assertion is a consequence of Theorem 3.5.2 together with Theorems 3.5.7 and
3.5.8 to come, observing that condition (2′) in the latter will automatically hold at a regular point
by the constant rank theorem. Next, assume that χ : Ω→ Ω′ is a quasi-Ck diffeomorphism that
conjugates the Ck system (3.4) to the linear controllable system ż = Az + Bv at some weakly
singular point (x̄, ū). By (3) of Proposition 3.5.3, the rank of B is m hence it is left invertible ;
by (1) of the same proposition, χII is indeed Ck.
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Whether Theorem 3.5.4 remains true if “weakly singular” gets replaced by “strongly singular”
is unknown to the authors. This turns out to be equivalent to the following question in differential
topology which is of interest in its own right and seems to have no answer so far.

Open question 3.5.5. Let O be a neighborhood of the origin in Rp+q and F : O → Rp a smooth
(resp. real-analytic) map. Suppose G : O → Rq is a continuous map such that F × G : O →
Rp × Rq is a local homeomorphism at 0.
Does there exist another neighborhood O′ ⊂ O of the origin and a smooth (resp. real-analytic)
map H : O′ → Rq such that F ×H : O′ → Rp × Rq is still a local homeomorphism at 0 ?

If the answer to the open question was yes, then Definitions 3.5.1 and 3.3.9 of quasi-smooth
(resp. quasi-analytic) linearizability might equivalently require χ to be smooth (resp. analytic)
because, assuming the linear system is in normal form (3.40)-(3.41), one could set F = πn+s1 ◦χ
and smoothly (resp. analytically) redefine the last m− s1 components of χ.

If the answer to the open question was no, then Definition 3.5.1 would really be more general
than the one obtained by restricting χ to be smooth (resp. analytic). Indeed, if F provides a
counterexample to the open question, say, in the C∞ case, we may consider on Rp × O the
control system

ẋ = F (u) , x ∈ Rp, u ∈ Rp+q (3.46)

which is locally quasi-smoothly linearizable at the origin because the local homeomorphism

(x, u) 7→ (z, v) = (x, F (u), G(u))

conjugates (3.46) to
ż = B v, with B = ( Ip |0). (3.47)

However, no smooth homeomorphism

χ : (x, u) 7→ (z, v) = (χI(x), χII(x, u))

exists that quasi-smoothly linearizes (3.46) at 0 : if this was the case, by Corollary 3.4.4 we may
assume up to a linear change of variables that χ conjugates (3.46) to (3.47). Then conjugacy
would imply

∂χI

∂x
(x)F (u) = B χII(x, u)

whence in particular

F (u) =
(
∂χI

∂x
(0)
)−1

B χII(0, u),

and the last q components of χII(0, u) would yield a smooth H such that F × H is a local
homeomorphism at 0 in Rp+q, contrary to the assumption.

3.5.2 Geometric characterization of quasi smooth linearization

Let X and U be two open subsets of Rn and Rm respectively, and assume that f is defined
on X × U . For each u ∈ Rm, let fu be the vector field on X defined by :

fu(x) = f(x, u). (3.48)

Also, for each (x, u) ∈ X ×U , we define below a subspace D(x, u), that coincides with the range
of the linear mapping ∂f/∂u (x, u) when its dimension is locally constant. First, we consider the
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subset Lx,u ⊂ Rn (not a vector subspace) given by :

y ∈ Lx,u ⇔ ∃(wn) ∈ UN, lim
n→∞

wn = u (3.49)

and lim
n→∞

f(x,wn)− f(x, u)
‖f(x,wn)− f(x, u)‖ = y;

subsequently we put

D(x, u) = SpanR Lx,u . (3.50)

In words, D(x, u) is the vector space spanned by all limit directions of straight lines through
f(x, u) and f(x, u′) as u′ approaches u in Rm ; it is of common use in stratified geometry to
generalize the notion of tangent space. Note that the set Lx,u depends on the norm used in
(3.49), but the subspace D(x, u) does not.

Proposition 3.5.6. If f is of class C∞ and if we denote by RanL the range of a linear map
L, we have that

D(x, u) ⊃ Ran
∂f

∂u
(x, u) (3.51)

and equality holds at every (x, u) where the rank of ∂f/∂u (x, u) is locally constant with respect
to u.

Proof. The inclusion (3.51) holds because any nonzero element of Ran ∂f/∂u(x, u) can be written
∂f/∂u(x, u).h for some h in Rm, and one has

∂f/∂u (x, u).h
‖∂f/∂u (x, u).h‖ = lim

t→0+

f(x, u+ th)− f(x, u)
‖f(x, u+ th)− f(x, u)‖ .

Now fix (x, u) and assume that the rank of ∂f/∂u is locally constant around (x, u), equal to
r ≤ m and use the constant rank-theorem. Up to a permutation of coordinates,

(h1, . . . , hm) λ7→ (f1(x, u+ h)− f1(x, u), . . . , fr(x, u+ h)− fr(x, u), hr+1, . . . , hm)

is a local diffeomorphism around zero in Rm and, setting ρ = λ−1 ◦ z ◦ λ with z given by
z(w1, . . . , wm) = (w1, . . . , wr, 0, . . . , 0), there is a constant c such that

‖ρ(h)‖ ≤ c ‖f(x, u+ h)− f(x, u)‖ and f(x, u+ ρ(h)) = f(x, u+ h) (3.52)

for all h. Take y ∈ Lx,u ; by definition, there is a sequence (hn) converging to zero and satisfying
(3.49) with wn = u+ hn ; from (3.52), we may re-write it as

y = lim
n→∞

f(x, u+ ρ(hn))− f(x, u)
‖ρ(hn)‖

‖ρ(hn)‖
‖f(x, u+ hn)− f(x, u)‖ (3.53)

where both ratios are bounded ; extracting a sequence such that both converge, the limit of the
first ratio is, by definition of the derivative, ∂f

∂u(x, u).h with h a limit point of ρ(hn)/‖ρ(hn)‖ ;
hence y ∈ Ran ∂f/∂u (x, u). We have proved that Lx,u ⊂ Ran ∂f/∂u (x, u). From (3.50), this
implies the reverse inclusion of (3.51) because the left-hand side is a linear subspace.

We can now characterize smooth (resp. analytic) and quasi-smooth (resp. quasi-analytic)
linearizability in parallel. The proofs are given pages 78 through 81.
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Theorem 3.5.7 (smooth or analytic linearizability). Let k ∈ {∞, ω} and f be of class Ck on
an open set Ω ⊂ Rn+m. The control system (3.4) is locally Ck linearizable at (x̄, ū) ∈ Ω if, and
only if there are open neighborhoods X and U of x̄ and ū in Rn and Rm, with X ×U ⊂ Ω, such
that the following conditions are satisfied.

1. D(x, u) does not depend on u for (x, u) ∈ X × U .

2. The rank of
∂f

∂u
(x, u) is constant in X × U .

3. Defining on X the distribution ∆0 by ∆0(x) = D(x, u) — this is possible if point (1) holds
true — and inductively the flag of distributions (∆k) by :

∆k+1 = ∆k + [ fū , ∆k ] (3.54)

where [ , ] denotes the Lie bracket, then each ∆k for 0 ≤ k ≤ n− 1 is integrable (i.e. has
constant dimension over R and is closed under Lie bracket) and the rank of ∆n−1 is n.

Theorem 3.5.8 (quasi-smooth or quasi-analytic linearizability). Let k ∈ {∞, ω} and f be of
class Ck on an open set Ω ⊂ Rn+m. The control system (3.4) is locally quasi-Ck linearizable
at (x̄, ū) ∈ Ω if, and only if there are open neighborhoods X and U of x̄ and ū in Rn and Rm,
with X × U ⊂ Ω, such that conditions (1) and (3) of Theorem 3.5.7 are met and, instead of
condition (2), it holds that

2′. Denoting by r1 ≤ m the constant rank of ∆0, the mapping

F : X × U → X × Rn

(x, u) 7→ (x , f(x, u) )
(3.55)

restricts to a C0 fibration4 W → F (W) with fiber Rm−r1 on some neighborhoodW of (x̄, ū)
in X × U .

Theorem 3.5.7 is of course equivalent to the results in [57, 50, 103], but the conditions are
stated here in a slightly different form to parallel Theorem 3.5.8.

Corollary 3.5.9. Assume that f is real analytic on some open set Ω ⊂ Rn+m. If the control
system (3.4) is locally C∞(resp. quasi-C∞) linearizable at (x̄, ū) ∈ Ω, then it is also Cω(resp.
quasi-Cω) linearizable there.

Proof. analyticity does not appear in the conditions of the theorems, except for the regularity
of f itself.

3.5.3 Linearization versus equivalence to the linear approximation

For a control system, smooth linearizability at an equilibrium implies conjugacy to its linear
approximation :

Proposition 3.5.10. Let (x̄, ū) be an equilibrium point of (3.4), i.e. f(x̄, ū) = 0, and let
A = ∂f/∂x (x̄, ū), B = ∂f/∂u (x̄, ū) so that :

f(x, u) = A (x− x̄) + B (u− ū) + ε(x− x̄, u− ū) , (3.56)

where ε is little o(‖x− x̄‖+ ‖u− ū‖).
4 A C0 fibration with fiber F over B is a continuous map g : E → B for which every ξ ∈ B has a neighborhood

O in B such that g−1(O) ⊂ E is homeomorphic to O×F , the so-called trivializing homeomorphism ψ : g−1(O)→
O×F being such that π ◦ ψ = g where π : O ×F → O is the natural projection onto the first factor.
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If system (3.4) is locally smoothly linearizable at (x̄, ū), then :
1. its linear approximation (A,B) is controllable (cf. Definition 3.4.2),
2. the system is smoothly conjugate to (A,B) at (x̄, ū).

Proof. Let χ be a local diffeomorphism conjugating system (3.4) to ż = Az +Bv at (x̄, ū), and
observe from (3.14) in Remark 3.3.8 that smooth linearizability translates into (3.42). If we write
f as in (3.56), and if we set P = ∂χI

∂x (x̄), K = ∂χII
∂x (x̄, ū), Q = ∂χII

∂u (x̄, ū), we get by differentiating
(3.42) with respect to x and u at (x̄, ū), using the relation f(x̄, ū) = 0, that

P A = AP + BK , P B = BQ .

Since P and Q are square invertible matrices by the triangular structure of χ displayed in (3.13),
this implies that the linear systems (A,B) and (A,B) are linearly conjugate, see (3.35). Since
(A,B) is controllable by definition so is (A,B), thereby achieving the proof.

Proposition 3.5.10 has no analog if the control system is only topologically linearizable (hence
quasi-smoothly linearizable according to Theorem 3.5.2). For example, the system (3.1) in the
introduction is quasi-Cωlinearizable at (0, 0), but its linear approximation ẋ = 0 is not control-
lable and it is not topologically equivalent to ẋ = 0. Apart from such degenerate cases, there
also exist systems that are quasi-analytically linearizable at some point with controllable linear
approximation there, and still they are not conjugate to this linear approximation. An example
when m = n = 2 is given by :

ẋ1 = u1 , ẋ2 = x1 + u 3
2 ,

This system is quasi-analytically conjugate at (0, 0) to

ż1 = v1 , ż2 = v2 , (3.57)

via z = x, v1 = u1, v2 = u 3
2 + x1. However, its linear approximation at the origin is ẋ1 = u1,

ẋ2 = x1, which is controllable yet not conjugate to (3.57) (cf. Theorem 3.4.3).

3.5.4 Non-genericity of linearizability

Except when m ≥ n or (n,m) = (2, 1), the conditions of Theorem 3.5.7 require a certain
number of equalities (involving f and its partial derivatives) to hold everywhere. For example,
the integrability of a distribution entails that all Lie brackets be linearly dependent on the
original vector fields, i.e. certain determinants must be identically zero. This makes smooth
(resp. analytic) linearizability of a smooth (resp. analytic) control system highly non-generic in
any reasonable sense, because when written in proper jet spaces it is contained in a set of infinite
co-dimension. Moreover, small perturbations of a system that does not satisfy these condition
will not satisfy them either, while most perturbations of a system which satisfies them will fail
to do so. Compare for instance [102] where it is shown that the equivalence class of any system
affine in the control has infinite co-dimension in some Whitney topology.

From Theorem 3.5.4, quasi-smooth or quasi-analytic linearizability, hence also topological li-
nearizability by Theorem 3.5.2, require the same equalities to hold on an open dense set, although
this time some singularities are allowed. This is no more “generic” than smooth linearizability,
as opposed to ODE’s for which the Grobman-Hartman theorem allows one to linearize around
an equilibrium as soon as it is hyperbolic.
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3.6 Proofs

Proof of Theorems 3.5.7 and 3.5.8

We begin with a lemma whose cumbersome index arrangement will be rewarded later when
constructing the Kronecker indices of the linearized system.

Lemma 3.6.1. Let k ∈ {∞, ω}. Let ∆0 and fū be respectively a distribution and a vector
field, both of class Ck on a connected open neighborhood of x ∈ Rn. Let further ∆i, i ≥ 0, be
the distributions defined according to (3.54), and set for convenience ∆−1 = {0}. Assume they
satisfy point (3) of Theorem 3.5.7 or 3.5.8. Put

ri = Rank∆i−1 , i > 0, r0 = 0 , r−1 = −m, (3.58)

so that ri = n for some i ≤ n − 1 ; let ρ ∈ {3, . . . , n + 1} be the smallest integer such that
rρ−1 = n. Define also

si = ri − ri−1 , σi =
ρ∑
j=i

sj = n− ri−1 , 0 ≤ i ≤ ρ (3.59)

(note that sρ = σρ = 0).
Then, there exists coordinates χ1, . . . , χn of class Ck on a neighborhood X of x such that
– χ1, . . . , χσi are independent first integrals of ∆i−2 for i ∈ {1, . . . , ρ− 1},
– χσi+j = fūχσi+1+j for all integers i, j, 2 ≤ i ≤ ρ− 1, 1 ≤ j ≤ si

(fūχσi+1+j is the Lie derivative of the function χσi+1+j along the vector field fū).

Proof. Note that when i = 1, the first point above means that χ1, . . . , χn are indeed local
coordinates. Now, the Frobenius theorem provides us with n− r independent Ck first integrals
for a Ck integrable distribution of rank r. This accounts for the regularity of the coordinates if
we construct them as follows.

First pick n− rρ−2 = σρ−1 independent first integrals of ∆ρ−3 and call them χ1, . . . , χσρ−1 ;
define further χ1+σρ−1 , . . . , χ2σρ−1 by χσρ−1+j = fūχj for 1 ≤ j ≤ σρ−1 = sρ−1. Clearly,
χ1, . . . , χσρ−1+sρ−1 satisfy the conditions for i = ρ− 1. Then proceed inductively : assume that,
for some i0 ∈ {2, . . . , ρ−1}, the functions χ1, . . . , χσi0+si0

have been constructed and satisfy the
conditions for i ≥ i0. We claim that the differentials dχ` are linearly independent at each point
of X . Indeed, assume that there is x̄ ∈ X and real coefficients µj and λk such that

σi0∑
j=1

µjdχj(x̄) +
σi0∑

k=1+σi0+1

λkd (fūχk) (x̄) = 0. (3.60)

Put ω1 = Σµjdχj and ω2 = Σλkdχk. Since d commutes with the Lie derivative, we may rewrite
(3.60) as ω1(x̄) + fūω2(x̄) = 0. In particular, for any Ck-vector field X in ∆i0−2, we get as
ω1(X) ≡ 0 that fūω2(X)(x̄) = 0. Now, by virtue of the formula

fū (ω2(X)) = fūω2(X) + ω2([fū, X]), (3.61)

we obtain since ω2(X) ≡ 0 that ω2([fū, X])(x̄) = 0, that is, ω2 annihilates ∆i0−1 at x̄. But
dχ1(x̄), . . . ,dχσi0+1(x̄) are a basis of the orthogonal space to ∆i0−1(x̄) by the induction hy-
pothesis, whereas ω2(x̄) is a linear combination of the dχk(x̄) for σi0+1 < k ≤ σi0 . There-
fore, since we know by the induction hypothesis that the dχ` are point-wise independent for
1 ≤ ` ≤ σi0 , we get that the λk are zero and then the µj are also zero by (3.60). This proves
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the claim. Next, recall that χ1, . . . , χσi0 are first integrals of ∆i0−2, thus a fortiori of ∆i0−3.
For X a Ck-vector field in the latter we deduce from (3.61), where ω2 is replaced by dχ`
with 1 + σi0+1 ≤ ` ≤ σi0 , that χ1+σi0

, . . . , χσi0+si0
are also first integrals of ∆i0−3. In case

σi0 + si0 < σi0−1, pick χσi0+si0+1, . . . , χσi0−1 so that χ` for 1 ≤ ` ≤ σi0−1 is a complete set of
independent integrals of ∆i0−3. If i0 = 2 we are done, otherwise define χσi0−1+j = fūχσi0+j for
1 ≤ j ≤ si0−1 in order to complete the induction step.

Proof of Theorems 3.5.7 and 3.5.8. The two proofs run parallel to each other.
We first show necessity, assuming that k =∞ for analyticity does not appear in the conclu-

sions. Assume local (quasi) smooth linearizability, cf. Definitions 3.5.1 and 3.3.9. Without loss
of generality, we assume that Ω = X ×U where X and U are open neighborhoods of x̄ and ū in
Rn and Rm respectively. Let χ : X ×U → Ω′ ⊂ Rn+m be as in (3.13) ; recall that χI is a smooth
diffeomorphism X → χI(X ). We may also assume, after composing χ with a linear invertible
map, that the pair (A,B) is in canonical form (3.40)-(3.41), but we still write A,B rather than
Ac, Bc. Denote by B0, . . . , Bm the columns of B and define the vector fields b0, . . . , bm on Rn by

bi(z) = Bi , 1 ≤ i ≤ m, b0(z) = Az +Bū (3.62)

and the distributions Λi by

Λ0(z) = SpanR{b1(z), . . . , bm(z)} = RanB Λi+1 = Λi + [b0,Λi] , 1 ≤ i ≤ m. (3.63)

From (3.42), we have

∂χI

∂x
(x) f(x, u) = b0(χI(x)) + B (χII(x, u)− χII(x, ū)) . (3.64)

Since χ is a triangular homeomorphism, χII(x,w) − χII(x, u) covers an open neighborhood of 0
in Rm when w ranges around u in Rm. Thus, in view of (3.64), Lx,u defined by (3.49) contains

an open set in
(
∂χI
∂x (x)

)−1
RanB, and by double inclusion

D(x, u) =
(
∂χI

∂x
(x)
)−1

RanB.

This proves point 1, and also proves that the distribution ∆0 in point 3 is the pullback of Λ0

by the diffeomorphism χI, i.e. (χI)∗∆0 = Λ0. Since (3.64) also implies (χI)∗ fū = b0, we have
(χI)∗∆i = Λi for all i. This gives point 3 because it is obviously true with Λi instead of ∆i, and
integrability and ranks are preserved by conjugation with the smooth diffeomorphism χI. In the
case of smooth linearizability, point 2 is easily obtained by differentiating (3.64) with respect to
u and using invertibility of ∂χII/∂u(x, u).

To conclude the proof of necessity, let us prove point 2′ in the case of quasi-smooth lineari-
zability. Let

M = { (x, y) ∈ X × Rn;
∂χI

∂x
(x) y − AχI(x) ∈ RanB } .

This is a smooth embedded sub-manifold of X×Rn of dimension n+r1, where r1 = RankB ≤ m.
If we define F as in (3.55), it is clear from (3.42) that

F (X × U) ⊂ M .

Now, take some (m− r1)×m matrix C whose rows complement r1 independent rows of B into
a basis of Rm. Pick matrices E1 and E2 of appropriate sizes such that

E1B + E2C = Im .
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By (3.42) we get

E1

[
∂χI

∂x
(x) f(x, u) − AχI(x)

]
+ E2CχII(x, u) = χII(x, u) . (3.65)

Define
ψ : X × U →M× Rm−r1

by the formula :
ψ(x, u) = (x, f(x, u), CχII(x, u)).

From (3.65), this mapping has an inverse given by

ψ−1 : ψ(X × U) → X × U
(x, y, z) 7→ χ−1

(
χI(x) , E1

[
∂χI

∂x
(x) y − AχI(x)

]
+ E2 z

)
so that ψ defines a homeomorphism from X × U onto its image which is open in M× Rm−r1

by invariance of the domain. Let O be a neighborhood of (x̄, f(x̄, ū)) in M and S an open ball
centered at CχII(x̄, ū) in Rm−r1 such that O × S ⊂ ψ(X × U), and take W = ψ−1(O × S).
Then F : W → F (W) = O is a C0 fibration with fiber S and trivializing homeomorphism
ψ :W → O× S. Since S is homeomorphic to Rm−r1 , condition 2′ follows.

We turn to sufficiency. Points 1, 3, and either 2 or 2′ imply, for all x ∈ X ,

∆0(x) = SpanR{f(x,w)− f(x, u), (u,w) ∈ U × U} . (3.66)

Indeed the right-hand side always containsD(x, u) because it contains all the differences f(x,wn)−
f(x, u) in (3.49), and point 1 implies the reverse inclusion because f(x,w)−f(x, u) can be com-
puted as the integral on the segment [u,w] ⊂ U of a function that, thanks to Proposition 3.5.6,
belongs constantly to ∆0(x).

From (3.66), the distribution ∆0 is of class Ck. Considering point 3, we may apply Lemma 3.6.1.
We thus obtain some, with ri, si and σi the integers defined by (3.58) and (3.59), some Ck co-
ordinates χ1, . . . , χn on a neighborhood of x̄ possibly smaller than X (but that we continue
to denote by X ), i.e. a diffeomorphism χI : X → χI(X ), with χI = (χ1, . . . , χn), meeting the
conclusions of Lemma 3.6.1. In particular, χ1, . . . , χn−r1 are first integrals of the distribution
∆0, and from (3.66), this implies that ∂χi/∂x(x) f(x, u) does not depend on u, and is there fore
equal to its value for u = ū :

∂χi
∂x

(x)f(x, u) = fūχi (x) , 1 ≤ i ≤ n− r1 . (3.67)

For larger i, the left-hand side depends on x and u : define λ : X × U → Rm1 by

λ(x, u) = (
∂χn−r1+1

∂x
(x)f(x, u) , . . . ,

∂χn
∂x

(x)f(x, u) ) . (3.68)

Then, defining coordinates z1, . . . , zn by z = χI(x). The equations of system (3.4) are as follows
(the first line gives the derivatives of the n− r1 first coordinates and the second line the last r1

ones) :
żσi+1+j = zσi+j , 2 ≤ i ≤ ρ− 1 , 1 ≤ j ≤ si ,

ż` = λn−`(χ−1
I (z) , u ) , n−m1 + 1 ≤ ` ≤ n . (3.69)

If point 2 is satisfied, the rank of the map (x, u) 7→ (χI(x), ∂χI

∂(x)f(x, u)) is constant and
thus, according to (3.66), it is equal to n + r1, r1 being the rank of ∆0. From (3.67), the map
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(x, u) 7→ (χI(x), λ(x, u)) has the same constant rank n+r1. Hence there exists φ : X×U → Rm−r1

such that
(x, u) 7→ (χI(x) , λ(x, u) , φ(x, u) ) (3.70)

is a diffeomorphism of class Ck. Obviously, defining χII by χII(x, u) = (λ(x, u), φ(x, u)) yields a
Ck diffeomorphism χ that conjugates (3.4) to a linear controllable system ż = Az + Bu. This
proves sufficiency in Theorem 3.5.7.

If point 2′ is satisfied instead, let ψ : W → F (W) × Rn−r1 be the “trivializing” homeomor-
phism. Recall that, with π : F (W)×Rn−r1 → F (W) the natural projection, one has π ◦ψ = F ;
call φ :W → Rn−r1 the map such that ψ = F ×φ Composing F with (x, ξ) 7→ (χI(x), ∂χI

∂(x)ξ), one
gets that (x, u) 7→ χ(x, u) = (χI(x), λ(x, u), φ(x, u)) is a homeomorphism. It clearly conjugates
(3.4) to a linear controllable system ż = Az+Bu. This proves sufficiency in Theorem 3.5.8.

Proof of Theorem 3.5.2

This theorem for k = ω is consequence of this theorem for k = ∞ and of Corollary 3.5.9.
Hence we only have to prove it for k =∞, i.e. we assume that f is infinitely differentiable and
we prove that topological linearizability implies quasi-C∞linearizability.

Without loss of generality, we suppose that (x̄, ū) = (0, 0). Assume there exists a homeomor-
phism χ from a neighborhood of the origin in Rn+m to an open subset of Rn+m that conjugates
system (3.4) to the linear controllable system

ż = Az + Bv (3.71)

with z ∈ Rn and v ∈ Rm. Composing χ with a linear invertible map allows us to suppose that
the pair (A,B) is in canonical form (3.40)-(3.41), i.e. that (3.71) can be read

żσi+k = zσi−1+k , 2 ≤ i ≤ ρ, 1 ≤ k ≤ si−1, (3.72)

where the integers si and σi were defined in (3.38) and (3.39) and where, for notational com-
pactness, we have set :

zn+k
∆= vk ; (3.73)

recall here that s0 = m, and notice that s1 < m may well occur as it simply means that
RankB < m, in which case some of the controls do not appear in the canonical form. With the
aggregate notation :

Zj
∆=

 zσj+1+1
...
zσj

 , 1 ≤ j ≤ ρ− 1 , Z0
∆=

 v1
...
vm

 , (3.74)

and the matrices Jsr defined in (3.41), system (3.72) can be rewritten as

Żρ−1 = J
sρ−1
sρ−2Zρ−2

Żρ−2 = J
sρ−2
sρ−3Zρ−3

...
Ż2 = Js2s1Z1

Ż1 = Js1s0Z0

(3.75)

and is viewed as a control system with state (Zρ−1, . . . , Z1) and control Z0. We also make the
convention, similar to (3.73), that

xn+k
∆= uk , (3.76)
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and we use for the controls the aggregate notation :

X0
∆=

 xn+1
...

xn+m

 =

 u1
...
um

 . (3.77)

Let us now prove that property P` below is true for 0 ≤ ` ≤ ρ− 1.
Property P` : there exists a smooth local change of coordinates around 0 in Rn, say

(x1, . . . , xn) 7→ (X̂,X`, . . . , X2, X1),

with X̂ ∈ Rσ`+1 and Xi ∈ Rsi for 0 ≤ i ≤ ` (if ` = 0 there are no Xi’s beyond X0 whereas if
` = ρ− 1 there is no X̂), after which system (3.4) reads :

˙̂
X = F̂ (X̂,X`)
Ẋ` = F`(X̂,X`, X`−1)

...
Ẋ2 = F2(X̂,X`, . . . , X1)
Ẋ1 = F1(X̂,X`, . . . , X1, X0)

, (3.78)

and such that (3.78), viewed as a control system with state (X̂,X`, . . . , X1) and control X0, is
locally topologically conjugate at (0, 0) to system (3.75) via a local homeomorphism

(X̂,X`, . . . , X1, X0) 7→ (Zρ−1, . . . , Z0)

which is, together with its inverse, of the block triangular form :

(Zρ−1, . . . , Z`+1) = Φ̂(X̂) X̂ = Ψ̂(Zρ−1, . . . , Z`+1)
Z` = Φ`(X̂,X`) X` = Ψ`(Zρ−1, . . . , Z`)

...
...

Z1 = Φ1(X̂,X`, . . . , X1) X1 = Ψ1(Zρ−1, . . . , Z1)
Z0 = Φ0(X̂,X`, . . . , X1, X0) X0 = Ψ0(Zρ−1, . . . , Z1, Z0)

where Φi and Ψi are, for 1 ≤ i ≤ `, continuously differentiable with respect to Xi and Zi
respectively, have an invertible derivative, and satisfy for 1 ≤ i ≤ ` the relation :

Fi(X̂,X`, . . . , Xi, Xi−1) = Fi(X̂,X`, . . . , Xi, 0)

+
(
∂Φi
∂Xi

(X̂,X`, . . . , Xi)
)−1

Jsisi−1

(
Φi−1(X̂,X`, . . . , Xi, Xi−1)− Φi−1(X̂,X`, . . . , Xi, 0)

)
;

(3.79)

furthermore, the partial homeomorphism

(X̂,X`) 7→ (Zρ−1, . . . , Z`) (3.80)

locally topologically conjugates, at (0, 0) ∈ Rσ`+1+s`, the reduced control system

˙̂
X = F̂ (X̂,X`), (3.81)
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with state X̂ and input X`, to the reduced linear control system

Żρ−1 = J
sρ−1
sρ−2Zρ−2 ,

...
Ż`+1 = J

s`+1
s` Z`

(3.82)

wit state (Zρ−1, . . . , Z`+1) and input Z`.
Indeed, P0 is merely the original assumption on local topological conjugacy of systems (3.4)

and (3.75), where the triangular structure (3.13) of the conjugating homeomorphism was taken
into account ; note that, in P0, (3.79) is empty and that the reduced system (3.81) is the original
system. Next, supposing that P` holds for some ` ≥ 0, we apply Lemmas 3.6.2 and 3.6.3 (see
below) to the reduced systems (3.81), (3.82), and to the partial homeomorphism (3.80), with

d = σ`+1, r = s`, s = s`+1, U = X`, (x1, . . . , xd) = X̂,

Z1 = (Zρ−1, . . . , Z`+2), Z2 = Z`+1, and V = Z`,

and then, upon renaming X̃2 as X`+1, f̃2 as F`+1, and choosing X̃1 to be the new X̂, we get
P`+1.

Now, Pρ−1, where we specialize (3.79) to i = 1, provides us with a smooth change of variables
around 0 in Rn :

(x1, . . . , xn) 7→ (Xρ−1, . . . , X2, X1)

with Xi ∈ Rsi such that, in the new coordinates, system (3.4) reads

Ẋρ−1 = Fρ−1(Xρ−1, Xρ−2)
Ẋρ−2 = Fρ−2(Xρ−1, Xρ−2, Xρ−3)

...
Ẋ2 = F2(Xρ−1, . . . , X1)
Ẋ1 = F1(Xρ−1, . . . , X1, X0),

(3.83)

and also such that the local homeomorphism Φ that topologically conjugates system (3.83) to
system (3.75) at (0, 0) is, together with its inverse Ψ, of the triangular form :

Zρ−1 = Φρ−1(Xρ−1) Xρ−1 = Ψρ−1(Zρ−1)
Zρ−2 = Φρ−2(Xρ−1, Xρ−2) Xρ−2 = Ψρ−2(Zρ−1, Zρ−2)

...
...

Z1 = Φ1(Xρ−1, . . . , X1) X1 = Ψ1(Zρ−1, . . . , Z1)
Z0 = Φ0(Xρ−1, . . . , X1, X0) X0 = Ψ0(Zρ−1, . . . , Z1, Z0),

(3.84)

where the following three properties hold :
1. Each Φk and Ψk for k ≥ 1 is continuously differentiable with respect to Xk and Zk

respectively ; in particular, ∂Φk/∂Xk is invertible throughout the considered neighborhood.

2. For k ≥ 2, Rank
∂Fk
∂Xk−1

(0, . . . , 0) = sk , i.e. this rank is maximum, equal to the number

of rows.
3. F1 satisfies

F1(Xρ−1, . . . , X1, X0) = F1(Xρ−1, . . . , X1, 0) (3.85)

+
(
∂Φ1

∂X1
(Xρ−1, . . . , X1)

)−1

Js1m

(

Φ0(Xρ−1, . . . , X1, X0)− Φ0(Xρ−1, . . . , X1, 0)

)
.
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From the maximum rank assumption on ∂Fρ−1/∂Xρ−2, it is possible to define Yρ−2 whose first
sρ−1 entries are those of Fρ−1(Xρ−1, Xρ−2) and whose remaining sρ−2− sρ−1 entries are suitable
components of Xρ−2, in such a way that

(Xρ−1, . . . , X1) 7→ (Xρ−1, Yρ−2, Xρ−3 . . . , X1)

is a local smooth change of coordinates around 0 in Rn. After performing this change of coordi-
nates and setting Yρ−1 = Xρ−1 for notational homogeneity, system (3.83) reads

Ẏρ−1 = J
sρ−1
sρ−2 Yρ−2

Ẏρ−2 = F̃ρ−2(Yρ−1, Yρ−2, Xρ−3)
...

Ẋ2 = F̃2(Yρ−1, Yρ−2, Xρ−3, . . . , X1)
Ẋ1 = F̃1(Yρ−1, Yρ−2, Xρ−3, . . . , X1, X0)

where the F̃ ’s enjoy the same properties than the F ’s, in particular the maximality of
Rank ∂F̃k/∂Xk−1(0, . . . , 0) for ρ−2 ≥ k ≥ 2. One may iterate this procedure, limited only by the
fact that the maximum rank property mentioned above only holds for k ≥ 2 but not necessarily
for k = 1. Altogether, this yields a smooth local change of coordinates around 0 in Rn :

(Xρ−1, . . . , X1) 7→ (Yρ−1, . . . , Y1),

after which system (3.83) is of the form

Ẏρ−1 = J
sρ−1
sρ−2 Yρ−2

...
Ẏ2 = Js2s1 Y1

Ẏ1 = F1(Yρ−1, , . . . , Y1, X0) ,

(3.86)

where we abuse the notation F1 for simplicity because, although it needs not be the same as
in (3.83), this new F1 enjoys the same property (3.85) for some suitably redefined Φ1 and Φ0.
Now, we may rewrite (3.85) as

F1(Yρ−1, , . . . , Y1, X0) = Js1m H(Yρ−1, , . . . , Y1, X0) (3.87)

where H, in the aggregate notation Y = (Yρ−1, , . . . , Y1), is defined by

H(Y,X0) =
(
F1(Y, 0)

0

)
+
( ∂Φ1

∂Y1
(Y )−1 0
0 Im−s1

)(
Φ0(Y,X0)− Φ0(Y, 0)

)
.

Since Φ has the triangular structure displayed in (3.84), the map X0 7→ Φ0(Y,X0) is injective
for fixed Y = (Yρ−1, . . . , Y1) in the neighborhood of 0 where it is defined in Rm. Consequently,
(Y,X0) 7→ (Y,H(Y,X0)) is also injective in the neighborhood of 0 where it is defined in Rn+m ;
since it is continuous, it is a local homeomorphism of Rn+m at (0, 0) by invariance of the domain,
and then (3.86), (3.87) make it clear that system (3.83) is locally quasi-smoothly linearizable at
this point.

Since (3.83) is smoothly conjugate to the original system (3.4), this proves local quasi-smooth
linearizability of the latter hence the theorem.

Two lemmas. The following two lemmas are applied recursively in the above proof of Theo-
rem 3.5.2 to obtain the forms (3.83), (3.75), and (3.84). Although these lemmas team up into a
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single result in the above-mentioned proof, they have been stated here separately for the sake
of clarity.

We will consider two control systems with state in Rd and control in Rr. Expanded in
coordinates, the first system reads

ẋ1 = f1(x1, . . . , xd, xd+1, . . . , xd+r)
...

ẋd = fd(x1, . . . , xd, xd+1, . . . , xd+r) ,
(3.88)

with state variable (x1, . . . , xd) and control variable (xd+1, . . . , xd+r) ∈ Rr, the functions f1, · · · , fd
being smooth Rd+r → R. The second system has state variable (z1, . . . , zd) and control variable
(zd+1, . . . , zd+r) ∈ Rr, and it assumes the special form :

ż1 = g1(z1, . . . , zd)
...

żd−s = gd−s(z1, . . . , zd)
żd−s+1 = zd+1

...
żd = zd+s ,

(3.89)

where 0 < s ≤ d and s ≤ r while g1, · · · , gd−s are again smooth Rd → R. Nothing prevents us
here from having s < r, in which case some of the controls do not enter the equation. It will be
convenient to use the aggregate notations

X
∆= (x1, . . . , xd) , U

∆= (xd+1, . . . , xd+r) ,

Z
∆= (z1, . . . , zd) , V

∆= (zd+1, . . . , zd+r) ,

and to further split Z into (Z1, Z2) with

Z1 ∆= (z1, . . . , zd−s) , Z2 ∆= (zd−s+1, . . . , zd) , (3.90)

so as to write (3.88) in the form
Ẋ = f(X,U) (3.91)

and (3.89) as
Ż1 = g1(Z1, Z2)
Ż2 = Jsr V ,

(3.92)

with Jsr the s× r matrix, defined in (3.41), that selects the first s entries of a vector.

Lemma 3.6.2. Let d, r and s be strictly positive integers with s ≤ d and s ≤ r. Suppose, for
some ε > 0, that

ϕ : (−ε, ε)d+r → Rd+r

is a homeomorphism onto its image, with inverse ψ, that conjugates system (3.91) to system
(3.92). Then, there exists 0 < ε′ < ε and a smooth local change of coordinates around 0 ∈ Rd :

θ : (−ε′, ε′)d → θ
(
(−ε′, ε′)d) ⊂ (−ε, ε)d

that fixes the origin and is such that, in the new coordinates X̃ = θ−1(X), both the system (3.91)
and the conjugating homeomorphism ϕ̃ = ϕ ◦ (θ × id) assume a block triangular structure with
respect to the partition X̃ = (X̃1, X̃2), where X̃1 ∆= (x̃1, . . . , x̃d−s) and X̃2 ∆= (x̃d−s+1, . . . , x̃d) ;
that is to say, on (−ε′, ε′)d+r, we have that
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– system (3.88) reads :
˙̃
X

1

= f̃1(X̃1, X̃2)
˙̃
X

2

= f̃2(X̃1, X̃2, U),
(3.93)

– On their respective domains of definition, the homeomorphism ϕ̃ and its inverse ψ̃ =
(θ−1 × id) ◦ ψ read :

Z1 = ϕ̃1(X̃1) X̃1 = ψ̃1(Z1)
Z2 = ϕ̃2(X̃1, X̃2) X̃2 = ψ̃2(Z1, Z2)
V = ϕ̃3(X̃1, X̃2, U) U = ψ̃3(Z1, Z2, V ) .

(3.94)

Lemma 3.6.3. Let
ϕ̃ : (−ε′, ε′)d+r → Rd+r

be a homeomorphism onto its image, having the block triangular structure displayed in (3.94),
and assume that it conjugates the smooth system (3.93) to the smooth system (3.92). Necessarily
then, ϕ̃ has the following properties :

1. The map ϕ̃2 is continuously differentiable with respect to its second argument X̃2, and
∂ϕ̃2

∂X̃2
(0, 0) is invertible.

2. On some neighborhood of 0 ∈ Rd+r included in (−ε′, ε′)d+r, one has :

f̃2(X̃1, X̃2, U) = (3.95)

f̃2(X̃1, X̃2, 0) +
(
∂ϕ̃2

∂X̃2
(X̃1, X̃2)

)−1

Jsr

(
ϕ̃3(X̃1, X̃2, U)− ϕ̃3(X̃1, X̃2, 0)

)
3. On some neighborhood of 0 ∈ Rd included in (−ε′, ε′)d, the partial homeomorphism

( X̃1 , X̃2 ) 7→ ( ϕ̃1(X̃1) , ϕ̃2(X̃1, X̃2) ) (3.96)

conjugates the control system
˙̃
X1 = f̃1(X̃1, X̃2), (3.97)

with state X̃1 and control X̃2, to the control system

Ż1 = g1(Z1, Z2) (3.98)

with state Z1 and input Z2.

Note that (3.97) and (3.98) are reduced systems from (3.93) and (3.92).

Proof of Lemma 3.6.2. Since the homeomorphism ϕ conjugates (3.91) to (3.92), we know, by
Proposition 3.3.6, that ϕ and ψ split component-wise into :

Z = ϕI(X) X = ψI(Z)
V = ϕII(X,U) U = ψII(Z, V ) .

(3.99)

Consider the map f : (−ε, ε)d+r → Rd given in (3.91), and let us define g : ϕ((−ε, ε)d+r)→
Rd analogously from (3.92), namely g is the concatenated map whose first d − s components
are given by g1(Z) and whose last s components are given by JsrV . Define two families of
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continuous vector fields F ′ and G′, on (−ε, ε)d and ϕI((−ε, ε)d) respectively, by the following
formulas (compare (3.142)) :

F ′ = { δfα1,α2 ;α1, α2 feedbacks on (−ε, ε)d+r } , (3.100)
G′ = { δgβ1,β2 ;β1, β2 feedbacks on ϕ

(
(−ε, ε)d+r

) } . (3.101)

Applying Proposition 3.3.13 twice, first to χ = ϕ and then to χ = ψ, we see that each integral
curve of a vector field in F ′ is mapped by ϕI to some integral curve of a vector field in G′ and
vice-versa upon replacing ϕI by ψI. This shows in particular that uniqueness of solutions to the
Cauchy problem associated to vector fields is preserved, i.e. if we define the families of vector
fields (compare (3.143)) :

F ′′ = {Y ∈ F ′ , Y has a flow } , (3.102)
G′′ = {Y ∈ G′ , Y has a flow } , (3.103)

we also have that each integral curve of a vector field in F ′′ is mapped by ϕI to an integral
curve of a vector field in G′′ and vice-versa upon replacing ϕI by ψI. By concatenation, using
Proposition 3.8.5, it follows that

for any X ∈ (−ε, ε)d, ϕI defines a homeomorphism,
for the orbit topologies, from the orbit of F ′′ through X
onto the orbit of G′′ through ϕI(X),

 (3.104)

where the orbit topology as described in Proposition 3.8.5 (by definition the restriction of ϕI

is bi-continuous for the topologies induced by the ambient space ; bi-continuity for the orbit
topologies requires the description of these topologies as given in Proposition 3.8.5).

Now, the vector fields δgβ1,β2 appearing in (3.101) inherit from the structure of g, displayed
in (3.92), the following particular form :

δgβ1,β2(Z) =



0
...
0

β1,1(Z) − β2,1(Z)
...

β1,s(Z) − β2,s(Z)


, (3.105)

where βi,1, . . . , βi,s designate, for i = 1, 2, the first s component of the feedback βi. This will
allow for us to describe explicitly the orbits of G′′, namely :

the orbit of G′′ through Z0 = (c1, . . . , cd)
is the connected component containing Z0 of the set
{Z ∈ ϕI

(
(−ε, ε)d) , z1 = c1, . . . , zd−s = cd−s}.

 (3.106)

Indeed, the orbit in question is contained in this set, because it is connected, and because all
the vector fields in G′′ have their first d− s components equal to zero by (3.105).

To prove the reverse inclusion, it is enough to show that the orbit of G′′ through Z0, denoted
hereafter by OG′′,Z0 , contains all the points sufficiently close to Z0 having the same first d − s
coordinates as Z0. Indeed, since Z0 was arbitrary, this will imply that the connected component
defined by (3.106) splits into a disjoint union of open orbits hence consists of a single one by
connectedness. That is to say, putting Z0 = (Z1

0 , Z
2
0 ) according to (3.90), 3.106 will follow from

the existence of a ρ > 0 such that

{Z1
0} ×B(Z2

0 , ρ) = B(Z0, ρ) ∩ OG′′,Z0 . (3.107)
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Now, it follows from Remark 3.8.3 that, for sufficiently small ρ, each connected component
of B(Z0, ρ) ∩OG′′,Z0 is an embedded sub-manifold of B(Z0, ρ). Then, the connected component
of B(Z0, ρ) ∩ OG′′,Z0 containing Z0 is, by inclusion, an embedded sub-manifold of the linear
manifold {Z1

0} ×B(Z2
0 , ρ). In particular, since no strict sub-manifold can be densely embedded

in a given manifold, we see that (3.107) will hold is only we can prove that

The connected component containing Z0 of B(Z0, ρ) ∩ OG′′,Z0

is dense in {Z1
0} ×B(Z2

0 , ρ) for the Euclidean topology.
(3.108)

To prove (3.108), pick V0 such that (Z0, V0) ∈ ϕ
(
(−ε, ε)d+r

)
and observe, since the latter is

an open set, that shrinking ρ further, if necessary, allows us to assume B(Z0, ρ) × B(V0, ρ) ⊂
ϕ
(
(−ε, ε)d+r

)
. We claim that any continuous map B(Z0, ρ)→ B(V0, ρ) extends to a feedback on

ϕ
(
(−ε, ε)d+r

)
. Indeed, in view of the one-to-one correspondence β → ψ β between feedbacks

on ϕ
(
(−ε, ε)d+r

)
and feedbacks on (−ε, ε)d+r (cf. the discussion leading to (3.23)-(3.24)), it is

enough to prove that every continuous map ψI

(
B(Z0, ρ)

) → (−ε, ε)r extends to a continuous
map (−ε, ε)d → (−ε, ε)r, and this in turn follows from the Tietze extension theorem since
ψI

(
B(Z0, ρ)

)
is closed in (−ε, ε)d and since (−ε, ε)r is a poly-interval. This proves the claim.

From the claim, it follows that the restriction to B(Z0, ρ) of the Rs-valued vector field
Jsr (β1(Z) − β2(Z)), accounting for the lower half of the right-hand side in (3.105), can be as-
signed arbitrarily, by choosing adequately the feedbacks β1 and β2, among continuous vector
fields B(Z0, ρ) → B(0, ρ) (take β2 to extend the constant map V0 on B(Z0, ρ)). Of course, the
corresponding vector field δgβ1,β2 in (3.105) belongs to G′ but not necessarily to G′′ since conti-
nuous vector fields need not have a flow. However, since δgβ1,β2 has a flow at least when β1 and
β2 are smooth, we deduce from Proposition 3.3.4 that the restriction to B(Z0, ρ) of the vector
fields in G′′ are of the form {0} × Y , where Y ranges over a uniformly dense subset Υ of all
Rs-valued continuous maps B(Z0, ρ) → B(0, ρ). Now, every point in B(Z2

0 , ρ) can be attained
from Z2

0 upon integrating, within B(Z2
0 , ρ), a constant vector field of arbitrary small norm. By

Lemma 3.7.2 applied with U = B(Z2
0 , ρ) and K = {Z2

0}, the corresponding trajectory can be
approximated uniformly by integral curves that remain in B(Z2

0 , ρ) of vector fields in Υ. There-
fore, every point in {z1

0}×B(Z2
0 , ρ) is the limit of endpoints of integral curves of G′′ that remain

in {z1
0} × B(Z2

0 , ρ), which proves (3.108) and thus (3.106). In particular, the orbits of G′′ are
embedded sub-manifolds in ϕI

(
(−ε, ε)d).

Next, we turn to the orbits of F ′′, and we designate by OF ′′,p the orbit of F ′′ in ] − ε, ε[d
through the point p. On the one hand, Proposition 3.8.5 and Theorem 3.8.2 show that OF ′′,p is
a smooth immersed sub-manifold of ]−ε, ε[d. On the other hand, by (3.104), this immersed sub-
manifold is sent homeomorphically by ϕI, both for the orbit topology and the ambient topology,
onto OG′′,ϕI(p) which is a smooth embedded s-dimensional sub-manifold of ϕI

(
(−ε, ε)d), as we

saw from (3.106). This entails that all orbits of F ′′ in ] − ε, ε[d are embedded sub-manifolds of
dimension s. Consequently, still from Proposition 3.8.5 and Theorem 3.8.2, there are coordinates
(ξ1, . . . , ξd) defined on an open neighborhood W0 of the origin in ]− ε, ε[d —this neighborhood
may be assumed to be of the form {(ξ1, . . . , ξd), |ξi| < ε′} — such that, in these coordinates,

W0 ∩ OF ′′,0 = { (ξ1, . . . , ξd), with (ξs+1, . . . , ξd) ∈ T } ,

with T a subset of ] − ε′, ε′[d−s containing (0, . . . , 0), the tangent space to W0 ∩ OF ′′,0 at each
of its points being spanned by ∂/∂ξ1, . . . , ∂/∂ξs, while at any point p ∈ W0 the vector fields
∂/∂ξ1, . . . , ∂/∂ξs belong to the tangent space of OF ′′,p. But since we saw that all orbits are
smooth sub-manifolds of dimension s, these vector fields actually span the tangent space to the
orbit at every point. Hence all the vector fields δfα1,α2 in F ′′ have their last d − s components
equal to zero on W0 in the ξ coordinates, and this holds in particular when α1, α2 range
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over all constant feedbacks (−ε, ε)d → (−ε, ε)r. This implies, by the very definition of δfα1,α2 ,
that (ξ̇s+1, . . . , ξ̇d) — as computed from (3.91) upon performing the change of variable X 7→
(ξ1, . . . , ξd) — does not depend on the control variable U . Choose for X̃ the ξ coordinates
arranged in reverse order, and let f̃ be the analog of f in the new coordinates (X̃, U). Then the
first d − s components of f̃ do not depend on U so that (3.93) holds. Moreover, if ϕ̃ denotes
the new homeomorphism that conjugates (3.93) to (3.92) over (−ε, ε)d+r, ϕ̃((−ε, ε)d+r), and if
ψ̃ denotes its inverse, it follows from (3.104) and the above characterization of the orbits that
ϕ̃I maps the sets where x̃1, . . . , x̃d−s are constant to those where z1, . . . , zd−s are constant, thus
the functions ϕ̃1, . . . , ϕ̃d−s and ψ̃1, . . . , ψ̃d−s depend only on their d− s first arguments whence
(3.94) follows.

Proof of Lemma 3.6.3. We use again the concatenated notation ϕ̃I = (ϕ̃1, ϕ̃2), ψ̃I = (ψ̃1, ψ̃2),
these partial homeomorphisms being inverse of each other. Let (Z0, V0) ∈ ϕ̃((−ε′, ε′)d+r) and ε′′

be so small that the product neighborhood (Z0, V0)+(−ε′′, ε′′)d+r lies entirely within ϕ̃((−ε′, ε′)d+r).
The restriction to (Z0, V0) + (−ε′′, ε′′)d+r of ψ̃ conjugates (3.92) to (3.93). Consequently, for any
V ∈ (−ε′′, ε′′)r, we may apply Proposition 3.3.13 to this restriction and to the constant feedbacks
α1(Z) = V0 + V and α2(Z) = V0 ; this yields that ψ̃I, given by

(Z1, Z2) 7→ (X̃1, X̃2) = (ψ̃1(Z1), ψ̃2(Z1, Z2)),

maps every solution of
Ż1 = 0 , Ż2 = JsrV (3.109)

that remains in Z0 + (−ε′′, ε′′)d to a solution of

˙̃
X

1

= 0 , ˙̃
X

2

= f̃2(X̃1, X̃2, ψ̃3(ϕ̃1(X̃1), ϕ̃2(X̃1, X̃2), V0 + V ))
− f̃2(X̃1, X̃2, ψ̃3(ϕ̃1(X̃1), ϕ̃2(X̃1, X̃2), V0))

(3.110)

that remains in ψ̃I(Z0 +(−ε′′, ε′′)d), and vice versa upon applying Proposition 3.3.13 in the other
direction.

Integrating (3.109) explicitly with initial condition Z(0) = Z0, we get that

t 7→
(
ψ̃1(Z1

0 )
ψ̃2(Z1

0 , Z
2
0 + tJsrV )

)

solves (3.110) for sufficiently small t, hence ψ̃2(Z1, Z2) is differentiable at Z0 with respect to its
second argument in the direction JsrV , with directional derivative

∂ψ̃2

∂Z2
(Z1

0 , Z
2
0 ) JsrV = f̃2(ψ̃1(Z1

0 ), ψ̃2(Z1
0 , Z

2
0 ), ψ̃3(Z1

0 , Z
2
0 , V0 + V ))

− f̃2(ψ̃1(Z1
0 ), ψ̃2(Z1

0 , Z
2
0 ), ψ̃3(Z1

0 , Z
2
0 , V0)) . (3.111)

In particular, since Z0 can be any member of ϕ̃I((−ε′, ε′)d) while JsrV can be assigned arbitrarily
in (−ε′′, ε′′)s, we conclude that ∂ψ̃2/∂Z2(Z1, Z2) exists and is continuous since this holds for
the partial derivatives. Next we prove that ∂ψ̃2/∂Z2 is invertible at every point by showing that
its kernel reduces to zero. In fact, if the left-hand side of (3.111) vanishes, so does the right-
hand side which is also the value of the right-hand side of (3.110) for X̃ = ψ̃I(Z0). Therefore the
constant map t 7→ ψ̃I(Z0) is a solution to (3.110) over a suitable time interval, and by conjugation
the constant map t 7→ Z0 is a solution to (3.109) over that time interval which clearly entails
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JsrV = 0, as desired. Now, since ∂ψ̃2/∂Z2 is invertible at every (Z1, Z2) ∈ ϕ̃I((−ε′, ε′)d), the
triangular structure of (3.94) and the inverse function theorem together imply that

∂ϕ̃2

∂X̃2
(X̃1, X̃2) =

(
∂ψ̃2

∂Z2
(ϕ̃1(X̃1), ϕ̃2(X̃1, X̃2))

)−1

(3.112)

continuously exists and is invertible for (X̃1, X̃2) ∈ (−ε′, ε′)d. This proves point 1.
Let us turn to point 2. Select an open neighborhood W of 0 having compact closure in

(−ε′, ε′)d, so there is η > 0 such that ϕ̃(X̃, 0)+(−η, η)d+r is included in ϕ̃((−ε′, ε′)d+r) whenever
X̃ ∈ W. If V ∈ (−η, η)r, we can apply (3.111) to (Z0, V0) = ϕ̃(X̃, 0) with X̃ ∈ W, and we obtain
in view of (3.112) :(

∂ϕ̃2

∂X̃2
(X̃1, X̃2)

)−1

JsrV = − f̃2(X̃1, X̃2, 0) (3.113)

+ f̃2
(
X̃1, X̃2, ψ̃3

(
ϕ̃1(X̃1), ϕ̃2(X̃1, X̃2), ϕ̃3(X̃1, X̃2, 0) + V

))
.

Set
U = ψ̃3(ϕ̃1(X̃1), ϕ̃2(X̃1, X̃2), ϕ̃3(X̃1, X̃2, 0) + V ) (3.114)

and observe that (X̃, V ) 7→ (X̃, U) = ψ̃(ϕ̃(X̃, 0) + (0, V )) defines a continuous map h : W ×
(−η, η)r → (−ε′, ε′)d+r, such that h(0) = 0, which is injective. By invariance of the domain, h
is a homeomorphism onto some open neighborhood of 0, say N ⊂ (−ε′, ε′)d+r. For (X̃, U) ∈ N ,
(3.114) can be inverted as

V = ϕ̃3(X̃, U)− ϕ̃3(X̃, 0), (3.115)

and substituting (3.114) and (3.115) in (3.113) yields (3.95).
Finally we prove point 3, keeping in mind the previous definitions and properties of h, W, η

and N . For X̃ = (X̃1, X̃2) ∈ (−ε′, ε′)d, define V (X̃) ∈ Rs × {0} ⊂ Rr by the formula :

JsrV (X̃) =
∂ϕ̃2

∂X̃2
(X̃1, X̃2)

(
f̃2(0, 0, 0)− f̃2(X̃1, X̃2, 0)

)
. (3.116)

Clearly V : (−ε′, ε′)d → Rr is continuous and V (0) = 0, so there exists an open neighborhood
V ⊂ W of 0 in Rd such that V (X̃) ∈ (−η, η)r as soon as X̃ ∈ V ; then, if we set h(X̃, V (X̃)) =
(X̃, U(X̃)) ∈ N , it follows from (3.116), (3.115), and (3.95) that

f̃2(X̃1, X̃2, U(X̃)) = f̃2(0, 0, 0), X̃ ∈ V. (3.117)

We will show, using Proposition 3.3.12, that the restriction of ϕ̃I to any relatively compact open
subset X of V conjugates (3.97) and (3.98) over X , ϕ̃(X ), and this will achieve the proof. To
this effect, let C to be the collection of all piecewise affine maps R → Rs with constant slope
f̃2(0, 0, 0) (cf. the discussion before Proposition 3.3.12) and note that, for any open set O ⊂ Rs

and any compact interval J ⊂ R, the restriction of C to J contains, in its uniform closure, the
set all piecewise continuous maps J → O. Now, consider a solution γ : I → V of the control
system :

˙̃
X

1

= f̃1(X̃1,Υ) (3.118)

with state X̃1 and control Υ ; hereafter, VI ⊂ Rd−s and VII ⊂ Rs will indicate the projections of
V onto the first d − s and the last s components respectively, and similarly for any other open
set in Rd. Assume that the control function γII : I → VII is the restriction to I of some member
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of C. By definition, if a, b are the endpoints of I (that may belong to I or not), there are time
instants a = t0 < t1 < · · · < tN = b, and vectors ξ̄1, . . . , ξ̄N ∈ Rs such that, for 1 ≤ j < N , one
has

tj−1 < t < tj ⇒ γII(t) = ξ̄j + tf̃2(0, 0, 0), (3.119)

while at the points tj themselves γII is either right or left continuous when 1 < j < N . We claim
that ϕ̃I(γ(t)) is a solution that remains in ϕ̃I(V) of the control system :

Ż1 = g1(Z1,Γ) (3.120)

with state Z1 and control Γ. In fact, since γI is continuous by definition of a solution, so is ϕ̃1(γI)
and therefore, as ϕ̃I(γ(t)) lies in ϕ̃I(V) for all t ∈ I by construction, it is enough to check that

ϕ̃1(γI(T2))− ϕ̃1(γI(T1))=
∫ T2

T1

g1
(
ϕ̃1(γI(t)), ϕ̃2(γI(t), γII(t))

)
dt (3.121)

whenever tj−1 < T1 < T2 < tj for some j > 1. However, the restriction of γ(t) to (tj−1, tj) is a
solution that remains in V of the differential equation :

γ̇I = f̃1(γI, γII)
γ̇II = f̃2(0, 0, 0),

hence (γ(t), U(γ(t)) is, by (3.117), a solution of (3.93) that remains in N , and therefore (3.121)
follows from the triangular structure (3.94) of ϕ̃ and the fact that it conjugates system (3.93)
to system (3.92). This proves the claim.

In the other direction, we observe since it is included in W that V has compact closure in
(−ε′, ε′)d, and therefore that ϕ̃I(V) in turn has compact closure in ϕ̃I

(
(−ε′, ε′)d). Pick η′ > 0

such that ϕ̃I(V) × (−η′, η′)r ⊂ ϕ̃((−ε′, ε′)d+r), and let C′ denote the collection of all piecewise
smooth maps R→ Rs whose derivative is strictly bounded by η′ component-wise. The restriction
of C′ to any compact real interval J is uniformly dense in the set all piecewise continuous maps
J → O, for any open set O ⊂ Rs. Clearly, any solution γ′ : I → ϕ̃I(V) of system (3.120), whose
control function γ′II : I → (

ϕ̃I(V)
)

II
is the restriction to I of some member of C′, satisfies the

differential equation
γ̇′I = g1(γ′I, γ

′
II)

γ̇′II = Jsr (dγ′II/dt , 0)

on every interval where it is smooth. By the very definition of η′ and C′, it follows that(
γ′(t), (dγ′II(t)/dt, 0)

)
is, on such intervals, a solution to (3.92) that remains in ϕ̃((−ε′, ε′))d+r

and, since ψ̃ conjugates system (3.92) to system (3.93), we argue as before to the effect that
ψ̃I(γ′) is a solution to system (3.118) that remains in V. Appealing to Proposition 3.3.12, we
conclude that ϕ̃I conjugates system (3.118) to system (3.120) on relatively compact open subsets
of V, as desired.

3.7 Appendix : Four lemmas on ODEs

Throughout this section, we let U be an open subset of Rd. We say that a continuous vector
field X : U → Rd has a flow if the Cauchy problem ẋ(t) = X(x(t)) with initial condition
x(0) = x0 has a unique solution, defined for t ∈ (−ε, ε) with ε = ε(x0) > 0. The flow of X at
time t is denoted by Xt, in other words we have with the preceding notations that Xt(x0) = x(t).
It is easy to see that the domain of definition of (t, x) 7→ X(t, x) is open in R× U .
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Lemma 3.7.1. If X : U → Rd is a continuous vector field that has a flow, the map (t, x) 7→ Xt(x)
is continuous on the open subset of R× U where it is defined.

Proof. This is an easy consequence of the Ascoli-Arzela theorem, and actually a special case of
[47, chap. V, Theorem 2.1].

Lemma 3.7.2. Assume that the sequence of continuous vector fields Xk : U → Rd converges
to X, uniformly on compact subsets of U , and that all the Xk as well as X itself have a flow.
Suppose that Xt(x) is defined for all (t, x) ∈ [0, T ] × K with T > 0 and K ⊂ U compact.
Then Xk

t (x) is also defined on [0, T ] × K for k large enough, and the sequence of mappings
(t, x) 7→ Xk

t (x) converges to (t, x) 7→ Xt(x), uniformly on [0, T ]×K.

Proof. By assumption,
K1 = {Xt(x); (t, x) ∈ [0, T ]×K}

is a well-defined subset of U that contains K, and it is compact by Lemma 3.7.1. Let K0 be
another compact subset of U whose interior contains K1, and put d(K1,U \K0) = η > 0 where
d(E1, E2) indicates the distance between two sets E1, E2. From the hypothesis there is M > 0
such that ‖Xk‖ ≤ M on K0 for all k, hence the maximal solution to ˙x(t) = Xk(x(t)) with
initial condition x(0) = x0 ∈ K remains in K0 as long as t ≤ η/2M . Consequently the flow
(t, x) 7→ Xk

t (x) is defined on [0, η/2M ] ×K for all k, with values in K0. We claim that it is a
bounded equicontinuous sequence of functions there. Boundedness is clear since these functions
are K0-valued, so we must show that, to every (t, x) ∈ [0, η/2M ]×K and every ε > 0, there is
α > 0 such that ‖Xk(t′, x′) −Xk(t, x)‖ < ε for all k as soon as |t − t′| + ‖x − x′‖ < α. By the
mean-value theorem and the uniform majorization ‖Xk(Xk

t (x))‖ ≤ M , it is sufficient to prove
this when t = t′. Arguing by contradiction, assume for some subsequence kl and some sequence
xl converging to x in K that

‖Xkl
t (x)−Xkl

t (xl)‖ ≥ ε for all l ∈ N. (3.122)

Then, by Lemma 3.7.1, the index kl tends to infinity with l. Next consider the sequence of maps
Fl : [0, η/2M ] → K0 defined by Fl(t) = Xkl

t (xl). Again, by the mean value theorem, it is a
bounded equicontinuous family of functions and, by the Ascoli-Arzela theorem, it is relatively
compact in the topology of uniform convergence (compare [47, chap. II, Theorem 3.2]). But if
Φ : [0, η/2M ] → K0 is the uniform limit of some subsequence Flj , and since Xklj converges
uniformly to X on K0 as j →∞, taking limits in the relation

X
klj
t (xlj ) = xlj +

∫ t

0
X
klj (X

klj
s (xlj )) ds

gives us

Φ(t) = x+
∫ t

0
X(Φ(s)) ds

so that Φ(t) = Xt(x) since X has a flow. Altogether Fl(t) converges uniformly to Xt(x) on
[0, η/2M ] because this is the only accumulation point, and then (3.122) becomes absurd. This
proves the claim. From the claim it follows, using the Ascoli-Arzela theorem again, that the
family of functions (t, x) 7→ Xk

t (x) is relatively compact for the topology of uniform convergence
[0, η/2M ] ×K → K0, and in fact it converges to (t, x) 7→ Xt(x) because, by the same limiting
argument as was used to prove the claim, every accumulation point Φ(t, x) must be a solution
to

Φ(t, x) = x+
∫ t

0
X(s,Φ(s, x)) ds
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hence for fixed x is an integral curve of X with initial condition x. In particular, by definition
of K1, we shall have that d(Xk

t (x),K1) < η/2 for all (t, x) ∈ [0, η/2M ]×K as soon as k is large
enough. For such k the flow (t, x) 7→ Xk

t (x) will be defined on [0, η/M ]×K with values in K0, and
we can repeat the whole argument again to the effect that Xk

t (x) converges uniformly to Xt(x)
there. Proceeding inductively, we obtain after [2TM/η] + 1 steps at most that (t, x) 7→ Xk

t (x)
is defined on [0, T ] × K with values in K0 for k large enough, and converges uniformly to
(t, x) 7→ Xt(x) there, as was to be shown.

The next lemma stands analogous to Lemma 3.7.2 for time-dependent vector fields, assuming
that the convergence holds boundedly almost everywhere in time. The assumption that the vector
fields have a flow is replaced here by a local Lipschitz condition that we now comment upon.

By definition, a time-dependent vector field X : [t1, t2] × U → Rd is locally Lipschitz with
respect to the second variable if every (t0, x0) ∈ [t1, t2] × U has a neighborhood there such
that ‖X(t, x′)−X(t, x)‖ < c‖x′ − x‖, for some constant c, whenever (t, x) and (t, x′) belong to
that neighborhood. This of course entails that X is bounded on compact subsets of [t1, t2]× U .
Next, by the compactness of [t1, t2], the local Lipschitz character of X strengthens to the effect
that each x0 ∈ U has a neighborhood Nx0 such that ‖X(t, x′) − X(t, x)‖ < cx0‖x′ − x‖, for
some constant cx0 , whenever x, x′ ∈ Nx0 and t ∈ [t1, t2]. If now K ⊂ U is compact, we can
cover it by finitely many Nx0,k

as above and find ε > 0 such that x, x′ ∈ K and ‖x − x′‖ < ε
is impossible unless x, x′ lie in some common Nx0 . Consequently there is cK > 0 such that
‖X(t, x′)−X(t, x)‖ < cK‖x′ − x‖ whenever x, x′ ∈ K and t ∈ [t1, t2], because if ‖x− x′‖ < ε we
can take cK ≥ maxk cx0,k

, whereas if ‖x − x′‖ ≥ ε it is enough to take cK > 2M/ε where M is
a bound for ‖X‖ on [t1, t2] × K. Finally, if X(t, x) happens to vanish identically for x outside
some compact K′ ⊂ U , we can choose K such that

K′ ⊂ ◦
K ⊂ K ⊂ U

and construct cK as before except that we also pick ε > 0 so small that ‖x−x′‖ < ε is impossible
for x ∈ K′ and x′ /∈ K. Then it holds that ‖X(t, x′)−X(t, x)‖ < cK‖x′−x‖ for all x, x′ ∈ U and
all t ∈ [t1, t2], that is to say X(t, x) becomes globally Lipschitz with respect to x. These remarks
will be used in the proof to come.

Lemma 3.7.3. Let t1 < t2 be two real numbers and Xk : [t1, t2]× U → Rd a sequence of time-
dependent vector fields, measurable with respect to t, locally Lipschitz continuous with respect to
x ∈ U , and bounded on compact subsets of [t1, t2]×U independently of k. Let X : [t1, t2]×U → Rd

be another time-dependent vector field, measurable with respect to t, locally Lipschitz continuous
with respect to x ∈ U , and assume that, to each compact K ⊂ U , there is EK ⊂ [t1, t2] of zero
measure such that, whenever t /∈ EK, the sequence Xk(t, x) converges to X(t, x) as k → ∞,
uniformly with respect to x ∈ K. Suppose finally that γ : [t1, t2] → U is, for some (t0, x0) ∈
[t1, t2]× U , a solution to the Cauchy problem

γ̇(t) = X(t, γ(t)) , γ(t0) = x0. (3.123)

Then, for k large enough, there is a unique solution γk : [t1, t2]→ U to the Cauchy problem

γ̇k(t) = Xk(t, γk(t)) , γk(t0) = x0, (3.124)

and the sequence (γk) converges to γ, uniformly on [t1, t2].

Proof. Upon multiplying Xk(t, x) and X(t, x) by a smooth function ϕ(x) which is compactly
supported U → R and identically 1 on a neighborhood of γ([t1, t2]), we may assume in view of the
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discussion preceding the lemma that X(t, x) and Xk(t, x) are defined and bounded [t1, t2]×Rd →
Rd independently of k, measurable with respect to t, and (globally) Lipschitz continuous with
respect to x.

Then, by classical results [98, Proposition C 3.8., Theorem 54], the solution to (3.124), say
γk uniquely exists [t1, t2]→ Rd for each k :

γk(t) = x0 +
∫ t

t0

Xk(s, γk(s)) ds, t ∈ [t1, t2]. (3.125)

From the boundedness of Xk, it is clear that γk is an equicontinuous and bounded family of
functions, hence it is relatively compact in the topology of uniform convergence on [t1, t2]. All
we have to prove then is that every accumulation point of γk coincides with γ. Extracting a
subsequence if necessary, let us assume that γk converges to some γ̄, uniformly on [t1, t2]. Let
K ⊂ Rd be a compact set containing γk([t1, t2]) for all k ; such a set exists by the boundedness of
γk. If we let EK ⊂ [t1, t2] be the set of zero measure granted by the hypothesis, there exists to each
s ∈ [t1, t2]\EK and each ε > 0 an integer ks,ε such that ‖Xk(s, x)−X(s, x)‖ < ε as soon as x ∈ K
and k > ks,ε. In another connection, the Lipschitz character of X with respect to the second
argument and the uniform convergence of γk to γ̄ shows that that ‖X(s, γk(s))−X(s, γ̄(s))‖ < ε
for k large enough. Altogether, by a 2-ε majorization , we find that

lim
k→∞

‖Xk(s, γk(s))−X(s, γ̄(s))‖ = 0,

that is to say the integrand in the right-hand side of (3.125) converges point-wise almost eve-
rywhere to X(s, γ̄(s)). Since Xk is bounded we can apply the dominated convergence theorem
and, taking limits on both sides of (3.125) as k → ∞, we find that γ̄ is a solution to (3.123)
whereas the latter is unique. Hence γ̄ − γ as desired.

The following averaging lemma for continuous vector fields is less classical than in the locally
Lipschitz case, where the Cauchy problem has a unique solution.

Lemma 3.7.4. Let t1 < t2 be real numbers and (X1,`)`∈N, (X2,`)`∈N, be two sequences of
continuous time-dependent vector fields [t1, t2] × Rd → Rd, uniformly bounded with respect to
`, that converge uniformly on compact subsets of [t1, t2] × Rd to some vector fields X1 and X2

respectively. Denoting by L = t2 − t1 the length of the time interval, define, for each ` ∈ N, the
“average” vector field G` : [t1, t2]× Rd → Rd by :

t ∈ [t1 + j
`L , t1 + 2j+1

2` L) ⇒ G`(t, x) = X1,`(t, x) ,
t ∈ [t1 + 2j+1

2` L , t1 + j+1
` L) ⇒ G`(t, x) = X2,`(t, x) ,

(3.126)

for j ∈ {0, . . . , `− 1} and, say, G`(t2, x) = X2,`(t2, x) for definiteness.
Let γ` : [t1, t2]→ Rd be a solution to

γ`(t) − x̄ =
∫ t

t1

G`(τ, γ`(τ))dτ . (3.127)

Then the sequence (γ`) is compact in C0([t1, t2],Rd), and every accumulation point γ∞ is a
solution to

γ∞(t) − x̄ =
1
2

∫ t

t1

(
X1(τ, γ∞(τ)) +X2(τ, γ∞(τ))

)
dτ . (3.128)
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Proof. Let

M = sup
t,x,i,`

‖Xi,`(t, x)‖ . (3.129)

From (3.126)-(3.127), it is clear that M is a Lipschitz constant for γ`, regardless of `. In particular
γ`(t) stays in a fixed compact ball B of radius ML, and the family (γ`) is equicontinuous. From
Ascoli-Arzela’s theorem this implies compactness of the sequence (γ`) in the uniform topology
on [t1, t2].

Rewrite (3.127) as

γ`(t) − x̄ =
∫ t

t1

(
G`(τ, γ`(τ)) − X1,`(τ, γ`(τ)) +X2,`(τ, γ`(τ))

2

)
dτ

+
∫ t

t1

(
X1,`(τ, γ`(τ)) +X2,`(τ, γ`(τ))

2
− X1(τ, γ`(τ)) +X2(τ, γ`(τ))

2

)
dτ

+
∫ t

t1

X1(τ, γ`(τ)) +X2(τ, γ`(τ))
2

dτ . (3.130)

By the uniform convergence of Xi,` to Xi, it will clearly follow that any accumulation point
γ∞ of (γ`) satisfies (3.128) if only we can show that the first integral in the right-hand side of
(3.130) converges to zero as `→∞.

To prove this, we compute, from the definition of G` :

∫ t1+ j+1
`
L

t1+ j
`
L

(
G`(τ, γ`(τ)) − X1,`(τ, γ`(τ)) +X2,`(τ, γ`(τ))

2

)
dτ

=
∫ t1+ 2j+1

2`
L

t1+ j
`
L

X1,`(τ, γ`(τ))−X2,`(τ, γ`(τ))
2

dτ (3.131)

−
∫ t1+ j+1

`
L

t1+ 2j+1
2`

L

X1,`(τ, γ`(τ))−X2,`(τ, γ`(τ))
2

dτ

=
∫ t1+ 2j+1

2`
L

t1+ j
`
L

(
∆`(τ, γ`(τ))−∆`(τ + L

2` , γ`(τ + L
2`))

)
dτ

with ∆` = 1
2(X1,` − X2,`). On the compact set [t1, t2] × B, the vector field ∆` is uniformly

continuous with a modulus of continuity that does not depend on ` ; consequently, by the uniform
Lipschitz property of γ`, we see for arbitrary ε > 0 that the norm of the last integral is less that
ε/2` as soon as ` is large enough, independently of j.

Now, the first integral in (3.130) can be decomposed into a sum of at most ` integrals like
these we just studied plus an integral over an interval of length smaller that 1/`. Since the norm
of the integrand is bounded by 2M , the norm of the last term is less than 2M/`. Summing over
j, the above estimates tell us that, for t ∈ [t1, t2] and for ` is large enough,

∫ t

t1

(
G`(τ, γ`(τ)) − X1(τ, γ`(τ)) +X2(τ, γ`(τ))

2

)
dτ ≤ ε

2
+

2M
`
.

This achieves the proof since ε > 0 was arbitrary.
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3.8 Appendix : Orbits of families of vector fields

In the proof of lemma 3.6.2 we need results from [101] on orbits5 of families of smooth vector
fields, that were recently exposed in the textbook [59, chapter II]. We recall them below, in a
slightly expanded form.

Let F be a family of smooth vector fields defined on an open subset U of Rd. For any positive
integer N and vector fields X1, . . . , XN belonging to F , given m ∈ U , consider the map F given
by

(t1, . . . , tN ) 7→ X1
t1(X2

t2(· · · (XN
tN

(m)) · · · )) (3.132)

where the standard notation Xt(x) indicates the flow of X from x at time t ; of course, F depends
on the choice of the vector fields Xj and of the point m. This map is defined on some open
connected neighborhood of the origin, hereafter denoted by dom(F ), and takes values in U .
In fact, (t1, . . . , tN ) ∈ dom(F ) if, and only if, for every j ∈ {1, . . . , N}, the solution x(τ) to
ẋ = Xj(x), with initial condition x(0) = Xj−1

tj−1
(· · · (X1

t1(m)) · · · ), exists in U for all τ ∈ [0, tj ]
(or [tj , 0] if tj < 0).

The orbit of the family F through a point m ∈ U is the set of all points that lie in the image
of F for at least one choice of the vector fields X1, . . . , XN . In words, the orbit of the family F
through m is the set of points that may be linked to m in U upon concatenating finitely many
integral curves of vector fields in the family. We shall denote by OF ,p the orbit of F through m.

Note that the definition depends on U in a slightly subtle manner : if F defines by restriction
a family of vector fields F|V on a smaller open set V ⊂ U and if m ∈ V , then

V ∩ OF ,m ⊃ OF|V ,m, (3.133)

but the inclusion is generally strict because of the requirement that the integral curves used to
construct OF|V ,m should lie entirely in V .

We turn to topological considerations. The topology of U is the usual Euclidean topology.
The topology of OF ,m as an orbit is the finest that makes all the maps F , arising from (3.132),
continuous on their respective domains of definition, the latter being endowed with the Euclidean
topology. The classical smoothness of the flow implies that each F is continuous dom(F )→ Rd,
hence the topology of OF ,m as an orbit is finer than the Euclidean topology induced by the
ambient space U . It can be strictly finer, and this is why we speak of the orbit topology, as
opposed to the induced topology.

Starting from F , one defines a larger family of vector fields PF , consisting of all the push-
forwards6 of vector fields in F through all local diffeomorphisms of the form X1

t1 ◦X2
t2 ◦ · · · ◦XN

tN
where X1, . . . , XN belong to F . That is to say, vector fields in PF are of the form(

X1
t1 ◦ · · · ◦XN

tN

)
?
X0 (3.134)

where X0, X1, . . . , XN belong to F .

5 One of the motivations in [101] was to generalize the notion of integral manifolds to vector fields that are
smooth but not real analytic. Note that the orbits of a family of real analytic vector fields actually coincide with
the maximal integral manifolds of the closure of this family under Lie brackets [101, 67, 78]. However, even if we
assume the control system (3.4) to be real analytic, integral manifolds are of no help to us because topological
conjugacy does not preserve tangency nor Lie brackets. Using orbits of families of vector fields instead is much
more efficient, because topological conjugacy does preserve integral curves.

6 Recall that the push-forward of a vector field X : V → Rd through a diffeomorphism ϕ : V → ϕ(V ) is the
vector field ϕ?X on ϕ(V ) whose flow at each time is the conjugate of the flow of X under the diffeomorphism ϕ ;
it can be defined as ϕ?X(ϕ(x)) = Dϕ(x)X(x), where Dϕ(x) is the derivative of ϕ at x ∈ V .
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Remark 3.8.1. Note that a member of PF is defined on an open set which is generally a strict
subset of U , whereas members of F are defined over the whole of U , and it is understood that a
curve γ : I → U , where I is a real interval, will be called an integral curve of Y ∈ PF only when
γ(I) is included in the domain of definition of Y .

For x ∈ U , we denote by PF (x) the subspace of Rd spanned by all the vectors Y (x), where
Y ∈ PF (x) is defined in a neighborhood of x.

Theorem 3.8.2 below, which is the central result in this appendix, describes the topological
nature of the orbits. To interpret the statement correctly, it is necessary to recall (see for instance
[99]) that an immersed sub-manifold of a manifold is a subset of the latter which is a manifold
in its own right, and is such that the inclusion map is an immersion. This allows one to naturally
identify the tangent space to an immersed sub-manifold at a given point with a linear subspace
of the tangent space to the ambient manifold at the same point. The topology of an immersed
sub-manifold is in general finer than the one induced by the ambient manifold ; when these two
topologies coincide, the sub-manifold is called embedded.

Theorem 3.8.2 (Orbit Theorem, Sussmann [101]). Let F be a family of smooth vector fields
defined on an open set U ⊂ Rd, and m be a point in U . If OF ,m denotes the orbit of F through
m, then :

(i) Endowed with the orbit topology, OF ,m has a unique differential structure that makes it
a smooth connected immersed sub-manifold of U , for which the maps (3.132) are smooth.

(ii) The tangent space to OF ,m at x ∈ OF ,m is PF (x).
(iii) There exists an open neighborhood W of m in U , and smooth local coordinates ξ : W →

(−η, η)d ⊂ Rd, with ξ(m) = 0, such that
(a) in these coordinates, W ∩ OF ,m is a product :

W ∩ OF ,m = (−η, η)q × T (3.135)

where η > 0, q is the dimension of OF ,m, and T is some subset of (−η, η)d−q containing
the origin. The orbit topology of OF ,m induces on W ∩OF ,m the product topology where
(−η, η)q is endowed with the usual Euclidean topology and T with the discrete topology.

(b) if γ : [t1, t2] → W ∩ OF ,m is an integral curve of a vector field Y ∈ PF (see remark
3.8.1), then t 7→ ξi(γ(t)), q + 1 ≤ i ≤ d, are constant mappings,

(c) the tangent space to OF ,m at each point p ∈W ∩OF ,m is spanned by the vector fields
∂/∂ξ1, . . . , ∂/∂ξq,

(d) at any point p ∈ W , the vector fields ∂/∂ξ1, . . . , ∂/∂ξq belong to the tangent space to
the orbit of F through p.

Remark 3.8.3. Another description of the product topology in point (iii) − (a) is as follows.
The connected components of W ∩ OF ,m are the sets

SW,a = (−η, η)q × {a} (3.136)

for a ∈ T , and the topology on each of these connected components is the topology induced by
the ambient Euclidean topology. In particular each SW,a is an embedded sub-manifold of U .

Proof of Theorem 3.8.2. Assertion (i) is the standard form of the orbit theorem (cf. e.g. [59,
Chapter 2, Theorem 1]), while assertion (ii) is a rephrasing of [101, Theorem 4.1, point (b)].
Assertion (iii) apparently cannot be referenced exactly in this form, but we shall deduce it from
the previous ones as follows.

By point (ii), the tangent space toOF ,m atm ∈ S is the linear span over R of Y 1(m), . . . , Y q(m),
where Y 1, . . . , Y q are q vector fields belonging to PF , defined on some neighborhood of m, and
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such that Y 1(m), . . . , Y q(m) are linearly independent (recall that q is the dimension of OF ,m).
Let us write

Y j =
(
Xj,1
tj,1
◦ · · · ◦Xj,Nj

tj,Nj

)
?
Xj,0, 1 ≤ j ≤ q,

where Xj,k ∈ F for 0 ≤ k ≤ Nj , and where the tj,k’s are real numbers for which the concatenated
flow exists, locally around m (compare (3.134)).

Since Y 1(m), . . . , Y q(m) are linearly independent, one may complement them into a basis of
Rd by adjunction of d− q independent vectors that may, without loss of generality, be regarded
as values at m of d− q smooth vector fields in U , say Y q+1, . . . , Y d. Then, the smooth map

L(ξ1, . . . , ξd) =
(
Y 1
ξ1 ◦ · · · ◦ Y q

ξq
◦ Y q+1

ξq+1
◦ · · · ◦ Y d

ξd

)
(m) (3.137)

defines a diffeomorphism from some poly-interval Iη = {(ξ1, . . . , ξd) , |ξi| < η} onto an open
neighborhood W of m in U , simply because the derivative of L is invertible at the origin as
Y 1(m), . . . , Y d(m) are linearly independent by construction. Let ξ : W → Iη denote its inverse.

By the characteristic property of push-forwards, we locally have, for 1 ≤ j ≤ q, that

Y j
ξj

= Xj,1
tj,1
◦ · · · ◦Xj,Nj

tj,Nj
◦Xj,0

ξj
◦Xj,Nj
−tj,Nj

◦ · · · ◦Xj,1
−tj,1 . (3.138)

This implies that, in (3.137), the images under L of those d-tuples sharing a common value of
ξq+1, . . . , ξd all lie in the same orbit OF ,L(0,...,0,ξq+1,...,ξd). In particular, the map

τ1, . . . , τq 7→
(
Y 1
τ1+ξ1 ◦ · · · ◦ Y q

τq+ξq
◦ Y q+1

ξq+1
◦ · · · ◦ Y d

ξd

)
(m)

is defined Πq
j=1(−η− ξj , η− ξj)→W ∩OF ,L(ξ1,...,ξd), and this map is smooth from the Euclidean

to the orbit topology by (3.138) and point (i). If we compose it with the immersive injection
JW : W ∩ OF ,L(ξ1,...,ξd) → W (keeping in mind that W ∩ OF ,L(ξ1,...,ξd) is open in OF ,L(ξ1,...,ξd)

since the orbit topology is finer than the Euclidean one), and if we subsequently apply ξ, we get
the affine map

τ1, . . . , τq 7→ (τ1 + ξ1, · · · , τq + ξq, ξq+1, · · · , ξd). (3.139)

Thus the derivative of (3.139) factors through the derivative of ξ ◦ JW at L(ξ1, . . . , ξd), which
implies (d) ; from this (c) follows, because q is the dimension of the orbit through m. If Y ∈ PF
is defined over an open subset of W , and if we write in the ξ coordinates Y (ξ) =

∑
i ai(ξ)∂/∂ξi,

then, since Y (ξ) is tangent to OF ,ξ by (ii), we deduce from (c), that the functions aq+1, . . . , ad
vanish on OF ,m, whence (b) holds.

We finally prove (a). Considering (3.137) and (3.138), a moment’s thinking will convince the
reader that W ∩ OF ,m consists exactly, in the ξ coordinates, of those (ξ1, . . . , ξd) such that(

Y q+1
ξq+1
◦ · · · ◦ Y d

ξd

)
(m) ∈ OF ,m, (3.140)

which accounts for (3.135) where T is the set of (d − q)-tuples (ξq+1, . . . , ξd) such that (3.140)
holds. To prove that the orbit topology is the product topology on (−η, η)q × T where T is
discrete, consider a map F as in (3.132), and pick t̄ = (t̄1, . . . , t̄N ) ∈ dom(F ) such that F (t̄) ∈W
(hence F (t̄) ∈ W ∩ OF ,m) ; then F is continuous at t̄ for the product topology because, for t
close enough to t̄, the values ξq+1(F (t)), . . . , ξd(F (t)) do not depend on t by (b) (moving ti means
following the flow of a vector field in PF , namely the push-forward of Xi through X1

t1 ◦· · ·◦Xi−1
ti−1

)
while ξ1(F (t)), . . . , ξq(F (t)) vary continuously with t according to the continuous dependence on
time and initial conditions of solutions to differential equations. Since this is true for all maps F ,
the orbit topology on W ∩ OF ,m is finer than the product topology. To show that it cannot be
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strictly finer, it is enough to prove that the orbit topology coincides with the Euclidean topology
on each set SW,a defined in (3.136), a basis of which consists of the sets O × {a} where O is
open in (−η, η)q. Being open for the product topology, these sets are open the orbit topology as
well by what precedes and, since OF ,m is a manifold by (i), each point (y, a) ∈ O × {a} has, in
the orbit topology, a neighborhood Ny ⊂ O×{a} which is homeomorphic to an open ball of Rq

via some coordinate map. When viewed in these coordinates, the injection Ny → O × {a} from
the orbit topology to the Euclidean topology is a continuous injective map from an open ball in
Rq into Rq, and therefore it is a homeomorphism onto its image by invariance of the domain.
As (y, a) was arbitrary in O × {a}, this shows the latter is a union of open sets for the orbit
topology, as desired.

Consider now the control system :

ẋ = f(x, u), (3.141)

with state x ∈ Rd and control u ∈ Rr, the function f being smooth on Rd × Rr. Let Ω be an
open subset of Rd×Rr and, following the notation introduced in section 3.3, put ΩRd to denote
its projection onto the first factor. In the proof of Theorem 3.5.2, we shall be concerned with
the following family of vector fields on ΩRd :

F ′ = { δfα1,α2 , α1, α2 feedbacks on Ω } , (3.142)

where feedbacks on Ω were introduced in Definition 3.3.3 and the notation δfα1,α2 was fixed in
(3.25), (3.26).

Since feedbacks are only required to be continuous, F ′ is a family of continuous but not
necessarily differentiable vector fields on ΩRd and, though the existence of solutions to differential
equations with continuous right-hand side makes it still possible to define the orbit as the
collection of endpoints of all concatenated integrations like (3.132), Theorem 3.8.2 does not
apply in this case.

To overcome this difficulty, we will consider instead of F ′ the smaller family :

F ′′ = {X ∈ F ′ , X has a flow } , (3.143)

where the sentence “X has a flow” means, as in appendix 3.7, that the Cauchy problem ẋ(t) =
X(x(t)), x(0) = x0, has a unique solution, defined for |t| < ε0 where ε0 may depend on x0,
whenever x0 lies in the domain of definition of X. Let us consider the orbit OF ′′,m of F ′′ through
m ∈ ΩRd , which is still defined as the union of images of all maps (3.132) where Xj ∈ F ′′, the
domain of each such map F being again a connected open neighborhood dom(F ) of the origin in
RN by repeated application of Lemma 3.7.1. As before, we define the orbit topology on OF ′′,m
to be the finest that makes all the maps (3.132) continuous, and since uniqueness of solutions
implies continuous dependence on initial conditions (see Lemma 3.7.1), the orbit topology is
again finer than the Euclidean topology. A priori, we know very little about OF ′′,m and its orbit
topology as Theorem 3.8.2 does not apply. However, Proposition 3.8.5 below will establish that
these notions coincide with those arising from the family F of smooth vector fields obtained by
setting :

F = { δfα1,α2 , α1, α2 smooth feedbacks on Ω }. (3.144)

Note that, from the definitions (3.142), (3.143) and (3.144), we obviously have

F ⊂ F ′′ ⊂ F ′ , (3.145)

hence the orbits of these families through a given point obey the same inclusions.
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Remark 3.8.4. It may of course happen that the family F ′ is empty because Ω admits no
feedback at all. However, if F ′ is not empty, then F is not empty either by Proposition 3.3.4.

Proposition 3.8.5. Suppose that f : Rd × Rr → Rd is smooth, and let Ω be an open subset of
Rd × Rr. Let F ′′ be defined by (3.142)-(3.143).

For any m ∈ ΩRd, the orbit OF ′′,m of F ′′ through m coincides with the orbit through m of
the family F of smooth vector fields defined by (3.144), and the topology of OF ′′,m, as an orbit
of F , coincides with its topology as an orbit of F ′′. In particular, the conclusions of Theorem
3.8.2 hold if we replace F by F ′′ and U by ΩRd.

Remark 3.8.6. With a limited amount of extra-work, it is possible to show that the orbits
of F ′ also coincide with those of F . Hence they turn out to be manifolds despite the possible
non-uniqueness of solutions to the Cauchy problem. However, (3.132) is no longer convenient to
define the orbit topology in this case because the maps F may be multiply-valued when Xj ∈ F ′,
and it is simpler to work with the family F ′′ anyway.

The proof of the proposition is based on the following lemma.

Lemma 3.8.7. For m ∈ ΩRd and X1, . . . , XN ∈ F ′′, let F : dom(F ) → ΩRd be defined by
(3.132). Fix t̄ = (t̄1, . . . , t̄N ) ∈ dom(F ) and set m = F (t̄).

Then, there is a neighborhood T of t̄ in dom(F ), with F (T ) ⊂ OF ,m, such that F : T → OF ,m
is continuous from the Euclidean topology to the orbit topology.

Assuming the lemma for a while, we first prove the proposition.

Proof of Proposition 3.8.5. We noticed already from (3.145) that the orbit of F ′′ through m
contains the orbit of F through m. To get the reverse inclusion, consider the map F defined by
(3.132) for some vector fields X1, . . . , XN belonging to F ′′. Then, observe from Lemma 3.8.7 that
F takes values in a disjoint union of orbits of F , and that it is continuous if each orbit in this union
is endowed with the orbit topology. Since dom(F ) is connected, F takes values in a single orbit,
which can be none but OF ,m. As F was arbitrary, we conclude that OF ′′,m ⊂ OF ,m and therefore
the two orbits agree as sets. Moreover, since each map F was continuous dom(F )→ OF ,m, the
orbit topology of OF ′′,m is by definition finer than the orbit topology of OF ,m ; but since it is
also coarser, by definition of the orbit topology on OF ,m, because F ⊂ F ′′, the two topologies
in turn agree as desired.

Proof of Lemma 3.8.7. Theorem 3.8.2 applied to the family F , at the point m = F (t̄), yields
an open neighborhood W of m in ΩRd and smooth local coordinates (ξ1, . . . , ξd) : W → (−η, η)d

satisfying properties (iii)−(a) to (iii)−(d) of that theorem. For ε > 0 denote by Tε the compact
poly-interval :

Tε = {t = (t1, . . . , tN ) ∈ RN , |ti − t̄i| ≤ ε} .
By Lemma 3.7.1, F is continuous dom(F ) → ΩRd and, since dom(F ) is an open neighborhood
of t in RN , we can pick ε > 0 such that

Tε ⊂ dom(F ) and F (Tε) ⊂W .

As X1, . . . , XN belong to F ′′ ⊂ F ′, we can write

X` = δfα`1,α`2
, 1 ≤ ` ≤ N

for some collection of feedbacks α`1, α`2 on Ω. From Proposition 3.3.4, there exists for each
(`, l) ∈ {1, . . . , N} × {1, 2} a sequence of smooth feedbacks on Ω, say (β`,kl )k∈N, converging to



3.8. APPENDIX : ORBITS OF FAMILIES OF VECTOR FIELDS 101

α`l uniformly on ΩRd . Subsequently, we let Y `,k denote, for 1 ≤ ` ≤ N and k ∈ N, the smooth
vector field on ΩRd

Y `,k = δf
β`,k1 ,β`,k2

.

Clearly Y `,k ∈ F and, for each `, we have that Y `,k converges to X` as k → ∞, uniformly on
compact subsets of ΩRd .

Now, pick j ∈ {1, . . . , N} and consider a N -tuple t(j) ∈ Tε of the form :

t(j) = (t̄1, . . . , t̄j−1, tj , . . . , tN ) , |t` − t̄`| ≤ ε for j ≤ ` ≤ N.

Let also 1j designate, for simplicity, the N -tuple (0, . . . , 1, . . . , 0) with zero entries except for the
j-th one which is 1. Then, for |λ| ≤ ε, we have that

t(j) + λ1j = (t̄1, . . . , t̄j−1, t̄j + λ, tj+1, . . . , tN ) ∈ Tε,

and a simple computation allows us to rewrite F (t+ λ1j) as :

F (t(j) + λ1j) = X1
t̄1
◦ · · · ◦Xj−1

t̄j−1
◦Xj

λ ◦Xj−1
−t̄j−1

◦ · · · ◦X1
−t̄1(F (t)).

Let us set
Ak(λ) = Y 1,k

t̄1
◦ · · · ◦ Y j−1,k

t̄j−1
◦ Y j,k

λ ◦ Y j−1,k
−t̄j−1

◦ · · · ◦ Y 1,k
−t̄1(F (t)).

Repeated applications of Lemmas 3.7.1 and 3.7.2 show that, for fixed j and t(j), the map λ 7→
Ak(λ) is well-defined [−ε, ε]→W as soon as the integer k is sufficiently large, and moreover that
Ak(λ) converges to F (t(j) + λ1j) as k → +∞, uniformly with respect to λ ∈ [−ε, ε]. Now, by
the characteristic property push forwards, λ 7→ Ak(λ) is an integral curve of the smooth vector
field

Zk =
(
Y 1,k
t̄1
◦ · · · ◦ Y j−1,k

t̄j−1

)
?
Y j,k ,

which is defined on a neighborhood of {F (t(j) +λ1j); |λ| ≤ ε} in W . Since Zk ∈ PF (cf. equation
(3.134)), it follows from point (iii)− (b) of Theorem 3.8.2 that, for k large enough,

ξi ◦Ak(λ) = ξi ◦Ak(0) , ∀λ ∈ [−ε, ε], i ∈ {q + 1, . . . , d}.

It is clear from the definition that Ak(0) = F (t(j)) ; hence, using the continuity of ξi and taking,
in the above equation, the limit as k → +∞, we get

ξi ◦ F (t(j) + λ1j) = ξi ◦ F (t(j)), ∀λ ∈ [−ε, ε], i ∈ {q + 1, . . . , d}. (3.146)

Since ξq+1 ◦ F (t̄) = · · · = ξd ◦ F (t̄) = 0 by definition of W , successive applications of (3.146) for
j = N, . . . , 1 lead us to the conclusion that

ξq+1 ◦ F (t) = · · · = ξd ◦ F (t) = 0, ∀t ∈ Tε . (3.147)

Equation (3.147) means that, in the ξ-coordinates, F (Tε) ⊂ (−η, η)q × {0}. Hence, from the
local description of the orbits in (3.135) (where m is to be replaced by m), we deduce that
F (Tε) ⊂ OF ,m. Actually, with the notations of (3.136), we even get the stronger conclusion that

F (Tε) ⊂ SW,0

which achieves the proof of the lemma, with T = Tε, because the orbit topology on SW,0 is the
Euclidean topology by Remark 3.8.3.
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Abstract

This note deals with “Grobman-Hartman like” theorems for control systems (or in other
words under-determined systems of ordinary differential equations). The main results (proved
elsewhere) is that when a control system is topologically conjugate to a linear controllable
one, then it is also “almost” differentiably conjugate. We focus on the meaning of this result,
and on an open question resulting from it.

4.1 Introduction

In this note, we discuss the local behavior of a nonlinear control system

ẋ = f(x, u) , x ∈ Rn , u ∈ Rm , (4.1)

say around (0, 0) ∈ Rn+m. For general control systems (as opposed e.g. to affine in the control),
“local” has to be understood with respect to both state and control.

The first reaction when dealing with local properties is to compute the linear approximation
of (4.1). When this linear control system happens to be controllable, all the local usual control
objectives can be met using linear control, based on the linear approximation. For instance,
a linear control that asymptotically stabilizes the linear approximation will also stabilize the
nonlinear system, locally ; minimizing a quadratic cost can also be achieved up to first order
based on the linear approximation only. Hence, the linear approximation is a good enough
model for the purpose of designing controllers achieving a desired behavior for small states and
controls. We believe that all control engineers or control theorists agree on this statement, arising
from practice, although we would welcome some contradiction.

Rephrasing the above statement without reference to control objectives leads to an imprecise
statement, grounded mostly on some necessarily subjective intuition, and that should rather be
taken as an opening sentence to launch a debate than as a conjecture :{

nothing distinguishes qualitatively the behavior of a nonlinear control
system from the one of its linear approximation if the latter is controllable.

(4.2)
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It is natural to try to formalize this statement, as a prerequisite to any proper theory of nonlinear
modeling and identification of control systems, in a very preliminary manner since it only deals
with local phenomena. A nice way to turn that belief into a sound, and correct, assertion would
be to find some equivalence relation between control systems (or models) that preserves at least
“qualitative” behavior, and for which these two systems (a nonlinear system and its controllable
linear approximation) are in general equivalent.

We assume controllability of the linear approximation. When this fails none of the above
is correct, at least in the most common case when the nonlinear system is itself controllable.
Indeed, (non-)controllability is a qualitative phenomenon : for instance, feeding a linear non
controllable system with “random” inputs, one observes that the state is confined in leafs of
positive codimension, while for a controllable system the whole state space is explored.

To enlighten the discussion on local behavior of control systems, let us recall the situation
for ordinary differential equations ẋ = F (x) (particular case of (4.1) where the control u has
dimension 0) :

– If F (0) 6= 0, the “flow-box theorem” (see e.g. [5, §7]), gives local coordinates, smooth if F

is smooth, in which F is of the form

 1
0...
0

.

– If F (0) = 0 and the square matrix F ′(0) has no pure imaginary eigenvalue (hyperbolic
equilibrium), then Grobman-Hartman Theorem [47, Theorem IX-7.1] tells us that the flow
of the differential equation is locally conjugate to the flow of its linear approximation via a
homeomorphism that need not, in general, be smooth if F is smooth (and in fact smooth
conjugation requires more assumption, resonances are obstructions to it) (see e.g. [6, §22]).

– If F (0) = 0 and the square matrix F ′(0) has some pure imaginary eigenvalue, then the
situation is more intricate even locally, namely the phase portrait of the nonlinear dy-
namical system ẋ = F (x) can be very different locally from the one of a linear system.
This case is of high interest in the theory of dynamical systems, but can be considered
as “degenerate”, in the same way as non controllability of the linear approximation for
control systems.

Since conjugation of flows does preserve qualitative phenomena like the overall aspect of the
phase portrait, one can indeed assert that, locally around all points except non hyperbolic
equilibria, a differentiable dynamical system “behaves like” a linear one, and this is translated by
conjugation via a homeomorphism, although conjugation via a smooth diffeomorphism preserves
some more subtle local invariants (resonances, etc...).

Coming back to control systems, first of all, the equivalent of conjugation by a smooth change
of coordinates is (smooth) feedback equivalence, whose study was initiated in [15], see a survey in
[54]. In fact this is conjugation via a smooth diffeomorphism on the state and control, forced to
have a triangular structure (see Proposition 4.2.5 below). The conditions under which a control
system (4.1) is smoothly feedback equivalent to a linear controllable one are well known [57, 50]
(and contrary to the case of ordinary differential equations, they are very simple), but they reveal
that very few nonlinear systems are locally feedback equivalent to a linear one, even when the
linear approximation is controllable. This remark and the review of the situation for ordinary
differential equations naturally brings about the question whether for control systems, relaxing
the regularity of the conjugating maps, i.e. considering conjugacy by homeomorphisms instead
of smooth diffeomorphisms would make more systems equivalent to a linear one.

After recalling some basic facts in section 4.2, we give in section 4.3 an essentially negative
answer to the question evoked above, based on quoting a result from Chapter 3, that topological
conjugacy to a linear controllable system implies conjugacy by “almost” smooth feedback (but
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the gap is really small). Section 4.4 recalls, also from Chapter 3, a technical open question
that would allow a nicer result and a nicer description of that “almost” smooth conjugacy, and
finally section 4.5 extends the discussion of the results from section 4.3, their implications, and
the questions they raise in nonlinear modeling.

4.2 Preliminaries on equivalence of control systems

4.2.1 Definitions

Consider two smooth control systems with state x (resp. z) and input u (resp. v) :

ẋ = f(x, u) , x ∈ Rn , u ∈ Rm , (4.3)
ż = g(z, v) , z ∈ Rn′ , v ∈ Rm′ , (4.4)

or, expanded in coordinates,

ẋi = fi(x1, . . . , xn, u1, . . . , um), żj = gj(z1, . . . , zn′ , v1, . . . , vm′),

1 ≤ i ≤ n, 1 ≤ j ≤ n′, with the fi’s and gi’s some smooth (i.e. C∞) maps.
We assume that f and g are defined respectively on the whole of Rn × Rm and Rn′ × Rm′

because it simplifies many of the statements below ; this is actually no loss of generality to us for
all the results we prove are local with respect to x, u, z, v, so that f and g can be extended using
partitions of unity outside some neighborhoods of the arguments under consideration without
affecting the results.

Definition 4.2.1. By a solution of (4.3) that remains in an open set Ω ⊂ Rn+m, we mean a
mapping γ defined on a real interval :

γ : I → Ω
t 7→ γ(t) = ( γI(t) , γII(t) ) ,

(4.5)

with γI(t) ∈ Rn and γII(t) ∈ Rm, such that γ is measurable, locally bounded, γI is absolutely
continuous and, whenever [T1, T2] ⊂ I, we have :

γI(T2) − γI(T1) =
∫ T2

T1

f( γI(t) , γII(t) ) dt .

Solutions of (4.4) that remain in Ω′ ⊂ Rn′+m′ are likewise defined to be mappings γ′ : I → Ω′

having the corresponding properties with respect to g.
We now define the notion of conjugacy for control systems.

Definition 4.2.2. Let

χ : Ω → Ω′

(x, u) 7→ χ(x, u) = (χI(x, u) , χII(x, u) )
(4.6)

be a bijective mapping between two open subsets of Rn+m and Rn′+m′ respectively. We say that
χ conjugates γ : I → Ω and γ′ : I → Ω′ if and only if γ′ = χ ◦ γ.

We say that χ conjugates systems (4.3) and (4.4) if, for any real interval I, a map γ : I → Ω
is a solution of (4.3) that remains in Ω if, and only if, χ ◦ γ is a solution of (4.4) that remains
in Ω′.

We say that systems (4.3) and (4.4) are locally topologically conjugate at (0, 0) if we can
chose Ω and Ω′ to be neighborhoods of the origin and χ a homeomorphism. We say that they are
locally smoothly conjugate if, in addition, χ and χ−1 are smooth. Here the word smooth means
C∞.
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In case there is no control, so that m = m′ = 0 and we omit u and χII, Definition 4.2.2
coincides with the classical notion of local topological conjugacy for non controlled differential
equations, and may serve as a definition in this case too. Let us write more formally the classical
local results on ordinary differential equations that we recalled in the introduction :

Theorem 4.2.3 (Flow-box theorem). If m = 0 and f(0) 6= 0, system (4.3) is locally smoothly
conjugate at 0 to the linear system ż1 = 1, ż2 = · · · = żn = 0.

Theorem 4.2.4 (The Grobman-Hartman theorem). If m = 0, f(0) = 0, and f ′(0) has no pure
imaginary eigenvalue, system (4.3) is locally topologically conjugate at 0 to the linear system
ż = f ′(0)z.

From now on, we consider control system, i.e. we assume m ≥ 1.

4.2.2 Some properties of conjugating maps

It turns out that conjugating homeomorphisms preserve the dimension of both the state and
the control and must have a triangular structure :

Proposition 4.2.5. With the notations of Definition 4.2.2, suppose that (4.3) and (4.4) are
topologically conjugate via a homeomorphism χ : Ω→ Ω′. Then n = n′, m = m′, and χI depends
only on x :

χ(x, u) = (χI(x) , χII(x, u) ) . (4.7)

Moreover, χI : ΩRn → Ω′Rn is a homeomorphism.

Proof. Let x̄, ū, ū′ be such that (x̄, ū) and (x̄, ū′) belong to Ω. Let further x(t) be the solution
to (4.3) with x(0) = x̄ and u(t) = ū for t ≤ 0 and u(t) = ū′ for t > 0. By conjugacy, z(t) =
χI(x(t), u(t)) is a solution to (4.4) with v given by v(t) = χII(x(t), u(t)), for t ∈ (−ε, ε) and some
ε > 0. In particular χI(x(t), u(t)) is continuous in t so its values at 0+ and 0− are equal. Hence
χI(x̄, ū) = χI(x̄, ū′) so that χI : ΩRn → Ω′Rn′ is well defined and continuous. Similarly,

(
χ−1

)
I

induces a continuous inverse Ω′Rn′ → ΩRn .

In view of Proposition 4.2.5, we will only consider conjugacy between systems having the
same number of states and inputs. Hence the distinction between (n,m) and (n′,m′) from now
on disappears.

Taking into account the triangular structure of χ in Proposition 4.2.5, one may describe
conjugation as the result of changing coordinates in the state-space (by setting z = χI(x)) and
feeding the system with a function both of the state and of a new control variable v (by setting
u = (χ−1)II(z, v)), in such a way that the correspondence (x, u) 7→ (z, v) is invertible. In the
language of control, this is known as a static feedback transformation, and two conjugate systems
in the sense of Definition 4.2.2 would be termed equivalent under static feedback. This notion
has received much attention, although only in the differentiable setting (i.e. when the triangular
transformation χ is a diffeomorphism), see e.g. [15, 54].

4.2.3 Linearization

Recall that f is assumed to be smooth (of class C∞). Let us make a formal definition of
topological and smooth linearizability.

Definition 4.2.6. The system (4.3) is said to be locally topologically linearizable at (x̄, ū) ∈
Rn+m if it is locally topologically conjugate, in the sense of Definition 4.2.2, to a linear control-
lable system ż = Az +Bv.



4.3. MAIN RESULT ON TOPOLOGICAL LINEARIZATION 107

Definition 4.2.7. The system (4.3) is said to be locally smoothly linearizable at (x̄, ū) ∈ Rn+m

if it is locally smoothly conjugate, in the sense of Definition 4.2.2, to a linear controllable system
ż = Az +Bv.

Explicit necessary and sufficient conditions for a nonlinear system to be locally smoothly
linearizable at a point were given in [57, 50], and also in [103] (the previous two references dealt
with control affine systems only), and is recalled in many nonlinear control textbooks. Without
mentioning these conditions, let us simply say that they require a certain number of distributions
to be involutive, and that this is a very non-generic property.

4.3 Main result on topological linearization

Let us now give a —basically negative— answer to the natural question raised at the end
of section 4.1 : for control systems, removing the differentiability requirement on the conjugacy
does not allow many more control systems to be (topologically) conjugate to a linear controllable
system, contrary to the situation of ordinary differential equations (without control), (see section
4.1 and Theorems 4.2.3 and 4.2.4). Recall that f is assumed to be smooth (of class C∞).

Theorem 4.3.1 (from Chapter 3). System (4.3) is locally topologically linearizable at (0, 0) if,
and only if there exists an open neighborhood Ω̃ of (0, 0) in Rn+m and a homeomorphism

χ̃ : Ω̃ → Ω̃′

(x, u) 7→ χ̃(x, u) = ( χ̃I(x) , χ̃II(x, u) )
(4.8)

(possibly different from the homeomorphism defining topological linearizability of the system)
such that

1. χ̃ conjugates system (4.3) to a linear controllable system ż = Az + Bv, in the sense of
Definition 4.2.2,

2. χ̃I : Ω̃n → Ω̃′n defines a smooth (C∞) diffeomorphism.

This does not state that topological linearizability implies smooth linearizability for χ̃ need
not be a diffeomorphism even though χ̃I is. In Chapter 3, the conclusion of the theorem is called
quasi smooth linearizability. A thorough discussion as well as the proof of Theorem 4.3.1 is given
there. Let us recall here what is necessary to make this theorem clearer.

Proposition 4.3.2. The conclusions of Theorem 4.3.1 imply that

1. Bχ̃II : Ω̃→ Rm is smooth,

2. the rank of B is the maximum rank of ∂f/∂u in small neighborhoods of the origin.

Proof. Computing ż at the origin of a trajectory starting from (x, u) ∈ Ω implies, by the smooth-
ness of χ̃I,

∂χ̃I

∂x
(x) f(x, u) = A χ̃I(x) + B χ̃II(x, u) . (4.9)

This gives an obviously smooth expression of Bχ̃II. The second point is proved using Corol-
lary 4.3.51 at points close to the origin where the rank of ∂f/∂u is maximum, and hence locally
constant.

If B is left invertible (i.e. has rank m), the first point implies that χ̃II itself is smooth, and
we have the following immediate corollary :

1 The proof of Corollary 4.3.5 does not use Proposition 4.3.2.
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Corollary 4.3.3. If there are points arbitrarily close to (0, 0) where the rank of ∂f/∂u is m
(i.e. where this linear map is injective), then χ̃ in Theorem 4.3.1 is a smooth mapping.

Of course if B has rank strictly less that m, χ̃II need not be smooth. This is discussed in
section 4.4.

Note that the assumption of Corollary 4.3.3 is very “reasonable” : for instance for single input
systems, the only case where it is not met is when f does not depend on u in a neighborhood
of (0, 0), but then the system cannot be topologically conjugate to a controllable linear system :

Corollary 4.3.4. If m = 1, i.e. if (4.3) is a single input system, then χ̃ in Theorem 4.3.1 is a
smooth mapping.

This is however still not “smooth linearizability” because even though χ is smooth, its inverse
might fail to be differentiable at the point of interest. The simplest example is the system

ẋ = u3 , x ∈ R , u ∈ R , (4.10)

clearly conjugate by (z, v) = χ(x, u) = (x, u3) to the linear controllable system ż = v. Obviously,
χ is smooth, χ−1 is continuous, χI is the identity smooth diffeomorphism, but the inverse of χ
itself fails to be differentiable at the origin. In fact, no smooth diffeomorphism can conjugate
these two systems. This can easily be proved but is also a consequence of the necessity part of
the following result that tells us exactly when smooth linearizability is implied by topological
linearizability :

Corollary 4.3.5. When f is of class C∞, system (4.3) is locally smoothly linearizable at (0, 0)
if and only if it is locally topologically linearizable at (0, 0) and the rank of ∂f/∂u is constant
around (0, 0).

Proof. Smooth linearizability is a particular case of topological linearizability, and it implies
constant rank of ∂f/∂u because differentiability of the smooth diffeomorphism and its inverse
allow one to get a formula for ∂f/∂u(x, u).

Let us prove the converse. Suppose that the rank of ∂f/∂u is r ≤ m in a neighborhood
of (0, 0) and that system (4.3) is locally topologically linearizable at (0, 0). From Theorem
4.3.1, this implies that there exists a triangular homeomorphism (x, u) 7→ (z, v) = χ̃(x, u) =
(χ̃I(x), χ̃II(x, u)) that conjugates system (4.3) to a linear controllable system ż = Az +Bv with
the additional property that χ̃I defines a smooth diffeomorphism from a neighborhood of 0 ∈ Rn

onto its image.
Let r′ ≤ m be the rank of the matrix B. There are invertible n× n and m×m matrices P

and Q such that

Bc = PBQ =

 Ir′

0

0

0

 (4.11)

where Ir′ is the r′ × r′ identity matrix.
Computing ż at the origin of a trajectory starting from (x, u) ∈ Ω implies (4.9) by the

smoothness of χ̃I. Hence the map BcQ
−1χ̃II is smooth where it is defined, and differentiating

(4.9) with respect to u yields :

P
∂χ̃I

∂x
(x)

∂f

∂u
(x, u) =

∂(BcQ−1χ̃II)
∂u

(x, u) .
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Since P ∂eχI
∂x (x) is invertible and the rank of ∂f/∂u is r, both sides have constant rank r. This

implies r ≤ r′. This also implies that the mapping Rn+m → Rn+r′ defined by

(x, u) 7→ (x , BcQ−1χ̃II(x, u) ) ,

has a constant rank n+ r in a neighborhood of the origin, hence, by the constant rank theorem
applied to this mapping, there is a r×m matrix K of rank r (selects r lines that are independent

among the m lines of
∂(BcQ−1 eχII)

∂u (x, u)), a neighborhood Ω of (0, 0) in Rn+m, two smooth map-
pings α : Rn+r → Rn+m and β : Rn+m → Rr′−r (in fact they only need to be defined in suitable
neighborhoods of the origin) such that χ̃ is defined on Ω, and

BcQ
−1χ̃II(x, u) =

(
α( x , KBcQ−1χ̃II(x, u) )

0

)
(4.12)

for all (x, u) ∈ Ω and

(x, u) 7→ (x , KBcQ−1χ̃II(x, u) , β(x, u) ) , (4.13)

defines a smooth diffeomorphism from Ω onto its image. This implies that r = r′ because from
(4.12, r < r′ would prevent χ̃ from being one-to-one. Hence K can be taken the identity matrix.
Define ˜̃χ : Ω→ Rn+m by ˜̃χ = L ◦ ψ with

ψ(x, u) = (Pχ̃I(x) , KBcQ−1χ̃II(x, u) , β(x, u) )

and L(z, v) = (P−1z,Q−1v). ψ is a smooth diffeomorphism because (4.13) is one, and L is
obviously a (linear) smooth diffeomorphism. Setting (z̃, ṽ) = ˜̃χ(x, u) conjugates system (4.3) to
˙̃z = Az̃ +Bṽ.

4.4 An open question

It is a reasonable question to ask whether the conclusion of Corollary 4.3.3 holds in general,
namely whether Theorem 4.3.1 can be strengthened so as to state that χ̃ is, on top of its other
properties, a smooth mapping (when the rank of ∂f/∂u is not locally constant, χ̃ would fail to
be be differentiable, from the necessity part of Corollary 4.3.5).

Let us examine the case where the assumptions of Corollaries 4.3.3, 4.3.4 and 4.3.5 fail (these
three corollaries already state the desired conclusion), namely the case of systems with m ≤ 2
controls where the rank of ∂f/∂u is everywhere strictly smaller than m, studied locally around a
point where this rank is not constant (i.e. the rank at the point is strictly less than the maximum
rank in arbitrary small neighborhoods of this point, itself strictly smaller than m.

The smallest dimensions where this occurs is n = 1, m = 2, i.e. systems ẋ = f(x, u1, u2)
with x, u1 and u2 scalar. In order to state our open question in the smallest dimension possible,
let us drop the dependence on the right-hand side on x and consider systems

ẋ = a(u1, u2) , x ∈ R , u = (u1, u2) ∈ R2 , (4.14)

where a : R2 → R is smooth. Let us assume that this system is locally topologically linearizable
around (x, u) = (0, 0, 0). The only canonical controllable linear system with one state z ∈ R and
two controls (v1, v2) ∈ R2 is ż = v1, hence local topological linearizability means existence of a
homeomorphism

χ : (x, u1, u2) 7→ (z, v1, v2) = (χ1(x) , χ2(x, u1, u2) , χ3(x, u1, u2) ) (4.15)
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(in the terms of Definition 4.2.6, χI is χ1 and χII is (χ2, χ3)) that conjugates (4.14) to the linear
system ż = v1. From Theorem 4.3.1, this implies existence of another homeomorphism χ̃ of the
same triangular form, that we denote by χ instead of χ̃, such that χ1 is a smooth diffeomorphism
(from a real interval containing zero onto an open interval) and χ2 is a smooth mapping from
an open neighborhood of the origin in R3 to R, while our results do not grant that χ3 has any
more regularity than continuity. In fact the conjugation reads

∂χ1

∂x
(x)a(u1, u2) = χ2(x, u1, u2). (4.16)

This implies in particular that χ2 does not depend on x, and then one can replace v2 =
χ3(x, u1, u2) with v2 = χ3(0, u1, u2) without changing the conjugating property. Composing χ
given by (4.15) with (z, v1, v2) 7→ (χ−1

1 (z), ∂χ1

∂x (χ−1
1 (z))−1v1, v2), one finally gets a conjugating

homeomorphism of the form

(x, u1, u2) 7→ (x , a(u1, u2) , β(u1, u2) ) (4.17)

where β(u1, u2) = χ3(0, u1, u2). Hence local topological linearizability amounts to existence of a
continuous mapping β from an open neighborhood of the origin in R2 to R such that (u1, u2) 7→
(a(u1, u2), β(u1, u2)) defines a homeomorphism from a neighborhood of the origin in R2 onto its
image (we just proved it is necessary, but conversely, it makes (4.17) a local homeomorphism,
that obviously conjugates (4.14) to ż = v1). Similarly, conjugacy via a homeomorphism that is
a smooth map amounts to existence of a smooth mapping having the same property. Hence the
question whether χ̃ can be taken a smooth mapping in Theorem 4.3.1 reduces to the following

Open question 4.4.1. Let a and β be two mappings ] − ε, ε[ 2→ R, ε > 0, such that a is
smooth, β is continuous, and (u1, u2) 7→ (a(u1, u2), β(u1, u2)) defines a homeomorphism from
]− ε, ε[ 2 onto its image. Does there exist a smooth mapping b : ]− ε′, ε′[ 2→ R, 0 < ε′ < ε, such
that (u1, u2) 7→ (a(u1, u2), b(u1, u2)) defines a homeomorphism from ]− ε′, ε′[ 2 onto its image ?

This question in differential topology can be posed in higher dimension of course, see below.
It is of interest in its own right and seems to have no answer so far, even for p = q = 1.

Open question 4.4.2. Let O be a neighborhood of the origin in Rp+q and F : O → Rp a smooth
map. Suppose there is a continuous map G : O → Rq such that F ×G : O → Rp × Rq is a local
homeomorphism at 0.

Does there exist another neighborhood of the origin O′ ⊂ O and a smooth mapping H : O′ →
Rq such that F ×H : O′ → Rp × Rq is again a local homeomorphism at 0 ?

4.5 Implications in Control Theory

Let us come back to the discussion we started in the Introduction. Consider a control system
(4.1), assume for simplicity that we work around an equilibrium, i.e. f(0, 0) = 0, and let us write
its linear approximation, i.e.

f(x, u) = Ax + Bu + F (x, u) (4.18)

with F (0, 0) =
∂F

∂x
(0, 0) =

∂F

∂u
(0, 0) = 0 , (4.19)

so that the nonlinear system (4.1) reads

ẋ = Ax + Bu + F (x, u) . (4.20)
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From the remarks made in the introduction, the relevant situation is the one where the linear
system

ż = Az + Bv (4.21)

is controllable. Let us assume slightly more to rule out the pathologies described in the previous
section. The additional assumption is very mild and is, for instance, always true when the
constant n × m matrix B has rank m ; it is implied by linear controllability for single input
systems.

Assumption 4.5.1. The pair (A,B) is controllable and the rank of
∂F

∂u
(x, u) is equal to the

rank of B for small (x, u).

The question raised in the introduction was the one of finding a reasonable equivalence
relation that would make the two systems (4.20) and (4.21) locally equivalent. Comparing the
situation of ordinary differential equations (without control), a candidate was local topological
conjugacy as in Definitions 4.2.2 and 4.2.6, and if that candidate was successful, we would have
a result making precise the vague statement (4.2).

Corollary 4.3.5 implies that, for A, B and F satisfying Assumption 4.5.1, systems (4.20) and
(4.21) are locally topologically conjugate if and only if they are locally smoothly conjugate, and
it is known from [57, 50] that this is false for a generic F , even satisfying (4.19). This discards
topological conjugacy as a candidate for the above mentioned equivalence relation, but this does
not contradict the basic belief behind statement (4.2).

A way to contradict that statement would be to find at least one example satisfying the
assumption, but where the nonlinear system (4.20) displays some local “qualitative” phenomenon
that do not occur for the linear system (4.21). In the qualitative theory of dynamical systems
(without control), the phase portrait gives a picture of the behavior, on which phenomena like
attractors, invariant set, (stable) closed orbits can just be “seen”. A control system is more
complex : it describes how the behavior of the state (at least in the state space representation)
is linked to the control. It is not very clear what a qualitative phenomenon should be for a
control system. The least to require is that it be invariant by topological conjugacy as defined
here. In the introduction, we pointed out that (non-)controllability is a qualitative property, but
it is of no help here since (4.2) only refers to controllable systems.

We do believe that clarifying the status of a statement like (4.2) is very relevant to control
theory and modeling. Our negative results (section 4.3) say that topological conjugacy is not
the right tool to answer this. A looser equivalence could be a way to state (4.2) properly. It
could also be that the intuition behind (4.2) is totally wrong and that some nonlinearities F
allow system (4.20) to display some qualitative phenomena locally that cannot occur on a linear
system (4.21).
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Abstract. If two control systems on manifolds of the same dimension are dynamic
equivalent, we prove that either they are static equivalent –i.e. equivalent via a clas-
sical diffeomorphism– or they are both ruled ; for systems of different dimensions, the
one of higher dimension must be ruled. A ruled system is one whose equations define
at each point in the state manifold, a ruled submanifold of the tangent space. Dyna-
mic equivalence is also known as equivalence by endogenous dynamic feedback, or by
a Lie-Bäcklund transformation when control systems are viewed as underdetermined
systems of ordinary differential equations ; it is very close to absolute equivalence
for Pfaffian systems. It was already known that a differentially flat system must be
ruled ; this was a particular case of the present result, in which one of the systems
was assumed to be “trivial” (or linear controllable).

5.1 Introduction

We consider time-invariant control systems, or underdetermined systems of ordinary diffe-
rential equations (ODEs) where the independent variable is time. Static equivalence refers to
equivalence via a diffeomorphism in the variables of the equation, or in the state and control
variables, with a triangular structure that induces a diffeomorphism (preserving time) in the
state variables too. It is also known as “feedback equivalence”. Dynamic equivalence refers to
equivalence via invertible transformations in jet spaces that do not induce any diffeomorphism in
a finite number of variables, except when it coincides with static equivalence ; these transforma-
tions are also known as endogenous dynamic feedback [68, 37], or Lie-Bäcklund transformations
([1, 37] and Chapter 6), although this terminology is more common for systems of partial dif-
ferential equations (PDEs) ; dynamic equivalence is also very close to absolute equivalence for
Pfaffian systems [19, 93, 94].

The literature on classification and invariants for static equivalence is too large to be quoted
here ; let us only recall that, as evidenced by all detailed studies and mentioned in [102], each
equivalence class (within control systems on the same manifold, or germs of control systems) is
very very thin, indeed it has infinite co-dimension except in trivial cases. Since dynamic equiva-
lence is a priori more general, it is natural to ask how more general it is. Systems on manifolds
of different dimension may be dynamic equivalent, but not static equivalent. Restricting our at-
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tention to systems on the same manifold and considering dynamic equivalence instead of static,
how bigger are the equivalence classes ?

The literature on dynamic feedback linearization [53, 23], differential flatness [37, 68], or
absolute equivalence [93] tends to describe the classes containing linear controllable systems or
“trivial” systems. The authors of [37, 68, 93] made the link with deep differential geometric
questions dating back to [44, 19, 48] ; see [7] for a recent overview. Despite these efforts, no
characterization is available except for systems with one control, i.e. whose general solution
depends on one function of one variable ; there are many systems that one suspects to be non-
flat –i.e. dynamic equivalent to no trivial system– while no proof is available, see the remark
on (5.23) in Section 5.4.1. There is however one powerful necessary condition [88, 96] : a flat
system must be ruled, i.e. its equations must define a ruled submanifold in each tangent space.
As pointed out in [88], this proves that the equivalence class of linear systems for dynamic
equivalence, although bigger than for static equivalence, still has infinite co-dimension.

Deciding whether two general systems are dynamic equivalent is at least as difficult. There is
no method to prove that two systems are not dynamic equivalent. The contribution of this paper
is a necessary condition for two systems to be dynamic equivalent, that generalizes [88, 96] : if
they live on manifolds of the same dimension, they must be either both ruled or static equivalent ;
if not, the one of higher dimension must be ruled. Besides being useful to prove that some pairs
of systems are not dynamic equivalent, it also implies that “generic” equivalence classes for
dynamic equivalence are the same as for static equivalence.

Outline Notations on jet bundles and differential operators are recalled in Section 5.2 ; the
notions of systems, ruled systems, dynamic and static equivalence are precisely defined in Sec-
tion 5.3. Our main result is stated and commented in Section 5.4, and proved in Section 5.5.

5.2 Miscellaneous notations

Let M be an n-dimensional manifold, either C∞ (infinitely differentiable) or Cω (real analytic).

5.2.1 Jet bundles

Using the notations and definitions of [43, Chapter II, §2], Jk(R,M) denotes the kth jet
bundle of maps R → M . It is a bundle both over R and over M . If (x1, . . . , xn) is a system of
coordinates on an open subset of M , coordinates on the lift of this open subset are given by
t, x1, . . . , xn, ẋ1, . . . , ẋn, · · · , (x1)(k), . . . , (xn)(k) where t is the projection on R.

As an additive group, R acts on Jk(R,M) by translation of the t-component ; the quotient
by this action is well defined and we denote it by

Jk(M) = Jk(R,M)
/

R . (5.1)

Since we only study time-invariant systems, we prefer to work with Jk(M). Quotienting indeed
drops the t information : local coordinates on Jk(M) are given by x1, . . . , xn, ẋ1, . . . , ẋn, · · · ,
(x1)(k), . . . , (xn)(k) ; for short, we write x, ẋ, . . . , x(k). For ` < k, there is a canonical projection

πk,` : Jk(M)→ J `(M) (5.2)

that makes Jk(M) a bundle over J `(M) ; in particular it is a bundle over M = J0(M) and over
TM = J1(M). In coordinates,

πk,`(x, ẋ, . . . , x(`), . . . , x(k)) = (x, ẋ, . . . , x(`)) .
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Notation To a subset Ω ⊂ Jk(M), we associate, for all `, a subset Ω` ⊂ J `(M) in the following
manner (obviously, Ωk = Ω) :

Ω` =
{
πk,`(Ω) if ` ≤ k,
π`,k

−1(Ω) if ` ≥ k. (5.3)

5.2.2 The kth jet of a smooth (C∞) map x(.) : I → M

With I ⊂ R a time interval, it is a smooth map jk(x(.) ) : I → Jk(M) (see again [43]) ; in
coordinates,

jk(x(.) ) (t) = (x(t), ẋ(t), ẍ(t), . . . , x(k)(t)) .

By a smooth map whose kth jet remains in Ω, for some Ω ⊂ Jk(M), we mean a smooth
x(.) : I →M such that jk(x(.) )(t) ∈ Ω for all t in I.

5.2.3 Differential operators

If Ω is an open subset of Jk(M), and M ′ is a manifold of dimension n′, a smooth (C∞ or
Cω) map Φ : Ω→M ′ defines the smooth differential operator of order1 k

DkΦ = Φ ◦ jk . (5.4)

Obviously, DkΦ sends smooth maps I →M whose kth jet remains in Ω to smooth maps I →M ′.
In coordinates, the image of t 7→ x(t) is t 7→ Φ(x(t), ẋ(t), ẍ(t), . . . , x(k)(t)). Note that we do not
require that k be minimal, so Φ might not depend on x(k)

We call jr ◦ DkΦ the rth prolongation of the differential operator DkΦ ; it sends smooth maps
I → M whose kth jet remains in Ω to smooth maps I → Jr(M ′) ; it is indeed the differential
operator Dk+r

Φ[r] , of order k + r, with Φ[r] the unique smooth map πk+r,k
−1(Ω) → Jr(M ′) such

that
jr ◦ Φ ◦ jk = Φ[r] ◦ jk+r . (5.5)

We call Φ[r] the rth prolongation of Φ. One has πr,0 ◦ Φ[r] = Φ ◦ πk+r,k and more generally, for
s < r,

πr,s ◦ Φ[r] = Φ[s] ◦ πk+r,k+s . (5.6)

5.3 Systems and equivalence

5.3.1 Systems

Definition 5.3.1. A C∞ or Cω regular system with m controls on a smooth manifold M is a
C∞ or Cω sub-bundle Σ of the tangent bundle TM

Σ
i
↪→ TM
π↘ ↓

M

(5.7)

with fiber Υ, a C∞ or Cω manifold of dimension m (e.g. an open subset of Rm). The velocity
set at a point x ∈M is the fiber Σx = π−1({x}), a submanifold of TxM diffeomorphic to Υ.

1 “Of order no larger than k” would be more accurate : if Φ does not depend on kth derivatives, the order in
the usual sense would be smaller than k. See for instance Ψ in example (5.22).
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Definition 5.3.2 (Solutions of a system). A solution of system Σ on the real interval I is a
smooth (C∞) x(.) : I →M such that j1(x(.))(t) ∈ Σ for all t ∈ I.

Although a general solution of a system need not be smooth, we only consider smooth solu-
tions. They form a rich enough class in the sense that systems are fully characterized by their
set of smooth solutions.

Locally, one may write “explicit” equations of Σ in the following form. Of course there are
many choices of coordinates and the map f depends on this choice.

Proposition 5.3.3. For each ξ ∈ Σ, with Σ ↪→ TM a regular system (5.7), there is
– an open neighborhood U of ξ in TM , U0 its projection on M ,
– a system of local coordinates (xI, xII) on U0, with xI a block of dimension n−m and xII of

dimension m,
– an open subset U of Rn+m and a smooth (C∞ or Cω) map f : U → Rn−m,

such that the equation of Σ ∩ U in these coordinates is

ẋI = f(xI, xII, ẋII) , (xI, xII, ẋII) ∈ U . (5.8)
Proof. Consequence of the implicit function theorem.

Control systems A more usual representation of a system with m controls is

ẋ = F (x, u) , x ∈M , u ∈ B , (5.9)

with B an open subset of Rm and F : M ×B → TM smooth enough. It can be brought locally,
in block coordinates (xI, xII), to the form

ẋI = f(xI, xII, u) , ẋII = u (5.10)

modulo a static feedback on u, at least around nonsingular points (x, u) where

rank
∂F

∂u
(x, u) = m . (5.11)

Equation (5.8) can be obtained by eliminating the control u in (5.10).
If (5.11) holds, (5.9) defines a system in the sense of Definition 5.3.1. All results on systems

in that sense may easily be translated to control systems (5.9).

Implicit systems of ODEs A smooth system of n − m ODEs on M : R(x, ẋ) = 0 with
R : TM → Rn−m also defines a system in the sense of Definition 5.3.1 if it is nonsingular, i.e.
rank∂R∂ẋ (x, ẋ) = n−m.

Singularities With the above rank assumptions, or the one that Σ is a sub-bundle in Defi-
nition 5.3.1, we carefully avoid singular systems. This paper does not apply to singular control
systems or singular implicit systems of ODEs.

Prolongations of Σ

For integers k ≥ 1, we denote by Σk the prolongation of the system Σ to kth order ; it is the
subbundle Σk ↪→ Jk(M) with the following property : for any smooth map x(.) : I → M , with
jk(x(.)) defined in section 5.2.2,

j1(x(.))(t) ∈ Σ , t ∈ I ⇔ jk(x(.))(t) ∈ Σk , t ∈ I . (5.12)

The left-hand side means that x(.) is a solution of Σ according to Definition 5.3.2. Obviously,
Σ1 = Σ. We may describe Σk in coordinates.
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Proposition 5.3.4. Let K be a positive integer. There is a unique sub-bundle ΣK ↪→ JK(M)
such that :

a smooth map x(.) : I →M is a solution of system Σ on the real interval I
if and only if jK(x(.))(t) ∈ ΣK for all t ∈ I.

(5.13)

For all ξ ∈ ΣK , its projection ξ1 = πK,1(ξ) is in Σ and, with U the neighborhood of ξ1, (xI, xII) the
coordinates on U0, U the open subset Rn+m and f : U → Rm the map given by Proposition 5.3.3,
the equations of UK∩ΣK in JK(M) are, in the coordinates (xI, xII, ẋI, ẋII, . . . , x

(K)
I , x

(K)
II ) induced

on U by (xI, xII),

x
(i)
I = f (i−1)(xI, xII, ẋII, . . . , x

(i)
II ) , 1 ≤ i ≤ K ,

(xI, xII, ẋII, . . . , x
(K)
II ) ∈ U × R(K−1)m ,

(5.14)

where, for a smooth map f : U → Rn−m, and ` ≥ 0, f (`) is the smooth map U × RKm → Rn−m

defined by f (0) = f and, for i ≥ 1,

f (i)(xI, xII, ẋII, . . . , x
(i+1)
II ) =

∂f (i−1)

∂xI
f(xI, xII, ẋII) +

i∑
i=0

∂f (i−1)

∂x
(i)
II

x
(i+1)
II . (5.15)

Proof. This is classical, and obvious in coordinates.

Remark 5.3.5. Each Σk+1 (k ≥ 1) is an affine bundle over Σk, and may be viewed as an affine
sub-bundle of TΣk, i.e. it is a system in the sense of Section 5.3.1 on the manifold Σk instead
of M .

In particular Σ2 ↪→ TΣ is the system obtained by “adding an integrator in each control” of
the system Σ ↪→ TM . It is an affine system (i.e. affine sub-bundle) even when Σ is not.

5.3.2 Ruled systems

Recall that a smooth submanifold of an affine space is ruled if and only if it is a union of
straight lines, i.e. if through each point of the submanifold passes a straight line contained in the
submanifold. Such a manifold must be unbounded ; since we want to consider the intersection of
a submanifold with an arbitrary open set and allow this patch to be “ruled”, we use the same
slightly abusive notion as [64] : a submanifold N is ruled if and only if, through each point of it,
passes a straight line which is contained in N “until it reaches the boundary of N”. Here, the
boundary of the submanifold N is ∂N = N \N .

A system will be called ruled if and only if Σx is, for all x, a ruled submanifold of TxM . This
is formalized below in a self-contained manner.

Definition 5.3.6. Let O be an open subset of TM . System Σ (see (5.7)) is ruled in O if and
only if, for all (x, ẋ) ∈ (O ∩ Σ), there is a nonzero vector w ∈ TxM \ {0} and two possibly
infinite numbers λ− ∈ [−∞, 0) and λ+ ∈ (0,+∞] such that
(x, ẋ+ λw) ∈ O ∩ Σ for all λ, λ− < λ < λ+ and

λ− > −∞⇒ (x, ẋ+ λ−w) ∈ ∂ (O ∩ Σ) ,
λ+ < +∞⇒ (x, ẋ+ λ+w) ∈ ∂ (O ∩ Σ) .

(5.16)

Recall that, by definition, ∂ (O ∩ Σ) = O ∩ Σ \ (O ∩ Σ).

We shall need the following characterisation.
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Proposition 5.3.7 ([64]). Let O be an open subset of TM . Σ is ruled in O if and only if, for
all ξ = (x, ẋ) in Σ ∩ O, there is a straight line in TxM passing through ẋ that has contact of
infinite order with Σx at ẋ.

Proof. From [64, Theorem 1], a “patch of” submanifold of dimension m in a manifold of dimen-
sion n is ruled if and only if there is, through each point, a straight line that has contact of order
n+ 1. This is of course implied by infinite order.

5.3.3 Dynamic equivalence

The following notion is usually called dynamic equivalence, or equivalence by (endogenous)
dynamic feedback transformations in control theory, see [68, 41, 56] and Chapter 6. It is in
fact also the notion of Lie-Bäcklund transformation, limited to ordinary differential equation, as
noted in [41] or Chapter 6.

Definition 5.3.8. Let Σ ↪→ TM and Σ′ ↪→ TM ′ be C∞ (resp. Cω) regular systems (see (5.7))
on two manifolds M and M ′ of dimension n and n′, K,K ′ two integers, Ω ⊂ JK(M) and
Ω′ ⊂ JK′(M ′) two open subsets.

Systems Σ and Σ′ are dynamic equivalent over Ω and Ω′ if and only if there exists two
mappings of class C∞ (resp. Cω) :

Φ : Ω→M ′ , Ψ : Ω′ →M (5.17)
inducing differential operators DKΦ and DK′Ψ –see (5.4)– such that, for any interval I,

– for any solution x(.) : I →M of Σ whose Kth jet remains inside Ω,
DKΦ (x(.) ) is a solution of Σ′ whose K ′th jet remains inside Ω′

and DK′Ψ (DKΦ (x(.) ) ) = x(.),
– for any solution z(.) : I →M ′ of Σ′ whose K ′th jet remains inside Ω′,
DK′Ψ ( z(.) ) is a solution of Σ whose Kth jet remains inside Ω
and DKΦ (DK′Ψ ( z(.) ) ) = z(.).

Remark 5.3.9. Since all properties are tested on solutions, only the restriction of Φ and Ψ to
ΣK and ΣK′ (see Proposition 5.3.4) matter ; for instance, Φ can be arbitrarily modified away
from ΣK without changing any conclusions. Borrowing this language from the literature on
Lie-Bäcklund transformations, Φ and Ψ above are “external” correspondences.

In [41] or in Chapter 6, the “internal” point of view prevails : for instance Φ and Ψ are
replaced, in [41], by diffeomorphisms between diffieties. This is more intrinsic because maps are
defined only where they are to be used. However the definitions are equivalent because these
internal maps admit infinitely many “external” prolongations.

Here, this external point of view is adopted because it makes the statement of the main
result less technical. Note however that, as a preliminary to the proofs, an “internal” translation
is given in section 5.5.1.

Remark 5.3.10. In the theorems, we shall require that Ω and Ω′ satisfy
Ω1 ∩ Σ ⊂ (Ω ∩ ΣK)1 and Ω′1 ∩ Σ′ ⊂ (

Ω′ ∩ Σ′K′
)

1
, (5.18)

i.e. any (jet of) solution whose first jet is in Ω1 lifts to at least one (jet of) solution whose Kth

jet is in Ω. Note the following facts about this requirement.
- These inclusions are equalities for the reverse inclusions always hold.
- Replacing the original Ω with Ω \

(
(Ω1 ∩ Σ) \ (Ω ∩ ΣK)1

)
K

and Ω′ accordingly forces (5.18) ;
alternatively, keeping arbitrary open sets, Theorem 5.4.2 and Theorem 5.4.1 would hold with
Ω1 replaced with Ω1 \ (Ω1 ∩ Σ) \ (Ω ∩ ΣK)1.
- When Σ′ = TM ′ is the trivial system (see section 5.3.5), any open Ω′ satisfies (5.18).
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5.3.4 Static equivalence

Definition 5.3.11. Let O ⊂ TM and O′ ⊂ TM ′ be open subsets. Systems Σ and Σ′ are static
equivalent over O and O′ if and only if there is a smooth diffeomorphism Φ : O0 → O′0 such
that the following holds :

a smooth map t 7→ x(t) is a solution of Σ whose first jet remains in O
if and only if t 7→ Φ(x(t)) is a solution of Σ′ whose first jet remains in O′.

}
(5.19)

Definition 5.3.12 (Local static equivalence). Let O ⊂ TM and O′ ⊂ TM ′ be open subsets.
Systems Σ and Σ′ are locally static equivalent over O and O′ if and only if there are coverings
of O ∩ Σ and O′ ∩ Σ′ :

Σ ∩ O ⊂ Σ ∩
⋃
α∈A
Oα , Σ′ ∩ O′ ⊂ Σ′ ∩

⋃
α∈A
O′α

where A is a set of indices, Oα and O′α are open subsets of O and O′, such that, for all α,
systems Σ and Σ′ are static equivalent over Oα and O′α.

This definition, stated in terms of solutions, is translated into point (a) below, that only
relies on the geometry of Σ and Σ′ as submanifolds. Point (b) is used for instance in [63, 107]
where “centro-affine” geometry of each Σx is studied.

Proposition 5.3.13. (a) Systems Σ and Σ′ are static equivalent over O ⊂ TM and O′ ⊂
TM ′ if and only there is a smooth diffeomorphism Φ : O0 → O′0 such that Φ? maps O ∩ Σ to
O′ ∩ Σ′.

(b) If systems Σ and Σ′ are static equivalent over O ⊂ TM and O′ ⊂ TM ′, there is, for
each x ∈ O0 a linear isomorphism TxM → TΦ(x)M

′ that maps Σx to Σ′Φ(x).
(c) Static equivalence preserves ruled systems.

Proof. (b) and (c) are easy consequences of (a), which in turn is clear by differentiating solutions
in Definition 5.3.2.

5.3.5 Examples

1 We call trivial system on a smooth manifold M the tangent bundle itself TM . Any smooth
x(.) : I → M is a solution of this system ; it corresponds to “no equation”, or to the control
system ẋ = u, or to the “affine diffieties” in [41]. Following [37, 41], a system Σ ↪→ TM is called
differentially flat (on Ω ⊂ JK(M)) if and only if it is dynamic equivalent (over Ω and Ω′) to the
trivial system TM ′ for some manifold M ′.

2 Any system Σ ↪→ TM is dynamic equivalent to the one obtained by “adding integrators”.
It was described in Remark 5.3.5 as an affine sub-bundle Σ2 ↪→ TΣ ; Σ and Σ2 are equivalent
in the sense of Definition 5.3.8 with M ′ = Σ, K = 1, K ′ = 0, Ω an open neighborhood of Σ in
J1(M) = TM such that there is a Φ : Ω → Σ that coincides with identity on Σ, Ω′ = M ′ = Σ
and Ψ = π (see (5.7)).

This may be easier to follow in the coordinates of Proposition 5.3.3. The prolongation of
(5.8) has state (yI, yII) ∈ U , with yI a block of dimension n and yII of dimension m, and equation
ẏI =

(
f(yI, yII) , yII

)
. In coordinates, the transformations Φ : J1(U0) → U and Ψ : U → U0 are

given by (yI, yII) = Φ(xI, xII, ẋI, ẋII) = (x, ẋII) and x = Ψ(y) = yI.
Static equivalence between these systems of different dimension does not hold.



120 CHAPITRE 5. “A NECESSARY CONDITION FOR DYNAMIC EQUIVALENCE”

3 Let us now give, mostly to illustrate the role of the integers K,K ′ and the open sets Ω and Ω′,
two more specific examples of systems Σ ↪→ TR3 and Σ′ ↪→ TR3 with the following equations in
TR3, with coordinates (x1, x2, x3, ẋ1, ẋ2, ẋ3) or (y1, y2, y3, ẏ1, ẏ2, ẏ3), clearly defining sub-bundles
with fiber diffeomorphic to R2 :

Σ : ẋ1 = x2 , Σ′ : ẏ1 = y2 + (ẏ2 − y1ẏ3) ẏ3 . (5.20)

These equations are even globally in the “explicit” form given by Proposition 5.3.3.
First of all, Σ is dynamic equivalent to the trivial system Σ′′ = TR2, with Φ : R3 → R2

defined by Φ(x1, x2, x3) = (x1, x3) and Ψ : J1(R2) → R3 given by Ψ(z1, z2, ż1, ż2) = (z1, ż1, z2).
Here K = 0,K ′ = 1,Ω = R2,Ω′ = J1(R2).

Also, with K = 1 and K ′ = 2, systems Σ and Σ′ are dynamic equivalent over Ω ⊂ J1(R3)
and Ω′ ⊂ J2(R3) defined by

Ω = {(x1, x2, x3, ẋ1, ẋ2, ẋ3), 1− ẋ2 − x2
3 6= 0} ,

Ω′ = {(y1, y2, y3, ẏ1, ẏ2, ẏ3, ÿ1, ÿ2, ÿ3), 1− ÿ3 − ẏ3
3 6= 0} .

The maps Φ : Ω→ R3 and Ψ : Ω′ → R3 are given by

Φ(x1, x2, x3, ẋ1, ẋ2, ẋ3) = (
(1− ẋ2)x3 + x2 ẋ3

1− ẋ2 − x2
3

,
x2

2 x3 + ẋ3

1− ẋ2 − x2
3
, x1 ) , (5.21)

Ψ(y1, y2, y3, ẏ1, ẏ2, ẏ3, ÿ1, ÿ2, ÿ3) = ( y3 , ẏ3 , y1 − ẏ3 y2 ) . (5.22)

Remark 5.3.14. Since Ψ does not depend on second derivatives, K ′ = 2 is not the order of the
differential operator DK′Ψ in the usual sense ; this illustrates the footnote after (5.4) ; it is however
necessary to go to second jets to describe the domain Ω′ where the restriction to solutions of Σ′

of this first order operator can be inverted.

Finally, note that systems Σ and Σ′ are not static equivalent because, from Proposition
5.3.13-(b), this would imply that each Σx is sent to some Σ′y by a linear isomorphism TxM →
TyM

′, which is not possible because each Σx is an affine subspace of TxM and Σ′y a non
degenerate quadric of TyM

′.

4 Consider two more systems, Σ ↪→ TR3 and Σ′ ↪→ TR3 described as in (5.20) :

Σ : ẋ1 = x2 + (ẋ2 − x1ẋ3)2 ẋ 2
3 , Σ′ : ẏ1 = y2 + (ẏ2 − y1ẏ3)2 ẏ3 . (5.23)

System Σ is ruled –each Σy is the union of lines ẏ2− y1ẏ3 = λ, ẏ1 = y2 + λ2 ẏ3 for λ in R– while
Σ′ is not. Hence, from point (c) of Proposition 5.3.13, Σ and Σ′ are not static equivalent. We
shall come back to these two systems from the point of view of flatness and dynamic equivalence
in sections 5.4.1 and 5.4.3.

5.4 Necessary conditions

5.4.1 The case of flatness

It has been known since [88, 96] that a system which is dynamic equivalent to a trivial system
–see the beginning of section 5.3.5 ; such a system is called differentially flat– must be ruled ; of
course, at least in the smooth case, this is true only on the domain where equivalence is assumed.

Theorem 5.4.1 ([88, 96]). If Σ is dynamic equivalent to the trivial system Σ′= TM ′ over
Ω ⊂ JK(M) and Ω′ ⊂ JK′(M ′) satisfying (5.18), then Σ is ruled in Ω1.
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Application Since Σ in (5.23) is not ruled, this theorem implies that it is not flat, i.e. not
dynamic equivalent to the trivial system TR2. On the contrary, Σ′ in (5.23) is ruled, hence the
result does not help deciding it being flat or not ; in fact, one conjectures that this system is not
flat, but no proof is available ; see Chapter 9.

5.4.2 Main idea of the proofs

Our main result, stated in next section, studies what remains of Theorem 5.4.1 when Σ′ is
not the trivial system. Due to many technicalities concerning regularity conditions, the main
ideas may be difficult to grasp in the proof given in section 5.5.2. In order to enlighten these
ideas, and even the result itself, let us first sketch the proof of the above theorem, following the
line of [88] (itself inspired from [48]), but without assuming a priori that Σ′ is trivial.

Take two arbitrary systems Σ and Σ′, and assume that they are dynamic equivalent. From
Proposition 5.3.3, one may use locally the explicit forms

Σ : ẋI = f(xI, xII, ẋII) , Σ′ : żI = g(zI, zII, żII) .

Recall that n and n′ denote the dimensions of x and z ; assume n ≤ n′. Since we work only
on solutions (see Remark 5.3.9 and also Section 5.5.1) and the above equations allow one to
express each time-derivative x

(j)
I , j ≥ 1, as a function of xI, xII, ẋII, . . ., x

(j)
II , we may work

with the variables xI, xII, ẋII, ẍII, x
(3)
II , . . . and zI, zII, żII, z̈II, z

(3)
II , . . . only. The map Φ of Defini-

tion 5.3.8 translates, in these coordinates, into a correspondence zI = φI(xI, xII, ẋII, . . . , x
(K)
II ),

zII = φII(xI, xII, ẋII, . . . , x
(K)
II ) ; here the number K is chosen such that the dependence of φ versus

x
(K)
II is effective.

If K = 0, this reads z = φ(x), and n < n′ is absurd because it would imply (around points
where the rank of φ is constant) some nontrivial relations R(z) = 0. Hence n = n′, φ is a local
diffeomorphism and static equivalence holds locally.

If K ≥ 1, note that Φ mapping solutions of Σ to solution of Σ′ implies (plug the expression of
z given by φ into state equations of Σ′) the following identity, valid for all xI, xII, ẋII, . . . , x

(K+1)
II :

∂φI

∂xI
f(xI, xII, ẋII) +

∂φI

∂xII
ẋII +

∂φI

∂ẋII
ẍII + · · ·+ ∂φI

∂x
(K)
II

x
(K+1)
II

= g

(
φI, φII,

∂φII

∂xI
f(xI, xII, ẋII) +

∂φII

∂xII
ẋII +

∂φII

∂xII
ẍII + · · ·+ ∂φII

∂x
(K)
II

x
(K+1)
II

)

where φI and φII depend on xI, xII, ẋII, . . . , x
(K)
II only and, at least at generic points,

(
∂φI

∂x
(K)
II

,
∂φII

∂x
(K)
II

) 6= (0, 0) .

Fixing such xI, xII, ẋII, . . . , x
(K)
II and consequently z = φ(xI, xII, ẋII, . . . , x

(K)
II ), and examining Σ′z

as a submanifold of TzM ′ with equation żI = g(z, żII), it is clear that moving x(K+1)
II in a direction

which is not in the kernel of ∂φII

∂x
(K)
II

(xI, xII, ẋII, . . . , x
(K)
II ) provides a straight line of TzM ′ contained

in Σ′z and, since this covers all points of Σ′z, proves that the latter is a ruled submanifold of
TzM

′ and finally that system Σ′ is ruled. We only examined regular points ; see Section 5.5.2
for a proper proof.

Collecting the two cases, we have proved that, if n ≤ n′, either Σ′ is ruled or n = n′ and Σ′

is static equivalent to Σ. This is stated formally in Theorem 5.4.2.
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5.4.3 The result for general systems

The contribution of this paper is the following strong necessary condition for dynamic equi-
valence between two general systems. Ω1 and Ω′1 are defined by (5.3).

Theorem 5.4.2. Let Σ and Σ′ be systems on manifolds of dimension n and n′, K,K ′ two
integers and Ω ⊂ JK(M), Ω′ ⊂ JK′(M ′) two open subsets satisfying (5.18).

If Σ and Σ′ are dynamic equivalent over Ω and Ω′, then
if n > n′, system Σ is ruled in Ω1,
if n < n′, system Σ′ is ruled in Ω′1,
if n = n′, then (see Definition 5.3.12 for “locally static equivalent”)
- in the real analytic case, and if Ω1 ∩ Σ and Ω′1 ∩ Σ′ are connected,

either systems Σ and Σ′ are ruled in Ω1 and Ω′1 respectively,
or they are locally static equivalent over Ω1 and Ω′1,

- in the smooth (C∞) case, there are open subsets R,S of Ω1 and R′,S ′ of Ω′1
such that Ω1 and Ω′1 are covered as

Ω1 = R∪ S = R∪ S , Ω′1 = R′ ∪ S ′ = R′ ∪ S ′ (5.24)
and the systems have the following properties on these sets :

1. Σ and Σ′ are ruled in R and R′ respectively,
2. Σ and Σ′ are locally static equivalent over S and S ′.

Proof. See Section 5.5.2.

A few remarks are in order :

1 Theorem 5.4.1 is a consequence. Indeed, n′=m′ because Σ′ is trivial, dynamic equivalence
implies m′=m (this is common knowledge ; see Theorem 6.1 or [19]), and n ≥ m for any system ;
hence n ≥ n′ and Theorem 5.4.2 directly implies that Σ is ruled except if the systems are static
equivalent, but this also implies that Σ is ruled from point (c) of Proposition 5.3.13 and the fact
that the trivial system Σ′ is ruled.

Static equivalence still appears explicitly in Theorem 5.4.2 because two general systems can
be static equivalent without being ruled.

2 The part “n > n′ or n < n′” can be rephrased as follows : if a system is not ruled, it cannot
be dynamic equivalent to any system of smaller dimension. No necessary condition is given on
the system of lower dimension ; indeed any system is dynamic equivalent to at least its first
prolongation, see Example 2 in Section 5.3.5.

3 The case n = n′ states that dynamic equivalence, except when it reduces to static equivalence,
forces both systems to be ruled (in the real analytic case, the added rigidity prevents the two
situations from occurring simultaneously).

In other words, if two systems are not static equivalent and at least one of them is not ruled,
they are not dynamic equivalent. Since the two conditions can be checked rather systematically,
this yields a new and powerful method for proving that two systems are not dynamic equivalent,
a difficult task in general because very few invariants of dynamic equivalence are known.

For instance, to the best of our knowledge, the state of the art does not allow one to decide
whether Σ and Σ′ in (5.23) are dynamic equivalent or not. In section 5.3.5, it was noted that
they are not static equivalent and Σ′ is not ruled. This implies :

Corollary 5.4.3. Σ and Σ′ in (5.23) are not dynamic equivalent over any domains.
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4 Since being ruled is non-generic [88], we have the following general consequence (in terms of
germs of systems because the conclusion in the theorem is only local).

Corollary 5.4.4. Generic static equivalence classes for germs of systems of the same dimension
at a point are also dynamic equivalence classes.

Note that this is in the mathematical sense of “generic” : this does not prevent many inter-
esting systems from being dynamic equivalent without being static equivalent... it might even
be that “most interesting systems” fall in this case !

5.5 Proofs

Recall that subscripts always refer to the order of the jet space. The notation (5.3) is
constantly used.

5.5.1 Preliminaries : a re-formulation of dynamic and static equivalence

The maps Φ and Ψ are always applied to jets of solutions, and, according to (5.12), the Kth

jets of solutions of Σ remain in ΣK ; hence the only information to retain about Φ and Ψ is their
restriction to, respectively,

Ω̃ = Ω ∩ ΣK and Ω̃′ = Ω′ ∩ Σ′K′ . (5.25)

We need one more piece of notation : according to Section 5.2.3, the `th prolongation of a
smooth map Φ̃ : Ω̃ → M ′, is a map π −1

K+`,`(Ω̃) → J `M ′ ; again, only its restriction to Ω̃K+`

will matter ; for this reason, the notations Φ̃[`] and Ψ̃[`] will not stand for the prolongations as
defined earlier, but rather these restrictions :

Φ̃[`] : Ω̃K+` → J `(M ′) , Ψ̃[`] : Ω̃′K′+` → J `(M) , (5.26)

with Ω̃K+` = ΩK+` ∩ ΣK+` , Ω̃′K′+` = Ω′K′+` ∩ Σ′K′+` . (5.27)

We may now state the following proposition. Smooth (C∞ or Cω) maps on Ω̃K+` or Ω̃′K′+`
can be defined in a standard way because, from Proposition 5.3.3, these are smooth embedded
submanifolds.

Proposition 5.5.1 (Dynamic Equivalence). Let K,K ′ be integers, Ω ⊂ JK(M) and Ω′ ⊂
JK

′
(M ′) two open subsets. Systems Σ and Σ′ are dynamic equivalent over Ω and Ω′ if and only

if, with Ω̃, Ω̃′ defined in (5.25), there exist two smooth (real analytic, in the real analytic case)
mappings

Φ̃ : Ω̃→M ′ and Ψ̃ : Ω̃′ →M ,
such that Φ̃[1](Ω̃K+1) ⊂ Σ′ , Ψ̃[1](Ω̃′K′+1) ⊂ Σ , (5.28)

and, with Φ̃[K] and Ψ̃[K] defined by (5.26),

Φ̃[K′](Ω̃K+K′) ⊂ Ω′ , Ψ̃[K](Ω̃′K+K′) ⊂ Ω , (5.29)

Ψ̃ ◦ Φ̃[K′] = πK+K′, 0

∣∣∣eΩK+K′
, Φ̃ ◦ Ψ̃[K] = πK+K′, 0

∣∣∣eΩ′
K+K′

. (5.30)

Proof. If the above conditions on Φ and Ψ are satisfied, and x(.) : I → M is a solution of Σ
whose Kth jet remains inside Ω, then the first part of (5.28) implies that DKΦ (x(.) ) is a solution
of Σ′, the first part of (5.29) implies that its Kth jet remains inside Ω′, and the first part of
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(5.30) implies that DK′Ψ (DKΦ (x(.) ) ) = x(.). This proves the first item of Definition 5.3.8 ; the
second item follows in the same way from the second part of (5.28), (5.29) and (5.30).

Conversely, if Φ and Ψ satisfy the properties of Definition 5.3.8, their restrictions Φ̃ and
Ψ̃ to Ω̃ and Ω̃′ respectively satisfy the above relations because through each point in Ω̃K+1,
Ω̃′K′+1, Ω̃K+K′ or Ω̃K+K′ passes a jet of order K + 1, K ′ + 1 or K + K ′ of a solution of Σ or
Σ′ ; differentiating yields the required relations.

Proposition 5.5.2 (Static Equivalence). With Ω1 ⊂ J1(M) = TM and Ω′1 ⊂ J1(M ′) = TM
two open subsets, systems Σ and Σ′ are static equivalent over Ω1 and Ω′1 if and only if, with
Ω̃1, Ω̃′1 defined in (5.25), there exist a smooth diffeomorphism Φ0 : Ω̃0 → Ω̃′0, and its inverse Ψ0

such that Φ̃[1]
0 (Ω̃1) = Ω̃′1 (and Ψ̃[1]

0 (Ω̃′1) = Ω̃1).

Proof. This is a re-phrasing of point (a) of Proposition 5.3.13.

5.5.2 Proof of Theorem 5.4.2

Assume that Σ and Σ′ are dynamic equivalent over the open sets Ω ⊂ JK(M) and Ω′ ⊂
JK

′
(M ′) ; let Φ̃ : Ω̃ → M ′ and Ψ̃ : Ω̃′ → M be the smooth maps given by Proposition 5.5.1

(recall that Ω̃ and Ω̃′ are open subsets of ΣK and Σ′K′). We define open subsets Ω̃S ⊂ Ω̃ and
Ω̃′S ⊂ Ω̃′ and state four lemmas concerning these :

ξ ∈ Ω̃S ⇔ There is a neighborhood V of ξ in Ω̃ and a smooth map
Φ̃0 : V0 →M ′ such that Φ̃

∣∣∣
V

= Φ̃0 ◦ πK,0 , (5.31)

ξ′ ∈ Ω̃′S ⇔ There is a neighborhood V ′ of ξ′ in Ω̃′ and a smooth map
Ψ̃0 : V ′0 →M such that Ψ̃

∣∣∣
V ′

= Ψ̃0 ◦ πK,0 . (5.32)

Lemma 5.5.3. In the analytic case, and if Ω̃ = Ω∩Σ and Ω̃′ = Ω′ ∩Σ′ are connected, one has
either Ω̃S = Ω̃ or Ω̃S = ∅, and either Ω̃′S = Ω̃′ or Ω̃′S = ∅.

Lemma 5.5.4. One has the following identities, where the two first ones hold for any subsets
S ⊂ Ω̃, S′ ⊂ Ω̃′ and any integer `, 0 ≤ ` ≤ K +K ′,

πK+K′,`

(
Φ̃[K′]−1

(S′)
)

= Ψ̃[`]
(
S′K′+`

)
, πK+K′,`

(
Ψ̃[K]−1

(S)
)

= Ψ̃[`] (SK+`) , (5.33)

Φ̃[1](Ω̃K+1) = Ω̃′1 , Ψ̃[1](Ω̃′K′+1) = Ω̃1 . (5.34)

Lemma 5.5.5. If n < n′, then Ω̃S = ∅. If n > n′, then Ω̃′S = ∅.
If n = n′, there is, for all ξK ∈ Ω̃S, a neighborhood V1 of ξ1 = πK,1(ξK) in Ω1 and an open

subset V ′1 of Ω′1 such that systems Σ and Σ′ are static equivalent over V1 and V ′1. There is also,
for all ξ′K′ ∈ Ω̃′S, a neighborhood W ′ of ξ′1 = πK′,1(ξ′K′) in Ω′1 and an open subset W1 of Ω1 such
that systems Σ and Σ′ are static equivalent over W1 and W ′1. Finally,

πK+K′,K′

(
Ψ̃[K]−1

(
Ω̃S
))

= Φ̃[K′]
(

Ω̃S
K+K′

)
= Ω̃′S , (5.35)

πK+K′,K

(
Φ̃[K′]−1

(
Ω̃′S
))

= Ψ̃[K]
(

Ω̃′SK′+K
)

= Ω̃S . (5.36)

Lemma 5.5.6. For all ξK+1 ∈ Ω̃K+1 such that ξK = πK+1,K(ξK+1) ∈ Ω̃\ Ω̃S, there is a straight
line in TeΦ(ξK)

M ′ that has contact of infinite order with Σ′ at Φ̃[1](ξK+1).
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These lemmas will be proved later. Let us finish the proof of the Theorem.
If n < n′, (5.34) implies existence, for each ξ′ ∈ Ω̃′1 = Ω1∩Σ′, of some ξK+1 ∈ Ω̃K+1 such that

Φ̃[1](ξK+1) = ξ′ and finally, since Ω̃S is empty according to Lemma 5.5.5, Lemma 5.5.6 yields a
straight line in Tξ′0

M ′ that has contact of infinite order with Σ′ at ξ′ ; from Proposition 5.3.7,
this implies that system Σ′ is ruled over Ω1. If n > n′, one concludes in the same way.

Now assume n = n′. For all ξ′ in Φ̃[1]
(

(Ω̃ \ Ω̃S)K+1

)
, there is, according to Lemma 5.5.6, a

straight line in Tξ′0
M ′ that has contact of infinite order with Σ′ at ξ′. By continuity, this is also

true for all ξ′ in the topological closure

R̃′ = Φ̃[1]
(

(Ω̃ \ Ω̃S)K+1

)
= πK+K′,1

(
Ψ̃[K]

−1
(

Ω̃ \ Ω̃S
))

, (5.37)

where the second equality come from (5.33). Let i(R̃′) be the interior of R̃′ for the induced
topology on Σ′ ; since R̃′ = i(R̃′), there is an open subset R′ of Ω′1 ⊂ TM ′, enjoying the property
that it is the interior of its topological closure, and such that R′ ∩Σ′ = i(R̃′) and R′ ∩Σ′ = R̃′.
From Proposition 5.3.7, Σ′ is ruled over R′. Setting S ′ = Ω′1 \R′, one has Ω′1 = R′∪S ′ = R′∪S ′.
Along the same lines, Σ is ruled over R, open subset of Ω1 ⊂ TM such that R∩Σ is the relative
interior of

R̃ = Ψ̃[1]
(

(Ω̃′ \ Ω̃′S)K′+1

)
= πK+K′,1

(
Φ̃[K′]

−1
(

Ω̃′ \ Ω̃′S
))

, (5.38)

and such that Ω1 = R∪ S = R∪ S with S = Ω1 \ R.
We have proved (5.24) and point 1 ; let us prove point 2. Obviously,

S ∩ Σ ⊂ πK+K′,1

(
Φ̃[K′]−1(

Ω̃′S
))

and S ′ ∩ Σ′ ⊂ πK+K′,1

(
Ψ̃[K]−1(

Ω̃S
))

.

Using identities (5.35) and (5.36), this implies

S ∩ Σ ⊂ πK,1
(

Ω̃S
)

and S ′ ∩ Σ′ ⊂ πK′,1
(

Ω̃′S
)
. (5.39)

For all ξ in S ∩ Σ, there is one ξK ∈ Ω̃S such that ξ = πK,1(ξK) and, from Lemma 5.5.5, a
neighborhood Vξ1 of ξ in Ω1 and an open subset V ′ ξ1 of Ω′1 such that systems Σ and Σ′ are static
equivalent over Vξ1 and V ′ ξ1 . For all ξ′ in S ′ ∩Σ′, there is one ξ′K′ ∈ Ω̃′S such that ξ′ = πK′,1(ξ′K′)
and, from Lemma 5.5.5, a neighborhood W ′ ξ′ of ξ′1 = πK′,1(ξ′K′) in Ω′1 and an open subset Wξ′

1

of Ω1 such that systems Σ and Σ′ are static equivalent over Wξ′

1 and W ′ ξ1 .
Now, (Vξ1)ξ∈S∩Σ is an open covering of S ∩ Σ and (W ′ ξ′1 )ξ′∈S′∩Σ′ is an open covering of

S ′∩Σ′. Take for (S̃α)α∈A the union of (Vξ1)ξ∈S∩Σ and (Wξ′

1 )ξ′∈S′∩Σ′ ; take for (S̃ ′α)α∈A the union
of (V ′ ξ1 )ξ∈S∩Σ and (W ′ ξ′1 )ξ′∈S′∩Σ′ .

This proves the smooth case, and obviously implies the real analytic one from Lemma 5.5.3.

Let us now prove the four lemmas used in the above proof.
Proof of Lemma 5.5.3. If Ω̃S 6= ∅, then there is at least an open set in Ω̃ derivatives of Φ̃

along any vertical vector field (preserving fibers of ΣK → M) are identically zero ; since these
are real analytic they must be zero all over Ω̃, assumed connected, hence Ω̃S = Ω̃. The proof is
similar in Ω̃′.

Proof of Lemma 5.5.4. The first relation in (5.33) is a consequence of the two identities

πK′+`,K′ ◦ Φ̃[K′+`] = Φ̃[K′] ◦ πK+K′+`,K+K′ and Ψ̃[`] ◦ Φ̃[K′+`] = πK+K′+`,` , (5.40)
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respectively (5.6) with (r, s) = (K ′ + `,K ′) and the `th prolongation of (5.30). The second
relation follows from interchanging K,Φ, S with K ′,Ψ, S′.

From equations (5.28) and (5.29), one has, for any positive integer `,

Φ̃[`](Ω̃K+`) ⊂ Ω̃′` and Ψ̃[`](Ω̃′K′+`) ⊂ Ω̃` (5.41)

(for instance, (5.28) implies Φ̃[`](Ω̃K+`) ⊂ Σ′`, (5.29) implies Φ̃[`](Ω̃K+`) ⊂ Ω′`, hence the first
relation above because Ω̃′` = Ω′` ∩ Σ′`). We only need to prove the reverse inclusions for ` =
1. Let us do it for the second one. The second relation in (5.40) for ` = 1 implies Ω̃1 =
Ψ̃[1]

(
Φ̃[K′+1](Ω̃K+K′+1)

)
, and finally Ω̃1 ⊂ Ψ̃[1](Ω̃′K′+1) from the first relation in (5.40) with

` = K ′ + 1.

Proof of Lemma 5.5.5. Assume for instance that Ω̃S is non-empty ; then it contains an open
subset V and there is a smooth Φ̃0 : V0 → M ′ such that, in restriction to V , Φ̃ = Φ̃0 ◦ πK,0.

Hence (5.30) implies, on the open subset V ′ =
(

Ψ̃[K]
)−1

(V ) of Σ′K+K′ ,

Φ̃0 ◦ πK,0 ◦ Ψ̃[K] = πK+K′, 0

∣∣
V ′
. (5.42)

The rank of the map on the left-hand side is n′ while the rank of the right-hand side is no larger
than n (rank of πK,0), hence Ω̃S 6= ∅ implies n′ ≤ n. By interchanging the two systems, this
proves the fist sentence of the Lemma.

Let us now turn to the case where n = n′. Consider ξK in Ω̃S . By definition of Ω̃S , there is a
neighborhood V and a smooth (real analytic in the real analytic case) map Φ̃0 : V0 → M ′ such
that Φ̃ = Φ̃0 ◦ πK,0 on V . Let V ′ be defined from V as

V ′ = πK+K′,K′

(
Ψ̃[K]−1

(V )
)

= Φ̃[K′](VK+K′) , (5.43)

where the second equality comes from (5.33). Applying Ψ̃ and Ψ̃[1] to both sides of the first
equality in (5.6) and using (5.43) with (r, s) = (K, 0) and (r, s) = (K, 1) yields

Ψ̃(V ′) = V0 , Ψ̃[1](V ′K′+1) = V1 . (5.44)

Substituting Φ̃ = Φ̃0 ◦ πK,0 in (5.30), one has Φ̃0 ◦ Ψ̃ ◦ πK+K′,K′ = πK+K′,0 on Ψ̃[K]−1
(V ) , and

finally
Φ̃0 ◦ Ψ̃ = πK′,0 on V ′ ; (5.45)

in a similar way, substituting Φ̃[1] = Φ̃[1]
0 ◦ πK+1,1 in the first prolongation of (5.30),

Φ̃[1]
0 ◦ Ψ̃[1] = πK′+1,1 on V ′K′+1 . (5.46)

Applying Φ̃0 to both sides of the first relation and Φ̃[1]
0 to both sides of the second relation in

(5.44), one has, using (5.45) and (5.46),

Φ̃0(V0) = V ′0 , Φ̃[1]
0 (V1) = V ′1 . (5.47)

Since the rank of πK′,0 in the right-hand side of (5.45) is n′ = n at all points of V ′, Φ̃0 must be a
local diffeomorphism at all point of Ψ̃(V ′) = V0 and in particular at ξ0 : by the inverse function
theorem, there is a neighborhood O of ξ0 = πK,0(ξ) in V0 and a neighborhood O′ of Φ0(ξ0) in
M ′ such that Φ0 defines a diffeomorphism O → O′.
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Let us now replace V with V ∩ πK,0−1(O), a smaller neighborhood of ξK ; V ′ is still defined
by (5.43) from this smaller V , one has V0 = O, the former Φ̃0 is replaced by its restriction to
this smaller V0, and the above relations still hold. In particular, O′ = Φ̃0(O) must be all V ′0
according to (5.47), i.e. Φ̃0 defines a diffeomorphism V0 → V ′0 ; let Ψ̃0 be its inverse. Composing
each side of (5.45) with Ψ̃0, one gets Ψ̃ = Ψ̃0 ◦ πK′,0 on V ′ ; hence, by (5.32), one has V ′ ⊂ Ω̃′S

and, since this is true for all ξK in Ω̃S , one has

πK+K′,K′

(
Ψ̃[K]−1

(Ω̃S)
)

= Φ̃[K′](Ω̃S
K+K′) ⊂ Ω̃′S . (5.48)

Let V1 and V ′1 and be open subsets of Ω1 and Ω′1 such that

V1 = Σ ∩ V1 , V ′1 = Σ ∩ V ′1 . (5.49)

From Proposition 5.5.2, the second relation in (5.47) implies that systems Σ and Σ′ are static
equivalent over V1 and V ′1. Interchanging the two systems, one proves that

πK+K′,K

(
Φ̃[K′]−1

(Ω̃′S)
)

= Ψ̃[K](Ω̃′SK+K′) ⊂ Ω̃S . (5.50)

and that, for all ξ′K′ ∈ Ω̃′S , there are a neighborhood W ′ of ξ′1 = πK′,1(ξ′K′) in Ω′1 and an open
subset W1 of Ω1 such that systems Σ and Σ′ are static equivalent over W1 and W ′1.

Now, Φ̃[K′](Ω̃S
K+K′) ⊂ Ω̃′S in (5.48) implies Ω̃S

K+K′ ⊂ Φ̃[K′]−1
(Ω̃′S), and hence Ω̃S ⊂

πK+K′,K

(
Φ̃[K′]−1

(Ω̃′S)
)

. Hence (5.48) implies the converse inclusion in (5.50) ; in a similar
way (5.50) implies the converse inclusion in (5.48). This proves (5.35) and (5.36), and ends the
proof of Lemma 5.5.5.

Proof of Lemma 5.5.6. Denote by ξ̄K+1 the point ξK+1 in the lemma statement and set
ξ̄K = πK+1,K(ξ̄K+1) ∈ Ω̃\Ω̃S , ξ̄0 = πK,0(ξ̄K+1), ξ̄1 = πK,1(ξ̄K+1). From Proposition 5.3.4, and af-
ter possibly shrinking UK so that it is contained in Ω, there exist a neighborhood UK ⊂ Ω of ξ̄K in
JK(M), coordinates (xI, xII) on U0 = πK,0(UK) inducing coordinates (xI, xII, ẋI, ẋII, . . . , x

(K)
I , x

(K)
II )

on UK , and an open subset UK ⊂ Rn+Km such that the equations of ŨK = UK ∩ΣK in JK(M)
in these coordinates are

x
(i)
I = f (i−1)(xI, xII, ẋII, . . . , x

(i)
II ) , 1 ≤ i ≤ K ,

(xI, xII, ẋII, . . . , x
(K)
II ) ∈ UK .

(5.51)

By substitution, there is a unique smooth map φK : UK →M ′ such that
Φ̃(ξ) = φK(xI, xII, ẋII, . . . , x

(K)
II ) for all ξ in ŨK with coordinate vector (xI, xII, . . . , x

(K)
I , x

(K)
II ).

Let Xi = (xI, xII, ẋI, ẋII, . . . , x
(i)
I , x

(i)
II ) be the coordinate vector of ξ̄i for i ≤ K + 1 and ρ̄ the

smallest integer such that φK does not depend on x(ρ̄+1)
II , . . . , x

(K)
II on at least one neighborhood

of XK . Shrinking UK to this neighborhood, and ŨK accordingly, we may define φ : Uρ̄ →
M ′, with Uρ̄ the projection of UK on Rn+ρ̄m, such that Φ̃(ξ) = φK(xI, xII, ẋII, . . . , x

(K)
II ) =

φ(xI, xII, ẋII, . . . , x
(ρ̄)
II ). If ρ̄ was zero, one would have Φ̃(ξ) = φ(xI, xII), hence the right-hand side

of (5.31) would be satisfied for ξ = ξ̄K with V = ŨK ; this is impossible because we assumed
ξ̄K ∈ Ω̃ \ Ω̃S . Hence ρ̄ ≥ 1.

For all ξK+1 in ŨK+1 with coordinate vector (xI, xII, . . . , x
(K+1)
II ), one has

Φ̃[1](ξK+1) = χ(xI, xII, ẋII, . . . , x
(ρ̄)
II , x

(ρ̄+1)
II ) (5.52)
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with χ : Uρ̄+1 → TM ′ the map defined by

χ(xI . . . x
(ρ̄+1)
II ) =

(
φ(xI . . . x

(ρ̄)
II ) , a(xI . . . x

(ρ̄)
II ) +

∂φ

∂x
(ρ̄)
II

(xI . . . x
(ρ̄)
II ) x(ρ̄+1)

II

)
(5.53)

with a = ∂φ
∂xI
f +

∑ρ̄−1
i=0

∂φ

∂x
(i)
II

x
(i+1)
II . According to (5.29), (5.51) and (5.52), Σ′ contains χ(Uρ̄+1).

Now, for any (xI, . . . , x
(ρ̄+1)
II ) ∈ Uρ̄+1 such that the linear map

∂φ

∂x
(ρ)
II

(xI, . . . , x
(ρ̄)
II ) : Rm → T

φ(xI,...,x
(ρ̄)
II )
M ′

is nonzero, picking w 6= 0 in its range, (5.53) implies that the straight line ∆ in T
φ(xI,...,x

(ρ̄)
II )
M ′

passing through χ(xI . . . x
(ρ̄+1)
II ) with direction w has a segment around χ(xI . . . x

(ρ̄+1)
II ) contained

in Σ′, hence in particular ∆ has contact of infinite order with Σ′ at point χ(xI, . . . , x
(ρ̄+1)
II ). To sum

up, we have proved so far that, for all ξK+1 in ŨK+1 with coordinate vector (xI, xII, . . . , x
(K+1)
II )

such that ∂φ

∂x
(ρ)
II

(xI . . . x
(ρ̄)
II ) is nonzero, there is a straight line ∆ξK+1

in TeΦ(ξK)
M ′ passing through

Φ̃[1](ξK+1) that has contact of infinite order with Σ′ at Φ̃[1](ξK+1). The set of such points ξK+1

may not contain ξ̄K+1 but its topological closure does, by minimality of ρ̄ ; taking a sequence of
points ξK+1 that converges to ξ̄K+1, any accumulation point of the compact sequence

(
∆ξK+1

)
is a straight line in TeΦ(ξ̄K)

M ′ passing through Φ̃[1](ξ̄K+1) that has contact of infinite order with

Σ′ at Φ̃[1](ξ̄K+1).
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Abstract. This paper presents an (infinite dimensional) geometric framework for
control system, based on infinite jet bundles, where a system is represented by a single
vector field and dynamic equivalence (to be precise : equivalence by endogenous
dynamic feedback) is conjugation by diffeomorphisms. These diffeomorphisms are
very much related to Lie-Bäcklund transformations. It is proved in this framework
that dynamic equivalence of single-input systems is the same as static equivalence.

6.1 Introduction

For a control system
ẋ = f(x, u) (6.1)

where x ∈ Rn is the state, and u ∈ Rm is the input, what one usually means by a dynamic
feedback is a system with a certain state z, input (x, v) and output u :

ż = g(x, z, v) , u = γ(x, z, v) . (6.2)

When applying this dynamic feedback to system (6.1), one gets a system with state (x, z) and
input v : ẋ = f(x, γ(x, z, v)), ż = g(x, z, v). This system may be transformed with a change of
coordinates X = φ(x, z) in the extended variables to a system Ẋ = h(X, v). The problem of
dynamic feedback linearization is stated in [23] by B. Charlet, J. Lévine and R. Marino as the
one of finding g, γ and φ such that Ẋ = h(X, v) be a linear controllable system. When z is not
present, γ and φ define a static feedback transformation in the usual sense. This transformation
is said to be invertible if φ is a diffeomorphism and γ is invertible with respect to v ; these
transformations form a group of transformations. On the contrary, when z is present, the simple
fact that the general “dynamic feedback transformation” (6.2), defined by g, γ and φ increases
the size of the state prevents dynamic feedbacks in this sense from being “invertible”.

In [36, 37], M. Fliess, J. Lévine, P. Martin and P. Rouchon introduced a notion of equivalence
in a differential algebraic framework where two systems are equivalent by endogenous dynamic

129
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feedback if the two corresponding differential fields are algebraic over one another. This is trans-
lated in a state-space representation by some (implicit algebraic) relations between the “new”
and the “old” state, output and many derivatives of outputs transforming one system into the
other and vice-versa. It is proved that equivalence to controllable linear system is equivalent
to differential flatness, which is defined as existence of m elements in the field which have the
property to be a “linearizing output” or “flat output”. In [68, “Point de vue analytique”], P. Mar-
tin introduced the notion of endogenous dynamic feedback as a dynamic feedback (6.2) where,
roughly speaking, z is a function of x, u, u̇, ü . . .. He proved that a system may be obtained from
another one by nonsingular endogenous feedback if and only if there exists a transformation
of the same kind as in [36, 37] but explicit and analytic which transforms one system into the
other. This is called equivalence by endogenous dynamic feedback as in the algebraic case. These
transformations may either increase or decrease the dimension of the state.

B. Jakubczyk gives in [55, 56] a notion of dynamic equivalence in terms of transformations
on “trajectories” of the system ; different types of transformations are defined there in terms of
infinite jets of trajectories. One of them is proved there to be exactly the one studied here. See
after Definition 6.1 for further comparisons.

In [93], W.F. Shadwick makes (prior to [36, 37, 55, 56]) a link between dynamic feedback
linearization and the notion of absolute equivalence defined by E. Cartan for Pfaffian systems.
It is not quite clear that this notion of equivalence coincides with equivalence in the sense of
[36, 37] or [55, 56], the formulation is very different.

The contribution of the present paper –besides Theorem 6.3 which states that dynamic equi-
valent single input systems with the same number of states are static equivalent– is to give a
geometric meaning to transformations which are exactly these introduced by P. Martin in [68]
(endogenous dynamic feedback transformations). Our system is represented by a single vector
field on a certain “infinite-dimensional manifold”, and our transformations are diffeomorphisms
on this manifold. Then the action of these transformations on systems is translated by the
usual transformation diffeomorphisms induce on vector fields. There are of course many techni-
cal difficulties in defining vector fields, diffeomorphisms or smooth functions in these “infinite-
dimensional manifolds”. The original motivation was to “geometrize” the constructions made in
[4, 83] ; it grew up into the present framework which, we believe, has some interest in itself, the
geometric exposition of [4, 83] is contained in the paper reprinted in Chapter 7.

Note finally that the described transformations are very closely related to infinite order
contact transformations or Lie-Bäcklund transformations or C-transformations, see [45, 1] and
that the geometric context we present here is the one of infinite jet spaces used in [31, 62, 106, 92]
for example to describe and study Lie-Bäcklund transformations. These presentations however
are far from being unified, for instance smooth functions do not have to depend only on a finite
number of variables in [92], and are not explicitly defined in [1]. They also had to be adapted
for many reasons in order to get a technically workable framework ; for instance, we prove an
inverse function theorem which characterizes local diffeomorphisms without having to refer to an
inverse mapping which is of the same type. The language of jet spaces and differential systems
has been used already in control theory by M. Fliess [32] and by J.-F. Pommaret [84], with a
somewhat different purpose.

Some recent work by M. Fliess [33] (see also a complete exposition on this topic in E. Dela-
leau’s [30]) points out that a more natural state-space representation than (6.1) for a nonlinear
system involves not only x and u, but also an arbitrary number of time-derivatives of u ; this
is referred to as “generalized-state” representation, and we keep this name for the infinite di-
mensional state-manifold, see section 6.3. In [33, 30], the “natural” state-space representation
is F (x, ẋ, u, u̇, ü, . . . , u(J)) = 0 rather than (6.1). Here not only do we suppose that ẋ is an
explicit function of the other variables (“explicit representation” according to [33, 30]) but also



6.2. CONTROL SYSTEMS AS DIFFERENTIAL RELATIONS 131

that J = 0 (“classical representation”). Almost everything in this paper may be adapted to the
“non-classical” case, i.e. to the case where some time-derivatives of the input would appear in
the right-hand side of (6.1) ; we chose the classical representation for simplicity and because, as
far as dynamic equivalence is concerned, a non-classical system is equivalent to a classical one
by simply “adding some integrators” ; on the contrary, the implicit case is completely out of the
scope of this paper, see the end of section 6.2.

Very recently the authors of [36, 37] have independently proposed a “differential geometric”
approach for dynamic equivalence, see [38, 41], which is similar in spirit to the present approach,
although the technical results do differ. This was brought to the attention of the author too late
for a precise comparison between the two approaches.

The paper is organized as follows : section 6.2 presents briefly the point of view of jet spaces
and contact structure for system (6.1) considered as a differential relation ẋ − f(x, u) = 0 (no
theoretical material from this section is used elsewhere in the paper). Section 6.3 presents in
details the differential structure of the “generalized state-space manifold” where coordinates are
x, u, u̇, . . ., where we decide to represent a system by a single vector field. Section 6.4 defines in
this context dynamic equivalence and relates it to notions already introduced in the literature.
Section 6.5 deals with static equivalence. Section 6.6 is devoted to the single-input case, and
states the result that dynamic equivalence and static equivalence are then the same. Finally
section 6.7 is devoted to dynamic linearization, it introduces in a geometric way the “linearizing
outputs” defined for for dynamic linearization in [36, 37, 68].

6.2 Control systems as differential relations

This section is only meant to relate the approach described subsequently to some better
known theories. It does not contain rigorous arguments.

In the spirit of the work of J. Willems [109], or also of M. Fliess [33], one may consider that
the control system (6.1) is simply a differential relation on the functions of time x(t), u(t) and
that the object of importance is the set of solutions, i.e. of functions t 7→ (x(t), u(t)) such that
dx
dt (t) is identically equal to f(x(t), u(t)). Of course this description does not need precisely a
state-space description like (6.1).

The geometric way of describing the solution of this first order relation in the “independent
variable” t (time) and the “dependent variables” x and u is to consider, as in [1, 84, 62, 106, 31],
the fibration

R× Rn+m π→ R
(t, x, u) 7→ t

(6.3)

and its first jet manifold J1(π), which is simply T (Rn × Rm)×R. A canonical set of coordinates
on J1(π) is (t, x, u, ẋ, u̇). The relation R(t, x, u, ẋ, u̇) = ẋ− f(x, u) = 0 defines a sub-manifold R
of the fiber bundle (6.3), which is obviously a sub-bundle. The contact module on J1(π) is the
module of 1-forms (or the codistribution) generated by the 1-forms dxi−ẋidt and duj−u̇jdt, 1 ≤
i ≤ n, 1 ≤ j ≤ m. A “solution” of the differential system is a section t 7→ (t, x(t), u(t), ẋ(t), u̇(t))
of the sub-bundle R, which annihilates the contact forms (this simply means that dx

dt = ẋ and
du
dt = u̇, i.e. that this section is the jet of a section of (6.3)).

Since we wish to consider some transformations involving an arbitrary number of derivatives,
we need the infinite jet space J∞(π) of the fibration (6.3). For short, it is the projective limit of
the finite jet spaces Jk(π), and some natural coordinates on this “infinite-dimensional manifold”
are (t, x, u, ẋ, u̇, ẍ, ü, x(3), u(3), . . . . . . ). The contact forms are

dx(j)
i − x

(j+1)
i dt , du(j)

k − u
(j+1)
k dt , 1 ≤ i ≤ n , 1 ≤ k ≤ m, j ≥ 0 . (6.4)
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This infinite dimensional “manifold” is described in [62] for example, and we will recall in next
section what we really need. The “Cartan distribution” is the one annihilated by all these forms,
it is spanned by the single vector field

∂

∂t
+ ẋ

∂

∂x
+ u̇

∂

∂u
+ ẍ

∂

∂ẋ
+ ü

∂

∂u̇
+ . . . . . . (6.5)

where ẋ ∂
∂x stands for

∑
i ẋi

∂
∂xi

, u̇ ∂
∂u for

∑
i u̇i

∂
∂ui

... The relation R has to be replaced by its
infinite prolongation, i.e. R itself plus all its “Lie derivatives” along (6.5) :

R(t, x, u, ẋ, u̇) = ẋ − f(x, u) = 0
R1(t, x, u, ẋ, u̇, ẍ, ü) = ẍ − ∂f

∂x ẋ − ∂f
∂u u̇ = 0

R2(t, x, u, ẋ, u̇, ẍ, ü, x(3), u(3)) = x(3) − . . . = 0
...

(6.6)

This defines a sub-bundle R∞ of J∞(π). A “solution” of the differential system is a section
t 7→ (t, x(t), u(t), ẋ(t), u̇(t), ẍ(t), ü(t), . . .) of the sub-bundle R∞, which annihilates the contact
forms ; it is obviously defined uniquely by x(t) and u(t) such that dx

dt (t) = f(x(t), u(t)) with the
functions u(j) and x(j) obtained by differentiating x(t) and u(t).
R∞ is a sub-bundle of J∞(π) which has a particular form : since the relations allow one

to explicitly express all the time-derivatives ẋ, ẍ, x(3), . . . of x as functions of x, u, u̇, ü, u(3), . . .,
a natural set of coordinates on this sub-manifold is (t, x, u, u̇, ü, . . .) ; note that if, instead of
the explicit form (6.1), we had an implicit system f(x, u, u̇) = 0, this would not be true. The
vector field (6.5), which spans the Cartan distribution is tangent to R∞, and its expression in
the coordinates (t, x, u, u̇, ü, . . .) considered as coordinates on R∞ is

∂

∂t
+ f(x, u)

∂

∂x
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ . . . + u(k+1) ∂

∂u(k)
+ . . . . . . (6.7)

and the restriction of the contact forms are dx − fdt, du(j) − uj+1dt, j ≥ 0. The sub-bundles
R∞ obtained for different systems are therefore all diffeomorphic to a certain “canonical object”
independent of the system, and where coordinates are (t, x, u, u̇, ü, . . .), let this object be R ×
Mm,n
∞ where Mm,n

∞ is described in more details in next section and the first factor R is time,
with an embedding ψ of R ×Mm,n

∞ into J∞(π) which defines a diffeomorphism between R∞
and R ×Mm,n

∞ ; this embedding depends on the system and completely determines it ; it pulls
back the contact module on J∞(π) to a certain module of forms on R×Mm,n

∞ and the Cartan
vector field (6.5) into (6.7). The points in J∞(π) which are outside R∞ are not really of interest
to the system, so that we only need to retain R∞, and it turns out that all the information is
contained in R×Mm,n

∞ and the vector field (6.7) which translates the way the contact module
is pulled back by the embedding of R×Mm,n

∞ into J∞(π) whose image is R∞. This is the point
of view defended in [106] for example where such a manifold endowed with what it inherits from
the contact structure on J∞(π) is called a “diffiety”. It is only in the special case of explicit
systems like (6.1) that all diffieties can be parameterized by x, u, u̇, . . . and therefore can all be
represented by the single object Mm,n

∞ , endowed with a contact structure, or a Cartan vector
field, which of course depends on the system.

Finally, since everything is time-invariant, one may “drop” the variable t (or quotient by
time-translations, or project on the sub-manifold {t = 0} which is possible because all objects
are invariant along the fibers) and work with the coordinates (x, u, u̇, ü, . . .) only, with f ∂

∂x +
u̇ ∂
∂u + ü ∂

∂u̇ + . . . instead of (6.7) ; solutions are curves which are tangent to this vector field.
This is the point of view we adopt here, and this is described in details in next section.
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6.3 The generalized state-space manifold

The phrase “generalized state” denotes the use of many derivatives of the input as in [33,
30]. The “infinite-dimensional manifold” Mm,n

∞ we are going to consider is parameterized by
x, u, u̇, ü, . . . ; in order to keep things simple, we define it in coordinates, i.e. a point of Mm,n

∞ is
simply a sequence of numbers, as in [80] for example. It may be extended to x and u living in
arbitrary manifolds via local coordinates, but, since dynamic equivalence is local in nature, the
present description is suitable.

6.3.1 The manifold, functions and mappings

For k ≥ −1, let Mm,n
k be Rn × (Rm)k+1 (Mm,n

−1 is Rn), and let us denote the coordinates in
Mm,n

k by
(x , u , u̇ , ü , . . . , u(k) )

where x is in Rn and u, u̇, . . . are in Rm. Mm,n
∞ is the space of infinite sequences

(x , u , u̇ , ü , . . . , u(j) , u(j+1) , . . . ) .

For simplicity, we shall use the following notation :

U = (u, u̇, ü, u(3), . . .) , X = (x,U) = (x, u, u̇, ü, u(3), . . .) . (6.8)

Let, for k ≥ −1, the projection πk, from Mm,n
∞ to Mm,n

k be defined by :

π−1(X ) = x , and πk(X ) = (x, u, u̇, . . . , u(k)) , k ≥ 0 . (6.9)

Mm,n
∞ may be constructed as the projective limit of Mm,n

k , and this naturally endows it with
the weakest such that all these projections are continuous (product topology) ; a basis of the
topology are the sets

π−1
k (O) , O open subset of Mm,n

k .

This topology makes Mm,n
∞ a topological vector space, which is actually a Fréchet space

(see for instance [14]). It is easy to see that continuous linear forms are these which depend
only on a finite number of coordinates. This leads one to the (false) idea that there is a natural
way of defining differentiability so that differentiable functions depend only on a finite number
of variables, which is exactly the class of smooth functions we wish to consider (as in most of
the literature on differential system and jet spaces [1, 62, 80, 31, 106]), since they translate
into realistic dynamic feedbacks from the system theoretic point of view. It is actually possible
to define a very natural notion of differentiability in Fréchet spaces (see for instance the very
complete [46]) but there is nothing wrong in this framework with smooth functions depending on
infinitely many variables. For instance the function mapping (u, u̇, ü, u(3), . . .) to

∑∞
j=0

1
2j
ρ(u

(j)

j ),
with ρ a smooth function with compact support containing 0 vanishing at 0 as well as its
derivatives of all orders depends on all the variables at zero, but it is smooth in this framework.
It is hard to imagine a local definition of differentiability which would classify this function
non-smooth.

Here, we do not wish to consider smooth functions or smooth maps depending on infinitely
many variables ; we therefore define another differentiable structure, which agrees with the one
usually used for differential systems [31, 1, 80, 62, 106] :

– A function h from an open subset V ofMm,n
∞ to R (or to any finite-dimensional manifold)

is a smooth function at X ∈ V if and only if, locally at each point, it depends only on
a finite number of derivatives of u and, as a function of a finite number of variables, it is
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smooth (of class C∞) ; more technically : if and only if there exists an open neighborhood
U of X in V , an integer ρ, and a smooth function hρ from an open subset of Mm,n

ρ to R
(or to the finite-dimensional manifold under consideration) such that h(Y) = hρ ◦ πρ(Y)
for all Y in U . It is a smooth function on V if it is a smooth function at all X in V . The
highest ρ such that h actually depends on the ρth derivative of u on any neighborhood of
X (-1 if it depends on x only on a certain neighborhood of X ) we will call the order of
h at X , and we denote it by δ(h)(X ). It is also the largest integer such that ∂h

∂u(ρ) (this
may be defined in coordinates and is obviously a smooth function) is not identically zero
on any neighborhood of X . Note that δ(h) may be unbounded on Mm,n

∞ . We denote by
C∞(V ) the algebra of smooth functions from V to R, C∞(Mm,n

∞ ) if V =Mm,n
∞ .

– A smooth mapping from an open subset V of Mm,n
∞ to Mem,en

∞ is a map ϕ from V to
Mem,en
∞ such that, for any ψ in C∞(Mem,en

∞ ), ψ ◦ ϕ is in C∞(V ). It is a smooth mapping
at X if it is a smooth mapping from a certain neighborhood of X to Mem,en

∞ . Of course,
in coordinates, it is enough that this be true for ψ any coordinate function. For such a
map and for all k, there exists locally an integer ρk and a (unique) smooth map ϕk from
πρk(V ) ⊂Mm,n

ρk to Mem,en
k such that

πk ◦ ϕ = ϕk ◦ πρk . (6.10)

The smallest possible ρk at a point X is δ(πk ◦ ϕ)(X ).
– A diffeomorphism from an open subset V of Mm,n

∞ to an open subset Ṽ of Mem,en
∞ is

a smooth mapping ϕ from V to Ṽ which is invertible and is such that ϕ−1 is a smooth
mapping from Ṽ to V .

– A static diffeomorphism ϕ from an open subset V of Mm,n
∞ to an open subset Ṽ of

Mem,en
∞ is a diffeomorphism from V to Ṽ such that for all k, δ(πk ◦ϕ)(X ) is constant equal

to k.
– A (local) system of coordinates onMm,n

∞ (at a certain point) is a sequence (hα)α≥0 of
smooth functions (defined on a neighborhood of the point under consideration) such that
the smooth mapping X 7→ (hα(X ))α≥0 is a local diffeomorphism onto an open subset of
RN, considered as M1,0

∞ .
Note that the functions x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, . . . are coordinates in this sense.

Actually, this makes all the “manifolds”Mm,n
∞ globally diffeomorphic toM1,0

∞ , so that they are
all diffeomorphic to one another (this can be viewed as renumbering the natural coordinates).
The following proposition shows that static diffeomorphisms are much more restrictive : they
preserve n and m.

Proposition 6.1. Let ϕ be a static diffeomorphism from an open set U of Mm,n
∞ to an open

set V of Mem,en
∞ . Its inverse ϕ−1 is also a static diffeomorphism and ϕ induces, for all k ≥ 0,

a diffeomorphism ϕk from Mm,n
k to Mem,en

k (from Rn to Ren for k = −1). Its existence therefore
implies ñ = n and m̃ = m.

Proof : For all k ≥ −1, since δ(ϕ ◦ πk) = k, there exists a mapping ϕk from πk(U) to πk(V )
satisfying (6.10) with ρk = k. All these mappings are onto because if one of them was not onto,
(6.10) would imply that ϕ is onto either. Now let us consider ϕ−1 ; it is a diffeomorphism from
V to U and there exists therefore, for all k, an integer σk and a smooth map

(
ϕ−1

)
k

from
πσk(V ) ⊂Mem,en

σk to Mm,n
k such that

πk ◦ ϕ−1 =
(
ϕ−1

)
k
◦ πσk . (6.11)

Applying ϕ on the right to both sides and using the fact that πσk ◦ ϕ = ϕσk ◦ πσk , we get

πk =
(
ϕ−1

)
k
◦ ϕσk ◦ πσk . (6.12)
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Applied to (x, u, u̇, . . .), this means

(x, u, u̇, . . . , u(k)) =
(
ϕ−1

)
k

(y, v, v̇, . . . , v(k), . . . , v(σk))
with (y, v, v̇, . . . , v(k), . . . , v(σk)) = ϕσk (x, u, u̇, . . . , u(k), . . . , u(σk))

(6.13)

Since ϕσk is onto and each v(j) depends only on x, u, . . . , u(j), (6.13) implies that
(
ϕ−1

)
k

depends
only on y, v, v̇, . . . , v(k). Therefore σk might have been taken to be k, and then one has (6.12)
with σk = k and therefore (

ϕ−1
)
k
◦ ϕk = IdM em, em

k
(6.14)

which proves that each ϕk is a diffeomorphism and ends the proof.
Let us define, as examples of diffeomorphisms, the (non static !) diffeomorphisms

Υn,(p1,...,pm) from Mm,n
∞ Mm,n+p1+...+pm

∞ which “adds pk integrators on the kth input” :

Υn,(p1,...,pm)(x,U) = (z,V) with
z = (x, u1, u̇1 . . . u

(p1−1)
1 , . . . , um, u̇m, . . . u

(pm−1)
m )

v
(j)
k = u

(j+pk)
k .

(6.15)

It is invertible : one may define ΥN,(−p1,...,−pm) from Mm,N
∞ to Mm,N−p1−...−pm

∞ for N ≥ p1 +
. . . + pm by Υn,(−p1,...,−pm)(z,V) = (x,U) where x is the N − p1 − . . .− pm first coordinates

of z, and u(j)
k is v(j−pk)

k if j ≥ pk and one of the remaining components of z if 0 ≤ j ≤ pk − 1, so
that Υn,(p1,...,pm) ◦Υn,(−p1,...,−pm) = Id.

6.3.2 Vector fields and differential forms

The “tangent bundle” to the infinite dimensional manifold Mm,n
∞ is, since Mm,n

∞ is a vector
space,Mm,n

∞ ×Mm,n
∞ , which is a (trivial) vector bundle overMm,n

∞ . A smooth vector field is
a smooth (as a mapping from Mm,n

∞ to Mm,n
∞ ×Mm,n

∞ , considered as M2m,2n
∞ ) section of this

bundle. It is of the form

F = f
∂

∂x
+

∞∑
0

αj
∂

∂u(j)
(6.16)

where f is a smooth function fromMm,n
∞ to Rn and the αj ’s are smooth functions fromMm,n

∞ to
Rm, where f ∂

∂x stands for
∑

i fi
∂
∂xi

and αj ∂
∂u(j) for

∑
i αj,i

∂

∂u
(j)
i

, and the ∂
∂xi

’s and ∂

∂u
(j)
i

’s are the

canonical sections corresponding to the “coordinate vector fields” associated with the canonical
coordinates. Vector fields obviously define smooth differential operators on smooth functions :
in coordinates, LFh is an infinite sum with finitely many nonzero terms.

Smooth differential forms are smooth sections of the cotangent bundle, which is sim-
ply Mm,n

∞ × (Mm,n
∞ )∗ where (Mm,n

∞ )∗ is the topological dual ofMm,n
∞ , i.e. the space of infinite

sequences with only a finite number of nonzero entries ; they can be written :

ω = gdx +
∑

finite
βjdu(j) . (6.17)

This defines the C∞(Mm,n
∞ ) module Λ1(Mm,n

∞ ) of smooth differential forms onMm,n
∞ . One may

also define differential forms of all degree.
Of course, one may apply a differential form to a vector field according to 〈ω, F 〉 = fg +∑
αjβj (compare (6.16)-(6.17)), where the sum is finite because finitely many βj ’s are nonzero.

One may also define the Lie derivative of a smooth function h, of a differential form ω,... along
a vector field F , which we denote by LFh or LFω. The Lie bracket of two vector fields may
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also be defined. All this may be defined exactly as in the finite-dimensional case because, on a
computational point of view, all the sums to be computed are finite.

Finally, note that a diffeomorphism carries differential forms, vector fields, functions from
a manifold to another, exactly as in the finite dimensional case ; for example, if ϕ is a dif-
feomorphism from Mm,n

∞ to Mem,en
∞ , F is given by (6.16) and z, v, v̇, v̈, . . . are the canonical

coordinates on Mem,en
∞ , the vector field ϕ∗F on Mem,en

∞ is given by
∑

i f̃i
∂
∂xi

+
∑

j,k α̃j,k
∂

∂u
(j)
k

with

f̃i = (LF (zi ◦ ϕ)) ◦ ϕ−1 and α̃j,k = (LF (v(j)
k ◦ ϕ)) ◦ ϕ−1.

6.3.3 Systems

A system is a vector field F on Mm,n
∞ –with n ≥ 0 and m ≥ 1 some integers– of the form

F (X ) = f(x, u)
∂

∂x
+

+∞∑
j=0

u(j+1) ∂

∂u(j)
, (6.18)

i.e. the x-component of F is a function of x and u only, and its u(j)-component is u(j+1). This
may be rewritten, in a more condensed form,

F = f + C (6.19)

where C is the canonical vector field on Mm,n
∞ , given by

C =
∞∑
0

u(j+1) ∂

∂u(j)
, (6.20)

and the vector field f is such that

〈du(j)
i , f〉 = 0 i = 1, . . . ,m , j ≥ 0

[ ∂

∂u
(j)
i

, f ] = 0 i = 1, . . . ,m , j ≥ 1 . (6.21)

m will be called the number of inputs of the system, and n its state dimension. Note that
in the (explicit) non-classical case [33, 30] (i.e. the case when some derivatives of u would appear
in the right-hand side of (6.1), there would be no restriction on f , besides being smooth, i.e. the
second relation in (6.21) would no longer be there (note however that any smooth vector field
has zero Lie Bracket with ∂

∂u(j) for j large enough, or in other words f depending on infinitely
many time-derivatives of u in (6.1) is ruled out).

In the special case where n = 0, there is only one system (with “no state”) on Mm,0
∞ . We

call this system the canonical linear system with m inputs ; it is simply represented by the
canonical vector field C given by (6.20).

In section 6.2, a system was an embedding of R×Mm,n
∞ as a sub-bundle of J∞ ; this defines

canonically the vector field F onMm,n
∞ as, more or less, the pull back of the Cartan vector field

(annihilating the contact forms) in J∞(π).
F is the vector field defining the “total derivation along the system”, i.e. the derivative

of a smooth function (depending on x, u, u̇, . . . , u(j)) knowing that ẋ = f(x, u) is exactly its
Lie derivative along this vector field. In [55], B. Jakubczyk attaches a differential algebra to
the smooth system (6.1) which is exactly C∞(Mm,n

∞ ) endowed with the Lie derivative along
the vector field F . Of course, this is very much related to the differential algebraic approach
introduced in control theory by M. Fliess [33], based on differential Galois theory, and where a
system is represented by a certain differential field. In the analytic case, as explained in [28],
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this differential field may be realized as the field of fractions of the integral domain Cω(Mm,n
∞ ).

The present framework is more or less dual to these differential algebra representations since
it describes the set of “points” on which the objects manipulated in differential algebra are
“functions”.

The following proposition gives an intrinsic definition of the number of inputs, which will be
useful to prove that it is invariant under dynamic equivalence :

Proposition 6.2. The number of inputs m is the largest integer q such that there exists q smooth
functions h1, . . . , hq from Mm,n

∞ to R such that all the functions

LjFhk 1 ≤ k ≤ q , j ≥ 0

are independent (the Jacobian of a finite collection of them has maximum rank).

Proof : On one hand, hk(x,U) = uk provides m functions enjoying this property. On the other
hand, consider m+ 1 smooth functions h1, . . . , hm+1, let ρ ≥ 0 be such that they are functions
only of x, u, u̇, . . . , u(ρ), and consider the (m+ 1)(n+mρ+ 1) functions functions

LjFhk 1 ≤ k ≤ m+ 1 , 0 ≤ j ≤ n+mρ ;

from the form of F (see (6.19) and (6.20)), they depend only on x, u, u̇, . . . , u(ρ+n+mρ), i.e. on
n+m(ρ+n+mρ+1) coordinates ; since this integer is strictly smaller than (m+1)(n+mρ+1),
the considered functions cannot be independent.

6.3.4 Differential calculus ; an inverse function theorem

All the identities from differential calculus involving functions, vector fields, differential forms
apply on the “infinite-dimensional manifold” Mm,n

∞ exactly as if it were finite-dimensional : if
it is an equality between functions or forms, it involves only a finite number of variables (i.e.
both sides are constant along the vector fields ∂

∂u
(j)
k

for j larger than a certain J > 0) so that

all the vector fields appearing in the formula may be truncated (replaced by a vector fields with
a zero component on ∂

∂u
(j)
k

for j > J), and everything may then be projected by a certain πK

(K possibly larger than J), yielding an equivalent formula on the finite-dimensional manifold
Mm,n

K ; if it is an equality between vector fields, it may be checked component by component,
yielding equalities between functions, and the preceding remark applies.

Of course, theorems from differential calculus yielding existence of an object do not follow
so easily, and often do not hold in infinite dimension. For instance, locally around a point where
it is nonzero, a vector field on a manifold of dimension n has n − 1 independent first integrals
(functions whose Lie derivative along this vector field is zero) whereas this is false on Mm,n

∞ in
general : for the vector field C on Mm,0

∞ given by (6.20), any function h such that LCh = 0 is a
constant function.

One fundamental theorem in differential calculus is the inverse function theorem stating that
a smooth function from a manifold to another one whose tangent map at a certain point is an
isomorphism admits locally a smooth inverse. In infinite dimension, the situation is to more
intricate, see for instance [46] for a very complete discussion of this subject and general inverse
function theorems on Fréchet spaces, which are not exactly the kind of theorem we will need
since more general smooth functions are considered there. Here, for a mapping ϕ from Mm,n

∞
(coordinates : x, u, u̇, . . .) toMem,en

∞ (coordinates : z, v, v̇, . . .), the function assigning to each point
the tangent map to F at this point may be represented by the collection of differential forms
d(zi ◦ϕ), d(v(j)

k ◦ϕ), and a way of saying that, at all point, the linear mapping is invertible with
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a continuous inverse, and that it depends smoothly on the point, is to say that these forms are
a basis of the module Λ1(Mm,n

∞ ) ; equivalently, this tangent map might be represented by an
infinite matrix whose lines are finite (each line represents one of the above differential forms),
and which is invertible for matrix multiplication with an inverse having also finite lines. It is
clear that for a diffeomorphism this linear invertibility holds ; the additional assumption we add
to get a converse is that the mapping under consideration carries a control system (as defined by
(6.19)) on Mm,n

∞ to a control system on Mem,en
∞ ; note also that we require that the tangent map

be invertible in a neighborhood of the point under consideration whereas the finite-dimensional
theorem just asks for invertibility at the point.

Besides its intrinsic interest, the following result will be required to prove theorem 6.5 which
characterizes “linearizing outputs” in terms of their differentials.

Proposition 6.3 (local inverse function Theorem). Let m,n, m̃, ñ be nonnegative integers with
m and m̃ nonzero. Let z1, . . . , zen, v1, . . . , vem, v̇1, . . . , v̇em, . . . . . . be the canonical coordinates on
Mem,en
∞ , and X = (x̄, ū, ˙̄u, ¨̄u, . . .) be a point in Mm,n

∞ . Let ϕ be a smooth mapping from a neigh-
borhood of X in Mm,n

∞ to a neighborhood of ϕ(X ) in Mem,en
∞ such that

1. on a neighborhood of X , the following set of 1-forms on Mm,n
∞ :

{ d(zi ◦ ϕ) }1≤i≤en ∪ {d(v(j)
k ◦ ϕ) }1≤k≤em, j≥0 , (6.22)

form a basis of the C∞(Mm,n
∞ )-module Λ1(Mm,n

∞ ),

2. there exists two control systems F on Mm,n
∞ and F̃ on Mem,en

∞ such that, for all function
h̃ ∈ C∞(Mem,en

∞ ), defined on a neighborhood of ϕ(X ),(
L eF h̃

)
◦ ϕ = LF

(
h̃ ◦ ϕ

)
. (6.23)

Then ϕ is a local diffeomorphism at X , i.e. there exists a neighborhood U of X in Mm,n
∞ , a

neighborhood V of ϕ(X ) in Mem,en
∞ and a smooth mapping (a diffeomorphism) ψ from V to U

such that ψ ◦ ϕ = IdU and ϕ ◦ ψ = IdV .

Note that (6.22) is a way of expressing that the tangent map to ϕ is invertible with a
continuous inverse, and (6.23) is a way of expressing that ϕ transforms the control system F
into the control system F̃ , in a dual manner since writing F̃ = ϕ∗F would presuppose that ϕ is
a diffeomorphism.
Proof : Let x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, . . . . . . be the canonical coordinates on Mm,n

∞ .
The first condition implies that there exist some smooth functions aki , b

k,j
i , cki , d

k,j
i such that

dxi =
∑en

k=1 a
k
i d(zk ◦ ϕ) +

∑L
j=0

∑em
i=1 b

k,j
i d(v(j)

k ◦ ϕ) i = 1, . . . , n
dui =

∑en
k=1 c

k
i d(zk ◦ ϕ) +

∑L
j=0

∑em
i=1 d

k,j
i d(v(j)

k ◦ ϕ) i = 1, . . . ,m .
(6.24)

Let K be the integer such that the functions z1 ◦ ϕ, . . . , zen ◦ ϕ, v1 ◦ ϕ, . . . , vem ◦ ϕ, . . . , v(L)
1 ◦

ϕ, . . . , v
(L)em ◦ ϕ, and the functions aki , b

k,j
i , cki , d

k,j
i all depend on x, u, u̇, . . ., u(K) only. Then

z1◦ϕ, . . . , zen◦ϕ, v1◦ϕ, . . . , vem◦ϕ are ñ+m̃ functions of the n+(K+1)m variables x1, . . . , xn, u1,
. . ., um, . . . , u

(K)
1 , . . . , u

(K)
m which, from condition 1 in the proposition are independent because

the fact the forms in (6.24) form a basis of the module of all forms implies in particular
that a finite number of them has full rank at all point as vectors in the cotangent vector
space. Hence, from the finite dimensional inverse function theorem, one may locally replace,
in x1, . . . , xn, u1, . . . , um, . . . , u

(K)
1 , . . . , u

(K)
m , ñ+m̃ coordinates with the functions z1 ◦ϕ, . . . , zen ◦
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ϕ, v1◦ϕ, . . . , vem◦ϕ. In particular, there exists n+m functions ξi and ζ0
i defined on a neighborhood

of (z̄, v̄, ˙̄v, . . . , v̄(L)) —with ϕ(X ) = (z̄, v̄, ˙̄v, ¨̄v, . . . , v̄(L))— and such that

xi = ξi(z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ,Y) i = 1, . . . , n
ui = ζ0

i (z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ,Y) i = 1, . . . ,m
(6.25)

where Y represents some of the n+ (K + 1)m variables x, u, u̇, . . . , u(K) (all minus ñ+ (L+ 1)m̃
of them). dxi and dui may be computed by differentiating (6.25) ; the expression involves the
partial derivatives of the functions ξi and ζi and comparing with the expressions in (6.24), one
may conclude that

∂ξi
∂Y = 0 ,

∂ζ0
i

∂Y = 0 , (6.26)

and we may write, instead of (6.25),

xi = ξi(z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ) i = 1, . . . , n
ui = ζ0

i (z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ) i = 1, . . . ,m
(6.27)

We then define the functions ζji for j > 0 by

ζji = L eF ζ0
i (6.28)

(note that this makes ζji a smooth function of z, v, . . . , v(l+j)) and we define ψ by

ψ(z, v, v̇, v̈, . . . ) = (x, u, u̇, ü, . . . ) with
xi = ξi(z, v, . . . , v(L)) ,

u
(j)
i = ζji (z, v, . . . , v(L+j)) , j ≥ 0 .

(6.29)

Its is straightforward to check that (6.23), (6.28), (6.29) and the fact that LjFu is u(j) imply that
ϕ ◦ ψ = Id and ψ ◦ ϕ = Id.

6.4 Dynamic equivalence

The objective of the previous sections is the following definition. As announced in the in-
troduction, it mimics the notion of equivalence, or equivalence by endogenous dynamic
feedback given in [68] for analytic systems (analyticity plays no role at all in the definition of
local equivalence), which coincides with the one given in [36, 37] when the transformations are
algebraic. The present definition is more concise than in [68] and allows some simple geometric
considerations, but the concept of equivalence is the same one. It also coincides with “dynamic
equivalence” as defined in [55, 56], see below. It is proved in [68] that if two systems are equiva-
lent in this sense then there exists a dynamic feedback in the sense of (6.2) which is endogenous
and nonsingular and transforms one system into a “prolongation” of the other.

Definition 6.1 (Equivalence). Two systems F on Mm,n
∞ and F̃ on Mem,en

∞ are equivalent at
X ∈ Mm,n

∞ and Y ∈ Mem,en
∞ if and only if there exist a neighborhood U of X in Mm,n

∞ , a neigh-
borhood V of Y in Mem,en

∞ , and a diffeomorphism ϕ : U → V such that ϕ(X ) = Y and

F̃ = ϕ∗F (6.30)

on U . They are globally equivalent if there exists a diffeomorphism ϕ from Mm,n
∞ to Mem,en

∞ such
that (6.30) holds everywhere.
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Note that in the definition of local equivalence, the diffeomorphism is only defined locally.
This might be worrying : it is not very practical to know that something may be constructed in
a region which imposes infinitely many constraints on infinitely many derivatives of the input
u. This actually does not occur because a neighborhood U of a point X contains an open set
of the form π−1

K (UK) with UK open in Mm,n
K , so that being in U imposes some constraints on

x, u, u̇, ü, . . . , u(K) but none on u(K+1), u(K+2), . . ..
Some notions of dynamic equivalence (“dynamic equivalence” and “dynamic feedback equiva-

lence”) are also given in [55, 56]. To describe them, let us come back to the framework of section
6.2, whereMm,n

∞ is a sub-bundle of J∞(π) andMem,en
∞ is a sub-bundle of J∞(π̃) ; the transforma-

tions considered in [55, 56] have to be defined from J∞(π) to J∞(π̃) whereas our diffeomorphism
ϕ is only defined on Mm,n

∞ (and maps it onto Mem,en
∞ ) ; actually, Lie-Bäcklund transformations

are usually defined, like in [55, 56], all over J∞(π) ; this is referred to as outer transformations,
or outer symmetries if it maps a system into itself, whereas inner transformations are these,
like our ϕ, defined only “on the solutions”, i.e. on Mm,n

∞ . Since the transformations in [56] are
required to be invertible on the solutions only, it is proved there that a transformation like our
ϕ may be extended (at least locally) to J∞(π) and therefore that local equivalence in the sense
of Definition 6.1 is the same as the local version of the one called “dynamic equivalence” (and
not “dynamic feedback equivalence”) in [56].

It is clear that equivalence is an equivalence relation on systems, i.e. on vector fields of the
form (6.19) because the composition of two diffeomorphisms is a diffeomorphism. There is not
however a natural group acting on systems since a given diffeomorphism might transform a sys-
tem F into a system G and transform another system F ′ into a vector field on Mm,n′

∞ which is
not a system. For instance, for p1, . . . , pm nonnegative, the diffeomorphism Υn,(p1,...,pm) defined
in (6.15) transforms any system on Mm,n

∞ into a system on Mm,n+p1+...+pm
∞ whereas the dif-

feomorphism Υn+p1+...+pm,(−p1,...,−pm) –its inverse– transforms most systems onMm,n+p1+...+pm
∞

into a vector field onMm,n
∞ which is not a “system” because it does not have the required struc-

ture on the coordinates which are called “inputs” on Mm,n
∞ . Two important questions arise :

what is exactly the class of diffeomorphisms which transform at least one system into another
system and what is the class of vector fields equivalent to a system by such a diffeomorphism.
An element of answer to the latter question is that “non-classical” systems [33, 30], i.e. these
where the right-hand side of (6.1) depends also on some time-derivatives of u, or vector fields on
which the second constraint in (6.21) does not hold, are in this class of vector fields because they
are transformed by Υn,(K,...,K), where K is the number of derivatives of the input appearing in
the system, into a (classical) system, this illustrates that generalized state-space representations
[33, 30] are “natural” ; however, it is clear that the class of vector fields which may be conjugated
to a “system” is much larger : the only system (classical or not) on Mm,0

∞ is C and very few
systems on Mm,n

∞ are transformed into C by Υn,(−n,0,...,0) for example. A partial answer to the
former question is given by :

Theorem 6.1. The number of inputs m is invariant under equivalence.

Proof : For any function h, L eF (h ◦ ϕ−1
)

= (LFh) ◦ϕ−1. The integer m from Proposition 6.2
is therefore preserved by a diffeomorphism ϕ.

Further remarks on the class of diffeomorphisms which transform at least one system into
another system may be done. One may restrict its attention to systems of the same dimension,
i.e. to diffeomorphisms fromMm,n

∞ to itself because if ϕ goes fromMm,n
∞ toMm,N

∞ with N > n
and transforms a system into a system, Υn,(N−n,0,...,0) ◦ ϕ is a diffeomorphism of Mm,N

∞ that
transforms a system into a system. In the single-input case (m = 1), as stated in section 6.6,
ϕ must be static, which is a complete answer to the question because a static diffeomorphism
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transforms any system into a system. In the case of at least two inputs (m > 1), the literature
([62, Theorem 4.4.5] or [1, Theorem 3.1], but these have to be adapted since they are stated
in an “outer” context) tells us that either ϕ is static or it does not preserve the fibers of
πk : Mm,n

∞ → Mm,n
k for any k, i.e., if ϕ is given by ϕ(x, u, u̇, ü, . . .) = (z, v, v̇, v̈, . . .), there

is no k such that (z, v, v̇, . . . , v(k)) is a function of (x, u, u̇, . . . , u(k)) only. This is related to the
statement [23] that, when dynamic feedback is viewed as adding some integrators plus performing
a static feedback, it is inefficient to add the same number of integrators on each input.

6.5 Static equivalence

Definition 6.2 (Static equivalence). Two systems F on Mm,n
∞ and F̃ on Mem,en

∞ are (locally/
globally) static equivalent if and only if they are (locally/globally) feedback equivalent with the
diffeomorphism ϕ in (6.30) being a static diffeomorphism.

From Proposition 6.1, we know that a static diffeomorphism really defines an invertible static
feedback transformation in the usual sense, this is summed up in the following :

Theorem 6.2. Both the number of inputs m and the dimension n of the state are invariant
under static equivalence. Moreover, π−1◦ϕ provides a local diffeomorphism in the classical state-
space Rn and the u component of π0 ◦ ϕ provides a nonsingular feedback transformation which
together provide an invertible static feedback transformation in the usual sense.

6.6 The single-input case

It was proved in [23, 22] that a single-input system which is “dynamic feedback linearizable”
is “static feedback linearizable”. The meaning of dynamic feedback linearizable was weaker that
being equivalent to a linear system as meant here : “exogenous” feedbacks (see [68]) were allowed
in [23] as well as singular (feedbacks which may change the number of inputs for example).
The following Theorem 6.3 may be viewed as a generalization of this result to non-linearizable
systems, but with a more restrictive dynamic equivalence.

It is known that the only transformations on an infinite jet bundle with only one “de-
pendent variable” which preserves the contact structure (Lie-Bäcklund transformation in [1],
C-transformation in [62]) are infinite prolongations of transformations on first jets (Lie transfor-
mation according to [62]), see for instance [62, Theorems 6.3.7 and 4.4.5]. The following result
is similar in spirit. We give the full proof, a little long but elementary : it basically consists in
counting the dimensions carefully, it is complicated by the fact that we do not make any a priori
regularity assumption (for instance, the functions χi and ψi defining the diffeomorphism are not
assumed to depend on a locally constant number of derivatives of u).

Theorem 6.3. Let F and F̃ be two systems on M1,n
∞ (i.e. two single input systems with the

same number of states). Any (local/global) diffeomorphism ϕ such that F̃ = ϕ∗F is static. Hence
they are (locally/globally) equivalent if and only if they are (locally/globally) static equivalent.

Proof : The second statement is a straightforward consequence of the first one. Let us consider
a diffeomorphism ϕ such that F̃ = ϕ∗F and prove that ϕ is static. Suppose that, in coordinates,
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ϕ and ϕ−1 are given by ϕ(x,U) = (z,V) and ϕ−1(z,V) = (x,U) with :

z = χ−1(x,U)
v = χ0(x,U)

...
v(j) = χj(x,U)

...

x = ψ−1(z,V)
u = ψ0(z,V)

...
u(j) = ψj(z,V)

...

(6.31)

Since F̃ = ϕ∗F , we have

LFχ−1(x,U) = f̃(χ−1(x,U) , χ0(x,U) )
LFχj(x,U) = χj+1(x,U) for j ≥ 0 .

(6.32)

Let X be an arbitrary point of the domain where ϕ is defined. From the definition of a
diffeomorphism, there is an integer J ≥ −1 and a neighborhood U of X (J is δ(π0 ◦ ϕ)(X ) if U
is small enough) such that χ−1 and χ0 depend only on x, u, u̇, . . . , u(J) on U and ∂χ−1

∂u(J) and ∂χ0

∂u(J)

are not both identically zero on U (one might take all the open set where ϕ is defined –Mm,1
∞

in the global case– instead of U , but this might cause J to be infinite).
If J was −1, χ−1 and χ0 would both depend only on x, but the dimension of x is n and the

dimension of (χ−1, χ0) is n+ 1 : there would be a function such that h(χ−1, χ0) would be zero
on U and this would prevent ϕ from being a diffeomorphism ; hence J ≥ 0.

The first equation in (6.32), and the second one for j = 0, imply :

∂χ−1

∂x
f(x, u) +

∂χ−1

∂u
u̇ + · · ·+ ∂χ−1

∂u(J)
u(J+1) = f̃(χ−1(x . . . u(J)) , χ0(x . . . u(J)) ) ,

∂χ0

∂x
f(x, u) +

∂χ0

∂u
u̇ + · · ·+ ∂χ0

∂u(J)
u(J+1) = χ1(x,U) .

By taking the derivative with respect to u(J+1) of the first equation and with respect to u(j) for
j ≥ J + 2 of the second equation,

∂χ−1

∂u(J)
= 0 and 0 =

∂χ1

∂u(j)
for j ≥ J + 2 . (6.33)

This implies that that χ−1 is a function of x, u, . . . , u(J−1) (x if J = 0) only, χ0 is a function of
x, u, . . . , u(J−1), u(J) only (by definition of J), and χ1 of x, u, . . ., u(J−1), u(J), u(J+1) only. It is
then easy to deduce by induction from the second relation in (6.32) that for all j ≥ 0, χj is a
function of x, u, . . . , u(J+j+1) on this neighborhood with

∂χj

∂u(J+j)
=

∂χ0

∂u(J)
, j ≥ 0 . (6.34)

From the first relation in (6.33) and the definition of J , ∂χ0

∂u(J) is not identically zero on U .
Hence, there is a point X = (x, u, u̇, . . .) ∈ U such that ∂χ0

∂u(J) (X ) = ∂χ0

∂u(J) (x, u, . . . , u(J)) 6= 0. Let
K be δ(π0 ◦ ϕ−1)(X ) —note that it might be smaller than δ(π0 ◦ ϕ−1)(X )— i.e. ψ−1 and ψ0

locally depend only on z, v, . . . , v(K), and ∂ψ−1

∂v(K) and ∂ψ0

∂v(K) are not both identically zero on any
neighborhood of X . This implies, since ∂χ0

∂u(J) is nonzero at X , that there is a neighborhood U of
X such that, on U , ∂χ0

∂u(J) does not vanish, ψ−1 and ψ0 depend only on z, v, . . . , v(K) and ∂ψ−1

∂v(K)

and ∂ψ0

∂v(K) are not both identically zero. We have, on U ,

x = ψ−1(χ−1(x, u, . . . , u(J−1)) , χ0(x, u, . . . , u(J)) , . . . , χK(x, u, . . . , u(J+K)) )
u = ψ0(χ−1(x, u, . . . , u(J−1)) , χ0(x, u, . . . , u(J)) , . . . , χK(x, u, . . . , u(J+K)) ) .

(6.35)
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K cannot, for the same dimensional reasons as J , be equal to −1, hence K ≥ 0. Now, suppose
that J ≥ 1. Then J +K ≥ 1, and taking the derivative of both identities in (6.35) with respect
to u(J+K) therefore yields

∂ψ−1

∂v(K)

∂χK
∂u(J+K)

=
∂ψ0

∂v(K)

∂χK
∂u(J+K)

= 0 (6.36)

identically on U . This is impossible because on one hand ∂χK
∂u(J+K) does not vanish because of

(6.34) and on the other hand K has been defined so that ∂ψ−1

∂v(K) and ∂ψ0

∂v(K) are not both identically
zero on U . Hence J ≥ 1 is impossible.

We have proved that J = 0. Hence χj depends only on x, u . . . u(j) (x for j = −1) for all
j ≥ −1 (see above) and ∂χj

∂u(j) is, for all j, nonsingular at all points (consequence of the smooth
invertibility of ϕ). This is the definition of a static diffeomorphism.

6.7 Dynamic linearization

A controllable linear system is a system of the form (6.19) where the function f is linear,
i.e. f(x, u) = Ax+Bu with A and B constant matrices, and (Kalman rank condition) the rank
of the columns of B, AB, A2B is n.

There is a canonical form under static feedback, known as Brunovský canonical form [17]
for these systems : they may be transformed via a static diffeomorphism (from Mm,n

∞ to itself)
to a linear system where A and B have the form of some “chains of integrators” of “length”
r1, . . . , rm ; the diffeomorphism Υn,(−r1,...,−rm) fromMm,n

∞ toMm,0
∞ (see (6.15)) which “cuts off”

all these integrators then transforms this system into C (see (6.20)) :

Proposition 6.4 ([17]). A controllable linear system with m inputs is globally equivalent to the
canonical system C on Mm,0

∞ .

We wish to call dynamic linearizable a system which is equivalent to a controllable linear
system. From the above proposition, this may equivalently be stated as :

Definition 6.3. A system is (locally/globally) dynamic linearizable if and only if it is (lo-
cally/globally) equivalent to the canonical linear system C on M0,m

∞ .

Of course this concept is the same as in [68, “analytic approach”] since the equivalence is the
same. In [36, 37, 68], the notion of linearizing outputs or flat outputs is used to define flat control
systems as these which admit such outputs. It is proved that flatness coincides with equivalence
by endogenous feedback to a controllable linear system. In [55, 56] a system is called free if the
differential algebra (C∞(Mm,n

∞ ), LF ) is free ; the linearizing outputs we define below are free
generators of this differential algebra. The following theorem in a sense re-states the result “flat
⇔ linearizable by endogenous feedback”.

Theorem 6.4 (linearizing outputs). A system F on Mm,n
∞ is locally dynamic linearizable at

a point X if and only if there exist m smooth functions h1, . . . , hm from a neighborhood of X
in Mm,n

∞ to R such that (LjFhk)1≤k≤m,0≤j is a system local of coordinates at X . It is globally
dynamic linearizable and only if there exist m smooth functions h1, . . . , hm fromMm,n

∞ to R such
that (LjFhk)1≤k≤m,0≤j is a global system of coordinates. These functions are called linearizing
outputs.

Proof : If F is dynamic linearizable, there exists a (local/global) diffeomorphism ϕ fromMm,n
∞

toMm,0
∞ such that C = ϕ∗F . Define hk by hk = v

(j)
k ◦ϕ with v(j)

k the canonical coordinates
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on M0,m
∞ . Since v(j)

k = LjCvk (the jth Lie derivative of vk along C) and C = ϕ∗F , we have

LjFhk = LjF (vk ◦ ϕ) =
(
Ljϕ∗F vk

)
◦ ϕ = v

(j)
k ◦ ϕ ,

so that, since ϕ is a diffeomorphism and (v(j)
k )1≤k≤m,0≤j is a system of coordinates on Mm,0

∞ ,
(v(j)
k ◦ ϕ)1≤k≤m,0≤j is a system of coordinates on Mm,n

∞ . Conversely, if there exist m functions
h1, . . . , hm enjoying this property, then one may define the diffeomorphism ϕ mapping a point
(x,U) of Mm,n

∞ to the point of M0,m
∞ whose coordinate v

(j)
k is LjFhk(x,U). It is clear that

ϕ∗F = C.
Of course, this is far from being a solution to dynamic feedback linearization since one

has to determine if linearizing outputs exist, which is not an easy task ; see Chapter 7 for
bibliography and a discussion of this topic. Let us give a rather convenient way of tackling this
problem by transforming it into its “infinitesimal” version. Recall that a Pfaffian system is a
family of differential forms of degree 1 with constant rank ; any family of forms generating the
same module (or co-distribution) defines the same Pfaffian system. The infinitesimal version of
linearizing outputs is and object already defined n[4, 83] :

Definition 6.4. A Pfaffian system (ω1, . . . , ωm) is called a linearizing Pfaffian system at
point X if and only if, for a certain neighborhood U of X , the restriction to U of the forms
LjFωk, j ≥ 0, 1 ≤ k ≤ m form a basis of the C∞(U)-module Λ1(U) of all differential forms on
U .

We have three comments on this definition. Firstly, this is a property of the Pfaffian system
(ω1, . . . , ωm) rather than the m-uple of 1-forms since it is not changed when changing the col-
lection of forms ω1, . . . , ωm into another collection which span the same module. Secondly, one
may prove than the rank of such a Pfaffian system must be m (see the proof of Proposition 6.2).
Finally, one should not be mislead by the terminology : existence of a linearizing Pfaffian
system does not imply linearizability :

Theorem 6.5. A system F on Mm,n
∞ is locally dynamic linearizable at point X if and only if

there exists, on a neighborhood of X , a linearizing Pfaffian system (ω1, . . . , ωm) which is locally
completely integrable.

By locally completely integrable, we mean the classical Frobenius condition dωk ∧ ω1 ∧ . . .∧
ωm = 0 ; note that the condition that (LjFωk)1≤k≤m,0≤j be a basis of Λ1(U) implies that the
rank at all point of (ω1, . . . , ωm) is m, and is therefore constant.
Proof : The condition is obviously necessary from Theorem 6.4 by taking ωk = dhk. Conversely,
one may apply the finite dimensional Frobenius theorem to (ω1, . . . , ωm) because they depend on
a finite number of variables, and, as noticed above, they have constant rank m : there exists m
functions h1 . . . hm (of the same number of variables than these appearing in ω1 . . . ωm) such that
dh1, . . . ,dhm span the same co-distribution than ω1, . . . , ωm ; this implies that (LjFdhk)1≤k≤m,0≤j
is also a basis of Λ1(U). Define the map ϕ : U →Mm,0

∞ as assigning to a point (x,U) of Mm,n
∞

to the point of M0,m
∞ whose coordinate v

(j)
k is LjFhk(x,U). It is clear that for all function

h̃ ∈ C∞(M0,m
∞ ),

(
LC h̃

)
◦ ϕ = Lϕ

(
h̃ ◦ ϕ

)
, so that theorem 6.3 implies that ϕ is a local

diffeomorphism.
This result is more interesting in the light of the fact that a controllable system admits a

linearizing Pfaffian system at “almost all” points. Next chapter develops further this point of
view, see also [4] for a more algebraic approach.
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7.1 Introduction and Problem Statement

The purpose of this note is to present a “geometric” version of the constructions made in
[4, 83]. The framework from Chapter 6 will be used ; it is briefly summed up in section 7.2.

The contribution of [4, 83] was to construct a so-called “infinitesimal Brunovský form” (“non-
exact Brunovský form” in [83]) for controllable nonlinear systems and to relate it to dynamic
linearization ; they use the linear algebraic framework introduced in [12]. The point of view on
the feedback linearization problem was the one of looking for “linearizing outputs”, following the
idea of [36, 37, 68]. It is therefore, following the terms of [36, 37, 68], linearization via endogenous
dynamic feedback. In [83], we relied explicitly upon the notion of differential flatness [36, 37, 68],
whereas [4] re-defines the notion of linearizing outputs in terms of dynamic decoupling and
structure at infinity.

Here, in the framework of Chapter 6, dynamic linearization is equivalence to a linear system
via diffeomorphism on the extended state space manifold ; linearizing outputs are functions such
that these and all their “time-derivatives” are a set of local coordinates on the generalized state-
space manifold. The main interest of this approach over the algebraic ones is that it is possible
to give local notions, and therefore singularities are not ignored.

In section 7.3, we define the infinitesimal Brunovský form and relate it to some work on
time-varying linear systems and linearized systems of nonlinear systems [34, 35]. In section 7.4,
we relate this construction to existence of linearizing outputs, and explain why it provides a
good framework for searching linearizing outputs.

7.2 Summary of Chapter 6

2.1. The “infinite dimensional manifold”Mm,n
∞ is, for short, Rn × (Rm)N. A global system

of coordinates is x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, ü1, . . .. It is endowed with the product

145
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topology : an open set may be described by some restrictions on a finite number of coordinates,
i.e. there is a k̃ such that, considered as an open set of Rn × (Rm)N = Rn × (Rm)k̃ × (Rm)N, it
can be written Õ × (Rm)N with Õ an open set of Rn × (Rm)k̃.

2.2. A smooth function onMm,n
∞ is one which depends only on a finite number of coordinates

and is smooth as a function of these coordinates. C∞(U) stands for the algebra of smooth
functions defined on an open subset U ofMm,n

∞ . A smooth mapping fromMm,n
∞ toMem,en

∞ is a
mapping whose composition with any smooth function is a smooth function. A diffeomorphism
from Mm,n

∞ to Mem,en
∞ is a bijective smooth mapping whose inverse is a smooth mapping.

2.3. A vector field is a possibly infinite linear combination
∑
vi

∂
∂wi

where the vi’s are smooth
functions and the wi’s are some of the coordinates x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, . . ..
A differential form of degree 1 (or 1-form) is, with the same conventions, a finite linear
combination

∑
vidwi. Λ1(U) stands for the C∞(U)-module of 1-forms defined on U .

2.4. All the “formulas” from finite dimensional differential calculus involving objects like Lie
brackets and Lie derivatives are valid. For instance, the Lie derivative of a form ω =

∑
vidwi

along a vector field F may be computed, in coordinates, according to LFω =
∑
LF vidwi +

vid(LFwi). Also, a diffeomorphism carries vector fields or differential forms from one manifold
to another, we use the usual notation ϕ∗F or ϕ∗ω.

2.5. A smooth control system (6.1) :

ẋ = f(x, u) (7.1)

with state x ∈ Rn and input u ∈ Rm is represented by a single vector field

F = f(x, u)
∂

∂x
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ . . . (7.2)

on Mm,n
∞ . We often refer to “system F”, confusing system (7.1) with vector field F .

2.6. The Lie derivative along F defined by (7.2) is simply the “time-derivative” according to
(7.1) : we often write ϕ̇ or ω̇ instead of LFϕ or LFω for a function ϕ or a 1-form ω.

2.7. A diffeomorphism from Mm,n
∞ to Mem,en

∞ given by (x, u, u̇, ü, . . .) 7→ (z, v, v̇, v̈, . . .) is said to
be a static diffeomorphism if and only if z depends only on x, v depends only on x and u,
v̇ depends only on x, u and u̇ ... A static diffeomorphism is nothing more than a nonsingular
static transformation in the usual sense : if F is a system onMm,n

∞ and F̃ is a system onMem,en
∞ ,

existence of a static diffeomorphism ϕ such that F̃ = ϕ∗F is equivalent to n = ñ, m = m̃ and
static equivalence of the control systems associated with F and F̃ .

2.8. Of course, n = 0 is not ruled out in the above definitions, coordinates onMm,0
∞ are simply

{u, u̇, ü, . . .}, and the only system is the canonical linear system with m inputs (6.20) :

C =
∞∑
0

u(j+1) ∂

∂u(j)
. (7.3)

It has “no state”, but one should not worry about this since n = 0 is obtained after “cutting all
the integrators” in a canonical linear system [17] and arbitrarily renaming some states “inputs”.
Dynamic linearizability is conjugation via a diffeomorphism to system C :

Definition 7.1 (rephrasing of Definition 6.3). A system F is locally dynamic linear-
izable at point X ∈Mm,n

∞ if and only if there exists a neighborhood U of X in Mm,n
∞ , an open

subset V of Mm,0
∞ , and a diffeomorphism ϕ from U to V such that,

on U , ϕ∗F = C .
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2.9. Consider a C∞(U)-module of vector fields D (resp. of forms H), defined on an open set U .
The annihilator of D is the module of the forms which vanish on all the vector fields of D, and
vice-versa :

H⊥ = { X , ∀ω ∈ H, 〈ω,X〉 = 0 } ; D⊥ = { ω , ∀X ∈ D, 〈ω,X〉 = 0 } .
D(X ) (resp. H(X )) denotes the subspace of the tangent (resp. cotangent) space to Mm,n

∞ at
point X ∈ U made of all the X(X ) for X ∈ D (resp. ω(X ) for ω ∈ H). We call the dimension
of D(X ) (resp. H(X )) the pointwise rank of D (resp. H) at point X . D or H is said to be
nonsingular at point X if and only its the pointwise rank is constant in a neighborhood of
X ; it is then equal to the rank of the module over C∞(U).

7.3 The Infinitesimal Brunovský Form

Let us define the following sequence of C∞(Mm,n
∞ )-modules of vector fields :

D−j = Span { ∂
∂u(j+1) ,

∂
∂u(j+2) , . . . } j ≥ 0

...
D0 = Span { ∂

∂u̇ ,
∂
∂ü ,

∂
∂u(3) , . . . }

D1 = Span { ∂
∂u ,

∂
∂u̇ ,

∂
∂ü ,

∂
∂u(3) , . . . }

...
Dk+1 = Dk + [F , Dk ]

...
D∞ =

∑
k

Dk

(7.4)

and, since these are “infinite-dimensional”, we define for each Dk (k ≥ 1) its “ ∂
∂x part” :

D̂k = Dk ∩ Span { ∂
∂x
} , k ∈ [1,∞] (7.5)

(Span{ ∂∂x} stands for the C∞(Mm,n
∞ )-module generated by ∂

∂x1
, . . . , ∂

∂xn
), which makes D̂k(X )

(see paragraph 2.9) finite-dimensional for all X ∈Mm,n
∞ ), and yields

Dk = D̂k ⊕ D1 , k ∈ [1,∞] . (7.6)

Note that (7.5) and (7.6) are both valid for k =∞ and that D̂∞ might as well have been defined
by D̂∞ =

∑
k

D̂k . We define also a sequence of C∞(Mm,n
∞ )-modules of forms :

H−j = Span {dx , du , . . . , du(j) } j ≥ 0
...

H0 = Span {dx , du }
H1 = Span {dx }

...
Hk+1 = { ω ∈ Hk , ω̇ = LFω ∈ Hk }

...
H∞ =

⋂
k

Hk .

(7.7)

See paragraphs 2.4 and 2.6 for a definition of ω̇ or LFω. We have the following relation between
the Dk’s and the Hk’s :
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Proposition 7.1. All the modules Dk and Hk are invariant by static feedback, i.e. by static
diffeomorphism of Mm,n

∞ (see paragraph 2.7), and, for all k,

H∞ ⊂ Hk+1 ⊂ Hk , Dk ⊂ Dk+1 ⊂ D∞ , Hk = D⊥k , Dk ⊂ H⊥k , (7.8)

with H⊥k = Dk at points where D̂k is nonsingular (see paragraph 2.9).

Proof : From (7.4) and Proposition 6.1, a static diffeomorphism ϕ does not change Dk for
k ≤ 1 ; since the recursive definition of Dk for larger k only uses Lie brackets, it is then clear
that the modules built according to (7.4) from ϕ∗F are exactly ϕ∗Dk. The two first relations
in (7.8) are obvious from (7.4) and (7.7) and the fourth one is a consequence of the third one
because Dk ⊂

(D⊥k )⊥, with an equality at nonsingular points. Let us prove the first one by
induction. It is obvious for k ≤ 1. Let us suppose that it is true for k ≥ 1. From the fact that if
〈ω,X〉 = 0 then 〈LFω,X〉 = −〈ω, [F,X]〉, we have :

ω ∈ Hk+1 ⇔ ω ∈ Hk and Lϕω ∈ Hk
⇔ ∀X ∈ Dk , 〈ω,X〉 = 〈LFω,X〉 = 0
⇔ ∀X ∈ Dk , 〈ω,X〉 = 〈ω, [F,X]〉 = 0 ⇔ ω ∈ D⊥k+1 .

We shall now relate this construction to accessibility. The following Lie algebra is defined in
[60], and often called the strong accessibility Lie algebra : this Lie algebra of vector fields
on Rn is the Lie ideal generated by all the vector fields f(u, .) − f(v, .) for all possible values
of u and v in the Lie algebra generated by the vector fields f(u, .) for all possible values of u.
The main result on strong accessibility in [60] (see the definition there) is that it is equivalent
to the strong accessibility Lie algebra having rank n. In [29], the strong jet accessibility Lie
algebra is defined ; it differs from the strong accessibility Lie algebra in that the differences
f(u, .)− f(v, .) are replaced by derivatives of all orders with respect to all the components of u.
It is easy to see (this is actually its definition in [29]) that it is the Lie algebra generated by all
the vector fields

adjf(.,u)g
K
u , j ∈ N, K = (k1, . . . , km) ∈ Nm, gKu =

∂k1+...+kmf

∂uk1
1 . . . ∂ukmm

. (7.9)

It a priori depends on u. In the analytic case, it does not depend on u and is equal, for all value
of u, to the strong accessibility Lie algebra. Of course, in the general (smooth) case, full rank
for this Lie algebra is sufficient, but not necessary, for strong accessibility. A vector field on Rn

depending on u, like these defined in (7.9) and all their iterated Lie brackets, clearly defines a
vector field on Mm,n

∞ (which belongs to Span{ ∂∂x} and commutes with all the ∂

∂u
(j)
k

for j ≥ 1

but not a priori with the ∂
∂uk

’s). Here, we call L̂ the Lie algebra composed of the vector fields
onMm,n

∞ associated to these in the strong jet accessibility Lie algebra as defined by (7.9) (or in
[29]), and we define L by

L = L̂ ⊕ D1 = L̂ ⊕ Span { ∂
∂u
,
∂

∂u̇
,
∂

∂ü
,

∂

∂u(3)
, . . . } . (7.10)

L is obviously a Lie algebra because [ ∂
∂uk

, L̂] ⊂ L̂ and [ ∂

∂u
(j)
k

, L̂] = {0} for j ≥ 1. The phrase

“strong jet accessibility Lie algebra” will further refer to L rather than to a Lie algebra of vector
fields on Rn, and L̂ is its ∂

∂x -component. We have :

Theorem 7.1. For any open subset U of Mm,n
∞ ,

1. L|U (restriction to U of the strong jet accessibility Lie Algebra) is the Lie Algebra generated
by (i.e. the involutive closure of) D∞|U (the restriction of D∞ to U).
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2. If the C∞-module D̂∞
∣∣∣
U

is finitely generated, then it is a Lie algebra, and so is D∞|U ,
and hence :

D∞|U = L|U i.e. D̂∞
∣∣∣
U

= L̂
∣∣∣
U
. (7.11)

Proof : Point 1 is straightforward from (7.9) and (7.4). We only have to prove that if U is such
that D̂∞

∣∣∣
U

is finitely generated, then D∞|U is a Lie algebra ; for this, we shall prove that the
module of vector fields

M = {X ∈ D∞|U , [X, D∞|U ] ⊂ D∞|U}

is equal to D∞|U . By assumption, D∞|U is generated by the vector fields ∂

∂u
(j)
k

, 1 ≤ k ≤ m,

j ≥ 0, plus a finite number of vector fields of Span{dx} whose expressions involve only a finite
number, say J , of time-derivatives of u ; D∞|U is therefore invariant by Lie bracket by the vector
fields ∂

∂u
(j)
k

for j ≥ J , which span D−(J−1). M therefore contains D−(J−1) ; furthermore, it is a

submodule of D∞|U , invariant by F from Jacobi identity. Since it is clear that, for all k, and in
particular k = −(J − 1), D∞|U is the smallest module of vector fields which contains Dk and is
invariant by Lie brackets by F , M = D∞|U .

For further considerations, we will avoid “singular” points in the sense of the following
definition where Hk + Ḣk stands for the module over smooth functions spanned by all the forms
ω and ω̇ with ω ∈ Hk. “Nonsingular” was defined in paragraph 2.9.

Definition 7.2. A point X ∈Mm,n
∞ is called a Brunovský-regular point for system F if and

only if one of the two following (equivalent) conditions is satisfied :
(i) All the modules D̂k (k ≥ 2) are nonsingular at X .
(ii) All the modules Hk + Ḣk (k ≥ 2) are nonsingular at X .

These properties are true for all k ≥ 0 if and only if they are true for k = 2, . . . , n+ 1. We call
ρk the locally constant rank of Hk. Around a Brunovský-regular point, there exists an integer k∗

such that, for all k ≤ k∗, ρk+1 ≤ ρk − 1 and Hk = Hk+1 = H∞ for k > k∗.

Proof of i⇔ ii : Suppose that all the D̂k’s, and thus all the Hk’s, are nonsingular at X .
For a certain k, let {η1, . . . , ηp+q} be a basis of Hk with {η1, . . . , ηp} a basis of Hk+1. The
forms η1, . . . , ηp+q, η̇p+1, . . . , η̇p+q span Hk + Ḣk. On the other hand, if a linear combination∑p+q

i=1 µiηi+
∑q

i=1 λiη̇p+i vanishes at X then, for all vector field X ∈ Dk, 〈
∑q

i=1 λiη̇p+i, X〉, which
is equal to 〈∑q

i=1 λiηp+i, [F,X]〉, vanishes at X , hence 〈∑q
i=1 λiηp+i, Y 〉(X ) = 0 for all Y ∈ Dk+1 ;

since {η1(X ), . . . , ηp(X )} is a basis of the annihilator of Dk+1(X ) and {η1(X ), . . . , ηp+q(X )} are
independent, all the λi’s vanish at X ; hence

∑p+q
i=1 µiηi vanishes at X , hence all the µi’s also

vanish at X . Hence {η1(X ), . . . , ηp+q(X ), η̇p+1(X ), . . . , η̇p+q(X )} is a basis of Hk(X ) + Ḣk(X )
and Hk + Ḣk is nonsingular at X .

Conversely suppose that all the modules Hk + Ḣk are nonsingular at X . Let Ck = {X ∈
Dk, [F,X] ∈ Dk} and Ĉk = Ck ∩ Span{ ∂∂x , ∂∂u}. Clearly, Ck = Ĉk ⊕ D0. Arguments simi-
lar to these of the end of the proof of Proposition 7.1 show that (Hk + Ḣk)⊥ = Ck (equa-
lity between modules). All the Ĉk’s are therefore nonsingular at X . Let us prove by induc-
tion that all the modules D̂k are nonsingular too. This is true for k = 1 (D̂1 = {0}). Sup-
pose that it is true for k ≥ 1, and let {. . . , ∂∂ü , ∂∂u̇ , X1, . . . , Xp+q} be a basis of Dk with
{. . . , ∂∂ü , ∂∂u̇ , X1, . . . , Xp} a basis of Ck. Then the same arguments as in the first part of this
proof show that {X1(X ), . . . , Xp+q(X ), [F,Xp+1](X ), . . . , [F,Xp+q](X )} is a basis of Span{ ∂∂u}⊕
Dk+1(X ) and D̂k+1 is nonsingular at X .
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Theorem 7.2 (Infinitesimal Brunovský form). Around a Brunovský-regular point there exists
ρ∞ functions of x only χ1, . . . , χρ∞, and m 1-forms ω1, . . . , ωm, and m non-negative integers
r1 . . . , rm such that

{dχ1, . . . ,dχρ∞} is a basis of H∞ = Hl, for l ≥ k∗ + 1 (7.12)

{dχ1, . . . ,dχρ∞} ∪ {ω(j)
k , rk ≥ l , 0 ≤ j ≤ rk − l } is a basis of Hl, for all l ≤ k∗. (7.13)

Furthermore all the ωk’s are in H1 = Span{dx} —i.e. rk ≥ 1 for all k— if and only if, at the
point (x, u) under consideration,

rankR { ∂f
∂u1

(x, u), . . . ,
∂f

∂um
(x, u) } = m . (7.14)

At a Brunovský-regular point, D∞ is equal to Dn+1 and is hence nonsingular and hence
locally finitely generated. Hence strong accessibility implies, from Theorem 7.1, that ρ∞ = 0. In
that case and if (7.14) is met, (7.13) implies

{ω(j)
k , 0 ≤ k ≤ m, 0 ≤ j ≤ rk − 1 } is a basis of H1 = Span{dx}

{ω(j)
k , 0 ≤ k ≤ m, 0 ≤ j ≤ rk } is a basis of H0 = Span{dx, du} . (7.15)

Hence, with ωk,j = ω
(j)
k , and with the ai,j ’s and bi,j ’s some functions such that the matrix [bi,j ]i,j

is invertible at X ,

χ̇1 = γ1(χ1, . . . , χρ∞)
...

χ̇ρ∞ = γρ∞(χ1, . . . , χρ∞)
ω̇i,1 = ωi,2
ω̇i,2 = ωi,3

...
ω̇i,ri−1 = ωi,r1
ω̇i,r1 =

∑n
j=1 ai,jdxj +

∑m
j=1 bi,jduj


1 ≤ i ≤ m .

(7.16)

We call this “infinitesimal Brunovský form” because it looks like the canonical Brunovský form
[17] for linear system ; it is not a “canonical form” for any equivalence relation : the data of the
forms ω1, . . . , ωm and of (7.16) does not give a unique system.
Proof : The proof goes along the lines of [4] or [83]. Since we are at a Brunovský-regular
point, H∞ is nonsingular and locally spanned by exactly ρ∞ forms. These forms depend on
a finite number of variables x, u, . . . , u(K). One may then project these forms, and hence H∞,
on the finite dimensional manifold Mm,n

K (see Section 6.3.2) and use the finite dimensional
Frobenius theorem : from Theorem 7.1, H∞ is completely integrable and therefore is spanned
by ρ∞ exact forms dχ1 . . . dχρ∞ with χ1 . . . χρ∞ some functions, which depend only on x because
dχi ∈ D∞ ⊂ D1. Then the forms ωk may be constructed recursively such that (7.13) holds :
- it holds for l ≥ k∗ + 1 provided all the rk’s are no larger than k∗ (it will be the case).
- chose ω1, . . . , ωρk∗ so that {dχ1, . . . ,dχρ∞ , ω1, . . . , ωρk∗} is a basis of Hk∗ , and set r1 = . . . =
rρk∗ = k∗, (7.13) is then satisfied for l ≥ k∗ provided all the remaining rk’s are no larger than
k∗ − 1 (it will be the case).
- Induction on `, downward from ` = k∗ to ` = 0 : for 0 ≤ ` ≤ k∗ − 1, let us suppose that (7.13)
is true for l ≥ ` + 1 (assuming that all the rk’s corresponding to ωk’s which have not yet been
built are no larger than `), and build some ωk’s with rk = ` so that (7.13) is true for l ≥ `. It is
not difficult to prove (see [4, proof of Th. 3.5], really similar because by assumption H`+1 +Ḣ`+1
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is nonsingular here) that {dχ1, . . . ,dχρ∞} ∪ {ω(j)
k , rk ≥ `+ 1, 0 ≤ j ≤ rk − `} is a set of linearly

independent elements of H`, actually a basis of H`+1 + Ḣ`+1 ⊂ H`. Add, if they do not form a
basis of H`, some new ωk’s with the corresponding rk’s equal to `.

After l = 0, no new ωk’s are needed because if there is a certain number of ωk’s such that
(7.13) holds for l = 0 (we have not yet proved there are exactly m of them), then du1, . . . ,dum
are linear combinations of the dχi’s and the ω(j)

k ’s for rk ≥ 0 and 0 ≤ j ≤ rk, which immediately
implies that, for q > 0, du(q)

1 , . . . ,du(q)
m are linear combinations of the dχi’s and the ω(j)

k ’s for
rk ≥ 0 and 0 ≤ j ≤ rk + q, i.e. (7.13) is met for l = −q < 0 without any additional ωk’s ; this
ends the construction of the ωk’s and proves rk ≥ 0 for all k. There are exactly m ωk’s because
an obvious consequence of (7.13) is that ρl − ρl+1 is equal to the number of rk’s larger or equal
to l ; in particular, since ρl − ρl+1 = m for l ≤ 0 (see (7.7)), the total number of ωk’s is m. To
prove the very last part of the theorem, one therefore has to prove that ρ1 − ρ2 = m if and
only if (7.14) holds, which is obvious because, from (7.4), D2 = D1 ⊕ Span{ ∂f∂u1

, . . . , ∂f
∂um
} and

because of Brunovský-regularity.

The reason for defining this “Brunovský form” in [4, 83] was to suggest a way to look for
“linearizing outputs” (see theorem 7.3 below for definition and comments).

Definition 6.4 introduces, as in [4, 83], the notion of a linearizing Pfaffian system. Recall
that one should not be mislead by the terminology : a linearizing Pfaffian system, contrary to
a linearizing output, does not linearize anything unless it has more properties (integrability, see
Theorem 7.3). An an immediate consequence of Theorems 7.1 and 7.2 is :

Corrolary 7.2. If a system F is locally strongly accessible around a point X , which is Bru-
novský-regular for F , then F , admits, locally around X , a linearizing Pfaffian system (ω1, . . . , ωm).
A possible choice is the forms ω1, . . . , ωm constructed in Theorem 7.2. If (7.14) holds, ω1, . . . , ωm
are in H1 = Span{dx}.

Comments on this “Brunovský form”

Let us indicate the similarity between the content of this section and the algebraic framework
for “time-varying” linear systems developed in [33, 34] for example.

For U an open subset ofMm,n
∞ , let C∞(U)[LF ] be the algebra of differential operators which

are polynomials in the Lie derivative with respect to F with coefficients in C∞(U). This is a
non-commutative algebra since (aLF )(bLF ) = abL2

F + a(LF b)LF . It plays the same role as the
non-commutative ring k[ d

dt ] (k is a differential field) introduced in [33] to define linear time-
varying systems : a linear system is a module over this ring and it is controllable if and only if
it is a free k[ d

dt ]-module (which is also a k vector space).
In the nonlinear case, in [33, 35] a system is represented by a differential field k and, via

Kähler differentials, one may define the linearized system as a k[ d
dt ]-module, whose equivalent

here is the C∞(U)[LF ]-module Λ1(U).
Relying upon results from [97, 29] which state that a nonlinear system satisfying the strong

accessibility condition has a controllable linear approximation along “almost any” trajectory, a
nonlinear system is said to be controllable in [35] if and only if the k[ d

dt ]-module associated to
the differential field k is free.

Note that the assertion “(ω1, . . . , ωm) is a linearizing Pfaffian system” (or (7.13) with ρ∞ = 0)
is equivalent to “(ω1, . . . , ωm) is a basis of the C∞(U)[LF ]-module Λ1(U)” ; hence Corollary
7.2 constructs a basis of this module, and hence establishes that it is free. We have proved
(theorem 7.1), that, at a Brunovský-regular point (and even at a point where D̂∞ is locally
finitely generated), the strong accessibility rank condition implies that the module is free, or that
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the linearized system is controllable in the sense of [33, 35]. This is not exactly a consequence
of [97, 29]. Technically, the result is contained in the fact that D∞ is (around a regular point)
closed under Lie bracket, which may be interpreted as : the torsion submodule of the C∞(U)[LF ]-
module Λ1(U) is “integrable”.

An algebraic construction of the “canonical Brunovský form” (or of a basis of the module)
for controllable time-varying linear systems, based on some filtrations, is proposed in [34]. The
sequence of the Hk’s is a filtration of Λ1(U). It does not coincide with these introduced in [35],
but might certainly be interpreted in the same terms. The “well-formedness” assumption in [35]
corresponds to (7.14) at the end of Theorem 7.2.

7.4 Dynamic linearization as an integrability problem

Dynamic linearizability from Definition 7.1 is actually linearizability by endogenous
dynamic feedback as defined in [68, 36, 37]. It is proved there that this is equivalent to
flatness, i.e. to existence of linearizing outputs or flat outputs. In the present framework, these
are defined below. They are given an interpretation in terms of dynamic decoupling and structure
at infinity in [4] and in [68], and they are defined as the free generators of the differential algebra
C∞(Mm,n

∞ ) in [55, 56].
The following is an immediate consequence of Theorems 6.4 and 6.5 :

Theorem 7.3. Let X be a point of Mm,n
∞ . The following assertions are equivalent :

1. The system F is locally dynamic linearizable at point X .

2. There exist m smooth functions h1, . . . , hm from a neighborhood of X in Mm,n
∞ to R such

that (LjFhk)1≤k≤m,0≤j is a local system of coordinates at X . Such m functions are called
linearizing outputs (or simply one linearizing output) [36, 37, 68].

3. F admits, on a neighborhood of X , a linearizing Pfaffian system (η1, . . . , ηm) which is
completely integrable, i.e. such that dηk ∧ η1 ∧ . . . ∧ ηm = 0, k = 1 . . .m.

We saw in the previous section that all strongly accessible systems admit, at Brunovský-
regular points, a linearizing Pfaffian system, which, of course, may not be integrable. We therefore
have to investigate what all linearizing Pfaffian systems are, and we may say that a system is
dynamic linearizable if and only if there exists one among all these which is integrable.

For an open subset U of Mm,n
∞ , let A(U) be the algebra of m ×m matrices with entries in

the algebra of differential operators C∞(U)[LF ] :

A(U) ∆= Mm×m (C∞(U)[LF ]) . (7.17)

A matrix in A(U) defines an operator on m-uples of 1-forms in a straightforward manner, and
we have :

Proposition 7.3. Let (ω1, . . . , ωm) be a linearizing Pfaffian system and let η1, . . . , ηm be m
1-forms defined on an open set U of Mm,n

∞ . (η1, . . . , ηm) is a linearizing Pfaffian system if and
only if there exists P (LF ) in A(U) which is invertible in A(U) and is such that η1

...
ηm

 = P (LF )

 ω1
...
ωm

 (7.18)
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Proof : There always exists P (LF ) ∈ A(U) such that (7.18) holds because (ω1, . . . , ωm) is
a linearizing Pfaffian system. If (η1, . . . , ηm) is also a linearizing Pfaffian system, there exists
Q(LF ) ∈ A(U) such that  ω1

...
ωm

 = Q(LF )

 η1
...
ηm

 .

Hence Q(LF )P (LF ) and P (LF )Q(LF ) transform respectively (ω1, . . . , ωm) and (η1, . . . , ηm) into
themselves. Hence Q(LF )P (LF ) = P (LF )Q(LF ) = I because the forms ω(j)

k (resp. η(j)
k ), 1 ≤ k ≤

m, j ≥ 0, are linearly independent. Conversely, it is obvious that (7.18) with P (LF ) invertible
implies that (η(j)

k )1≤k≤m,j≥0 is a basis of the C∞(U)-module Λ1(U).
A straightforward consequence of Theorem 7.2 and Proposition 7.3 is :

Theorem 7.4. Let X ∈ Mm,n
∞ be a Brunovský-regular point for system F , and let ω1, . . . , ωm

be the 1-forms constructed in Theorem 7.2, defined on a certain neighborhood U of X . System
F is locally dynamic linearizable at point X if and only if there exists an invertible matrix
P (LF ) ∈ A(U) such that  ω1

...
ωm

 = P (LF )

 ω1
...
ωm

 (7.19)

is a locally completely integrable Pfaffian system, i.e. dωk ∧ ω1 ∧ . . . ∧ ωm = 0 for k = 1, . . . ,m.

Of course, this is not per se a solution to the dynamic feedback linearization problem ; it
is rather a convenient way to pose the problem of deciding whether or not linearizing outputs
exist. The main difficulty comes from the fact that the degree of P may be arbitrarily large
because the linearizing outputs may depend on an arbitrary number of time-derivatives of u.
Let us make this number artificially finite :

Definition 7.4. System F is said to be (x, u, . . . , u(K))-linearizable (for K = −1, this
reads x-linearizable) at point X if and only if there exists some linearizing outputs function of
(x, u, . . . , u(K)) only (on x only for K = −1).

Of course, a system is dynamic feedback linearizable (in the sense of Definition 7.1, i.e.
linearizable by endogenous dynamic feedback according to [36, 37, 68], or dynamic linearizable
according to [55, 56]) if and only if it is (x, u, . . . , u(K))-linearizable for a certain K. We have
the following theorem which precises Theorem 7.4.

Theorem 7.5. Let X ∈Mm,n
∞ be a Brunovský-regular point for system F , and let ω1, . . . , ωm,

and r1, . . . , rm be, respectively, the 1-forms and integers constructed in Theorem 7.2. System F
is (x, u, . . . , u(K))-linearizable at point X if and only if there exists an invertible matrix P (LF ) ∈
A(U) satisfying the conditions of Theorem 7.4 and such that the degree of the entries of the k-th
column is at most K + rk.

Proof : The condition is necessary for (x, u, . . . , u(K))-linearizability because if h1, . . . , hm are
some linearizing outputs function of x, u, . . . , u(K) only, (7.19) holds with ωk = dϕk and, from
(7.13), the columns of P have to satisfy the degree inequalities. Conversely, suppose that (7.19)
holds with the degree of the kth column of P being at most K+ rk and the system (ω1, . . . , ωm)
completely integrable, then (ω1, . . . , ωm) is spanned by some exact forms (dh1, . . . ,dhm) ; the
functions hk are linearizing outputs ; the degree inequalities imply that all the ωk’s are in H−K =
Span{dx,du, . . . ,du(K)}, and hence that the hk’s are functions of x, u, . . . , u(u) only.
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One of the reasons why our results provide a rather convenient framework is that, outside
some singular points, it is not difficult to describe invertible matrices of a prescribed degree.
As noticed in [34, 35, 51], the polynomial ring C∞(U)[LF ] enjoys many interesting properties.
Namely, it is possible to perform right and left Euclidean division by a polynomial whose leading
coefficient does not vanish. It is well known (see for example [110]) that, in the constant coefficient
case, all invertible polynomial matrices are finite products of “elementary matrices”, i.e. either
diagonal invertible matrices or permutation matrices or matrices whose diagonal entries are all
equal to 1 while only one of the non-diagonal entries is nonzero, and it is an arbitrary polynomial.
Since the tool to get such a decomposition is only Euclidean division, this remains true in the
case of coefficients in C∞(U) as long as one does not have to perform Euclidean division by a
polynomial whose leading coefficient vanishes. This does not happen often, although it is not
very easy in general to say which singularities the original matrix should not have for this not
to happen ; in the meromorphic case ([4, 83]), this never happens since the coefficient of the
polynomials then belong to a field and are therefore invertible, even if they “vanish” at a point,
if they are not zero. Now, if one bounds a priori the degree of the columns of P (say one wishes to
decide whether (x, u, . . . , u(K))-linearizability holds), then all invertible matrices satisfying these
bounds may be sorted into a finite number of types of finite products of elementary matrices,
each type involving a finite number of functions. In each case,

d ( P (LF )

 ω1
...
ωm

 ) = 0

(with d acting on each entry) is a set of partial differential equations in these functions. The so-
lubility of these PDE’s is equivalent to the existence of a system of linearizing outputs depending
only on a fixed finite number of time-derivatives of u.

7.5 Conclusion

We have developed a framework for looking for linearizing outputs which gives a convenient
way for writing down a system of equations whose solubility is equivalent to the existence of a
system of linearizing outputs. Some work has already been done in the direction of characteri-
zing the cases where linearizing outputs exist. These results give either sufficient conditions or
necessary and sufficient conditions for existence of linearizing outputs for some particular cases.
For example, (x, u, . . . , u(K))-linearizability (in most cases, K = −1) or a prescribed “structure
at infinity” (see [70, 69, 72]). A criterion for existence of a matrix P of degree zero for general
two-inputs systems is given in [83]. The “sufficiency” part of the result contained in [72] is re-
derived in [2] in a way that simplifies, to our opinion, the argument partly due to E. Cartan.
Finally, a characterization of (x, u)-linearizability for affine systems with 4 states and 2 inputs is
given in Chapter 8. These last results seem to demonstrate that “infinitesimal Brunovský form”
is a convenient way to tackle the problem of looking for linearizing outputs.
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8.1 Introduction

A deterministic finite dimensional nonlinear control system

ẋ = f(x, u) (8.1)

where the state x lives in Rn, the control u lives in Rm, and f is smooth —smooth means C∞

in this article— is said to be locally static feedback equivalent around (x̄, ū) to another system

ż = f̃(z, v) (8.2)

around (z̄, v̄) if there exists a nonsingular feedback transformation, i.e. two maps

u = α(x, v)
x = φ(z)

(8.3)

such that (z, v) 7→ (φ(z), α(z, v)) is a local diffeomorphism sending (z̄, v̄) to (x̄, ū), that trans-
forms (8.1) into (8.2). The interest of feedback equivalence is that the transformation (8.3)
allows one to convert the solution to a certain control problem for system (8.1) to the solution
of a similar control problem for system (8.2). It is clear that (germs of) static feedback trans-
formations form a group acting on (germs of) systems, and that static feedback equivalence
is an equivalence relation. This feedback equivalence has been very much studied, see for ins-
tance [15, 13, 54]. Classification of control systems modulo this equivalence is of course a very
ambitious and difficult program, almost out of reach. A more restricted problem is the one of
describing the orbits of controllable linear systems, i.e. systems of the form ż = Az + Bv with
(controllability) the columns of B,AB,A2B,A3B, . . . having full rank. This problem is known
as static feedback linearization, and has been completely solved : in [57, 50], explicit conditions
are given for a general nonlinear system to be locally static feedback equivalent to a controllable
linear system.
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A dynamic feedback, or dynamic compensator, as opposed to static, is one where the “old”
controls u are not computed from the “new” ones v by simply static functions (8.3), but through
a dynamic system which has a certain state ξ :

u = α(x, ξ, v)
ξ̇ = γ(x, ξ, v)
z = φ(x, ξ) ,

(8.4)

where ξ lives in R`, ` > 0, and φ is a (local) diffeomorphism of Rn+`. (x, v) may be viewed as
the “input” of the control system, and (u, x, ξ), or (u,X) as its “output”.

Clearly, (8.4) allows one to transform system (8.1) into a system like (8.2). However, contrary
to the case of static feedback, the dimension of the state of the transformed system (8.2) is
strictly larger than the dimension of the state of the original system (8.1), and for this reason,
it a priori difficult to say what an “invertible” dynamic feedback “transformation” can be. One
may however, following [23], state the problem of dynamic feedback linearization as the one of
deciding when a system (8.1) can be transformed via a dynamic feedback (8.4) into a linear
controllable system. The problem of deciding if a given system is dynamic feedback linearizable
is much more difficult than the one for static feedback and is still open. A panorama and further
references on dynamic feedback linearization from the point of view of compensators (8.4) can
be found in [23]. This reference contains some sufficient conditions, that have the annoying
drawback of not being invariant by static feedback, and also the following three results, that are
of more general interest : a single input system (u ∈ R), at a “regular” point, is dynamic feedback
linearizable if and only if it is static feedback linearizable ; dynamic feedback linearizability at a
rest point (x, u) = (x̄, 0) implies controllability of the linear approximation of the system at this
point ; a controllable system which is affine in the control —i.e. the right-hand side of (8.1) is
affine with respect to u— and such that the dimension of the state is larger than the dimension
of the control by at most one is always dynamic feedback linearizable.

As seen above, the case of systems with one control is completely understood outside singu-
larities, so that the nontrivial cases have at least two controls. The cases where the dimension of
the state is less than 3 are somehow trivial (again, away from singularities), and the case where
it is 3 and the system is affine in the control is covered by the above mentioned result from [23].
The smallest nontrivial cases are therefore non-affine systems with three states and two inputs,
and affine systems with four states and two inputs. Section 8.6 explains how to apply the results
of this paper to three-dimensional non-affine systems, but the rest of the paper is devoted to
systems

ẋ = X0(x) + u1X1(x) + u2X2(x) (8.5)

where x ∈ R4 and u1 and u2 are in R (u = (u1, u2)). X0, X1 and X2 are smooth vector fields in
R4. Smooth means C∞ in this article.

Of course, since it is the simplest non-trivial case, the problem of dynamic feedback linea-
rization for the four dimensional system (8.5) has already been studied. In [66], based on the
results from [23], sufficient conditions on X0, X1 and X2 are given. A drawback of these results
is that they are not invariant by static feedback, and are only sufficient conditions. They are
contained in the results of the present paper.

Rather recently, some conceptual advances have been made on dynamic equivalence and
dynamic linearization, initiated in [68, 36] (see [40] for a complete exposition). In [68], a res-
tricted class of compensators (8.4) is studied, called endogenous dynamic feedbacks. They are
exactly these that should be called “invertible”. They are the compensators (8.4) such that, by
differentiating relations (8.1) and (8.4), it is possible to express ξ and v as functions of x, u,
u̇, and a finite number of time-derivatives of u. The compensator (8.4) may then be replaced
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by some formulas giving z and v as functions of (x, u, u̇, ü, . . . ), which is “invertible” by formu-
las giving x and u as functions of (z, v, v̇, v̈, . . . ). On the other hand, the notion of differential
flatness for control systems is introduced in [68, 36, 40], as roughly speaking, existence of m
—two for system (8.5)— functions of x, u, u̇ and a finite number of time-derivatives of u which
are differentially independent (the Jacobian of any finite number of these functions and their
time derivatives has maximum rank) and such that both x and u can be expressed as functions
of these m functions and a finite number of their time-derivatives. These functions are called
linearizing outputs, or “flat outputs”. It is proved there that differential flatness is equivalent to
equivalence by endogenous dynamic feedback to a controllable linear system. In the differential
algebraic framework of [36, 40], flatness is defined as the differential field representing the system
being non-differentially algebraic over a purely transcendental differential extension of the base
field, and the linearizing output is a transcendence basis. Of course, the linearizing outputs are
then “restricted” to be algebraic. With a suitable definition of endogenous dynamic equivalence
between differential fields, it is proved that differential flatness is equivalent to equivalence by
endogenous dynamic feedback to a controllable linear system.

In [56], a notion of dynamic equivalence in terms of transformations on solutions of the
system is studied ; different types of transformations are defined there in terms of infinite jets
of trajectories, for smooth systems, one of them is proved there to be exactly the one studied
here. A property of “freedom” is introduced that is close to differential flatness and is proved to
be equivalent to equivalence to a linear system.

See [40], [23], [4] or chapter 7 for a more complete panorama and list of references on dy-
namic feedback equivalence and dynamic feedback linearization, with references to recent and
interesting results and points of views that we do not discuss here, like the work by Shadwick
[93] (and subsequent articles) that make a link between dynamic feedback linearization and the
notion of absolute equivalence defined by E. Cartan for Pfaffian systems.

There was a need to develop a geometric framework for the invertible transformations that
represent dynamic feedback. This was done by the author in Chapter 6 and independently by
the authors of [36, 40] in [38, 39]. In these papers, an (infinite dimensional) differential geometric
approach, based on infinite jet spaces, is used, and the transformations described above may be
seen as diffeomorphism that conjugate a system to another, they are a particular case of infinite
order contact transformations, or Lie-Bäcklund transformations used in the “geometric” study
of differential systems and partial differential relations.

Here, we adopt the notations and the precise definitions for linearizing outputs and dynamic
linearization from Chapters 6 and 7. They are summed up in section 8.2.2 and 8.2.3.

The problem of deciding endogenous1 dynamic linearizability is then the one of deciding
existence of a system of linearizing outputs. The first difficulty is that there is no known a priori
bound on the number of time-derivatives of the input the linearizing outputs should depend upon
(similarly, there is no a priori bound on the dimension of ξ in a compensator (8.4) that would
transform a given nonlinear system into a linear system if such a compensator exists). Even for
four-dimensional systems (8.5), no such bound is known. We do not address this difficulty in
the present paper. We only give necessary and sufficient conditions for existence of linearizing
outputs depending on x and u. We call x-dynamic and (x, u)-dynamic linearizability existence
of linearizing outputs depending on u or on (x, u). Note that the present conditions are quite
explicit : a small package in Maple, described in [65], that helps in the process of checking the
present conditions, will soon be available from the author.

Technically, the results in this paper amount to conditions for existence of solutions to some

1 It is announced in [40, 39] that general dynamic feedback linearizability implies endogenous dynamic lineari-
zability. From such a result, existence of linearizing outputs would be necessary and sufficient for general dynamic
feedback linearization.
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differential relations : in principle, given a system, one may write the PDEs that a pair of
functions (h1(x, u), h2(x, u)) has to satisfy to be a pair of linearizing outputs, and then check
whether this system of PDEs has some solutions (formal integrability, Spencer co-homology, see
for instance [18] or [85]). This program reaches its limits very quickly seen the complexity of the
PDEs themselves, and of the computation of compatibility conditions : even if algorithms are
theoretically available, writing the PDEs for linearizing outputs for a general system is already
heavy, and computing the compatibility conditions via general algorithms is overwhelming. The
essence of the paper is however to compute these compatibility conditions, but in a way that
uses a lot of the structure of the problem and makes them tractable. In particular, we use,
for the case of linearizing outputs depending on x and u, the “infinitesimal Brunovský form”
introduced in [4, 3, 83], that allows to write different PDEs : the unknowns are then some
coefficients of transformations that act on pairs of differential forms —the condition is that it
makes them integrable— instead of the linearizing outputs themselves. It would be interesting to
know whether it is general that the use of the infinitesimal Brunovský form provides a method
to write the equations for linearizing outputs in a more tractable manner. This is explained into
details in section 8.2, see especially subsection 8.2.6 for a discussion of the two possible ways of
writing the equations for existence of linearizing outputs, either directly or via the infinitesimal
Brunovský form.

The paper is organized as follows. Section 8.2 recalls or introduces some technical material,
including the precise definitions of what is intended here by feedback linearization and linearizing
outputs in the geometric context of Chapters 6 and 7. Sections 8.3 and 8.4 contain the results,
i.e. necessary and sufficient conditions for x-dynamic linearization (section 8.3) and for (x, u)-
dynamic linearization (section 8.4). Section 8.6 shows that non affine systems in R3 which are
dynamic feedback linearizable may be transformed into an affine system (8.5) in R4 by a simple
dynamic extension, using a result by Rouchon [88] or Sluis [96]. Most proofs are in section 8.7,
and some basic facts on Pfaffian systems used in them are recalled in the Appendix. Section 8.8
makes some remarks on the problems we leave open and on the interest and limitations of the
techniques we use.

8.2 Statement of the problem

8.2.1 Static Feedback

A static feedback transformation, around a point (x̄, ū) is a local transformation on the
controls v = φ2(x, u), defined on a neighborhood of (x̄, ū), with ∂φ2

∂u invertible (the reason for the
subscript “2” is that we shall use a local diffeomorphism φ1 on x, so that (x, u) 7→ (φ1(x), φ2(x, u)
is a local diffeomorphism on (x, u)).

Since we are only concerned with systems like (8.5) where the controls appear linearly, we
shall only need affine static feedback. A local affine static feedback transformation is one of the
above type where φ2 is affine with respect to u. It is more convenient to write the inverse of φ2

with respect to u, i.e. to write, instead of (v1, v2) = φ2(x, u1, u2),

(
u1

u2

)
= α(x)

(
v1

v2

)
+ β(x) (8.6)

with α(x) an invertible 2 × 2 matrix and β(x) a vector, both depending smoothly on x. It
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transforms system (8.5) into

ẋ = X̃0(x) + v1X̃1(x) + v2X̃2(x)

with


X̃0 = X0 + β1X1 + β2X2

X̃1 = α11X1 + α21X2

X̃2 = α12X1 + α22X2

(8.7)

A system is locally static feedback linearizable if and only if it may be transformed
by such a transformation into a system which, in some coordinates z = φ1(x), reads like a
controllable linear system ż = Az + Bv in R4 with two inputs ; these linear systems are all of
the form (a) or (b) below, up to a linear feedback —like (8.6) with α and β constant— and a
linear change of coordinates :

(a)


ż1 = z2

ż2 = z3

ż3 = u1

ż4 = u2

(b)


ż1 = z2

ż2 = u1

ż3 = z4

ż4 = u2

(8.8)

These are the two Brunovský canonical forms for controllable linear systems with two inputs
and four states, see [17]. Static feedback linearizable systems are a particular case of x-dynamic
linearizable systems because (x1, x4) for the form (a), and (x1, x3) for the form (b) may be
chosen as a pair of linearizing outputs (see section 8.2.3).

Static feedback will also be used in the present paper to give some simple “normal” forms
modulo this transformation and a change of coordinates on x of the systems considered for each
case, or set of conditions, see (8.27), (8.28), (8.30), (8.31), (8.33), (8.44), (8.60), (8.66). The
term feedback invariant refers to a property or an object that is invariant with respect to this
equivalence relation between systems.

8.2.2 “Infinite dimensional” differential calculus and equivalence by
endogenous feedback

This section is devoted to briefly recalling some notations and results from Chapters 6 and 7.
As mentioned in the introduction, similar material was also presented —independently—

in [38, 39]. The content of [38, 39] is more general and more formal, and tends to give as a
conclusion that systems (8.1) is not a general enough class of system for control theory, whereas
Chapter 6 aims at developing the sufficient framework to use classical tools from differential
calculus for the study of dynamic feedback. This infinite dimensional framework is, in any case,
a rather convenient way of manipulating functions and other objects which depend on a finite
but not a priori fixed number of variables, and it allows to say that the transformations by
dynamic feedback are “diffeomorphisms”.

We call generalized state manifold for system (8.1) with n states and m inputs the “infinite
dimensional manifold” Mm,n

∞ where a set of coordinates is (x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m,
ü1, . . . , üm, . . . . . . ). It is the projective limit of the finite dimensional manifolds Mm,n

K , K ≥ −1
with coordinates (x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, . . . , u(K)

1 , . . . , u
(K)
m ) —when K = −1, this

means (x1, . . . , xn)— and we have the obvious projections πK from Mm,n
∞ to Mm,n

K :

πK(x1 . . . xn, u1 . . . um, . . . . . . ) = (x1 . . . xn, u1 . . . um, . . . u
(K)
1 . . . u(K)

m ) . (8.9)

The topology is the product topology, the least fine such that all these projections are
continuous, i.e. an open set is always of the form π−1

K (O) with O a (finite-dimensional) open
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subset ofMm,n
K . In particular when a property holds locally around a point (x, u, u̇, ü, u(3). . . . . .),

it means that it holds on a neighborhood of this point, i.e. for points whose first coordinates
(an unknown a priori but finite number) are close to these of the original point, but with no
restriction on the remaining coordinates. Actually, we will often say “in a neighborhood of
(x, u, . . . , u(K))” to indicate that the value of (u(K+1), u(K+2), . . . . . .) does not matter, i.e. the
neighborhood is of the form π−1

K (O) with O a neighborhood of (x, u, . . . , u(K)) in Mm,n
K .

Smooth functions are functions of a finite number of coordinates which are smooth in the
usual sense. Differential forms of degree 1 are finite linear combinations :
a1
−1dx1 + · · · + an−1dxn + a1

0du1 + · · · + am0 dum + . . . + a1
Jdu(J)

1 + · · · + amJ du(J)
m where the aji ’s

are smooth function. Forms of any degree may be defined similarly. Vector fields are (possibly
infinite) linear combinations b1−1

∂
∂x1

+· · ·+bn−1
∂
∂xn

+b10
∂
∂u1

+· · ·+bm0 ∂
∂um

+b11
∂
∂u̇1

+· · ·+bm1 ∂
∂u̇m

+· · · .
Note that this infinite sum is only symbolic. There is no notion of “convergence” here since a
vector field may be defined as a derivation on smooth functions, which, by definition depend
only on a finite number of variables, so that the sum becomes finite when computing the Lie
derivative of a smooth function along this vector field.

A diffeomorphism is a mapping ϕ from Mm,n
∞ to Mm̃,ñ

∞ which is invertible and such that ϕ
and ϕ−1 are smooth mappings, in the sense that, for any smooth function h from Mm̃,ñ

∞ to R,
h ◦ ϕ is a smooth function from Mm,n

∞ to R, and for any smooth function k from Mm,n
∞ to R,

k ◦ ϕ−1 is a smooth function from Mm̃,ñ
∞ to R.

A system ẋ = f(x, u) with x ∈ Rn and u ∈ Rm is represented by a vector field of the form
F = f(x, u) ∂

∂x + u̇1
∂
∂u1

+ u̇2
∂
∂u2

+ ü1
∂
∂u̇1

+ . . . on the manifold Mm,n
∞ . It is said to be (locally)

equivalent by endogenous dynamic feedback to the system ż = f̃(z, v) with z ∈ Rñ and
v ∈ Rm̃, itself represented by the vector field F̃ = f̃(z, v) ∂∂z + v̇1

∂
∂v1

+ v̇2
∂
∂v2

+ v̈1
∂
∂v̇1

+ . . . on
Mm̃,ñ
∞ if and only if there exists a (local) diffeomorphism from Mm,n

∞ to Mm̃,ñ
∞ that conjugates

these two vector fields. This implies that m̃ = m.
These diffeomorphism exactly mimic the transformations defined in [68]. The definition of

“endogenous” as opposed to “exogenous” is explained there, or in [40].
From now on, let us focus on the small dimensional system (8.5), i.e. n = 4 and m = 2. We

associate to system (8.5) the following vector field on M2,4
∞ :

F = X0 + u1X1 + u2X2 + u̇1
∂

∂u1
+ u̇2

∂

∂u2
+ ü1

∂

∂u̇1
+ . . . . (8.10)

Let us call canonical linear system with two inputs the vector field

C = v̇1
∂

∂v1
+ v̇2

∂

∂v2
+ v̈1

∂

∂v̇1
+ v̈2

∂

∂v̇2
+ v

(3)
1

∂

∂v̈1
+ . . .

on the manifoldM2,0
∞ where a set of coordinates is v1, v2, v̇1, v̇2, v̈1, v̈2, . . .. Any controllable linear

system with 2 inputs can be (globally) transformed via a diffeomorphism into the canonical linear
system on M2,0

∞ , see Chapter 7. For instance, for the first case in (8.8), the diffeomorphism is
given by v1 = x1, v̇1 = x2, v̈1 = x3, v

(3)
1 = u1, v

(4)
1 = u̇1, . . . , v2 = x4, v̇2 = u2, v̈2 = u̇2, . . ..

Hence, system (8.5) is said to be locally linearizable by endogenous dynamic feedback, or simply
endogenous dynamic linearizable at X ∈ M2,4

∞ if and only if there is a diffeomorphism ϕ
from an open neighborhood of X in M2,4

∞ to an open set of M2,0
∞ which transforms the vector

field F defined in (8.10) into the vector field C on M2,0
∞ .

Let us discuss a few more objects that will be used in the paper. Lie Brackets, exterior
derivative, Lie derivatives and all objects from usual differential calculus may be defined because
they (or each of their components) may all be computed finitely and depend on a finite number
of variables ; all identities from differential calculus are valid (any given such identity really
involves only a finite number of variable).
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We call time-derivative along system (8.5) the Lie derivative along the vector field F . It
corresponds to the derivation defined in the differential fields in [40]. It will often be denoted d

dt
instead of LF . It may be applied to functions : for a function h(x, u, u̇, . . . , u(K), ḣ, or LFh, or
d
dth, is the function of x, u, u̇, . . . , u(K+1) obtained by applying the chain rule and substituting
X0(x) +u1X1(x) +u2X2(x) for ẋ. This time-derivative may also be applied to forms. The time-
derivative of ω = a1

−1dx1 + · · ·+ a4
−1dx4 + a1

0du1 + a2
0du2 + · · ·+ a1

Jdu(J)
1 + a2

Jdu(J)
2 , i.e. its Lie

derivative with along F , is given by

ω̇ = a1
−1dẋ1 + · · · + a4

−1dẋ4 + ȧ1
−1dx1 + · · · + ȧ4

−1dx4

+ a1
0du̇1 + a2

0du̇2 + ȧ1
0du1 + ȧ2

0du2 + · · ·
· · · + a1

Jdu(J+1)
1 + a2

Jdu(J+1)
2 ȧ1

Jdu(J)
1 + ȧ2

Jdu(J)
2

where dẋi stands for the differential of the ith component of X0 + u1X1 + u2X2.
Let us mention one last notation. By Span{dx} or Span{dx,du} we mean the module over

smooth functions spanned by dx1, dx2, dx3, dx4, or by dx1, dx2, dx3, dx4, du1, du2 respectively.

8.2.3 Linearizing Outputs

Linearizing outputs, or flat outputs were introduced by Fliess, Lévine, Martin and Rou-
chon in their work on differential flatness. Originally, it was a way to view the problem of
dynamic feedback linearization in a more tractable way, but the systems for which there exists
linearizing —or flat— outputs, i.e. differentially flat systems, possess properties that are very
interesting independently from the fact that they may be rendered linear in some coordinates
after adding to them a dynamic compensator : all their solutions may be parameterized “freely”
by the linearizing outputs, see [40].

The following is the definition of linearizing output in the framework exposed above, taken
from Theorem 7.3. It totally agrees with the one in [68, 40].

Definition 8.2.1. A pair of functions (h1, h2) on M2,4
∞ is called a pair of linearizing outputs

on an open subset U of M2,4
∞ if the functions

(
LjFhk

)
k∈{1,2} , j≥0

are a set of coordinates on U ,

i.e. if X 7→
(
LjFhk(X )

)
k∈{1,2} , j≥0

is a diffeomorphism from U to an open subset of R2N =M2,0
∞ .

It is said to be a pair of linearizing output at point (x̄, ū, ˙̄u, . . . , ū(J)) with J ≥ −1 (when
J = −1, this stands for x̄) if it is a pair of linearizing output on an open set U of the form
π−1
J (UJ) (see (8.9)) where UJ is a neighborhood of (x̄, ū, ˙̄u, . . . , ū(J)) in M2,4

J , i.e. R2J+6.

The following equivalent formulation (Theorem 6.4) may appear simpler. It is closer to the
definition in [68, 40].

Proposition 8.2.1. A pair of functions (h1, h2) onM2,4
∞ is a pair of linearizing outputs at point

(x̄, ū, ˙̄u, . . . , ū(J)) with J ≥ −1 (when J = −1, this stands for x̄) if and only if there exists on
open set U of the form π−1

J (UJ) (see (8.9)) such that

1. The differential forms
(

dh(j)
k

)
k∈{1,2}, j≥0

are linearly independent at all points of U (mea-

ning that whenever you take a finite number among these, they are linearly independent)

2. There exists an integer L and a smooth function ψ from an open set of R2L+2 to R6 such
that (x, u) = ψ(h1, h2, ḣ1, ḣ2, . . . , h

(L)
1 , h

(L)
2 ) on U (this is an identity between functions of

x, u, u̇, ü, . . .).
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As said above, the linearizing outputs have a lot of interest in themselves, when they exist.
They are also very relevant for the problem of dynamic linearization, thanks to the following
equivalence, pointed out in [68, 36, 40].

Proposition 8.2.2 (Theorem 6.4). (Local) endogenous dynamic linearizability is equivalent to
existence (locally) of a pair of linearizing outputs.

The following may illuminate the above introduced notions.
Sketch of proof : A diffeomorphism ϕ that conjugates the vector field F defined in (8.10)
to the canonical vector field C on M2,0

∞ defines two functions h1 = v1 ◦ ϕ and h2 = v2 ◦ ϕ
on M2,4

∞ which have the property that all their Lie derivatives LjFhk are transformed by the
diffeomorphism into the coordinate v(j)

k , which implies that the functions LjFhk are locally a set
of coordinates on M2,4

∞ ; conversely, if two functions exists which have this property, it is very
easy to build a diffeomorphism from M2,4

∞ to M2,0
∞ which transforms F into C.

By definition of what a smooth function is, the functions in a pair of linearizing outputs
depend only on a finite number of variables among x, u, u̇, ü. . . In Chapter 7, we say that a
system is (x, u, . . . , u(K))-dynamic linearizable when there exists a pair of functions depending
only on x, u, . . . , u(K)). Clearly, from proposition 8.2.2 and above, linearizability by endogenous
dynamic feedback implies (x, u, . . . , u(K))-dynamic linearizability for a certain K. Of course,
a very interesting question is : given a system, how to determine a bound K such that if it
is dynamic linearizable at all, then it is (x, u, u̇, ü, . . . , u(K))-dynamic linearizable ? Even for
systems of the form (8.5), this is the subject of ongoing research.

As explained in the introduction, we only deal, in the present paper, with linearizing outputs
depending on x only, or on x and u :

Definition 8.2.2. System (8.5) is said to be (x, u)-dynamically linearizable at the point
X = (x̄, ū, . . . , ū(J)) if and only if there exists a pair of linearizing outputs (h1, h2) that depend
on x and u only on an open set π−1

K (X ), a pair of linearizing outputs depending on x and u only.
It is said to be x-dynamically linearizable if these linearizing outputs depend on x only.

The present paper characterizes x-dynamic linearizability and (x, u)-dynamic linearizability
for systems (8.5). Systems that are proved here not to be (x, u)-dynamic linearizable might or
might not be (x, u, u̇)-dynamic linearizable, or (x, u, u̇, ü)-dynamic linearizable, and so on...

8.2.4 Non-accessibility

Since we only work at regular points, non-accessibility always means in the present paper
(and with the dimensions as in (8.5)) that there exists one function χ(x), or two functions χ1(x)
and χ2(x), such that χ̇ = ϕ(χ) for some function ϕ, or χ̇i = ϕi(χ1, χ2), i = 1, 2 for some
functions ϕ1 and ϕ2.

This is an obstruction to existence of a pair of linearizing outputs. Indeed, if (h1, h2) is a
pair of linearizing outputs, χ̇ = ϕ(χ), or χ̇i = ϕi(χ1, χ2) implies a nontrivial relation between
h1, h2, ḣ1, ḣ2, . . . , h

(J)
1 , h

(J)
2 for a certain J > 0, which cannot occur from the definition of a pair

of linearizing outputs.

8.2.5 Linearizing Pfaffian systems, infinitesimal Brunovský form

An infinite set of differential forms is a basis of the space of all differential forms in the
neighborhood of a point if any finite number of them are linearly independent at this point and
there exists a neighborhood U of this point such that any differential form defined on U may be
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written as a linear combination of a finite number of the forms in the “basis” with coefficients
smooth functions defined in U .

Definition 8.2.3. Let ω1 and ω2 be two differential forms. We say that {ω1, ω2} is a lineari-
zing Pfaffian system at a certain point (x̄, ū, ˙̄u, . . . , ū(J)) if and only if ω1, ω2 and all their
time-derivatives, i.e.

(
ω

(j)
k

)
k∈{1,2}, j≥0

form a basis of the space of all differential forms in a

neighborhood of this point.

Note that this is a property of the Pfaffian system (or the co-distribution) {ω1, ω2} rather
than the pair of forms since this property will still hold if ω1 and ω2 are replaced by another
basis for the same Pfaffian system.

Clearly, if (h1, h2) is a pair of linearizing outputs, then {dh1, dh2} is a linearizing Pfaffian
system because the function ψ in proposition 8.2.1 translates into a linear combination when
differentiating. The converse is also true but requires an “infinite dimensional” local inverse
theorem (Theorem 6.3) :

Proposition 8.2.3 (Theorem 6.5). A pair of functions (h1, h2) is a pair of linearizing outputs
at a point if and only if {dh1,dh2} is a linearizing Pfaffian system at this point.

Since we pointed out that being a linearizing Pfaffian system does not depend on the precise
choice of the basis, from Frobenius theorem, it is enough to have a linearizing Pfaffian system
satisfying Frobenius condition

Proposition 8.2.4 (Theorem 6.5). There exists a pair of linearizing outputs around a point if
and only if there exists a linearizing Pfaffian system {ω1, ω2} on a neighborhood of this point
satisfying Frobenius condition : dω1 ∧ ω1 ∧ ω2 = dω2 ∧ ω1 ∧ ω2 = 0 in a neighborhood of this
point.

We have the following —straightforward— property that describes all the possible linearizing
Pfaffian systems from one :

Proposition 8.2.5 (Proposition 7.3). Let {ω1, ω2} be a linearizing Pfaffian system at a certain
point.

Then for two forms η1 and η2, {η1, η2} is a linearizing Pfaffian system if and only if ω1

and ω2 are linear combinations of η1, η2 and a finite number of their time derivatives on a
neighborhood of this point.

Analogously, a pair of functions (h1, h2) is a pair of linearizing outputs at this point if and
only if ω1 and ω2 are linear combinations of dh1, dh2 and a finite number of their time derivatives
on a neighborhood of this point.

Note that the fact that {ω1, ω2} be a linearizing Pfaffian system implies that η1 and η2, or
dh1, dh2 are always linear combinations of ω1, ω2 and a finite number of their time derivatives.

Let us now translate this property into existence of an operator relating (ω1, ω2) and (η1, η2).
For an open set U in M2,4

∞ , let A(U) be the C∞(U) algebra :

A(U) ∆= M2×2 ( C∞(U)[LF ] ) . (8.11)

of 2× 2 matrices whose entries are differential operators, polynomial in the derivation along F ,
i.e. whose entries are of the form

p0 + p1
d
dt

+ p2
d
dt

2

+ . . . + pK
d
dt

K

,
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where the pi’s are smooth functions from U to R (recall it means they depend only on x and a
finite number of time-derivatives of u). Elements of A(U) act in an obvious manner on pairs of
functions, or on pairs of differential forms.

Proposition 8.2.6 (Theorem 7.4). Let {ω1, ω2} be a linearizing Pfaffian system at a certain
point. Then for two forms η1 and η2, {η1, η2} is a linearizing Pfaffian system if and only if on
a neighborhood U of this point, there exists P ∈ A(U) such that

• P has an inverse in A(U),

•
(
η1

η2

)
= P ( d

dt)
(
ω1

ω2

)
.

(8.12)

This has some interest because it is possible, at least away from some singular points, to
build a linearizing Pfaffian system for any accessible system. This is the construction of the
“infinitesimal Brunovský form” in chapter 7 or in [4]. Some sequences of modules (over smooth
functions) of 1-forms and of vector fields, called Hk, Dk and D̂k are defined in Chapter 7. Points
where they have constant rank are called “Brunovský-regular”, and at these points, a special
linearizing Pfaffian system may be constructed. Let us recall here the minimum needed for our
specific dimensions. Define the following modules of vector fields over smooth functions :

D̂2 = Span {X1 , X2 }
D̂3 = D̂2 + [F , D̂2 ]

= Span {X1 , X2 , [X0, X1]− u2[X1, X2] , [X0, X2] + u1[X1, X2] }
D̂4 = D̂3 + [F , D̂3 ] .

= Span {X1 , X2 , [X0, X1]− u2[X1, X2] , [X0, X2] + u1[X1, X2] ,
[X0, [X0, X1]] + u1[X1, [X0, X1]] + u2 ([X1, [X0, X1]]− [X0, [X1, X2]])
−u1u2[X1, [X1, X2]]− u 2

2 [X2, [X1, X2]]− u̇2[X1, X2] ,
[X0, [X0, X2]] + u1 ([X1, [X0, X2]] + [X1, [X0, X2]]) + u2[X1, [X0, X2]]

+u 2
1 [X1, [X1, X2]] + u1u2[X2, [X1, X2]] + u̇1[X1, X2] }

(8.13)

Definition 8.2.4. A point (x, u, u̇) where the vector fields X1 and X2 are not collinear is called
Brunovský regular if and only if the three distributions D̂2, D̂3 and D̂4 have constant rank in
a neighborhood of this point. A point (x, u, u̇, ü, . . . . . .) ∈M2,4

∞ is called Brunovský regular if and
only if the (x, u, u̇) is Brunovský regular.

The fact that Brunovský regularity depends on the value of x, u and u̇ only comes from the
fact that the vector fields in (8.13) depend on the eight variables x, u, u̇ only (note also that they
are linear combinations of the four coordinate vector fields corresponding to the x-coordinates
only... they might be seen as vector fields on R4 parameterized by u and u̇).

We always assume that the rank of D̂2 is two, then, at a Brunovský regular point, the ranks
of D̂2, D̂3, D̂4 may only be 2, 2, 2, 2, 3, 3, 2, 3, 4 or 2, 4, 4. In the two first cases, system (8.5) is not
accessible (see Chapter 7). In the two other cases, Theorem 7.2 allows one to build a linearizing
Pfaffian system {ω1, ω2} which has the peculiarity that either {ω1, ω̇1, ω2, ω̇2} or {ω1, ω̇1, ω̈1, ω2}
is a basis of Span{dx} (see the meaning of Span{dx} at the end of section 8.2.2). Let us make
this precise, only in the case where the ranks are 2,4,4 because we will not use this process in
the case 2,3,4.

Proposition 8.2.7 (Infinitesimal Brunovský Form, Theorem 7.2). Around a point where the
ranks of D̂2, D̂3 and and D̂4 are 2, 4 and 4 respectively, and if ω1 and ω2 are two linearly
independent 1-forms in the annihilator of D̂2, i.e. of {X1, X2} :

{ω1, ω2} = Span{dx} ∩ {X1, X2}⊥ , (8.14)
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then {ω1, ω2} is a linearizing Pfaffian system, and more precisely, {ω1, ω2, ω̇1, ω̇2} is a basis of
Span{dx}, {ω1, ω2, ω̇1, ω̇2, ω̈1, ω̈2} is a basis of Span{dx,du}, and more generally {ω1, ω2, ω̇1,
ω̇2, . . ., ω(J)

1 , ω(J)
2 } is a basis of Span{dx,du, du̇, . . . ,du(J−2)}. The 1-forms ω1 and ω2 can be

chosen involving x only.

This is a particular case of [3, theorem 2]. The following proof may however help the reader’s
understanding.
Sketch of proof : The forms ω1 and ω2 satisfying (8.14) may always be chosen so that they
involve x only because X1 and X2 involve x only. We use the following identity, which is true
for any form ω and any vector field X :

〈ω̇ , X〉 = 〈LFω , X〉
= LF 〈ω , X〉 − 〈ω , [F,X]〉
=

d
dt
〈ω , X〉 − 〈ω , [F,X]〉 . (8.15)

Now, on one hand the forms ω̇1 and ω̇2 are in Span{dx}, i.e. have no component on du1 and d2

because (8.15) implies

〈ω̇k , ∂

∂ui
〉 = 〈ωk , [F,

∂

∂ui
]〉 = 〈ωk , Xi〉 = 0

for k = 1, 2 and i = 1, 2. On the other hand, ω1, ω2, ω̇1, ω̇2 are linearly independent : if it was
not that case at a point, there would exist some constants λ1, λ2, µ1, µ2, not all zero, such that
λ1ω̇1 +λ2ω̇2 +µ1ω1 +µ2ω2 would vanish at this point ; since 〈ω1, Xi〉 = 〈ω2, Xi〉 = 0, this would
imply that, for i = 1, 2, 〈λ1ω̇1 + λ2ω̇2, Xi〉 also vanish at this point ; this in turn would imply,
from identity (8.15), that

〈λ1ω1 + λ2ω2 , [X0 + u1X1 + u2X2, Xi]〉
vanishes at this point, i.e. that λ1ω1+λ2ω2 is in the annihilator of D̂3, and hence that λ1 = λ2 = 0
because the rank of D̂3 is 4 and ω1 and ω2 are independent ; this is impossible because then µ1ω1+
µ2ω2 would vanish at the considered point while ω1 and ω2 are independent. It is easy to prove
the last property for all J ≥ 2 : since ω1, ω2, ω̇1, ω̇2 are in Span{dx} and du(`+1)

k may only appear
by taking the time-derivative of du(`)

k , it is clear that ω(j)
k is in Span{dx,du,du̇, . . . ,du(j−2)},

and the linear independence of all these is proved by using recursively identity (8.15).
The term “infinitesimal Brunovský form” refers to the fact that, with the above choices of

the 1-forms ω1 and ω2, system (8.5) implies :

d
dtω1 = ω̇1
d
dt ω̇1 =

∑4
1 α1,idxi + β1,1du1 + β1,2du2

d
dtω2 = ω̇2
d
dt ω̇2 =

∑4
1 α2,idxi + β2,1du1 + β2,2du2

where the functions βi,j are such that the 2× 2 matrix [βi,j ] is invertible on a neighborhood of
(x̄, ū). If the forms ω1 and ω2 were integrable, one might define z function of x and v function
of x, u (static feedback transformation) by dz1 = ω1, dz2 = ω̇1, dv1 = ω̈1, dz3 = ω2, dz4 =
ω̇2, dv2 = ω̈2, such that (8.5) reads like the Brunovský canonical form (8.8.b) —we would have
obtained the form (8.8.b) if we would have considered the case where the ranks of D̂2, D̂3, D̂4

are 2,3,4—. It is called “infinitesimal” because it is only at the level of differential forms instead
of functions (coordinates) and can give functions if the differential forms are integrable, which
is false in general.
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Now that we have built a special linearizing Pfaffian system, we may state the following
consequence of propositions 8.2.4, 8.2.6 and 8.2.7. It is specialized to x-dynamic linearization or
(x, u)-dynamic linearization, and the fact that the linearizing outputs depend on x only or on
x and u only is translated into a condition on the degree of the entries of the matrix P comes
from the special properties on ω1 and ω2 given in proposition 8.2.7. Again, this is only stated in
the case where the ranks of D̂2, D̂3 and D̂4 are 2,4,4 because we will not use this process in the
case 2,3,4.

Proposition 8.2.8 (Theorem 7.5). Let (x̄, ū) be a point where the ranks of D̂2, D̂3 and D̂4 are
2,4,4, and ω1 and ω2 be defined in a neighborhood of (x̄, ū) as in proposition 8.2.7 (see equation
(8.14)).

System (8.5) is x-dynamic linearizable (resp. (x, u)-dynamic linearizable) at point (x̄, ū, . . .,
ū(J)) if and only if there exists a neighborhood U of this point, and a 2 × 2 polynomial matrix
P ∈ A(U) whose entries are polynomials of degree at most 1 (resp. at most 2), such that P has
an inverse in A(U) and the Pfaffian system {η1, η2} defined by(

η1

η2

)
= P (

d
dt

)
(
ω1

ω2

)
. (8.16)

is completely integrable, i.e. η1 and η2 satisfy dη1 ∧ η1 ∧ η2 = dη2 ∧ η1 ∧ η2 = 0 in a neighborhood
of this point.

We shall use this property, especially for (x, u)-dynamic linearizability in section 8.4. Of
course, this would be useless without a reasonable description of the invertible matrices in A(U)
of degree at most 2. In fact, away from some singularities, invertible matrices may be described
as products of “elementary matrices”, like unimodular matrices in the case of polynomials with
constant coefficients :

Proposition 8.2.9. Let P be a matrix in A(U), which has an inverse Q in A(U).
• If the degree of P is 1 on an open dense subset of U (i.e. P has degree at most 1 everywhere,
and possibly zero on a closed set of empty interior), then there is an open dense subset U0 of
U such, for that all X ∈ U0, there is a neighborhood VX , a scalar smooth function a, and two
invertible matrices J1 and J2 of degree 0 (i.e. whose entries are smooth functions), all defined
on VX , such that, on VX ,

P (
d
dt

) = J1

(
1 −a d

dt
0 1

)
J2 (8.17)

• If the degree of P is 2 on an open dense subset of U (i.e. P has degree at most 2 everywhere,
and possibly 1 or 0 on a closed set of empty interior), then there is an open dense subset U0 of
U such, for that all X ∈ U0, there is a neighborhood VX , scalar smooth functions α, λ, a and b,
and an invertible matrix J1 of degree 0 (i.e. whose entries are smooth functions), all defined on
VX , such that, on VX , either

P (
d
dt

) = J1

(
1 −a d

dt
0 1

)(
1 0
−b d

dt 1

)
J2 (8.18)

or

P (
d
dt

) = J1

(
1 0

−a d
dt − b

d
dt

2
1

)
J2 (8.19)

with

either J2 =
(

1 0
α 1

)(
λ 1
1 0

)
or J2 =

(
1 0
α 1

)
. (8.20)
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Proof of proposition 8.2.9 : Although the ring of polynomials C∞(U)[ d
dt ] is not commutative,

there is a left and right Euclidean division by polynomials whose leading coefficient does not
vanish (this is because the leading coefficient of the product of two polynomials is computed as if
the coefficients were constant). We also use the fact that the matrix formed with the coefficients
of the terms of higher degree on each column cannot be invertible for an invertible matrix, except
if it is a degree zero matrix.

For the case of degree 1, at points where not all leading coefficients vanish, there is an inver-
tible matrix K2 of degree zero (may be take either triangular or a permutation matrix) such that
P ( d

dt)K2 has its first column of degree zero. Then at points where not both terms of this column

vanish, a Euclidean division yields a smooth function a such that J1 = P ( d
dt)K2

(
1 −a d

dt
0 1

)
has degree zero. Take J2 = K −1

2 . The open set U0 is the set where the functions we had to divide
by do not vanish.

For the case of degree 2, Let us distinguish different cases. In all cases, we have to divide by at
most three polynomials, the points where they vanish without being zero on a neighborhood —if
they are zero on an open set, then the corresponding polynomial has locally a smaller degree—
is closed with empty interior, the open set U0 is its complement.

– If both polynomials in the second column of P ( d
dt) have degree zero, then, at any point,

one of them at least does not vanish, and dividing by it the corresponding polynomial

(degree 2) in the first column yields a degree two polynomial −α+ a d
dt + b d

dt
2

such that

j1 = P (
d
dt

)

(
1 0

−α+ a d
dt + b d

dt
2

1

)
has degree zero. This yields (8.19) with the second expression for J2 in (8.20).

– If both polynomials in the second column of P ( d
dt) have degree at most 1 but they are not

both of degree zero, then, at any point where the leading coefficient of this one does not
vanish, Euclidean division by this polynomial of the corresponding polynomial (degree 2)
in the first column yields a degree one polynomial −α+ b d

dt such that

P (
d
dt

)

(
1 0

−α+ b d
dt 1

)
has a first column of degree zero, and then dividing by a non-vanishing element of this
first column yields a such that

J1 = P (
d
dt

)

(
1 0

−α+ b d
dt 1

)(
1 a d

dt
0 1

)
has degree zero. This yields (8.18) with the second expression for J2 in (8.20).

– If at least one of the polynomials in the second column of P ( d
dt) has degree 2, then, at

points where its leading coefficient does not vanish, dividing the corresponding polynomial
in the first column by this coefficient yields a function λ such that

P (
d
dt

)
(

0 1
1 −λ

)
has both entries in its second column of degree at most 1 (λ is identically zero if the first

column of P ( d
dt) had degree 1 or 0). Apply one of the two first cases to P ( d

dt)
(

0 1
1 −λ

)
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instead of P ( d
dt). This yields either (8.19) or (8.18), with the first expression for J2 in

(8.20).

8.2.6 Two ways of writing the equations for the linearizing outputs

The most natural method for deciding if there exists some linearizing outputs depending on
x and u is to write down the equations that a pair of functions has to satisfy in order to be a
pair of linearizing outputs, and then to find conditions (on the system (8.5)) for these equations
to have solutions. Let us describe these equations, but only for the case when the linearizing
outputs are restricted to depend upon x only :

Proposition 8.2.10. Suppose that X1 and X2 in (8.5) or (8.10) are linearly independent. Let
h1(x) and h2(x) be smooth functions ; then (h1, h2) is a pair of linearizing outputs at a certain
point if and only if

rank

(
∂ḣ1
∂u1

∂ḣ1
∂u2

∂ḣ2
∂u1

∂ḣ2
∂u2

)
≤ 1 (8.21)

rank


∂ḣ1
∂u1

∂ḣ1
∂u2

0 0
∂ḣ2
∂u1

∂ḣ2
∂u2

0 0
∂ḧ1
∂u1

∂ḧ1
∂u2

∂ḧ1
∂u̇1

∂ḧ1
∂u̇2

∂ḧ2
∂u1

∂ḧ2
∂u2

∂ḧ2
∂u̇1

∂ḧ2
∂u̇2

 ≤ 2 (8.22)

on a neighborhood of this point, and the forms dh1, dh2, dḣ1, dḣ2, dḧ1, dḧ2 are independent at
this point.

Proof : Let us prove necessity. If (h1, h2) is a pair of linearizing outputs, the six mentioned forms
have to be independent by definition. If the rank in (8.21) was 2, it is clear that the only linear
combinations of the dh(j)

k ’s which would also be linear combinations of dx1, dx2, dx3, dx4, would
have all their coefficients zero except the coefficients of dh1 and dh2, which would contradict the
fact that dx1, dx2, dx3 and dx4 are linear combinations of the dh(j)

k ’s. This proves that (8.21) is
necessary. If the rank in (8.22) was 3 (cannot be 4 from (8.21)), the only linear combinations of
the dh(j)

k ’s which would also be also linear combinations of dx1, dx2, dx3, dx4, would be linear
combinations of dh1, dh2 and λ1dḣ1 + λ2dḣ2 with the line (λ1 , λ2) in the right kernel of the
matrix in (8.22), impossible from the fact that contradict the fact that dx1, dx2, dx3 and dx4

are independent linear combinations of the dh(j)
k ’s. This proves that (8.22) is necessary. which

are also linear combinations of dx1, dx2, Sufficiency follows from solving for dx1, dx2, dx3 and
dx4 as linear combinations of dh1, dh2, dḣ1, dḣ2, dḧ1 and dḧ2.

Conditions (8.21)-(8.22) are better related to the vector fields defining system (8.5) using :

∂ḧi
∂u̇k

=
∂ḣi
∂uk

= LXkhi (8.23)

and

∂ḧi
∂uk

= LX0LXkhi + LXkLX0hi + 2ukL 2
Xk
hi + uk′

(
LXk′LXkhi + LXkLXk′hi

)
(8.24)

where k′ = 2 if k = 1 and k′ = 1 if k = 2.
The two equations (8.21)-(8.22) give a system of PDEs in h1 and h2 (some determinants

being zero), and the independence condition an inequality (a nonzero determinant). These have
solutions of and only if the system is x-dynamic linearizable.
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Some similar conditions on functions of x and u may be written, and existence of solution
would be equivalent for (x, u)-dynamic linearizability.

A different possibility is to use the material introduced in section 8.2.5 : under non-singularity
conditions (being at a “Brunovský regular” point), there exists two differential forms such
that {ω1, ω2, ω̇1, ω̇2} (or {ω1, ω̇1, ω̈1, ω2} but let us consider the first case only) is a basis of
Span{dx}, these forms may be constructed explicitly, and, from proposition 8.2.8, the system is
x-linearizable or (x, u)-dynamic linearizable if and only if there exists an invertible polynomial
matrix such that

P (
d
dt

)
(
ω1

ω2

)
is made of two exact one-forms, with some bounds on the degree of the entries of P . We then
translate the fact that these forms are exact into a system of PDEs in the coefficients of the
matrix, using the decomposition from proposition 8.2.9. The system is x-dynamic or (x, u)-
dynamic linearizable if and only if these PDEs have solutions.

These two methods —writing directly the PDEs a pair of functions has to satisfy to be a
pair of linearizing outputs or writing the PDEs the coefficients of the elementary matrices in the
decomposition of P have to satisfy for the Pfaffian system P ( d

dt) (ω1, ω2)T to be integrable—
are obviously equivalent, although they lead to different equations.

One drawback of the second method is that it only works at “Brunovský-regular” points,
while Brunovský-regularity is not necessary for dynamic feedback linearization, see the example
in section 8.5. Although Brunovský-regular points form an open dense set, one cannot neglect
this weakness. Note however that in the example of section 8.5, we conclude even at points which
are not Brunovský-regular, by density. In general, this second method seems to yield equations
that may be considered more geometrically, and it proves to be very useful in our proofs.

For the simplest cases (cases 1 to 5 in theorem 8.3.1), we have used the first (direct) method,
or even no particular method from these when we simply exhibit some pairs of linearizing
outputs. Case 6 in theorem 8.3.1 is not elementary ; it contains a necessary condition that we
prove using the first (direct) method ; the proof is natural ; it would also be in a sense simpler
using the infinitesimal Brunovský form, but this case would then be split into two because
depending whether (8.52) holds or not, the infinitesimal Brunovský form is different, and points
on the boundary are not Brunovský-regular while the present proof has no problem at these
points. We give as an alternative a proof based on the infinitesimal Brunovský form, outside
singularities (section 8.7.1). To test for (x, u)-linearizability, we were not able to use the direct
method, and we had to use the second one based on infinitesimal Brunovský form. It turns out
that the first one yield rather huge PDEs in the linearizing outputs, and we found no obvious way
to handle them naturally as in the case of x-dynamic linearization, while the second one gives
some PDEs that, though very heavy computations are needed, may be handled by elementary
methods.

8.3 x-dynamic linearizability

We define the following distributions

∆2 = Span {X1 , X2 }
M0 = ∆2 + [∆2,∆2] = Span {X1 , X2 , [X1, X2] }
M1 = M0 + [M0,M0]

= Span {X1 , X2 , [X1, X2] , [X1, [X1, X2]] , [X2, [X1, X2]] }
∆3 = Span {X1 , X2 , [X1, X2] , [X0, X1] , [X0, X2] }

(8.25)
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We will only study the situation in the neighborhood of points where the rank these distri-
butions are constant, and the vector fields X1 and X2 are linearly independent and we define
the integers m0, m1, δ3 by :

rank ∆2 = 2 δ3
∆= rank ∆3

m0
∆= rankM0

m1
∆= rankM1 .

(8.26)

These ranks and the distributions in (8.25) are obviously feedback invariant from their definition
and (8.7).

At a point where these ranks are constant, the only possible values for (m0,m1, δ3) are
(2, 2, 2), (2, 2, 3), (2, 2, 4), (3, 3, 3), (3, 3, 4), (3, 4, 3) and (3, 4, 4). Actually, we will not distinguish
between cases (3, 4, 3) and (3, 4, 4), so that when (m0,m1) = (3, 4), the rank of ∆3 need not be
constant.

The following theorem allows one, in each of the cases depending on the different possible
values of the above ranks, to decide whether system (8.5) is x-dynamic linearizable or not.
When it is not only x-dynamic linearizable, but static feedback linearizable, this is mentioned.
In addition, for each case, we give a normal form for system (8.5) up to a nonsingular static
feedback transformation (see (8.6)) and a change of coordinates. The proof is given in section
8.7.1. A small package written in Maple that makes the needed computations, as well as these
corresponding to theorem 8.4.1 if needed, will soon be available from the author ; it is described
in [65].

Theorem 8.3.1. Let x̄ be such that the distributions spanned by the modules ∆2, M0, M1

and ∆3 have constant rank in a neighborhood of x̄, with ∆2 of rank 2, as in (8.26). Actually, if
(m0,m1) = (3, 4), we do not require that the rank of ∆3 be constant.

1. If m0 = m1 = 2 and δ3 = 2, system (8.5) is locally non accessible and therefore non
linearizable by endogenous feedback. Locally around x̄, after a preliminary nonsingular
feedback transformation and in appropriate coordinates, it has the following form, where
a1 and a2 are smooth functions :

ż1 = a1(z1, z2)
ż2 = a2(z1, z2)
ż3 = v1

ż4 = v2 .

(8.27)

2. If m0 = m1 = 2 and δ3 = 3, there are three sub-cases :
a) If ∆3 is not involutive (i.e. if there are points x arbitrarily close to x̄ such that

[∆3,∆3](x) 6⊂ ∆3(x), even if [∆3,∆3](x̄) ⊂ ∆3(x̄)), system (8.5) is not linearizable
by endogenous dynamic feedback. It has locally, around x̄, after a preliminary
nonsingular feedback transformation and in appropriate coordinates, the following
form :

ż1 = a(z1, z2, z3)
ż2 = z3

ż3 = v1

ż4 = v2

(8.28)

where a is a smooth function such that

∂2a

∂z 2
3

is not identically zero on any neighborhood of x̄. (8.29)
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b) If ∆3 involutive and the rank of ∆3+[X0,∆3] is 3 in a neighborhood of x̄, sys-
tem (8.5) is locally non accessible and therefore non linearizable by endogenous
feedback. Locally around x̄, after a preliminary nonsingular feedback transformation
and in appropriate coordinates, it has the following form, with a a smooth :

ż1 = a(z1)
ż2 = z3

ż3 = v1

ż4 = v2

(8.30)

c) If ∆3 involutive and the rank of ∆3 +[X0,∆3] is 4 at point x̄ (and therefore in
a neighborhood), system (8.5) is locally static feedback linearizable. It has, after a
preliminary nonsingular feedback transformation and in appropriate coordinates, the
form (8.8.a).

3. If m0 = m1 = 2 and δ3 = 4, system (8.5) is locally static feedback linearizable.
It has, after a preliminary nonsingular feedback transformation and in appropriate coordi-
nates, the form (8.8.b).

4. If m0 = m1 = 3 and δ3 = 3, system (8.5) is locally non accessible and therefore non
linearizable by endogenous feedback. Locally around x̄, after a preliminary nonsingular
feedback transformation and in appropriate coordinates, it has the following form, where
a1 and a3 are smooth functions :

ż1 = a1(z1)
ż2 = v1

ż3 = a3(z1, z2, z3, z4) + z4v1

ż4 = v2 .

(8.31)

5. If m0 = m1 = 3 and δ3 = 4, system (8.5) is locally x-dynamic linearizable at a
point (x̄, ū1, ū2, . . .) if and only if

rankR {X1(x̄) , X2(x̄) , [X0, X1](x̄) − ū2[X1, X2](x̄) ,
[X0, X2](x̄) + ū1[X1, X2](x̄) } = 4 .

(8.32)

This condition is satisfied on an open dense set of any open set where m0 = m1 = 3 and
δ3 = 4.
After a preliminary nonsingular feedback transformation and in appropriate coordinates,
the system has the following form :

ż1 = z2

ż2 = v1

ż3 = a3(z1, z2, z3, z4) + z4v1

ż4 = v2

(8.33)

with a is a smooth function. A possible choice of linearizing outputs is given, in these
coordinates, by h1 = z1, h2 = z3. Condition (8.32) reads :

v1 +
∂a3

∂z4
6= 0 . (8.34)

6. If m0 = 3 and m1 = 4, there exists a unique (up to a nonzero multiplicative function)
linear combination of X1 and X2 : X̃ = λ1X1 + λ2X2 such that

[X̃, [X1, X2]] ∈ Span {X1, X2, [X1, X2]} (8.35)
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(this is the characteristic vector field, or characteristic direction of the distribution spanned
by the independent vector fields X1, X2 and [X1, X2]).
System (8.5) is x-dynamic linearizable at (x̄, ū) if and only if

[ X̃ , X0] ∈ Span {X1 , X2 , [X1, X2] } (8.36)

on a neighborhood of x̄ and

rankR {X1(x̄) , X2(x̄) , [X0, X̃](x̄) + ū1[X1, X̃](x̄) + ū2[X2, X̃](x̄) } = 3 (8.37)
rankR {X1(x̄) , X2(x̄) , [X1, X2](x̄) , [X0, X1](x̄) , [X0, X2](x̄) ,

[X0, [X1, X2]](x̄) + ū1[X1, [X1, X2]](x̄) + ū2[X2, [X1, X2]](x̄) } = 4 . (8.38)

Given any open set in R4 × R2 such that for all (x̄, ū) in this open set, (m0,m1) = (3, 4)
and (8.36) is satisfied at x̄, the set of (x̄, ū)’s in this open set where (8.37) and (8.38) are
satisfied is open and dense.
These conditions may also be formulated using differential forms instead of vector fields.
Since m0 = 3, one may take a —unique up to a nonzero multiplicative function— diffe-
rential form in the four variables x only annihilating X1, X2 and [X1, X2] :

ω1 ∈ {X1, X2, [X1, X2]}⊥ ; (8.39)

then dω1 ∧ ω1 is a form of degree 3 that does not vanish because m1 = 4. System (8.5) is
x-dynamic linearizable at (x̄, ū) if and only if

dω1 ∧ ω1 ∧ ω̇1 = 0 (8.40)

on a neighborhood of x̄ and

rankR {ω1(x̄) , η1(x̄) , η2(x̄) , η̇1(x̄, ū) , η̇2(x̄, ū) } = 5 , (8.41)
rankR {ω1(x̄) , ω̇1(x̄, ū) } = 2 , (8.42)

where η1 and η2 are forms of degree 1 such that, for a certain 1-form Γ,

dω1 = ω1 ∧ Γ + η1 ∧ η2 (8.43)

or in other words dω1∧ω1 = η1∧η2∧ω1 ({ω1, η1, η2} is the characteristic system of ω1, it is
the annihilator of the vector field X̃ defined in (8.35)), and the “dot” is the time-derivative
along the system, i.e. the Lie derivative along the vector field F (8.10). The two conditions
(8.41) and (8.42) are satisfied on an open dense set of any open set where m0 = 3 and
m1 = 4.
When these conditions are met, all pairs of linearizing outputs may be obtained as follows :
take for h1 a first integral of the vector field X̃ (i.e. L eXh1 = 0) such that dh, ω1 and ω̇1

are linearly independent. Then the Pfaffian system {dh1, ω1} is integrable. Take for h2 a
second first integral of this Pfaffian system.
Around a point where (m0,m1) = (3, 4), after a preliminary static feedback transformation
(8.6) and in appropriate coordinates, system (8.5) has the form :

ż1 = v1

ż2 = f2(z1, z2, z3, z4) + z3v1

ż3 = f3(z1, z2, z3, z4) + z4v1

ż4 = v2

(8.44)
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Condition (8.36) or (8.40) is equivalent to f2 being independent of z4 :

∂f2

∂z4
= 0 , (8.45)

and conditions (8.37) and (8.38), or (8.41) and (8.42), translate into :

v1 +
∂f3

∂z4
6= 0 (8.46)

and

( v1 +
∂f2

∂z3
, f3 − ∂f2

∂z1
− z3

∂f2

∂z2
+ z4v1 ) 6= (0, 0) (8.47)

at the point under consideration. A pair of linearizing outputs is, for instance, given by
(z1, z2) at a point where v1 + ∂f2

∂z3
does not vanish, and by (z3, z2 − z1z3) at a point where

f3 − ∂f2

∂z1
− z3

∂f2

∂z2
+ z4v1 does not vanish.

Note that this theorem does not say anything about the situation around points x̄ where
– either one of the distributions spanned by ∆2, M0 or M1 is singular,
– or they are regular, (m0,m1) 6= (3, 4) and the distribution spanned by ∆3 is singular,
– or (m0,m1, δ3) = (2, 2, 3), the distribution spanned by ∆3 —i.e. by {X1, X2, [X0, X1],

[X0, X2]} since (m0,m1) = (2, 2)— has rank 3 and is integrable, but the distribution
spanned by {X1, X2, [X0, [X0, X1]], [X0, [X0, X2]]} is singular.

8.4 (x, u)-dynamic linearizability

8.4.1 Problem statement

Let us examine the situations in which theorem 8.3.1 concludes that there exist no pair
of linearizing outputs depending on x only for system (8.5), without ruling out existence of
linearizing outputs depending on more variables (u, u̇, ü...). This occurs

– in case 5 when (8.32) fails,
– in case 6 when (8.36) fails,
– in case 6 when (8.36) is satisfied but (8.37) or (8.38) fails.

The first and third situations are singularities because (see theorem 8.3.1) in case 5, (8.32) is
met on an open dense set, and in case 6 if (8.36) is satisfied, (8.37) or (8.38) are met on an open
dense set. We will not study these two situations. The second situation does not correspond
to a singularity since X1, X2, [X1, X2], and [X̃,X0] may very well be linearly independent
(this is even generic) on an open set where (m0,m1) = (3, 4). We shall study this situation
in the present section. We make one more non-singularity assumption : we rule out the points
where the rank of X1, X2, [X1, X2], [X̃,X0] drops to 3 while being 4 at arbitrarily close points.
Furthermore, the techniques that we will use require to be at a Brunovský-regular point (see
definition 8.2.4). Brunovský-regularity translates into condition (8.51) below. It is clear that, on
an open set where (m0,m1) = (3, 4) and X1, X2, [X1, X2], and [X̃,X0] are linearly independent,
Brunovský-regular points form an open and dense set. Hence Brunovský-regularity is one more
non-singularity assumption. It is needed for technical reasons, but the example in section 8.5
shows that it is not necessary. To sum up :
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Rank assumptions made all over the present section :
(X̃ is defined by (8.35))

rank {X1 , X2 } = 2 (8.48)
rank {X1 , X2 , [X1, X2] } = 3 (8.49)

rank {X1 , X2 , [X1, X2] , [X1, [X1, X2]] , [X2, [X1, X2]] } = 4 (8.50)
rank {X1 , X2 , [X1, X2] , [X0, X̃]} = 4 (8.51)

rank {X1 , X2 , [X0, X1]− u2[X1, X2] , [X0, X2] + u1[X1, X2] } = 4 (8.52)

From (8.48)-(8.49)-(8.50), we are in case 6 of theorem 8.3.1. (8.51) indicates that (8.36) does
not hold, and hence from theorem 8.3.1, there exist no pair of linearizing outputs depending
on x only, i.e. system (8.5) is not x-dynamic linearizable. The purpose of this section 8.4 is to
characterize the cases where system (8.5) is (x, u)-dynamic linearizable, i.e. where there exists
a pair of linearizing outputs depending on x and u (but not on u̇, ü.....).

8.4.2 Main result

Let us now proceed with some preparation for our characterization of (x, u)-dynamic linea-
rizability. The following proposition provides a particular choice of ω1 and ω2 (basis of H2) such
that the expressions of dω1 and dω2 are convenient and “canonical”.

Proposition 8.4.1. Let (x̄, ū) be such that the rank conditions (8.48)-(8.49)-(8.50)-(8.51)-
(8.52) are satisfied. Let ω1 and ω2 to be two differential forms of degree 1, linear combinations
of dx1, dx2, dx3, dx4, such that none of these forms vanish at (x̄, ū) and

ω1 ∈ {X1, X2, [X1, X2]}⊥
ω2 ∈ {X1, X2, [X0 + u1X1 + u2X2, X̃]}⊥ . (8.53)

Then {ω1, ω2, ω̇1, ω̇2} is a basis of Span {dx } and there exist uniquely defined functions δki,j and
γ such that γ and δ2

1,2 do not vanish at (x̄, ū) and

dω1 ≡ δ2
1,2 ω2 ∧ ω̇2 modulo ω1 , (8.54)

dω2 ≡ ω1 ∧
(
δ1

2,1ω̇1 + δ2
2,1ω̇2 − γω̈2

)
+ γ ω̇1 ∧ ω̇2 modulo ω2 . (8.55)

Note that it is clear from (8.53) that, in general, ω1 can be chosen so as to involve x only,
but ω2 involves x and u, i.e. it is a linear combination of dx1, dx2, dx3,dx4 with coefficients
depending both on x and u. The functions γ and δki,j a priori depend on x, u and a certain
number of time-derivatives of u.
Proof of proposition 8.4.1 : Suppose that ω1 and ω2 are chosen according to (8.53). Then
(8.51) and (8.35) imply that the rank of {X1, X2, [X1, X2], [X0 + u1X1 + u2X2, X̃]} is 4, and
hence that {ω1, ω2} is a basis of the annihilator of {X1, X2}.

The fact that ω1 in the orthogonal of {X1, X2, [X1, X2]} implies that it is in the first derived
system of the Pfaffian system {ω1, ω2} –see the Appendix– and hence that

dω1 = ω1 ∧ Γ1,1 + ω2 ∧ Γ1,2 (8.56)

for some forms Γ1,1 and Γ1,2. Now the forms ω1, ω2 and Γ1,2 must be linearly independent from
(8.50), and then the Cartan characteristic system of {ω1} is {ω1, ω2,Γ1,2} —see the Appendix
(8.191)—, but, by definition of X̃, this characteristic system is the annihilator of X̃, and a basis
of the annihilator of X̃ is {ω1, ω2, ω̇2} because, from(8.15),

0 =
d
dt
〈ω2, X̃〉 = 〈ω̇2, X̃〉 + 〈ω2, [X0 + u1X1 + u2X2, X̃]〉
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and hence 〈ω̇2, X̃〉 is zero ; this proves that Γ1,2 must be a linear combination of ω1, ω2 and ω̇2,
which, substituted in (8.56), yields (8.54) with δ2

1,2 does not vanish because ω1, ω2 and Γ1,2 are
linearly independent.

On the other hand, {ω1, ω2} is the annihilator of {X1, X2} and therefore has a basis that
can be written with the variable x only ; this implies —see (8.192) in the Appendix— that its
characteristic system is at most Span{dx} ; since {ω1, ω2, ω̇1, ω̇2} is a basis of Span{dx}, this
implies

dω2 = ω1 ∧ Γ2,1 + ω2 ∧ Γ2,2 + γ ω̇1 ∧ ω̇2 (8.57)

for some forms Γ2,1 and Γ2,2. But we have seen above that {ω1, ω2, ω̇2} is the Cartan characteristic
system of {ω1}. It is therefore completely integrable, and this implies that dω̇2 ≡ 0 modulo
{ω1, ω2, ω̇2} ; but taking the time derivative of (8.57) yields dω̇2 ≡ ω̇1 ∧ (Γ2,1 + γω̈2)) modulo
{ω1, ω2, ω̇2} ; Γ2,1 ≡ −γω̈2, which does imply, together with (8.57), the relation (8.55).

We are now ready to state the theorem that characterizes (x, u)-linearizability. Its proof is
given in section 8.7.2.

Theorem 8.4.1. Let (x̄, ū) be a point where conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) are
met, and let the forms ω1 and ω2 be defined according to (8.53) and the functions δ1

2,1 and γ be
defined by (8.55). System (8.5) is (x, u)-dynamically linearizable at point X = (x̄, ū, ˙̄u, . . . . . .) if
and only if the function δ1

2,1 —or equivalently the form of degree 5 dω2 ∧ ω2 ∧ ω̇2 ∧ ω̈2— does
not vanish at X and the first derived system of the Pfaffian system {ω1 − 2 γ

δ1
2,1
ω̇2 , ω2} has rank

1 and is integrable, i.e. there exists a function α, defined on a neighborhood of X , such that

d

(
ω1 + αω2 − 2 γ

δ1
2,1

ω̇2

)
∧
(
ω1 + αω2 − 2 γ

δ1
2,1

ω̇2

)
= 0 . (8.58)

When these conditions are met, all the possible pairs of linearizing outputs depending on x
and u may be described as follows. Let Ω3 = ω1 +αω2− 2 γ

δ1
2,1
ω̇2, and Ω̇3 be the time-derivative of

this differential form (i.e. its Lie derivative along the dynamics F of the system). The Pfaffian
system {ω2,Ω3, Ω̇3} is completely integrable. A pair of functions (h1, h2) depending on (x, u) is
a pair of linearizing outputs if and only if {dh1,dh2} ⊂ {ω2,Ω3, Ω̇3} with Ω3 ∈ {dh1,dh2} and
Ω̇3 /∈ {dh1, dh2}. A possible construction is as follows : since dΩ3∧Ω3 = 0, take h1 such that dh1

does not vanish and dh1 = kΩ3 (k non-vanishing function) ; take for h2 another first integral of
{ω2,Ω3, Ω̇3} such that the coefficient of ω2 when expressing dh2 as a linear combination of ω2,
Ω3 and Ω̇3 does not vanish (i.e. the rank of {dh2, dh1,dḣ1} does not drop to 2).

This theorem is stated in terms of the forms ω1 and ω2. These forms are only defined up
to a non-vanishing multiplicative function by relation (8.53). However, the condition does not
depend on the particular choice of ω1 and ω2. In a sense this is a consequence of the theorem
itself since (x, u)-dynamic linearizability is clearly static feedback invariant and does not depend
on the choice of ω1 and ω2, but the following proposition asserts that a priori these conditions
are static feedback invariant.

Proposition 8.4.2. The conditions of theorem 8.4.1 are invariant by static feedback and do not
depend on the particular choice of ω1 and ω2 in (8.53). Indeed the Pfaffian system {ω2, ω1 −
2γ
δ1
2,1
ω̇2} does not depend on this particular choice.

Proof : It can be checked from (8.55) that if one changes ω1 into λ1ω1 and ω2 into λ2ω2, where
λ1 and λ2 are non-vanishing functions, then δ1

2,1 is changed into λ2

λ2
1
δ1

2,1 and γ into 1
λ1
γ. This
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implies the proposition since (8.53) defines ω1 and ω2 up to a nonzero multiplicative function in
a feedback invariant way.

Let us make a remark on “singular” points, i.e. points where the ranks considered in (8.48)-
(8.49)-(8.50)-(8.51)-(8.52) are not constant. We do not study the situation at these points, in
particular at points which are not Brunovský-regular, i.e. points where the rank in (8.52) drops.
As illustrated by the example in section 8.5, this singularity is usually not a singularity of
(x, u)-dynamic linearization, but only of the proofs given here : the linearizing outputs are well
defined at these points too, enjoy the property of being linearizing outputs. On the contrary,
points where δ1

2,1, or the form dω2 ∧ ω2 ∧ ω̇2 ∧ ω̈2, vanish are, according to the theorem, actual
singularities of (x, u)-dynamic linearizability : in a domain where the rank assumptions (8.48)-
(8.49)-(8.50)-(8.51)-(8.52) hold, there exists no linearizing outputs function of x and u in the
neighborhood of a point where δ1

2,1 vanishes. It is interesting, with this respect, to notice that,
under the —generic— assumptions (8.48)-(8.49)-(8.50)-(8.51)-(8.52), it is impossible to build an
example where (x, u)-dynamic feedback linearization would be everywhere nonsingular since for
any value of x and u, there is a value of u̇ where δ1

2,1 vanishes.

8.4.3 How to check the conditions

We claim that the conditions of theorem 8.4.1 are completely explicit. Let us explain how
to check them on a system (8.5) given by the expression of the vector fields X0, X1 and X2 in
some coordinates x1, x2, x3, x4 :

1. Compute ω1 and ω2 according to (8.53). This involves the computation of Lie brackets, and
then finding the annihilator of some families of vectors, which in coordinates is common
linear algebra (Gauss elimination).

2. Compute ω̇1, ω̇2 and ω̈2. The time-derivatives are Lie derivatives along the vector field
(8.10).

3. To compute δ1
2,1 and γ, use the following identities, consequence of (8.55) :

dω2 ∧ ω2 ∧ ω̇2 ∧ ω̈2 = δ1
2,1 ω1 ∧ ω̇1 ∧ ω2 ∧ ω̇2 ∧ ω̈2

dω2 ∧ ω2 ∧ ω̇1 ∧ ω̇2 = − γ ω1 ∧ ω̈2 ∧ ω2 ∧ ω̇1 ∧ ω̇2

= − γ ω1 ∧ ω̇1 ∧ ω2 ∧ ω̇2 ∧ ω̈2

dω2 ∧ ω1 ∧ ω2 = γ ω̇1 ∧ ω̇2 ∧ ω1 ∧ ω2 .

(8.59)

Hence one may for instance compute the forms of degree 5 dω2 ∧ ω2 ∧ ω̇2 ∧ ω̈2 and dω2 ∧
ω2 ∧ ω̇1 ∧ ω̇2, check that the first one does not vanish, they appear to be of the form
ρ1dx1∧dx2∧dx3∧dx4∧du1 +ρ2dx1∧dx2∧dx3∧dx4∧du2 and ρ3dx1∧dx2∧dx3∧dx4∧
du1 + ρ4dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ du2 respectively, with ρ1, ρ2, ρ3 and ρ4 some functions of
x, u and u̇, with ρ1ρ4 − ρ2ρ3 = 0, then

2 γ
δ1

2,1

= − 2 ρ3

ρ1
= − 2 ρ4

ρ2
.

4. The Pfaffian system {ω1 − 2 γ
δ1
2,1
ω̇2 , ω2} is then known

5. Use usual procedure to compute its first derived system : the forms d
(
ω1 − 2 γ

δ1
2,1
ω̇2

)
and

dω2 must be proportional modulo {ω1 − 2 γ
δ1
2,1
ω̇2 , ω2} ; if it is the case, this yields α such

that d
(
ω1 − 2 γ

δ1
2,1
ω̇2 + αω2

)
is zero modulo {ω1 − 2 γ

δ1
2,1
ω̇2 , ω2}.



8.4. (X,U)-DYNAMIC LINEARIZABILITY 177

6. Check whether d
(
ω1 − 2 γ

δ1
2,1
ω̇2 + αω2

)
is also zero modulo ω1 − 2 γ

δ1
2,1
ω̇2 + αω2.

Note that a small package written in Maple that makes the above computations, as well as these
corresponding to theorem 8.3.1, will soon be available from the author ; it is described in [65].

8.4.4 The result in particular coordinates

Let us now give a “normal form” for the systems we are studying in this section, i.e. these
meeting conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52). It basically consists, as in “case 6” of theo-
rem 8.3.1, in taking some coordinates (they exist from (8.48)-(8.49)-(8.50)) in which the control
distribution is in “Engel’s normal form”, and use a feedback to annihilate two components of
the drift, then the coordinates are slightly changed to emphasize condition (8.51) :

Proposition 8.4.3. If the rank conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold around a
point (x̄, ū), there exists a system of coordinates around this point, and a static feedback de-
fined around this point which give the following form to system (8.5) :

ż1 = v1

ż2 = z4 + z3v1

ż3 = f(z1, z2, z3, z4) + g(z1, z2, z3, z4)v1

ż4 = v2

 (8.60)

where
∂g

∂z4
(8.61)

and

D1 =
∂g

∂z4
(v2 − fv1) + z4

∂g

∂z2
+ f

∂g

∂z3

−
(
∂f

∂z1
+ z3

∂f

∂z2
+ g

∂f

∂z3
+ f

∂f

∂z4

)
(8.62)

do not vanish at (x̄, ū).

Proof of proposition 8.4.3 : From lemma 8.7.4 (section 8.7.1), using the feedback (8.119)
yields the (8.44). Condition (8.51) implies that ∂f2

∂z4
does not vanish. One may therefore take as

new coordinates (z1, z2, z3, f2(z1, z2, z3, z4)) instead of (z1, z2, z3, z4), and this yields the normal
form (8.60), changing also v2. Relations (8.61) are simply a translation of (8.50) and (8.52).

Proposition 8.4.4. System (8.60) —which is system (8.5) written in appropriate coordinates—
is (x, u)-dynamic linearizable around a point X if and only if the functions f and g have, in a
neighborhood of X , the form

f =
a0 + a1z4 + a2z

2
4

c0 + c1z4
; g =

b0 + b1z4

c0 + c1z4
(8.63)

where a0, a1, a2, b0, b1, c0 and c1 are functions of z1, z2, z3 only, which satisfy the following
PDE :

dΓ ∧ Γ = 0 with Γ = (b1 − z3a2) dz1 + a2dz2 − c1dz3 (8.64)

and δ1
2,1 does not vanish at this point (c0 + c1z4 should obviously not vanish either).
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Remarks :
1- The system of PDEs (8.64) reads :

z3

(
c1
∂a2
∂z2
− a2

∂c1
∂z2

)
+ c1

∂a2
∂z1
− a2

∂c1
∂z1

+ b1
∂c1
∂z2
− c1

∂b1
∂z2
− a2

∂b1
∂z3

+ b1
∂a2
∂z3

+ a2
2 = 0 (8.65)

2- There is an explicit formula for δ1
2,1 using the ai, bi and ci but it is quite long, and does not

really matter here.
This proposition gives a simple way to check whether the system is (x, u)-dynamic linearizable

provided one has found coordinates where it is in the normal form (8.60) —of course finding these
coordinates involves solving some linear PDEs, so that the really explicit test is given by theorem
8.4.1 which only involves some differentiations, and some algebraic manipulations—. Actually,
the coordinates in which a given system meeting conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) is
in the form (8.60) are not unique, and the expression of f and g, for the same system, may
depend on the choice of coordinates, among all these that yield a form like (8.60)). Naturally,
the fact that these f and g meet or not the conditions of the proposition does not depend on
this choice. It however raises the question of finding, among all the coordinates that produce a
normal form like (8.60), these which produce the “simplest” f and g. Let us give an answer only
for the special case when the conditions of the proposition are met (i.e. in the (x, u)-linearizable
case). It is obvious that if f and g are affine in z4 (special case of (8.63) : a2 = c1 = 0, c0 = 1),
the PDE (8.58) is met, because Γ is simply b1dz1 ; it turns out that the converse is true : if f
and g are not affine, but of the form (8.63) with a2 6= 0 or c1 6= 0, and with the PDE (8.58), then
some “better” coordinates may be found, in which f and g are affine in the fourth coordinate :

Proposition 8.4.5. There exists coordinates where the system, after a static feedback trans-
formation, is in the form (8.60) with f and g satisfying the conditions of proposition 8.4.4, if
and only if there is another set of coordinates (ζ1, ζ2, ζ3, ζ4), and another static feedback trans-
formation which yields a normal form (8.60) with f and g affine with respect to the fourth
coordinate :

ζ̇1 = w1

ζ̇2 = ζ4 + ζ3w1

ζ̇3 = p0(ζ1, ζ2, ζ3) + ζ4p1(ζ1, ζ2, ζ3) + (q0(ζ1, ζ2, ζ3) + ζ4q1(ζ1, ζ2, ζ3))w1

ζ̇4 = w2

 (8.66)

and δ1
2,1 does not vanish if and only if the following quantity does not vanish :

q1ẇ1 + w1 (p1 + w1q1)2 + w1
∂
∂ζ1

(p1 + w1q1)
− ∂

∂ζ2
[(p0 + w1q0)− ζ3w1(p1 + w1q1)] − (p1 + w1q1)2 ∂

∂ζ3
p0+w1q0
p1+w1q1

.
(8.67)

In these coordinates, a pair of linearizing outputs is given by
h1 = ζ1, h2 = ζ3 − (p1 − w1q1) ζ2.

Proof of proposition 8.4.5 : The expression (8.67) is obtained by computing dω2∧ω2∧ω̇2∧ω̈2

and checking that it vanishes if and only if (8.67) vanishes, at least at points where (8.52) holds,
i.e. where ω1 ∧ ω2 ∧ ω̇2 6= 0. This is left to the reader. Use the simplest choice :

ω1 = dζ2 − ζ3dζ1

ω2 = dζ3 − q1(ζ1, ζ2, ζ3)dζ1 − (p1(ζ1, ζ2, ζ3) + w1q1(ζ1, ζ2, ζ3))ω1 .

The “if” part of the proposition is obvious because, as noticed just above the proposition,
(8.66) is a particular case of (8.60)-(8.58), and (8.67) ensures that δ1

2,1 6= 0. Let us prove the “only
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if” part. We suppose that the conditions of proposition 8.4.4 hold, and we build an invertible
transformation (z1, z2, z3, z4) 7→ (ζ1, ζ2, ζ3, ζ4), and an invertible static feedback transformation
(z1, z2, z3, z4, v1, v2) 7→ (z1, z2, z3, z4, w1, w2), that transforms (8.60) into (8.66). Condition (8.64)
implies that there exists a function ψ1(z1, z2, z3) and a non-vanishing function k(z1, z2, z3) such
that

dψ1 = k Γ . (8.68)

Now, ω1 may be chosen ω1 = dz2 − z3dz1 and then Γ defined in (8.64) is also equal to :
Γ = b1dz1 + a2ω1 − c1dz3. Since the rank of {dz1, dz3, ω1} is 3 and b1 and c1 do not vanish
simultaneously (this would cause ∂g

∂z4
to vanish), the rank of {ω1,Γ} is locally constant, equal to

2, and this Pfaffian system is therefore completely integrable, because these two forms involve
only three variables (z1, z2, z3) ; hence there exists three functions ψ2, k′, k′′, such that

dψ2 = k′ω1 + k′′Γ , k′ 6= 0 . (8.69)

Let us then define

w1 = ψ̇1 = k 〈 Γ , X0 + u1X1 + u2X2 〉
= k

(c0b1 − c1b0)v1 − c1a0 + (c0a2 − a1c1)z4

c0 + c1z4
. (8.70)

From this equation, one may express v1 as a function of w1. Substituting v1 for this expression
in (8.60)-(8.63), one obtains the following expressions for ż1, ż2, ż3, which are now linear with
respect to z4 :

ż1 =
1

c0b1 − c1b0

(
c0 + c1z4

k
w1 + c1a0 + (a1c1 − c0a2)z4

)
(8.71)

ż2 =
1

c0b1 − c1b0

(z3

k
(c0 + c1z4)w1 + z3c1a0 + (c0b1 − c1b0 + a1c1 − c0a2)z4

)
(8.72)

ż3 =
b0 + b1z4

k (c0b1 − c1b0)
w1 + a0b1 + (a1b1 − a2b0)z4 (8.73)

Let us then define

ζ1 = ψ1(z1, z2, z3) (8.74)
ζ2 = ψ2(z1, z2, z3) (8.75)

ζ3 =
k′′(z1, z2, z3)
k(z1, z2, z3)

(8.76)

ζ4 = k′(z1, z2, z3) z4 (8.77)

Let us see that in these coordinates, and with w1 given by (8.70), we have (8.66) :
- ζ̇1 = w1 is a consequence of (8.74) and (8.70),
- From (8.75), ζ̇2 = 〈 dψ2 , X0 + u1X1 + u2X2 〉, which is also equal, from (8.70) and (8.69), to
k′′

k w1 + k′〈ω1 , X0 +u1X1 +u2X2 〉, which, since 〈ω1 , X0 +u1X1 +u2X2 〉 = z4, and considering
(8.76) and (8.77), yields ζ̇2 = ζ4 + ζ3w1.
- In the expressions for ż1, ż2 and ż3 given by (8.71), (8.72) and (8.73), all the functions of
(z1, z2, z3) may be expressed as functions of (ζ1, ζ2, ζ3), and z4 may be substituted for ζ4

k′ (see
(8.77)) ; therefore, ż1, ż2 and ż3 are polynomials in ζ4 and w1 with coefficients function of
(ζ1, ζ2, ζ3 with one term of degree zero, one term of degree 1 in ζ4, one term of degree 1 in w1

and one term of degree 2 in ζ4w1 ; since ζ3 is a function of (z1, z2, z3), ζ̇3 is also such a polynomial,
which allows one to define functions po, p1, q0 and q1 such that ζ̇3 is as in (8.66).
- ζ̇4 is equal to k′(ζ1, ζ2, ζ3)v2 plus some terms which depend only on ζ1, ζ2, ζ3, ζ4 and v1. Since
k′ does not vanish, calling all this expression w2 defines a nonsingular feedback that yields the
required form.
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8.5 An example

Let us consider the following system, which is given as example 2 in [23] :

ẋ1 = x2 + x3u2

ẋ2 = x3 + x1u2

ẋ3 = u1 + x2u2

ẋ4 = u2 .

(8.78)

The transformation z1 = x4, z2 = x2, z3 = x1, z4 = x3, v1 = u2, v2 = u1 + x2u2 puts it
into the form (8.66), known to be (x, u)-dynamic linearizable. Let us however follow the general
method. We have :

X̃ = X1 = ∂
∂x3

, X2 = x3
∂
∂x1

+ x1
∂
∂x2

+ x2
∂
∂x3

+ ∂
∂x4

, [X1, X2] = ∂
∂x1

,

[X0, X̃] = − ∂
∂x2

, [X0 + u1X1 + u2X2, X̃] = − ∂
∂x2
− u2

∂
∂x1

.

Brunovský-regular points are points where (8.52) holds, i.e. points where

x1 − u1 6= 0 . (8.79)

The simplest choice for ω1 and ω2 is (see (8.53)) :

ω1 = dx2 − x1dx4 ,
ω2 = dx1 − u2dx2 + (u2x1 − x3)dx4 .

(8.80)

By expressing dω2 = −du2∧dx2 + d(u2x1 − x3)∧dx4 in the basis {ω1, ω2, ω̇1, ω̇2, ω̈2} (at points
where (8.79) holds), with

ω̇1 = dx3 + u2dx1 − (x2 + u2x3)dx4

ω̇2 = −u 2
2 dx1 + (1− u̇2)dx2 + (−u1 + x3u

2
2 + x1u̇2)dx4 .

ω̈2 = (x1 − u1)du2 + (· · · )dx1 + (· · · )dx2 + (· · · )dx3 + (· · · )dx4 ,
(8.81)

one obtains an expression like (8.55) with :

δ1
2,1 =

2 (u̇2 + u 3
2 − 1)

x1 − u1
; γ = − 1

x1 − u1
, (8.82)

so that δ1
2,1 6= 0 is equivalent to u̇2 + u 3

2 − 1 6= 0. Then the form ω3 = ω1 − 2γ
δ1
2,1
ω̇2 may be

explicitly computed. dω2 ∧ ω2 ∧ ω3 and dω3 ∧ ω2 ∧ ω3 are collinear :

dω3 ∧ ω2 ∧ ω3 = −α dω2 ∧ ω2 ∧ ω3 with α =
u 2

2

u̇2 + u 3
2 − 1

. (8.83)

A basis of the derived system of {ω2, ω1 − 2γ
δ1
2,1
ω̇2} is therefore

Ω3 = ω1 − 2γ
δ1

2,1

ω̇2 + αω2 =
x1 − u1

u̇2 + u 3
2 − 1

dx4 . (8.84)

It is obviously integrable, condition (8.58) of theorem 8.4.1 is satisfied, hence the system is
(x, u)-dynamic linearizable at points where δ1

2,1 does not vanish. Since x4 is a first integral
of {Ω3}, and a basis (at points where (8.78) holds) for the Pfaffian system {ω2,Ω3, Ω̇3} is
{dx1 − u2dx2,dx4, du2} —it is indeed integrable, and three independent first integrals are x4,
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u2 and x1 − x2u2—, theorem 8.4.1 implies that two functions (h1(x, u), h2(x, u)) form a pair of
linearizing outputs if and only if h1 and h2 are two independent functions of x4, u2 and x1−x2u2

such that dh1, dh2,du2 are independent but dx4 is a linear combination of dh1 and dh2. The
simplest choice is

h1 = x4 ; h2 = x1 − u2x2 . (8.85)

Let us illustrate on this example the invertible transformations on pairs of differential forms
introduced in section 8.2.5 (following [4, 3]). The functions h1 and h2 given by (8.85) are related
to the forms ω1 and ω2 defining the “infinitesimal Brunovský form” by :(
dh1

dh2

)
=

(
1 −x2

d
dt − (u2x1 − x3)

0 1

)(
1 0
0 u̇2+u 3

2−1
x1−u1

)(
1 0
−b d

dt 1

)(
0 1
1 α

)(
ω1

ω2

)
(8.86)

with b = 2γ
δ1
2,1

(this may be re-arranged into an expression like (8.143) with some scalar function

a and matrix function J1). Indeed from Proposition 8.2.3 and 8.2.6, and since (ω1, ω2) is a
linearizing Pfaffian system and the matrices in the right-hand side of (8.86) are all invertible,
this is enough to prove that (h1, h2) is a pair of linearizing outputs at Brunovský-regular points.
Note that the expressions in (8.86) are indeed singular at “Brunovský-singular points” —points
that are not Brunovský-regular— so that the ideas based on the infinitesimal Brunovský form
fail at these points, while linearizing outputs h1 and h2 may obviously be continued at these
points, and it may be checked directly that they continue to be linearizing outputs at these
points ; indeed, since

ḣ1 = u2 , ḣ2 = x2 − x1u
2
2 − x2u̇2 ,

ḧ1 = u̇2 ḧ2 = x3 + x1u2 − x2u
2
2 − x3u

3
2

h
(3)
1 = ü2 , − (x3 + x1u2)u̇2 − x2ü2 ,

(8.87)

One may solve for x1, x2, x3, x4, u2, u̇2 and ü2 in (8.85)-(8.87) and express them as (rational)
functions of h1, ḣ1, ḧ1, h

(3)
1 , h2, ḣ2, ḧ2 at all points where u̇2+u 3

2−1 6= 0. It is clear on this example
that the requirement of Brunovský-regularity is purely technical, and the singularities of dynamic
feedback linearization are not related to the singularities of the “infinitesimal Brunovský form”.
The singularity δ1

2,1 = 0, on the other hand is really a singularity of (x, u)-dynamic linearization.
The conclusion for this system is :
– It is not x-dynamic linearizable at any point, as a consequence of theorem 8.3.1, case 6.
– It is (x, u)-dynamic linearizable at all points where u̇2 + u 3

2 − 1 6= 0.
This is a consequence of theorem 8.4.1 at points where x1 − u1 6= 0. At points where
u̇2 + u 3

2 − 1 6= 0 and x1 − u1 = 0, it is not a consequence of theorem 8.4.1, but is clear
from (8.87).

– It is not (x, u)-dynamic linearizable at points where u̇2 + u 3
2 − 1 = 0.

This is a consequence of theorem 8.4.1 at points where x1 − u1 6= 0. At points where
x1−u1 = u̇2 +u 3

2 −1 = 0, this is not a consequence of theorem 8.4.1, but may be proved as
follows. Suppose that there is a pair of linearizing outputs (h1, h2) in an open neighborhood
of such a point. Points where x1−u1 6= 0 are dense on this neighborhood, and (h1, h2) is still
a pair of linearizing outputs at these points (if the neighborhood is small enough). Hence
(see above) h1 and h2 are functions of x4, u2 and x1 − u2x2 : hi(x1, x2, x3, x4, u1, u2) =
χi(x4, u2, x1 − u2x2). Because the rank of dx4, du2d(x1 − u2x2) is 3, the smooth functions
χi are unique and may be prolonged at the point under consideration (where u1 − x1

vanishes). Computing the time-derivatives of the functions hi from these identities, it
can be seen that their partial derivative with respect to x2 all vanish at points where
u̇2 + u 3

2 − 1 = 0. This prevents x2 from being, around such a point, a smooth function of
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h1, h2, ḣ1, ḣ2, ḧ1, ḧ2, . . . . . ., and hence (h1, h2) from being a pair of linearizing outputs at
these points.

Note that the singularity u̇2 + u 3
2 − 1 = 0 does not correspond to a singularity of the linear

approximation. Consider for instance the solution

u1(t) = −1 , u2(t) = 1 , x1(t) = x2(t) = 1 , x3(t) = −1 , x4(t) = t .

Clearly u̇2 + u 3
2 − 1 is zero along this solution, while the linear approximation δẋ = Aδx+Bδu,

with

A =


0 1 1 0
1 0 1 0
0 1 0 0
0 0 0 0

 , B =


0 −1
0 1
1 1
0 1

 ,

is controllable. An example where this occurs at an equilibrium instead of a nontrivial solution
is obtained by replacing x2 with x4 in ẋ1, the singularity δ1

2,1 = 0 then occurs when u̇2 + u 3
2 = 0

while the linear approximation at (x, u) = (0, 0) is controllable.

8.6 Non-affine systems in R3

Consider a system
ξ̇ = f(ξ, w1, w2) (8.88)

where ξ lives in R3. A system of the form (8.5) can always be brought to this form at a point
where one of the control vector fields does not vanish by finding coordinates in which this control
vector field is the first coordinate vector field, dropping the corresponding control and taking
this first coordinate as a new control. The converse is not correct in general.

However a necessary condition for feedback linearization, that can be found in [88] or in [96]
implies that if system (8.88) linearizable by dynamic feedback (even in a more general sense
than endogenous), it has a dynamic extension of dimension 4 which is affine in the control. The
following proposition is a consequence of theorem 1 in [88], except the regularity of γ, but this
is automatic if one wants the linearizing outputs to be smooth :

Proposition 8.6.1 ([88]). At a point (ξ̄, w̄1, w̄2) where rank{ ∂f∂w1
, ∂f∂w2

} is 2, a necessary condi-
tion for system (8.88) to be dynamic feedback linearizable is that there exist, locally around
(ξ̄, w̄1, w̄2), a static feedback transformation (w1, w2) = γ(ξ, v1, v2) such that f(ξ, γ(ξ, v1, v2)) be
affine with respect to v1 : f(ξ, γ(ξ, v1, v2)) = a(ξ, v2) + v1b(ξ, v2).

In the case of system (8.88), an explicit condition for existence of this static feedback trans-
formation may be given, but this is outside the scope of the present paper. It is clear that the
necessary condition for dynamic linearization given in proposition 8.6.1 is exactly the condition
needed to transform system (8.88) into an affine 4-dimensional system. This is summed up in
the following result, which allows one to apply to 3-dimensional non-affine systems (8.88) all the
results obtained in the previous sections for 4-dimensional affine systems.

Proposition 8.6.2. At a point (ξ̄, w̄1, w̄2) where rank{ ∂f∂w1
, ∂f∂w1

} is 2, either system (8.88) is not
dynamic feedback linearizable or one may construct a static feedback transformation (w1, w2) =
γ(ξ, v1, v2) such that dynamic feedback linearization of (8.88) is equivalent to dynamic feedback
linearization of  ẋ1

ẋ2

ẋ3

 = a(x1, x2, x3, x4) + u1 b(x1, x2, x3, x4)

ẋ4 = u2 .

(8.89)
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8.7 Proofs

All over these proofs, some known facts about Pfaffian systems (derived systems, characte-
ristic system...) are used. They are briefly recalled in the Appendix.

8.7.1 Proof of theorem 8.3.1

Case 1 (m0 = m1 = 2, δ3 = 2)

m0 = 2 means that the distribution spanned by the control vector fields X1 and X2 is
involutive. Frobenius theorem yields a set of coordinates (z1, z2, z3, z4) such that { ∂

∂z3
, ∂
∂z4
} is a

basis of this distribution, then

v1 = LX0z3 + u1LX1z3 + u2LX2z3

v2 = LX0z4 + u1LX1z4 + u2LX2z4

is a nonsingular static feedback because X1 and X2 are independent at point x̄. System (8.5)
reads, in the above coordinates as

ż1 = a1(z1, z2, z3, z4) ż3 = v1

ż2 = a2(z1, z2, z3, z4) ż4 = v2 .

∆3 is then spanned by ∂
∂z3

, ∂
∂z4

, ∂a1
∂z3

∂
∂z1

+ ∂a2
∂z3

∂
∂z2

and ∂a1
∂z4

∂
∂z1

+ ∂a2
∂z4

∂
∂z2

. δ3 = 2 implies that a1

and a2 do not depend on z3 and z4. This yields (8.27).

Case 2.a (m0 = m1 = 2, δ3 = 3)

Since {X1, X2} is integrable of rank 2, there exists two independent functions constant along
X1 and X2, and one of them at least has either its Lie derivative along [X0, X1] or its Lie
derivative along [X0, X2] that does not vanish at x̄ because if not the rank of ∆3 would drop to
two ; let z2 be this one, and z1 be the other one, and define z3 = LX0z2. LX1z3 or LX2z3 does not
vanish at x̄ (because they are equal to L[X1,X0]z2 and L[X2,X0]z2) and hence z3 is independent
from z1 and z2, let z4 be a fourth function, such that (z1, z2, z3, z4) is a system of coordinates.
The nonsingular feedback

v1 = L2
X0
z2 + u1LX1LX0z2 + u2LX2LX0z2

v2 = LX0z4 + u1LX1z4 + u2LX2z4
(8.90)

transforms system (8.5) into
ż1 = a(z1, z2, z3, z4)
ż2 = z3

ż3 = v1

ż4 = v2 ,

(8.91)

with a a certain smooth function. Since ∆3 spans a distribution of rank 3 and :

∆3 = Span { ∂

∂z3
,
∂

∂z4
,
∂

∂z2
+
∂a

∂z3

∂

∂z1
,
∂a

∂z4

∂

∂z1
} ,

the function a cannot depend on z4, and then

∆3 + [∆3,∆3] = Span { ∂

∂z3
,
∂

∂z4
,
∂

∂z2
+
∂a

∂z3

∂

∂z1
,
∂2a

∂z2
3

∂

∂z1
}
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so that the assumption on ∆3 is equivalent to ∂2a
∂z2

3
being identically zero on no neighborhood of x̄.

This proves that system (8.5) has the form (8.28) with the condition (8.29), after the change of
coordinates and the nonsingular feedback transformation we just introduced. There remains to
prove that system (8.28) cannot be linearizable by endogenous feedback under condition (8.29).
This is a consequence of the following lemma 8.7.1 because if system (8.28) was linearizable by
endogenous feedback on a neighborhood of a point x̄, then there would exist a pair of linearizing
outputs on a neighborhood of this point, and hence the system would also be linearizable by
endogenous feedback around any point of that neighborhood, including these, given by condition
(8.29), where ∂2a

∂z 2
3

is non zero.

Lemma 8.7.1. System (8.28) is not linearizable by endogenous dynamic feedback in any neigh-
borhood of a point ¯̄z = (¯̄z1, ¯̄z2, ¯̄z3, ¯̄z4) such that

∂2a

∂z 2
3

(¯̄z1, ¯̄z2, ¯̄z3) 6= 0 .

Proof of lemma 8.7.1 : Suppose that there exists two linearizing outputs h1 and h2, smooth
functions of a finite number of variables among z1, z2, z3, z4, v1, v2, v̇1, v̇2, v̈1, v̈2, .... v(L)

1 ,
v

(L)
2 , with L a non negative integer, defined on an open subset O ⊂ R2L+6 containing a point

(¯̄z1, ¯̄z2, ¯̄z3, ¯̄z4, ¯̄v1, ¯̄v2, . . . , ¯̄v
(L)
1 , ¯̄v(L)

2 ) for some (¯̄v1, ¯̄v2, . . . , ¯̄v
(L)
1 , ¯̄v(L)

2 ). All variables may be recovered
from h1, h2 and all their time derivatives so that in particular there exists smooth functions ψ1

and ψ2 such that

z1 = ψ1(h1, ḣ1, . . . , h
(K1,1)
1 , h2, ḣ2, . . . , h

(K1,2)
2 ) (8.92)

z2 = ψ2(h1, ḣ1, . . . , h
(K2,1)
1 , h2, ḣ2, . . . , h

(K2,2)
2 ) . (8.93)

This holds in the open set O, which may be restricted so that ∂2a
∂z 2

3
(z1, z2, z3) does not vanish on

O. The integer Ki,j is the one such that ψi does not depend on h
(Ki,j+1)
j , but does depend on

h
(Ki,j)
j on O, i.e. ∂ψi

∂h
(Ki,j)

j

is not identically zero. Then, since (8.28) implies ż1 = a(z1, z2, ż2), one

has, by substitution,
∂ψ1

∂h1
ḣ1 + · · ·+ ∂ψ1

∂h
(K1,1)

1

h
(K1,1+1)
1 + ∂ψ1

∂h2
ḣ2 + · · ·+ ∂ψ1

∂h
(K1,2)

2

h
(K1,2+1)
2

= a(ψ1 , ψ2 ,
∂ψ2

∂h1
ḣ1 + · · ·+ ∂ψ2

∂h
(K2,1)

1

h
(K2,1+1)
1 + ∂ψ2

∂h2
ḣ2 + · · ·+ ∂ψ2

∂h
(K2,2)

2

h
(K2,2+1)
2 ) .

(8.94)

One must have
K1,1 = K2,1 , K1,2 = K2,2 (8.95)

because the left-hand side in (8.94) depends only on h1, ḣ1, . . . , h
(K1,1+1)
1 , h2, ḣ2, . . . , h

(K1,2+1)
2

and does depend on h(K1,1+1)
1 and h(K2,1+1)

2 , and the right-hand side depends only on h1, ḣ1, . . .,
h

(K2,1+1)
1 , h2, ḣ2, . . . , h

(K2,2+1)
2 and does depend on h(K2,1+1)

1 and h(K2,2+1)
2 because, since ∂2a

∂z2
3

does

not vanish on O, ∂a
∂z3

is not identically zero on any open subset of O.

Differentiating two times both sides of (8.94) with respect to h(K1,j+1)
j , and keeping in mind

that, from (8.95), K1,j = K2,j , one has (note that neither ψ1 nor ψ2 nor the partial derivatives
of them depend on h

(K1,j+1)
j ) :

0 =

(
∂ψ2

∂h
(K1,j)

j

)2

∂2a
∂z 2

3
(ψ1 , ψ2 ,

∂ψ2

∂h1
ḣ1 + · · ·+ ∂ψ2

∂h
(K1,1)

1

h
(K1,1+1)
1 + ∂ψ2

∂h2
ḣ2 + · · ·

· · ·+ ∂ψ2

∂h
(K1,2)

2

h
(K1,2+1)
2 ) ,

(8.96)
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for j ∈ {1, 2}, and hence ∂ψ2

∂h
(K1,j)

j

is identically zero on O which contradicts the fact that it was

precisely chosen (small enough) not to be identically zero on O.

Case 2.b (m0 = m1 = 2, δ3 = 3)

Since ∆3 is integrable of rank 3, and {X1, X2} is integrable of rank 2, and contained in ∆3,
there are two independent functions z1 and z2 such that z1 and z2 are constant along X1 and
X2 and z1 constant along the vector fields of ∆3. Let z3 be given by z3 = LX0z2 and z4 be
such that (z1, z2, z3, z4) is a system of coordinates. The nonsingular feedback (8.90) transforms
system (8.5) into a system of the form (8.91) above, where a depends on z1 only because, since
LX1z1 = LX2z1 = 0, one has a = ż1 = LX0z1, and LX0z1 is constant along ∆3 because z1 is and
[X0,∆3] ⊂ ∆3. ż1 = a(z1) clearly implies non-accessibility.

Case 2.c (m0 = m1 = 2, δ3 = 3)

Static feedback linearizability follows from classical results, see [57, 50]. Let us however
describe the coordinates in which the system has the form (8.8.a). Since ∆3 is integrable of
rank 3, there is a function z1 such that dz1 is the annihilator of ∆3. Let z2 and z3 be given
by z2 = LX0z1 and z3 = L2

X0
z1, the rank of {dz1, dz2, dz3} is 3 because δ3 = 3. Let z4 be any

function such that {z1, z2, z3, z4} is a system of coordinates. The nonsingular feedback

v1 = L3
X0
z1 + u1LX1L

2
X0
z1 + u2LX2L

2
X0
z1

v2 = LX0z4 + u1LX1z4 + u2LX2z4

transforms system (8.5) into (8.8.a).

Case 3 (m0 = m1 = 2, δ3 = 4)

As in case 2.c, static feedback linearization follows from classical results, see [57, 50], but we
however describe the coordinates in which the system has the form (8.8.b). Because m0 = 2, X1

and X2 span an integrable distribution of rank 2, let z1 and z3 be two independent functions
that annihilate X1 and X2, and let z2 and z4 be defined by z2 = LX0z1 and z4 = LX0z3. δ3 = 4
implies that (z1, z2, z3, z4) is a system of coordinates, and the following nonsingular feedback

v1 = L2
X0
z1 + u1LX1LX0z1 + u2LX2LX0z1

v2 = L2
X0
z3 + u1LX1LX0z3 + u2LX2LX0z3

transforms system (8.5) into (8.8.b).

Cases 4 and 5 (m0 = m1 = 3, δ3 = 3 or 4)

Since m0 = m1 = 3, M0 =M1 spans an integrable distribution of rank 3. Let z1 be a first
integral of this distribution. In case 5 (δ3 = 4), define z2 by

z2 = LX0z1 . (8.97)

One then has, for i ∈ {1, 2}, LXiz2 = −L[X0,Xi]z1 because LXiz1 ≡ 0, i = 1, 2, and hence δ3 = 4
prevents LX1z2 and LX2z2 from both vanishing at x̄. Up to a permutation of the two controls,
we may suppose that

LX1z2(x̄) 6= 0 . (8.98)
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In case 4 (δ3 = 3), pick any z2 such that (8.98) holds, it is possible since X1 does not vanish.
Since LX1z1 = 0, the rank of {dz1,dz2} is 2 at point x̄. The vector field

(LX2z2)X1 − (LX1z2)X2 (8.99)

does not vanish at point x̄, z1 and z2 are two independent functions constant along it, let z3 be
a third independent first integral of this vector field, and z4 be given by

z4 =
LX1z3

LX1z2
.

(z1, z2, z3, z4) is a system of coordinates because z1, z2 and z3 are constant along the vector field
(8.99) while the Lie derivative of z4 along it does not vanish at x̄ (a simple computation shows
that if it would vanish, the rank of M0 would drop to 2). Defining v1 and v2 according to the
nonsingular feedback transformation

v1 = LX0z2 + u1LX1LX0z1 + u2LX2LX0z1

v2 = LX0z4 + u1LX1z4 + u2LX2z4

(with a possible permutation of the indices 1 and 2 in the right-hand sides, if needed to get
(8.98)) yields, in the above defined coordinates, the normal form (8.31) in case 4, and (8.33) in
case 5. In both cases, a3 is given by

a3 = LX0z3 − LX1z3

LX1z2
LX0z2 ,

ż3 is obtained because

LX2z3 =
LX2z2

LX1z2
LX1z3 ,

and (in case 4) a1 = LX0z1 depends only on z1 because δ3 = 3 implies that ∆3 =M0 and hence
that LX0z1 is a first integral of the three dimensional integrable distribution spanned by M0.

In case 4, non-accessibility follows immediately from the normal form (8.31). In case 5, let
us prove that system (8.33) is x-dynamic linearizable around (z̄, v̄) if and only if ∂a

∂z4
(z̄)+ v̄1 6= 0.

Let (h1, h2) be a pair of linearizing outputs, depending on z only.

Lemma 8.7.2. Let h1, h2 be two functions depending on z only such that (h1, h2) is a pair of
linearizing outputs for system (8.33) on a neighborhood of (z̄, v̄).
Then the rank of {dz1, dh1, dh2} is 2 on a neighborhood of z̄.

Proof : If it was not the case, there would be points ¯̄z, arbitrarily close to z̄, where this rank
would be 3, and where (h1, h2) would still be a pair of linearizing outputs. z1 is constant along
both control vector fields, and since (h1, h2) would still be a pair of linearizing outputs, there is,
from (8.21)-(8.23), a nonzero linear combination of X1 and X2, say Z, along which both h1 and
h2 are constant. It is impossible that LXihj vanishes at ¯̄x for all i, j ∈ {1, 2}, so that up to a
permutation, we may suppose that LX1h1 6= 0. This yields, following the same construction as
above —construction of coordinates where the system has form (8.33)— a set of coordinates

(ζ1, ζ2, ζ3, ζ4) = (z1, h1, h2,
LX1h2

LX1h1
)

and a nonsingular feedback w1 = ḣ1, w2 = ζ̇4 such that the system is also of the form (8.33)
with ζ instead of z and w instead of v :

ζ̇1 = ζ2 ζ̇3 = a3(ζ1, ζ2, ζ3, ζ4) + ζ4w1

ζ̇2 = w1 ζ̇4 = w2
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where (ζ2, ζ3) should be a pair of linearizing outputs. This is impossible from (8.22) because
∂ζ̇2
∂w1

∂ζ̇2
∂w2

0 0
∂ζ̇3
∂w1

∂ζ̇3
∂w2

0 0
∂ζ̈2
∂w1

∂ζ̈2
∂w2

∂ζ̈2
∂ẇ1

∂ζ̈2
∂ẇ2

∂ζ̈3
∂w1

∂ζ̈3
∂w2

∂ζ̈3
∂ẇ1

∂ζ̈3
∂ẇ2

 =


1 0 0 0
ζ4 0 0 0
0 0 1 0

∂a3
∂ζ2

+ ζ4
∂a3
∂ζ3

+ w2
∂a3
∂ζ4

+ w1 ζ4 0


and hence ∂a3

∂ζ4
+ w1 should be identically zero on an open set, which is absurd because its

derivative with respect to w1 is 1.
From this lemma 8.7.2, z1 is a function of the two linearizing functions, and therefore one

may replace h1 or h2 by z1 in (h1, h2) and still have a pair of linearizing outputs. Let for instance
h1 = z1, then (8.21) is automatically satisfied, and (8.22) implies that h2 must depend on z1,
z2, z3 only because

∂ḣ1
∂v1

∂ḣ1
∂v2

0 0
∂ḣ2
∂v1

∂ḣ2
∂v2

0 0
∂ḧ1
∂v1

∂ḧ1
∂v2

∂ḧ1
∂v̇1

∂ḧ1
∂v̇2

∂ḧ2
∂v1

∂ḧ2
∂v2

∂ḧ2
∂v̇1

∂ḧ2
∂v̇2

 =


0 0 0 0
∗ ∂h2

∂z4
0 0

1 0 0 0
∗ ∗ ∗ ∂h2

∂z4

 ,

and the independence condition in proposition 8.2.10 implies (8.34). Conversely, if (8.34) is
satisfied, system (8.33) is x-dynamic linearizable with (z1, z3) as a pair of linearizing outputs,
because z2 is ż1, and z4 is (inverse function theorem) a function of ż3, z1, z2, z3, v1, i.e. of ż3,
z1, ż1, z3, z̈1.

Case 6 (m0 = 3, m1 = 4)

Let us first clarify the correspondence between the conditions in terms of differential forms
and these in terms of vector fields. Since the form ω1 is defined by (8.39) and involves only the
four variables x, dω1 must be of the form (8.43) because there is only four variables. Let us
prove that, as written just after (8.43),

X̃ ∈ {ω1, η1, η2}⊥ . (8.100)

From the definitions of ω1 and X̃, one has 〈ω1, [X̃, Y ]〉 = 0 for Y = X1 and for Y = X2 and
for Y = [X1, X2], but one also has 〈ω1, X̃〉 = 〈ω1, Y 〉 = 0 for these Y ’s, and hence, from the
classical formula [100, II-(1.10)] linking Lie Bracket and exterior derivative, 〈ω1, [X̃, Y ]〉 = 0
implies dω1(X̃, Y ) = 0, but from (8.43), and using again 〈ω1, X̃〉 = 〈ω1, Y 〉 = 0, this reads :
〈η1, X̃〉〈η2, Y 〉 − 〈η1, Y 〉〈η2, X̃〉 = 0. Since the three vectors X1, X2, [X1, X2] are linearly in-
dependent (m0 = 3) and the two differential forms η1 and η2 are also linearly independent
(m1 = 4 implies that dω1 ∧ ω1 = η1 ∧ η2 ∧ ω1 does not vanish), the last equality implies
〈η1, X̃〉 = 〈η2, X̃〉 = 0, and this proves (8.100).

We then have the following

Lemma 8.7.3. Condition (8.36) is equivalent to condition (8.40). If (8.36) or (8.40) holds,
condition (8.37) is equivalent to condition (8.41) and condition (8.38) is equivalent to condition
(8.42).

Proof of lemma 8.7.3 : From the definition of ω1, (8.36) may be written 〈ω1, [X0, X̃]〉 = 0, or
also 〈ω1, [F, X̃]〉 = 0 because [F, X̃] = [X0, X̃] + u1[X1, X̃] + u2[X2, X̃] and the last two terms
vanish on ω1. From the classical identity (8.15) and the fact that 〈ω1, X̃〉 is zero, 〈ω1, [F, X̃]〉 = 0
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is equivalent to 〈ω̇1, X̃〉 = 0, which is equivalent, from (8.100) to ω̇1 being a linear combination
of ω1, η1 and η2. This is (8.40).

Let us proceed to prove that (8.37) is equivalent to (8.41) if (8.40) holds. Consider the
three vector fields X̃, ∂

∂u1
, ∂
∂u2

in the six variables x, u. Their annihilator is {ω1, η1, η2}. Now
consider the six vector fields obtained by adding the Lie brackets of these by F : {X̃, ∂

∂u1
, ∂
∂u2

,
[F, X̃], [F, ∂

∂u1
], [F, ∂

∂u2
]}. From the classical identity (8.15), a form ω annihilates all these at a

point if and only if ω and ω̇ annihilate the original three at this point, i.e. if and only if both ω
and ω̇ are linear combinations of ω1, η1 and η2 at this point. It is the case of ω1 because (8.40)
holds, and the rank of these six vector fields therefore cannot be more than 5 ; it is equal to 5
exactly at points where the time-derivative of any linear combination of η1 and η2 is linearly
independent from ω1, η1 and η2, i.e. at points where (8.41) holds. Now this rank is 5 exactly at
points where (8.37) holds because [F, ∂

∂ui
] = Xi and therefore these six vector fields have the

same rank as :
{X1, X2, [F, X̃],

∂

∂u1
,
∂

∂u2
} .

Let us proceed to prove that (8.38) is equivalent to (8.42) if (8.40) holds. Consider the five
vector fields {X1, X2, [X1, X2], ∂

∂u1
, ∂
∂u2
} in the six variables x, u. Their annihilator is {ω1}. Now

consider the ten vector fields obtained by adding the Lie brackets of these by F :

{X1, X2, [X1, X2],
∂

∂u1
,
∂

∂u2
, [F,X1], [F,X2], [F, [X1, X2]], [F,

∂

∂u1
], [F,

∂

∂u2
]} .

A form that annihilates all these vector fields at a point must be collinear to ω1 at this point
because it has to annihilate at least the five original ones. The form ω1 vanishes on all these
vector fields exactly at the point where ω1 and ω̇1 vanish on the five original vector fields, i.e.
(since these five are linearly independent) exactly at points where the rank of {ω1, ω̇1} drops to
1. Therefore, the rank of the ten vector fields is 6 at points where (8.42) holds, and 5 at points
where it does not hold. But these ten vector have the same rank as :

{X1, X2, [X1, X2],
∂

∂u1
,
∂

∂u2
, [X0, X1], [X0, X2], [X0 + u1X1 + u2X2, [X1, X2]]},

and this has rank 6 if and only if (8.38) holds.
Let us now prove necessity of the conditions (8.36)-(8.37)-(8.38), or (8.40)-(8.41)-(8.42).

Lemma 8.7.3, that we have now proved, allows us to simply prove that (8.36) is necessary first,
and then to prove that (8.41) and (8.42) are necessary.

Suppose that there exists a pair of linearizing outputs (h1, h2) with h1 and h2 depending
on x only. We use conditions (8.21) and (8.22) from proposition 8.2.10 to derive the necessary
condition (8.36). We have

ḣi = LX0hi + u1LX1hi + u2LX2hi . (8.101)

Equation (8.21) implies that the rank of(
LX1h1 LX2h1

LX1h2 LX2h2

)
is one. Since m1 = 4, the functions LX1h1 and LX2h1 cannot vanish together ; without loss of
generality, suppose that LX1h1 does not vanish at the point under consideration. Then, with λ
the function given by λ = LX2h1/LX1h1, and defining the vector field Z2 by

Z2 = X2 − λX1 (8.102)
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one has
LZ2h1 = LZ2h2 = 0 . (8.103)

Define the vector fields Z0 and Z1 by

Z0 = X0 − LX0h1

LX1h1
X1 , Z1 =

1
LX1h1

X1 . (8.104)

The systems (8.5) then reads

ẋ = Z0 + w1 Z1 + u2 Z2 , (8.105)

with w1 defined as follows((u1, u2) 7→ (w1, u2) defines a regular static feedback :

w1 = ḣ1 = LX0h1 + u1LX1h1 + u2LX2h1 = LX0h1 + (u1 + λu2)LX1h1 . (8.106)

Then ḣ1 and ḣ2 may be written :

ḣ1 = w1

ḣ2 = LZ0h2 + w1 LZ1h2 .
(8.107)

The second time-derivatives are then given by :

ḧ1 = ẇ1

ḧ2 = L2
Z0
h2 + w1 (LZ1LZ0 + LZ0LZ1)h2 + w1 L

2
Z1
h2 + ẇ1 LZ1h2

+ (LZ2LZ0h2 + w1 LZ2LZ1h2)u2 .

(8.108)

The function ḧ2 must not depend on u2 —this is (8.22)— and hence

LZ2LZ0h2 = LZ2LZ1h2 = 0 . (8.109)

Now, on one hand, from (8.103)-(8.107)-(8.105), LZ1h1 is identically equal to 1, and LZ2h1,
LZ0h1 and LZ2h1 are identically zero, so that L[Z2,Z1]h1 and L[Z2,Z0]h1 are obviously zero, and
on the other hand, since LZ2h2 is identically zero from (8.103), LZ2LZ1h2 is equal to L[Z2,Z1]h2

and LZ2LZ0h2 is equal to L[Z2,Z0]h2 ; this and (8.109) above implies :

L[Z2,Z1]h1 = L[Z2,Z1]h2 = 0 , (8.110)
L[Z2,Z0]h1 = L[Z2,Z0]h2 = 0 . (8.111)

The two independent functions h1 and h2 are, from (8.110) and (8.103), constant along
the vector fields Z2 and [Z1, Z2], which are linearly independent because m1 = 3. This implies
that the distribution spanned by these two vector fields is integrable, and therefore that the Lie
Bracket [Z2, [Z1, Z2]] is a linear combination of Z2 and [Z1, Z2]. From (8.102) and (8.104), the Lie
bracket [Z2, [Z1, Z2]] is equal to λ[Z2, [X1, X2]] + (LX1λ)[X1, X2] + ((LX1λ)2 − LX2LX1λ)X1.
Hence, [Z2, [X1, X2]] must be a linear combination of X1, X2 and [X1, X2]. This implies, from
the definition of the characteristic vector field X̃ —see (8.35)—that Z2 is collinear to X̃ :

Z2 = α X̃ (8.112)

with α a nonzero function. Since the vector fields annihilating dh1 and dh2 are the linear combi-
nations of Z2 and [Z2, Z1], (8.110) and (8.111) imply that [Z2, Z0] is a linear combination of Z2

and [Z2, Z1], which implies in particular that it is a linear combination of X1, X2 and [X1, X2].
From (8.112), this implies condition (8.36). We have proved the necessity of condition (8.36).
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Let us now prove that existence of h1 and h2 with the above properties imply (8.41)-(8.42).
From above, dh1 and dh2 vanish on X̃ and [Z2, X̃], and are linearly independent because (h1, h2)
is a pair of linearizing outputs ; hence, from the definition of ω1 and the fact that both X̃ and
[Z2, X̃] are linear combinations of X1, X2 and [X1, X2], the form ω1 is a linear combination of
dh1 and dh2, i.e. there exists some functions λ1 and λ2 such that

ω1 = λ1 dh1 + λ2 dh2 . (8.113)

Computing the time-derivative of this yields

ω̇1 = λ1 dḣ1 + λ2 dḣ2 + λ̇1 dh1 + λ̇2 dh2 . (8.114)

This implies (8.42) because on one hand the two functions λ1 and λ2 do not vanish simultaneously
because ω1 does not vanish, and on the other hand dh1, dh2, dḣ1 and dḣ2 are linearly independent
because (h1, h2) is a pair of linearizing outputs. Condition (8.40), already proved because it is
equivalent to (8.36) from lemma 8.7.3, implies :

ω̇1 = µ0 ω1 + µ1 η1 + µ2 η2

for some functions µ0, µ1, µ2. (8.42) implies that µ1 and µ2 do not vanish simultaneously.
Let η be η1 if µ2 does not vanish, and η2 if µ2 vanishes. Then {ω1, ω̇1, η} is another basis for
the annihilator of X̃. Since dh1 and dh2 are in the annihilator of {X̃, [Z2, X̃]}, they are linear
combinations of ω1, ω̇1 and η. Since {dh1, dh2} is a linearizing Pfaffian system, this implies, from
Proposition 8.2.5, that {ω1, η} is a linearizing Pfaffian system, and hence that ω1, η and all their
time derivatives are linearly independent, and in particular ω1, ω̇1, ω̈1, η, η̇ has rank 5, but from
the above construction, it is also the rank of ω1, η1, η̇1, η2, η̇2. This proves (8.41).

According to the remarks just after the proof of lemma 8.7.3, we have now proved the
necessity of either (8.36)-(8.37)-(8.38), or (8.40)-(8.41)-(8.42). Let us prove sufficiency, and at
the same time validity of the way of building linearizing outputs given in the theorem. Again,
from lemma 8.7.3, it is enough to prove sufficiency of (8.40)-(8.41)-(8.42).

From (8.40) and (8.42), equation (8.43) implies

dω1 = ω1 ∧ Γ′ + kω̇1 ∧ η (8.115)

where k is a non-vanishing function and η is either η1 or η2, and then (8.41) implies

rank{ω1, ω̇1, ω̈1, η, η̇} = 5 . (8.116)

Let α1 and α2 be some (non vanishing simultaneously) functions such that {ω1, α1ω̇1 + α2η} is
a basis of the annihilator of {X1, X2}. Then {ω1, ω̇1, η, α1ω̈1 +α2η̇} is a basis of Span{dx} —all
four are in Span{dx} because α1ω̇1 + α2η vanishes on X1 and X2, and they are independent
from (8.116)— and {ω1, ω̇1, ω̈1, η, η̇, α1ω

(3)
1 + α2η̈} is a basis of Span{dx,du} because of (8.116)

and the fact that X1 and X2 are supposed to have rank 2, and then an easy induction shows
that

{ω1, ω̇1, ω̈1, . . . , ω
(j+2)
1 , η, η̇, η̈, . . . , η(j+1), α1ω

(j+3)
1 + α2η

(j+2)}
is a basis of Span{dx, du,du̇, . . . ,du(j)} for all j ≥ 0. This implies that {ω1, η} is a linearizing
Pfaffian system (see definition 8.2.3).

Let us now build a pair of linearizing outputs as explained in the theorem. If h1 is built as
indicated, i.e. such that

L eXh1 = 0 and rank{ω1, ω̇1,dh1} = 3 , (8.117)
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the Pfaffian system {dh1, ω1} is integrable because (8.115) and the fact that dh1 is a linear
combination of ω1, ω̇1, η imply dω1 ∧ ω1 ∧ dh1 = 0. Let h2 be a second function such that
{dh1,dh2} is another basis for {ω1,dh1}. These dh1 and dh2 are obviously linear combinations
of ω1, ω̇1 and η, but this may be inverted : ω1 is a linear combination of dh1 and dh2, and η is, from
(8.117) a linear combination of ω1, ω̇1, dh1, and hence of dh1, dh2, dḣ1 and dḣ2. Since {ω1, η}
is a linearizing Pfaffian system, (dh1,dh2) is, from Proposition 8.2.5, also a linearizing Pfaffian
system, and (h1, h2) is a pair of linearizing outputs from Proposition 8.2.3. This completes the
proof of sufficiency.

Let us now prove the assertions concerned with the “normal form”. The normal form itself
is a consequence of the following lemma :

Lemma 8.7.4 (“Engel’s normal form”). Let X1 and X2 be two vector fields in R4 and let x̄ ∈ R4

be such that

rankR {X1(x̄) , X2(x̄) } = 2 ,
rankR {X1(x̄) , X2(x̄) , [X1, X2](x̄) } = 3 ,
rankR {X1(x̄) , X2(x̄) , [X1, X2](x̄) , [X1, [X1, X2]](x̄) , [X2, [X1, X2]](x̄) } = 4 .

Then there exists four functions α11, α12, α21, α22, and a set of coordinates (z1, z2, z3, z4) such

that the matrix
(
α11(x̄) α12(x̄)
α21(x̄) α22(x̄)

)
is invertible, and, locally around x̄,

α11X1 + α21X2 =
∂

∂z1
+ z3

∂

∂z2
+ z4

∂

∂z3
; α12X1 + α22X2 =

∂

∂z4
. (8.118)

The proof is very classical, see for example [18]. Now, by assumption, the vector fields X1

and X2 satisfy these assumptions, and the feedback(
u1

u2

)
=

(
α11 α12

α21 α22

)(
v1

v2

)
−
(
LX0z1

LX0z4

)
(8.119)

yields the equations (8.44) in the coordinates given by lemma 8.7.4. The fact that the coordinate-
free and feedback invariant conditions (8.40), (8.41), (8.42) translate into (8.45), (8.46), (8.47)
respectively is a routine computation from

ω1 = dz2 − z3dz1 ω̇1 = df2 + v1dz3 − (f3 + z4v1)dz1

η1 = dz1 , η̇1 = dv1 ,
η2 = dz3 , η̇2 = df3 + v1dz4v1 + z4dv1 .

Alternative proof of Case 6

Here we suppose in addition that we are at Brunovský-regular point, i.e. the rank condition (8.52)
holds, and we give a proof for case 6 based on the infinitesimal Brunovský form. To give a thorough
treatment of case 6, one should consider the case when the rank in (8.52) is three in a neighborhood
—then there is a different infinitesimal Brunovský form, as in the second point of proposition 8.2.7, and
also points where it three, while being 4 in an open dense set of a neighborhood —at such points, an
infinitesimal Brunovský form does not exist but one might conclude by density.

Condition (8.52) implies, see proposition 8.2.7, that if two forms ω1 and ω2 make up a basis of D̂⊥2 ,
then {ω1, ω2, ω̇1, ω̇2} is a basis of Span{dx}. In addition, ω1 may be taken in M⊥

0 (i.e. {ω1} is the first
derived system of the Pfaffian system {ω1, ω2}). Then we have :

dω1 ≡ ω2 ∧ (δ1ω̇1 + δ2ω̇2) modulo ω1

dω2 ≡ γ ω̇1 ∧ ω̇2 modulo {ω1, ω2} . (8.120)
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Since on one hand the rank of M1 is constant equal to 4, and on the other hand the rank of M0 is
constant equal to 3,

δ1 and δ2 do not vanish simultaneously,
γ does not vanish.

}
(8.121)

A computations shows that :

Span{X̃} = {ω1 , ω2 , δ1ω̇1 + δ2ω̇2 }⊥ . (8.122)

The proof of characterization (8.36) relies on the following lemma, proved further :

Lemma 8.7.5. The following three properties are equivalent :
(i) There exist two invertible matrices J1 and J2 of degree zero and three functions a, h1 and h2,

all defined on a neighborhood of the point X , such that(
dh1

dh2

)
= J1

(
1 − a d

dt
0 1

)
J2

(
ω1

ω2

)
(8.123)

(ii) δ2 = 0 on a neighborhood of X .
(iii) (8.36) holds on a neighborhood of X .

This is enough to conclude. Indeed, sufficiency in case 6 of theorem 8.3.1 is obvious because, from
proposition 8.2.8, point (i) implies x-dynamic linearizability. Let us prove necessity : if system (8.5) is
x-dynamic linearizable in a neighborhood of a point X , then from propositions 8.2.8 and 8.2.9, there is
an open set U0, dense in a neighborhood of X , such that point (i) holds for all X ∈ U0. From the lemma,
this implies that δ2 is zero on U0. Hence it is zero on a neighborhood of X . This completes the proof of
case 6 of theorem 8.3.1, the normal form being proved the same way as in the first proof.
Proof of lemma 8.7.5 :
(ii)⇔(iii) : We have, from (8.122) and identity (8.15),

0 = d
dt 〈δ1ω1 + δ2ω2 , X̃〉 = 〈δ̇1ω1 + δ̇2ω2 + δ1ω̇1 + δ2ω̇2 , X̃〉

+ 〈δ1ω1 + δ2ω2 , [X0 + u1X1 + u2X2, X̃]〉 ,

which, from the fact that 〈ωi, X̃〉 and 〈ω1, [Xi, X̃]〉 are identically zero for i = 1, 2, yields

δ1 〈ω1 , [X0, X̃]〉 + δ2 〈ω2 , [X0 + u1X1 + u2X2, X̃]〉 = 0 (8.124)

which implies, since δ1 and δ2 do not vanish simultaneously and [X0 + u1X1 + u2X2, X̃] does not vanish,
that δ2 = 0 is equivalent to 〈ω1, [X0, X̃]〉 = 0, i.e. to (8.36).
(ii)⇒(i) : Since δ2 = 0, (8.120) implies that {ω1, ω2, ω̇1} is the characteristic system of ω1 and therefore
is integrable. In particular, there exists a function h2 such that

dh2 = λ0ω1 + λ1ω̇1 + λ2ω2

with a non-vanishing λ2 ; then
dω1 ≡ δ̃1 dh2 ∧ ω̇ modulo ω1

which implies that {ω1,dh2} is integrable and in particular that there exists a function h1 such that(
dh1

dh2

)
=

(
µ1 µ2

0 1

)(
ω1

dh2

)
=

(
µ1 µ2

0 1

)( 1 0
λ0 + λ1

d
dt λ2

)(
ω1

ω2

)
where µ1λ1 does not vanish. This is point (i).
(i)⇒(ii) : Let Ω1, Ω2 and Ω3 be defined by(

Ω1

Ω2

)
= J2

(
ω1

ω2

)
, (8.125)
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(
Ω3

Ω2

)
=

(
1 −a d

dt
0 1

)(
Ω1

Ω2

)
=

(
Ω1 − aΩ̇2

Ω2

)
. (8.126)

then (8.123) implies that {Ω3,Ω2} is integrable and hence, for some 1-forms Γi,j ,

dΩ2 = Ω2 ∧ Γ2,2 + Ω3 ∧ Γ2,3 = Ω1 ∧ Γ2,3 + Ω2 ∧ Γ2,2 − a Ω̇2 ∧ Γ2,3

dΩ3 = Ω2 ∧ Γ3,2 + Ω3 ∧ Γ3,3 = Ω1 ∧ Γ2,3 + Ω2 ∧ Γ2,2 − a Ω̇2 ∧ Γ2,3
(8.127)

Taking the time-derivative of the second equation yields

dΩ̇2 = Ω1 ∧ Γ̇2,3 + Ω̇1 ∧ Γ2,3

+ Ω2 ∧ Γ̇2,2 + Ω̇2 ∧
(

Γ2,2 − aΓ̇2,3 − ȧΓ2,3

)
− a Ω̈2 ∧ Γ2,3

(8.128)

and finally, since dΩ1 = d(Ω3 + aΩ̇2) = dΩ3 + adΩ̇2 − Ω̇2 ∧ da,

dΩ1 = Ω1 ∧
(

Γ2,3 + aΓ̇2,3

)
+ Ω2 ∧

(
Γ2,2 + aΓ̇2,2

)
+ a Ω̇1 ∧ Γ2,3 + Ω̇2 ∧

(
− aΓ2,3 + aΓ2,2 − a2Γ̇2,3 − aȧΓ2,3 − da

)
− a2 Ω̈2 ∧ Γ2,3

dΩ2 = Ω1 ∧ Γ2,3 + Ω2 ∧ Γ2,2 − a Ω̇2 ∧ Γ2,3

(8.129)

From (8.125), {Ω1,Ω2} is the same differential system as {ω1, ω2} and therefore, from (8.120), dΩi ≡
λiΩ̇1 ∧ Ω̇2 modulo {Ω1,Ω2} for i = 1, 2 and λi certain functions ; from the second equation in (8.129),
this implies that Γ2,3 is a linear combination of Ω1,Ω2, Ω̇1, Ω̇2 ; from the first equation in (8.129), it is
actually a linear combination of Ω1,Ω2, Ω̇2 because the Ω̇1-term would produce a Ω̈2 ∧ Ω̇1-term in the
last term of dΩ1 (it cannot be canceled by another term because there is no Ω̈2 in γ2,3) ; this implies, if
Γ2,3 = λ1Ω1 + λ1Ω2 + λ0Ω̇2,

dΩ2 = Ω2 ∧ Γ̃2,2 + (λ0 + aλ1)Ω1 ∧ Ω̇2 (8.130)

where Γ̃2,2 contains Γ2,2 plus other terms. This implies in particular that dΩ2 ≡ 0 modulo {Ω1,Ω2} which
implies that Ω2 is in the first derived system of {Ω1,Ω2} (i.e. in the annihilator of {X1, X2, [X1, X2]})
and therefore that it is collinear to ω1, or in other terms that matrix J2 is triangular :(

Ω1

Ω2

)
=

(
β1 β2

α 0

)(
ω1

ω2

)
(8.131)

where αβ2 does not vanish. Then (8.120) yields

dΩ2 ≡ 1
β2

Ω1 ∧
(

(δ1 − β1δ2
β2

)Ω̇2 + δ2
α

β2
Ω̇1

)
modulo Ω2 (8.132)

By comparing this and (8.130), we see that δ2α = 0 which implies that δ2 is identically zero because α
does not vanish.

8.7.2 Proof of the results on (x, u)-dynamic linearizability

In this section, we prove theorem 8.4.1 and proposition 8.4.4. They are proved together
because we are not able to prove the intrinsic condition of theorem 8.4.1 without the help of the
coordinates of the normal form (8.60). In the course of the proof, we will need the four following
technical lemmae (lemmae 8.7.6, 8.7.7, 8.7.8 and 8.7.9), that are proved further.

Lemma 8.7.6. Let ω1 and ω2 be chosen according to (8.53). Let b and J2 be respectively a scalar
smooth function and a 2 × 2 invertible matrix (of degree zero) with entries smooth functions,
defined on a neighborhood of a point Y and let Ω1 and Ω3 be defined by(

Ω1

Ω3

)
=

(
1 0
−b d

dt 1

)
J2

(
ω1

ω2

)
. (8.133)
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The forms Ω1 and Ω3 satisfy the following relations :

dΩ1 ≡ 0 modulo {Ω1 , Ω3 , Ω̇3 } (8.134)
dΩ3 ≡ 0 modulo {Ω3 , Ω1 ∧ Ω̇3 } (8.135)

on a neighborhood of Y if and only if there exist smooth functions h1, h2 and a, and a 2 × 2
invertible matrix J1 with entries smooth functions defined on a neighborhood of Y, such that(

dh1

dh2

)
= J1

(
1 −a d

dt
0 1

)(
1 0
−b d

dt 1

)
J2

(
ω1

ω2

)

= J1

(
1 −a d

dt
0 1

)(
Ω1

Ω3

)
. (8.136)

Lemma 8.7.7. Let ω1 and ω2 be some 1-forms satisfying (8.53), and hence (8.55), around a
point where γ and δ2

1,2 do not vanish (implied by the rank assumptions (8.48)-(8.49)-(8.50)-
(8.51)-(8.52)).

1. There cannot exist functions a, b, h1, h2 and two invertible 2× 2 matrices of degree zero
J1 and J2, all defined on a neighborhood of the considered point, such that

J1

(
1 0

−a d
dt − b

d
dt

2
1

)
J2

(
ω1

ω2

)
=

(
dh1

dh2

)
. (8.137)

2. There cannot exist functions α, a, b, h1, h2 and an invertible 2× 2 matrix of degree zero
J1, all defined on a neighborhood of the considered point, such that

J1

(
1 −a d

dt
0 1

)(
1 0
−b d

dt 1

)(
1 0
α 1

)(
ω1

ω2

)
=

(
dh1

dh2

)
. (8.138)

Lemma 8.7.8. Let ω1 and ω2 be some 1-forms satisfying (8.53), and hence (8.55). If, for some
functions λ1, λ2 and λ3, one has

dω2 ≡ 0 modulo {ω2,Ω, Ω̇}
with Ω = λ1ω1 + λ2ω2 + λ3ω̇2 ,

(8.139)

then λ1 and λ3 are related to the functions appearing in (8.55) by :

λ3

(
2γ λ1 + δ1

2,1 λ3

)
= 0 . (8.140)

Lemma 8.7.9. Let f and g be two smooth functions from an open subset O ⊂ R4 to R. The
following two assertions are equivalent :

– ∂g
∂z4

does not vanish on O and f and g are solutions of the following equations on O :

2
∂g

∂z4

∂3g

∂z3
4

− 3
(
∂2g

∂z2
4

)2

= 0 , (8.141)

2
∂g

∂z4

∂3f

∂z3
4

− 3
∂2g

∂z2
4

∂2f

∂z2
4

= 0 . (8.142)

– There exists a0, a1, a2, b0, b1, c0 and c1, seven smooth functions of z1, z2, z3 defined on O
(i.e. on its projection on R3) such that

c0(z1, z2, z3) + z4c1(z1, z2, z3) and
∣∣∣∣ b0 b1
c0 c1

∣∣∣∣ (z1, z2, z3)

do not vanish on O and f and g are given by (8.63) on O.
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Proof of theorem 8.3.1 and proposition 8.4.4 : Let us consider a point
X = (x̄, ū, ˙̄u, . . . . . .) such that conditions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold at (x̄, ū). Let the
forms ω1 and ω2 be defined according to (8.53) and the functions δ1

2,1 and γ by (8.55). Let also
(z1, z2, z3, z4) be some coordinates in which system (8.5) has the form (8.60) (they exist from
Proposition 8.4.3), and the functions f and g be defined accordingly from an open subset of R4

to R.
We have to prove the following :

1. The following three properties are equivalent :
– (x, u)-dynamic linearizability of system (8.5) at point X , or of (8.60) at the corresponding

point in terms of (z, v, v̇, . . .),
– conditions of proposition 8.4.4 on the functions f and g,
– condition in terms of Pfaffian systems of theorem 8.4.1.

2. When they are satisfied, the possible pairs of linearizing outputs depending on x and u
are these described in theorem 8.4.1.

The (easy) proof of the second point will be given at the very end when equivalence is totally
understood.

From proposition 8.2.8, (x, u)-dynamic linearizability is equivalent to existence of a matrix
P ( d

dt) whose entries are polynomials in d
dt of degree at most 2, which has an inverse of the same

type (except we do not need to know whether the degree of the entries of the inverse is also at
most 2), and transforms the pair of forms (ω1, ω2) into a pair that defines an integrable Pfaffian
system. Now use the second point of proposition 8.2.9 ; it allows four possible decompositions of
the matrix P ( d

dt), but only on an open dense set of points of the neighborhood of X where P ( d
dt)

is defined, and X might not belong to this open dense set. Around these points though, lemma
8.7.7 states that three of the four decompositions proposed by proposition 8.2.9 are impossible
due to the form of dω1 and dω2 given by (8.54)-(8.55), so that only the last one is possible. If
the decomposition of proposition 8.2.9 was available at all points, item 1 of the following lemma
would be equivalent to (x, u)-dynamic linearizability, and the following lemma would end the
proof.

Lemma 8.7.10. Let ω1 and ω2 be chosen according to (8.53), the functions δ1
2,1 and γ be defined

by (8.55), and some coordinates z1, z2, z3, z4 be fixed according to Proposition 8.4.3, in which
system (8.5) has the form (8.60), and the functions f and g be defined accordingly from an open
subset of R4 to R. The following four assertions are equivalent :

1. There exists an invertible matrix J1 of degree zero and six functions α, λ, a, b, h1 and
h2, all defined on a neighborhood of the point Y, such that b does not vanish on this
neighborhood and(

dh1

dh2

)
= J1

(
1 − a d

dt
0 1

)(
1 0

− b d
dt 1

)(
1 0
α 1

)(
λ 1
1 0

)(
ω1

ω2

)
(8.143)

2. There exist three functions α, λ and b, all defined on a neighborhood of Y, such that b does
not vanish on this neighborhood and, with(

Ω1

Ω3

)
=

(
1 0

− b d
dt 1

)(
1 0
α 1

)(
λ 1
1 0

)(
ω1

ω2

)
, (8.144)

one has

dΩ1 ≡ 0 modulo {Ω1 , Ω3 , Ω̇3 } (8.145)
dΩ3 ≡ 0 modulo {Ω3 , Ω1 ∧ Ω̇3 } (8.146)
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3. δ1
2,1 does not vanish at Y and the first derived system of the Pfaffian system {ω1 −
2 γ
δ1
2,1
ω̇2 , ω2} has rank 1 and is integrable, i.e. there exists a (unique) function α such that

(8.58) is satisfied.
4. The function δ1

2,1 does not vanish at Y and, in the normal form (8.60), the functions f
and g are, on a neighborhood of Y, of the form (8.63) where a0, a1, a2, b0, b1, c0 and c1

are functions of z1, z2, z3 only, which satisfy (8.64).
If one of these conditions is met (and therefore all of them), λ, α and b in (8.143) and (8.144)
are uniquely defined :

λ = 0 , b =
2γ
δ1

2,1

, α is uniquely defined by (8.58) . (8.147)

This lemma contains the real technical difficulties of the paper. The proof is given further
(page 201), let us however sketch it. Equivalence between 1 and 2 is given by lemma 8.7.6, it is
a manipulation on Pfaffian systems, and only needs the fact that the Pfaffian system {ω1, ω2}
may be written in four variables (the coordinates of x). It is very simple to prove that 3 implies
2, but the converse is not obvious : since we were not able to prove it directly, we used the
coordinates z of the normal form, and instead of proving that 2 implies 3, we prove that 2
implies 4 by writing (8.145)-(8.146) in the coordinates (z, v, v̇, . . .) of the normal form (8.60) as
some differential relations on the functions α, λ and b with the functions f and g as parameters,
eliminating the unknowns α, λ and b, and obtaining some PDEs on f and g that imply the
form of f and g given by point 4 above (or by proposition 8.4.4), these computations have been
conducted with the computer algebra system “Maple” (version 5.2). The fact that 4 implies 2
is a simple computation in coordinates, made easier by proposition 8.4.5.

Unfortunately, the conclusion of proposition 8.2.9 is not valid at all point, so that the results
we want to prove do not follow from the above lemma 8.7.10, proposition 8.2.9 and lemma 8.7.7.
Let us however prove that (x, u)-dynamic linearizability at point X is equivalent to one of the
four equivalent conditions of lemma 8.7.10 being satisfied at point X . This will end the proof
that (x, u)-dynamic linearizability, the conditions of proposition 8.4.4 on the functions f and g
(item 4 of lemma 8.7.10) and the condition in terms of Pfaffian systems of theorem 8.4.1 (item
3 of lemma 8.7.10) are equivalent.

Point 1 of lemma 8.7.10 implies (x, u)-dynamic linearizability from proposition 8.2.8 because
the matrix applied to (ω1, ω2) in (8.143) is obviously invertible and of degree 2. Conversely,
suppose that there exists a pair of linearizing outputs (h1, h2) depending only on x and u,
defined around X , and let us prove that item 3 of lemma 8.7.10 holds on a neighborhood of X .
From proposition 8.2.8, there exists P ( d

dt) ∈ A(U), with U a neighborhood X , such that

P ( d
dt) is invertible in A(U)

degP ≤ 2 on U

P ( d
dt)

(
ω1

ω2

)
=

(
dh1

dh2

)
 (8.148)

Since γ does not vanish at X and the rank assumptions (8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold
at X , we may suppose, by possibly restricting U , that

γ does not vanish on U ,
(8.48)-(8.49)-(8.50)-(8.51)-(8.52) hold on U .
degP = 2 on an open dense subset of U .

 (8.149)

The last statement is implied by the second one because if degP is strictly less than 2 on an
open set, the system is x-dynamic linearizable and this contradicts (8.51) from theorem 8.3.1.
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Then, from proposition 8.2.9, there is an open dense subset U0 of U such that, for all Y ∈ U0,
the matrix P ( d

dt) may be decomposed according to one of the four forms (8.18)-(8.19)-(8.20).
From lemma 8.7.7 three of these four forms are forbidden, because conditions (8.48)-(8.49)-
(8.50)-(8.51)-(8.52) hold at point Y. Hence, around each point Y ∈ U0, there exists functions
α, λ, a, b, and a matrix J1, defined on a neighborhood of Y such that (8.143) is true on a
neighborhood of Y. By restricting possibly the open sense set U0, we may suppose that b does
not vanish on U0 (b cannot vanish on an open set, because then P would have degree at most
1 on this open set, and therefore the linearizing outputs would depend on x only, and this
would, from theorem 8.3.1, contradict (8.51). Then the conditions of point 1 of lemma 8.7.10
are satisfied on U0. By applying lemma 8.7.10 at each point Y in U0, one has, for all Y ∈ U0, a
neighborhood of Y such that

– δ1
2,1 does not vanish on this neighborhood,

– there is a unique function αY defined on this neighborhood such that

d

(
ω1 + αYω2 − 2 γ

δ1
2,1

ω̇2

)
∧
(
ω1 + αYω2 − 2 γ

δ1
2,1

ω̇2

)
= 0 , (8.150)

– there are a smooth scalar function aY and an invertible matrix J1,Y with entries some
smooth functions, all defined on this neighborhood, so that, on this neighborhood,(

dh1

dh2

)
= J1,Y

(
1 − aY d

dt
0 1

)(
1 0

− 2γ
δ1
2,1

d
dt 1

)(
0 1
1 αY

)(
ω1

ω2

)
. (8.151)

The last point is obtained by substituting the functions λ and b by the value they must have
from (8.147). The second point implies in particular, by making the wedge product of both sides
by ω2 and multiplying by (δ1

2,1)2, that

d
(
δ1

2,1ω1 − 2γω̇2

)∧ (δ1
2,1ω1 − 2γω̇2

)∧ω2 + αYδ
1
2,1 dω2 ∧

(
δ1

2,1ω1 − 2γω̇2

)∧ω2 = 0 . (8.152)

but on the other hand, the differential form of degree 4 dω2 ∧
(
δ1

2,1ω1 − 2γω̇2

) ∧ ω2 is, from
(8.55), given by

dω2 ∧ ω2 ∧ (δ1
2,1ω1 − 2γω̇2) = ω1 ∧ (

1
2
δ1

2,1ω̇1 − γω̈2) ∧ ω2 ∧ (−2γω̇2) ,

and therefore does not vanish on U . Existence of αY satisfying (8.152) may be translated in
some determinants made with the coefficients of the two differential forms of degree 4 being
zero, but if these determinants are zero on an open dense subset U0, they are zero all over U ,
and therefore, since dω2 ∧

(
δ1

2,1ω1 − 2γω̇2

) ∧ ω2 does not vanish, there is a function ν, uniquely
defined all over U , such that

d
(
δ1

2,1ω1 − 2γω̇2

) ∧ (δ1
2,1ω1 − 2γω̇2

) ∧ ω2 + ν dω2 ∧
(
δ1

2,1ω1 − 2γω̇2

) ∧ ω2 = 0 . (8.153)

Of course, since on the neighborhood of each point Y, the function αY is uniquely defined, it
must coincide with ν

δ1
2,1

where it is defined.

Then, let us define the form ω3 by

ω3 = δ1
2,1ω1 + νω2 − 2γω̇2 ; (8.154)

equation (8.151) reads

(
dh1

dh2

)
= J1,Y

 ω2 − a

(
1
δ1

2,1

ω̇3 −
δ̇1

2,1

(δ1
2,1)2

ω3

)
1
δ1
2,1
ω3

 (8.155)
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and therefore, dh1 and dh2 are linear combinations of ω2, ω3 and ω̇3 on a neighborhood of each
point Y ∈ U0. This implies that the rank of {dh1, dh2, ω2, ω3, ω̇3} is at most 3 on the open dense
U0, it is therefore also at most 3 on all U . Since the rank of {ω2, ω3, ω̇3} is three all over U
(because γ does not vanish on U , see (8.149)), there are six functions µi,j , (uniquely) defined all
over U , such that

dhi = µi,1ω2 + µi,2ω3 + µi,3ω̇3

for i = 1, 2, or in other words(
dh1

dh2

)
=

(
µ1,1 µ1,2 + µ1,3

d
dt

µ2,1 µ2,2 + µ2,3
d
dt

)(
ω2

ω3

)
(8.156)

which implies, from (8.154),(
dh1

dh2

)
=

(
µ1,1 µ1,2 + µ1,3

d
dt

µ2,1 µ2,2 + µ2,3
d
dt

)(
0 1
δ1

2,1 ν − 2γ d
dt

)(
ω1

ω2

)
which implies, from (8.148), and because ω1, ω2 and all their time-derivatives are linearly inde-
pendent, that

P (
d
dt

) =

(
µ1,1 µ1,2 + µ1,3

d
dt

µ2,1 µ2,2 + µ2,3
d
dt

)(
0 1
δ1

2,1 ν − 2γ d
dt

)
This implies that δ1

2,1 must not vanish on U because P ( d
dt) could not be invertible in the

neighborhood of the zeroes of δ1
2,1, where the first column of the second factor would vanish.

Since δ1
2,1 does not vanish on U , the function α

∆= ν
δ1
2,1

is defined all over U , coincides with

each αY where these are defined ; this and (8.150) imply that (8.58) is satisfied on U0 with
this definition of α ; since U0 is dense in U , (8.58) is even satisfied all over U . This proves that
(x, u)-linearizability implies item 3 of lemma 8.7.10, and ends the proof of equivalence between
(x, u)-dynamic linearizability, the conditions of proposition 8.4.4 on the functions f and g and
the condition in terms of Pfaffian systems of theorem 8.4.1.

To end the proof of theorem 8.4.1 and proposition 8.4.4, there only remains to prove that the
possible pairs of linearizing outputs depending on x and u only are these described in theorem
8.4.1. We have proved above that an arbitrary pair of linearizing output has to satisfy (8.155)
around all points Y in an open and dense subset of a neighborhood of X , with ω3 = δ1

2,1Ω3

(compare (8.154), the fact that α = ν/δ1
2,1 as noticed just after (8.153), and the definition of Ω3

in theorem 8.4.1). This implies that dh1 and dh2 are two independent linear combinations of Ω3

and ω2 − aΩ̇3 for a certain function a. This is exactly the form of a pair of linearizing outputs
described in theorem 8.4.1.

We now prove the four technical lemmae (lemmae 8.7.6, 8.7.7, 8.7.8 and 8.7.9) and then
proceed with the proof of lemma 8.7.10 that was the cornerstone of the above proof.
Proof of lemma 8.7.6 : Suppose that Ω1 and Ω3 satisfy the identities (8.134)-(8.135) on
a neighborhood of Y. Then the Pfaffian system {Ω1,Ω3, Ω̇3} is completely integrable because
(8.134)-(8.135) obviously imply that dΩ1 and dΩ3 are zero modulo {Ω1,Ω3, Ω̇3}, and (8.135)
implies that, for a certain 1-form Γ3 and a certain function k, dΩ3 = Ω3 ∧ Γ3 + kΩ1 ∧ Ω̇3, but
taking the time-derivative of both sides yields

dΩ̇3 = Ω̇3 ∧ Γ3 + Ω3 ∧ Γ̇3 + k̇Ω1 ∧ Ω̇3 + kΩ̇1 ∧ Ω̇3 + kΩ1 ∧ Ω̈3

which obviously implies that dΩ̇3 is zero modulo {Ω1,Ω3, Ω̇3}. Integrability of this Pfaffian
system implies that there exists a function h1 defined on a neighborhood of Y such that

dh1 = λ1Ω1 + λ2Ω3 + λ3Ω̇3
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with λ1, λ2, λ3 some functions, λ1 nonzero at Y. Then {Ω3,dh1} is integrable because (8.135)
implies that dΩ3 is zero modulo {Ω3,dh1 ∧ Ω̇3}, and hence modulo {Ω3, dh1}. Hence there is a
second function h2 such that

dh2 = µ1dh1 + µ2Ω3

with µ1, µ2 some functions, µ2 nonzero at Y. The functions h1, h2 built above, together with

a = −λ3/λ1 and J1 =
(

1 0
µ1 µ2

)(
λ1 λ2

0 1

)
satisfy (8.136).

Conversely, suppose that (8.136) holds. Let us define Ω1,Ω2,Ω3,Ω4 by(
Ω1

Ω2

)
= J2

(
ω1

ω2

)
, (8.157)

(
Ω4

Ω3

)
=

(
1 −a d

dt
0 1

)(
1 0
−b d

dt 1

)(
Ω1

Ω2

)
(8.158)

i.e.

Ω3 = Ω2 − b Ω̇1 (8.159)

Ω4 = Ω1 − aΩ̇3 = Ω1 − a
(

Ω̇2 − ḃ Ω̇1 − b Ω̈1

)
(8.160)

We shall use the following basis (over smooth functions) for the space of all 1-forms :

{Ω1,Ω2,Ω3, Ω̇2,Ω4, Ω̇4,

Ω̈2,Ω
(3)
2 ,Ω(4)

2 , . . . . . . ,

Ω(4)
1 ,Ω(5)

1 ,Ω(6)
1 , . . . . . . }

(8.161)

where, in addition, {Ω1,Ω2,Ω3, Ω̇2} is a basis of Span{dx}.
Then (8.143) implies that the Pfaffian system (Ω3,Ω4) is completely integrable and therefore

that there exists some 1-forms Γi,j such that

dΩ3 = Ω3 ∧ Γ3,3 + Ω4 ∧ Γ3,4

dΩ4 = Ω3 ∧ Γ4,3 + Ω4 ∧ Γ4,4

}
(8.162)

It is possible to express the 1-forms Γi,j in (8.162) as (finite) linear combinations of the forms
in (8.161), and it is always possible to choose them such that, for i = 3, 4,

Γi,3 has no Ω3 term,
Γi,4 has no Ω3 term and no Ω4 term.

}
(8.163)

Taking the exterior derivative of (8.160) yields

dΩ1 = dΩ4 + adΩ̇3 − Ω̇3 ∧ da ,

and taking the time-derivative of the first equation in (8.162) yields

dΩ̇3 = Ω3 ∧ Γ̇3,3 + Ω̇3 ∧ Γ3,3 + Ω4 ∧ Γ̇3,4 + Ω̇4 ∧ Γ3,4

and finally, the two above equations yield, since Ω̇3 = Ω1−Ω4
a ,

dΩ1 = Ω1 ∧
(

Γ3,3 − da
a

)
+ Ω3 ∧

(
Γ4,3 + a Γ̇3,3

)
+ Ω4 ∧

(
Γ4,4 − Γ3,3 + a Γ̇3,4 +

da
a

)
+ a Ω̇4 ∧ Γ3,4 . (8.164)
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On the other hand, since (Ω1,Ω2) = (X1, X2)⊥, the Pfaffian system defined by (Ω1,Ω2) can
be defined with the help of the variable x (i.e. the four coordinates of x) only, and therefore (see
(8.192) in the Appendix), its Cartan characteristic system is at most Span{dx}, i.e. at most
{Ω1,Ω2,Ω3, Ω̇2}, which implies that, for some functions k1 and k2,

dΩ1 ≡ k1 Ω3 ∧ Ω̇2

dΩ2 ≡ k2 Ω3 ∧ Ω̇2

}
modulo {Ω1,Ω2} . (8.165)

The first equation above implies, from (8.164) and (8.163), and using the fact that the 1-forms
in (8.161) are a basis for all 1-forms, that Γ4,3 + aΓ̇3,3 is a linear combination of Ω1, Ω2, Ω3, Ω̇2

and Ω4, Γ4,4−Γ3,3 +aΓ̇3,4 + da
a is a linear combination of Ω1, Ω2, Ω3 and Ω4, and Γ3,4 is a linear

combination of Ω1, Ω2 and Ω̇4, with the coefficient of Ω4 in Γ4,3 + aΓ̇3,3 equal to the coefficient
of Ω3 in Γ4,4 − Γ3,3 + aΓ̇3,4 + da

a :

Γ4,3 + a Γ̇3,3 = c1Ω1 + c2Ω2 + c3Ω3 + c4Ω̇2 + d3Ω4 (8.166)

Γ4,4 − Γ3,3 + a Γ̇3,4 +
da
a

= d1Ω1 + d2Ω2 + d3Ω3 + d4Ω4 (8.167)

Γ3,4 = e1Ω1 + e2Ω2 + e3Ω̇4 (8.168)

and finally, (8.164) yields

dΩ1 = Ω1 ∧∆1 + Ω2 ∧∆2 + c4 Ω3 ∧ Ω̇2

with
{

∆1 = Γ3,3 − da
a − c1Ω3 − d1Ω4 − ae1Ω̇4

∆2 = − c2Ω3 − d2Ω4 − ae2Ω̇4

 (8.169)

Now, from (8.159),
dΩ2 = dΩ3 + bdΩ̇1 + db ∧ Ω̇1 ,

which allows, getting dΩ3 from (8.162) and dΩ̇1 from (8.169)’s time-derivative, and using the
fact that Ω̇1 = Ω2−Ω3

b and Ω̇3 = Ω1−Ω4
a , to compute dΩ2 and, forgetting the exterior products

starting with Ω1, Ω2 or Ω3, to obtain

dΩ2 ≡ b (
c4

a
− d2) Ω̇2 ∧ Ω4 − a b e2Ω̇2 ∧ Ω̇4 + e3 Ω4 ∧ Ω̇4 modulo {Ω1,Ω2,Ω3} (8.170)

which, since the second identity in (8.165) implies dΩ2 ≡ 0 modulo {Ω1,Ω2,Ω3}, yields

c4 = a d2 and e2 = e3 = 0 . (8.171)

We get (8.134) from (8.169) with e2 = 0 after substituting Ω4 for Ω1 − aΩ̇3. The same
substitution in (8.160)-(8.168) with e2 = e3 = 0 yields (8.135).
Proof of lemma 8.7.7 :
Point 1 : First, let us notice that b cannot be identically zero around the considered point, be-
cause this would imply x-dynamic linearizability, which, from theorem 8.3.1, contradicts (8.51).
Define Ω1 and Ω2 by (Ω1,Ω2)T = J2(ω1, ω2)T ; then (8.137) implies that the Pfaffian system
{Ω1,Ω2 − aΩ̇1 − bΩ̈1} is completely integrable, which implies

dΩ1 = Ω1 ∧ Γ1 + (Ω2 − aΩ̇1 − bΩ̈1) ∧ Γ2,

for some 1-forms Γ1 and Γ2. On the other hand, because {Ω1,Ω2} span the annihilator of
{X1, X2}, the characteristic system of this Pfaffian system is included in Span{dx} (see (8.192)
in the Appendix), and hence one must have dΩ1 ≡ kη1 ∧ η2 modulo {Ω1,Ω2} with k a function
and η1 and η2 two form in Span{dx}. This implies, since b does not vanish and Ω̈1 is not in
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Span{dx}, that, in the above relation, Γ2 is a linear combination of Ω1, Ω2 and aΩ̇1 +bΩ̈1, which
in turn implies, for a certain function k,

dΩ1 ≡ kΩ2 ∧ (aΩ̇1 + bΩ̈1) modulo Ω1 .

This implies that Ω1 is in the derived system of the Pfaffian system {Ω1,Ω2}, and therefore, from
(8.54)-(8.55), that Ω1 is collinear to ω1. The above relation with Ω1 collinear to ω1 contradicts
(8.54) because aΩ̇1 + bΩ̈1 is not a linear combination of ω1, ω2 and ω̇2.
Point 2 : Suppose that (8.137) holds. From, lemma 8.7.6, the identities (8.134)-(8.135) must

hold locally with
Ω1 = ω1

Ω3 = ω2 + αω1 − b ω̇1

and in particular, this would imply that

dω1 ≡ 0 modulo {ω1, ω2 − bω̇1, ω̇2 + (α− ḃ)ω̇1 − bω̈1}
which is impossible, because, from (8.54),
dω1 ∧ ω1 ∧ (ω2 − bω̇1) ∧

(
ω̇2 + (α− ḃ)ω̇1 − bω̈1

)
= b2δ2

1,2 ω2 ∧ ω̇2 ∧ ω1 ∧ ω̇1 ∧ ω̈1.
Proof of lemma 8.7.8 : The expression for Ω in (8.139) implies

λ1ω1 = Ωλ2ω2 − λ3ω̇2 ,

λ1ω̇1 = − λ̇1ω1 + Ω̇ − λ̇2ω2 − (λ3 + λ2)ω̇2 − λ3ω̈2 .
(8.172)

Using the above relations in (8.55), one obtains that λ 2
1 dω2 is equal to λ3 (δ1

2,1λ3 + 2γλ1) ω̇2∧ ω̇2

modulo {ω2,Ω, Ω̇}. This proves the lemma.
Proof of lemma 8.7.9 : By simple substitution, it is clear that the forms of f and g given
in (8.63) satisfy equations (8.141)-(8.142). Let us prove the converse. Since ∂g

∂z4
6= 0, one may

define h = 1/ ∂g∂z4 . Equation (8.141) then yields(
∂h

∂z4

)2

− 2h
∂2h

∂z 2
4

= 0 ,

whose non-vanishing solutions are exactly the squares, and opposite of squares of nonzero poly-
nomials in z4 of degree at most 1, with coefficients function of z1, z2 and z3 ; if the degree is 0, g
is affine in z4, if it is 1, g is homographic in z4, still with coefficients function of z1, z2 and z3, this
yields the form for g given in (8.63). Substituting g for its expression given by (8.63) in equation
(8.142) yields (c0 + c1z4) ∂

3f
∂z 3

4
+ 3c1

∂2f
∂z 2

4
= 0, which states that (c0 + c1z4)f is a polynomial of

degree at most 2 in z4 and therefore implies that f is of the form given in (8.63).
Proof of lemma 8.7.10 :
1⇔2 : This is an obvious consequence of lemma 8.7.6 because (8.145)-(8.146) are identical to
(8.134)-(8.135).
3⇒2 : Let b be defined by (8.147) :

b =
2 γ
δ1

2,1

,

and α be the one from relation (8.58). Define Ω1 and Ω3 as in (8.144), with λ = 0. Relation
(8.58) implies dΩ3 ≡ 0 modulo Ω3, so it implies a fortiori (8.146). Now (8.145) is equivalent here
to

dω2 ≡ 0 modulo {ω2 , ω1 − bω̇2 , ω̇1 + (α− ḃ)ω̇2 − bω̈2 }
but a simple computation from (8.55) show that this is true when b = 2 γ

δ1
2,1

.
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4⇒3 : From proposition 8.4.5, if point 4 is true, then some other coordinates may be found
where the system has the simpler form (8.66). We shall compute in these coordinates with the
following choice

ω1 = dζ2 − ζ3dζ1

ω2 = dζ3 − (q0 + ζ4q1) dζ1 − (p1 + w1q1)ω1
(8.173)

On one hand, one has
dω2 ≡ 0 modulo {ω2, dζ1, dw1} (8.174)

by computing the exterior derivative of ω2 given by (8.173) and replacing dζ1 and dw1 with zero
and dζ3 with (p1 + w1q1) dζ2.

On the other hand, from (8.52), {ω1, ω2, ω̇2} is a basis of {dζ1, dζ2, dζ3} and hence one has

dζ1 = λ1ω1 + λ2ω2 + λ3ω̇2

for some functions λ1, λ2 and λ3. Applying lemma 8.7.8 for Ω = dζ1, and noticing that λ3 cannot
vanish because ω1 ∧ ω2 ∧ dζ1 does not vanish from (8.173) yields, from (8.174) :

2γ λ1 + δ1
2,1 λ3 = 0 .

The above two relation imply, since by assumption δ1
2,1 does not vanish, that dζ1 is a linear

combination of ω2 and ω1 − 2γ
δ1
2,1
ω̇2, and this clearly implies point 3.

2⇒4 : This is the long and difficult part of the proof. It is all done using the symbolic
computation system Maple, version 5, release 3, with the package “liesymm” to manipulate
differential forms, in the coordinates of the normal form (8.60).

We are now working in coordinates, with system (8.60) for some f and g. We make the
following choice for ω1 and ω2 :

ω1 = dz2 − z3 dz1

ω2 = dz3 − g dz1 − ( ∂f∂z4 + v1
∂g
∂z4

)ω1 .
(8.175)

The idea of the proof is quite straightforward : We suppose that there exists functions α, λ
and b satisfying (8.145)-(8.146), we write these equations explicitly in terms of α, λ and b, and
we eliminate α, λ and b to obtain the conditions on f and g are as described in point 4.

Step 1. With the choice (8.175) for ω1 and ω2, we have the following decomposition of dω1 and
dω2, more precise than (8.54) and (8.55) in proposition 8.4.1 :

dω1 = ω1 ∧
(
δ0

1,1ω2 + δ2
1,1ω̇2

)
+ δ2

1,2 ω2 ∧ ω̇2 , (8.176)

dω2 = ω1 ∧
(
δ0

2,1ω2 + δ1
2,1ω̇1 + δ2

2,1ω̇2 − γω̈2

)
+ ω2 ∧

(
δ1

2,2ω̇1 + δ2
2,2ω̇2

)
+ γ ω̇1 ∧ ω̇2

(8.177)

for some functions δki,j and γ that may be computed explicitly using f , g and some of their partial
derivatives.

Indeed, (8.54) reads
dω1 = ω1 ∧ Γ1 + δ2

1,2ω2 ∧ ω̇2 ,

for some form Γ1, but dω1 = dz1 ∧ dz3 and {ω1, ω2, ω̇2} is a basis of {dz1,dz2, dz3} —because
it is the characteristic system of {ω1} from the above equation— so that Γ1 must be a linear
combination of ω1, ω2 and ω̇2. This implies (8.176).
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Also, (8.55) reads

dω2 = ω2 ∧ Γ2 + ω1 ∧
(
δ0

2,1ω2 + δ1
2,1ω̇1 + δ2

2,1ω̇2 − γω̈2

)
+ γω̇1 ∧ ω̇2 ,

for a certain form Γ2, but

dω2 = dz1 ∧ dg − (
∂f

∂z4
+ v1

∂g

∂z4
) dz1 ∧ dz3 − d(

∂f

∂z4
+ v1

∂g

∂z4
) ∧ ω1

and hence dω2 is, modulo {ω1}, a linear combination of dz1, dz2, dz3 and dz4, i.e. of ω1, ω2, ω̇1

and ω̇2 ; this implies that Γ2 must be a linear combination of ω1, ω2, ω̇1 and ω̇2, and therefore
(8.177).

Step 2. If α, λ and b satisfy (8.145)-(8.146), then

λ may depend on z1, z2, z3, z4, v2 − v1f(z1, z2, z3, z4) only,
α and b may depend on z1, z2, z3, z4, v1, v2, v̇1, v̇2 only.

(8.178)

Relations (8.157) and (8.159) imply :

Ω1 = ω2 + λω1 (8.179)
Ω2 = ω1 + αΩ1 = (1 + αλ)ω1 + αω2 (8.180)

Ω3 = ω1 + αΩ1 − bΩ̇1 = α (ω2 + λω1) − b

(
ω̇2 + λω̇1 + (λ̇− 1

b
)ω1

)
(8.181)

Ω̇3 =
(
λ̇(α− ḃ)− bλ̈

)
ω1 + α̇ (ω2 + λω1)

+ (1− 2bλ̇) ω̇1 + (α− ḃ) (ω̇2 + λω̇1) − b (ω̈2 + λω̈1) (8.182)

Taking the exterior derivative of (8.181) and (8.179) yields

dΩ3 = dω1 + αdΩ1 − bdΩ̇1 + dα ∧ Ω1 − db ∧ Ω̇1 (8.183)

with dΩ1 = dω2 + λ dω1 + dλ ∧ ω1 (8.184)
dΩ̇1 = dω̇2 + λ̇ dω1 + λ dω̇1 + dλ̇ ∧ ω1 + dλ ∧ ω̇1 (8.185)

Relation (8.183) implies :

dΩ3 = (1 + αλ− bλ̇)dω1 + αdω2 + αdλ ∧ ω1 − b (dω̇2 + λdω̇1 + dλ̇ ∧ ω1 + dλ ∧ ω̇1)

+ dα ∧ (ω2 + λω1) + db ∧ Ω3 − ω1 − α(ω2 + λω1)
b

Taking the time-derivative of both sides in (8.176) and (8.177), we have

dω̇1 = ω1 ∧
(
δ̇0

1,1ω2 + (δ0
1,1 + δ̇2

1,1)ω̇2 + δ2
1,1ω̈2

)
+ ω2 ∧

(
− δ0

1,1ω̇1 + δ̇2
1,2ω̇2 + δ2

1,2ω̈2

)
+ δ2

1,1 ω̇1 ∧ ω̇2

dω̇2 = ω1 ∧
(
δ̇0

2,1ω2 + δ̇1
2,1ω̇1 + (δ0

2,1 + δ̇2
2,1)ω̇2 + δ1

2,1ω̈1 + (δ2
2,1 − γ̇)ω̈2 − γω(3)

2

)
+ ω2 ∧

(
(δ̇1

2,2 − δ0
2,1)ω̇1 + δ̇2

2,2ω̇2 + δ1
2,2ω̈1 + δ2

2,2ω̈2

)
+ ω̇2 ∧

(
(−δ2

2,1 + δ1
2,2 − γ̇)ω̇1 − γω̈1

)


(8.186)

Equation (8.146) implies in particular that dΩ3 ≡ 0 modulo {ω1,Ω1,Ω3}, i.e. —see (8.181)—
modulo {ω1, ω2, ω̇2 + λω̇1}. Equations (8.176), (8.177) and (8.186) imply

dω1 ≡ 0 dω̇1 ≡ 0
dω2 ≡ 0 dω̇2 ≡ λγ ω̇1 ∧ ω̈1

}
modulo {ω1, ω2, ω̇2 + λω̇1} .
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Then, from (8.183), (8.184), (8.185),

dΩ3 ≡ −b (λγ ω̇1 ∧ ω̈1 + dλ ∧ ω̇1) modulo {ω1, ω2, ω̇2 + λω̇1} ,

which in turn implies

dλ + λγω̈1 ≡ 0 modulo {ω1, ω2, ω̇1, ω̇2} .

Since {dz1, dz2, dz3,dz4} is another basis for {ω1, ω2, ω̇1, ω̇2} and, from (8.175) and (8.60),

ω̇1 = dz4 + v1dz3 − (f + v1g) dz1 ,

ω̈1 = d (v2 − fv1) + v1df + v̇1dz3 +
(
ḟ + v1ġ + v̇1g

)
dz1 ,

(8.187)

that dλ is a linear combination of d (v2 − fv1), dz1, dz2, dz3 and dz4 ; this proves the statement
on λ in (8.178).

Replacing ω̇1 and ω̈1 with zero and ω̇2 with (1+αλ
b − λ̇)ω1 + α

b ω2 in the expression of Ω1 ∧ Ω̇3

obtained from (8.179) and (8.182) obviously yields only some terms in ω1 ∧ ω2, ω1 ∧ ω̈2 and
ω2 ∧ ω̈2, hence

Ω1 ∧ Ω̇3 ≡ 0 modulo {Ω3, ω̇1, ω̈1, ω1 ∧ ω2, ω1 ∧ ω̈2, ω2 ∧ ω̈2} .

Therefore, Equation (8.146) implies in particular that dΩ3 ≡ 0 modulo {Ω3, ω̇1, ω̈1, ω1 ∧ω2, ω1 ∧
ω̈2, ω2 ∧ ω̈2}, i.e. modulo {bω̇2−α(ω2 +λω1) + (bλ̇− 1)ω1, ω̇1, ω̈1, ω1 ∧ω2, ω1 ∧ ω̈2, ω2 ∧ ω̈2}. From
(8.176), (8.177) and (8.186), we have :

dω1 ≡ 0 dω̇1 ≡ 0
dω2 ≡ 0 dω̇2 ≡ − γ ω1 ∧ ω (3)

2

modulo {bω̇2 − α(ω2 + λω1) + (bλ̇− 1)ω1, ω̇1, ω̈1, ω1 ∧ ω2, ω1 ∧ ω̈2, ω2 ∧ ω̈2}. Hence, from (8.183),
(8.184), (8.185)

dΩ3 ≡ ω1 ∧
(
bγ ω

(3)
2 − αdλ + b ddλ̇ +

db
b

)
+ (ω2 + λω1) ∧

(α
b

db − dα
)

This implies in particular that

bγ ω
(3)
2 − αdλ + b ddλ̇ +

db
b
≡ 0

α

b
db − dα ≡ 0

 modulo {ω1, ω2, ω̇1, ω̇2, ω̈1, ω̈2} . (8.188)

We have already shown above that dλ is a linear combination of ω1, ω2, ω̇1, ω̇2, ω̈1 ; hence dλ̇ is a
linear combination of ω1, ω2, ω̇1, ω̇2, ω̈1, ω̈2, ω

(3)
1 . This and the above equations imply that db and

dα are linear combinations of ω1, ω2, ω̇1, ω̇2, ω̈1, ω̈2, ω (3)
1 , ω (3)

2 . This yields the second statement
in (8.178) for {ω1, ω2, ω̇1, ω̇2, ω̈1, ω̈2, ω

(3)
1 , ω

(3)
2 } is another basis for {dz1, dz2,dz3, dz4, dv1, dv2,

dv̇1, dv̇2}.
Note that the second relation in (8.188) actually implies that αdb−bdα is a linear combination

of ω1, ω2, ω̇1, ω̇2, ω̈1, ω̈2, i.e. that α/b depends on z1, z2, z3, z4, v1, v2 only (and not on v̇1, v̇2).

Step 3. If α, λ and b satisfy (8.145)-(8.146) with b non vanishing, then λ must be identically
zero.
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We prove, in coordinates, that (8.145)-(8.146) implies λ = 0, in a symbolic computation
session conducted with Maple V, release 3, using the package liesymm.
We are omitting the Maple session here ; it is in the original paper.

Step 4. If α, λ and b satisfy (8.145) with λ identically zero, then δ1
2,1 cannot vanish and b must

be given by

b =
2 γ
δ1

2,1

. (8.189)

Since λ = 0, we have Ω1 = ω2, Ω3 = ω1 − b ω̇2 + αω2, but from lemma 8.7.6, dΩ1 satisfies
(8.134), i.e.

dω2 ≡ 0 modulo {ω2 , Ω3 , Ω̇3 }
From lemma 8.7.8 with Ω = Ω3, λ1 = 1, λ2 = α and λ3 = −b, the above relation implies that
b (bδ1

2,1−2γ) is identically zero on U , but we assume here that b does not vanish, hence bδ1
2,1−2γ

must be identically zero, and therefore δ1
2,1 does not vanish (because γ does not vanish), and b

is given by (8.189).

Step 5. If α, λ and b satisfy (8.145)-(8.146) with λ identically zero and b is given by b =
2γ
δ1

2,1

,

there is a unique possible value for α, and f and g must be of the form (8.63)-(8.64)

This computation was in the same Maple V, release 3 session, that we are omitting.
Substituting λ and b, (8.145)-(8.146) yields three equations. One is linear with respect
to α and yields α ; substituting in the two others yields two equations that simplify
into the PDEs (8.141)-(8.142).

8.8 Conclusion

The present paper provides, for the 4-dimensional affine system (8.5), some new necessary and
sufficient conditions for existence of linearizing outputs depending on x and u. These conditions
are easily computable. They also allow one to treat 3-dimensional non-affine systems. This is
very much related to dynamic feedback linearization, or flatness, as explained in section 8.2, but
this paper is however not a general answer to dynamic feedback linearizability of 4-dimensional
systems with 2 inputs, for the following three reasons that are subjects for future research to
end the study of this small dimension.

One restriction comes from the regularity assumptions. The example presented in section
8.5 shows that they are not necessary. A thorough treatment of singularities, or at least a clear
identification of the real singularities of dynamic feedback linearization is therefore not achieved.

We also restrict our attention to “endogenous feedback”. See [68, 40] for a discussion of
general dynamic feedback and endogenous dynamic feedback. Note that the authors of this
latter reference have announced a proof of the fact that general dynamic linearizability would
imply linearizability by endogenous dynamic feedback, at least away from some singularities.

We have further restricted the class of dynamic linearization by requiring that the linearizing
output depend on x and u only. The natural follow-up to this work is to decide whether systems
which are not (x, u)-dynamic feedback linearizable are simply not dynamic feedback linearizable
(at least endogenously), or if some are (x, u, u̇)-dynamic linearizable for example... In fact, no
example of a system of these dimensions which admits no pair of linearizing outputs depending
on x and u but admits some depending on more time-derivatives of u has ever been exhibited.
Since these dimensions are usually these of academic examples —because it is the smallest
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non-trivial ones— and have been studied a lot, it may seem reasonable to conjecture that the
systems that are proved in the present paper to be non (x, u)-dynamic linearizable are indeed
not linearizable by endogenous dynamic feedback.

Let us finally make a remark on the method of the proofs. In a sense, the present results
amount to giving conditions for some nonlinear partial differential equations to have solutions
(see section 8.2.6). Since the PDEs are high order —see (8.21)-(8.22), and for (x, u)-dynamic
linearization, the order is higher— one might think that some sophisticated tools for checking
integrability, like Spencer cohomology, should be involved. It turns out however that the proofs
are all elementary, and never make use of more sophisticated tools than Frobenius theorem.
Actually, when using the infinitesimal Brunovský form and writing the equations for the coeffi-
cients of decomposition in elementary transformations of the invertible transformation “P ( d

dt)”’
instead of writing directly the equations for the linearizing outputs, as in the proof of theorem
8.4.1 or the “alternative” proof of case 6 in theorem 8.3.1, we use Frobenius theorem to write the
equations in a convenient way (like the equation (8.144)-(8.145)-(8.146) for theorem 8.4.1), but
then the arguments used to give conditions for existence of solutions to these equations are in a
sense even not first order like Frobenius theorem, but “zeroth order”, i.e. the solutions (α, λ and
b in the case (8.144)-(8.145)-(8.146) may be explicitly computed (expression involving functions
in the equations of the system) from part of the equations, and the compatibility conditions are
obtained by substituting these expressions in the remaining equations. It is of course tempting
to ask whether in general when using the infinitesimal Brunovský form to test for existence of
linearizing outputs depending on a pre-defined number of time-derivatives of the inputs, this fea-
ture always appears —the equations for the coefficients of the invertible transformation contain
enough non-differential equations to obtain them solving non-differential equations— or if this
is particular to the small dimensions considered here.

Appendix : Some facts on Pfaffian systems

In this section, we recall some very basic definitions on Pfaffian systems, and some precise
facts we are going to use. For details or proofs, see e.g. [100] or [18].

A Pfaffian system I of rank r around a point can be defined as a module (over smooth
functions) of differential 1-forms which is generated by r 1-forms which are point-wisely linearly
independent around this point, or also as an ideal of differential forms (of arbitrary degrees,
with the exterior product as “multiplication”), which has the peculiarity of being generated by
independent 1-forms. It is defined by giving r independent 1-forms. r 1-forms which generate
the same module define the same Pfaffian system.

A congruence like Ω1 ≡ Ω2 modulo {η1, η2, . . .} where the Ωi’s are 2-forms and the ηj ’s
are 1-forms (we only need this) means modulo the ideal generated by {η1, η2, . . .}, i.e. it means
that there exists some forms αj such that Ω1 −Ω2 = η1 ∧ α1 + η2 ∧ α2 + . . . ; it is equivalent to
(Ω1 − Ω2) ∧ η1 ∧ η2 ∧ . . . = 0

A Pfaffian system also defines an “orthogonal distribution”, spanned by the vector fields
which annihilate these 1-forms.

We will only be interested in the case m = 1 or m = 2, and we therefore speak of the Pfaffian
system I = {ω} or I = {ω1, ω2}.

It is completely integrable if it is, locally, generated by 1 (resp 2) exact 1-forms, or
equivalently, by Frobenius theorem, if dω ≡ 0 modulo {ω} (resp. dωi ≡ 0 modulo {ω1, ω2} for
i = 1, 2), or also if the orthogonal distribution being closed under Lie brackets. We call first
integral of the Pfaffian system, or of the orthogonal distribution a function h such that dh 6= 0
and dh ∈ I.
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Derived System

For a given Pfaffian system I, consider the module made of the forms of degree 1 which are
in I and whose exterior derivative (form of degree 2) is also in I ; at points where it has constant
rank, this module defines a Pfaffian system called the derived system I(1) of I. Iterating this
process, one ends either with the zero Pfaffian system or with an integrable one. A Pfaffian
system is equal to its first derived system if and only if it is integrable. In the case of a Pfaffian
system of rank 1, either it is integrable or its derived system is zero ; in the case of a Pfaffian
system of rank 2 {ω1, ω2}, either it is integrable, or there exists (non both zero) functions λ1

and λ2 such that
λ1dω1 + λ2dω2 ≡ 0 modulo {ω1, ω2} ,

and in this case the first derived system is {λ1ω1 + λ2ω2} or there exists no such functions
(i.e. the restrictions of dω1 and dω2 to the annihilator of {ω1, ω2} are two linearly independent
bilinear forms), and then the derived system is zero. The orthogonal distribution to the derived
system of a given Pfaffian system is spanned by the orthogonal distribution to this system plus
all the Lie brackets between two vector fields in this distribution :

(I(1))⊥ = I⊥ + [ I⊥ , I⊥ ] .

Cartan Characteristic System

The Cartan characteristic system C(I) of a given Pfaffian system I may be defined through
the vectors that it annihilates :

C(I)⊥ = {X ∈ I⊥ / [X, I⊥] ⊂ I⊥ } . (8.190)

It is always integrable if it has constant rank, and a Pfaffian system is integrable if and only if
it is equal to its Cartan characteristic system.

There is a basis of the Pfaffian system whose elements are linear combination of some dψi,
with coefficients functions of the on ψi’s only, where the ψi’s are all first integrals of C(I), and
C(I) is the smallest Pfaffian system having this property.

For a non-integrable system of rank 1 {ω}, it is always possible, where the rank of the charac-
teristic system is constant, to find 2p independent 1-forms ηi such that the rank of {ω, η1, . . . , η2p}
is 2p+ 1 and

dω ≡ η1 ∧ η2 + η3 ∧ η4 + . . . + η2p−1 ∧ η2p modulo {ω} (8.191)

and the characteristic system is then {ω, η1, . . . , η2p} (and this is automatically completely in-
tegrable).

For a non-integrable system of rank 2 {ω1, ω2}, all we need is the following : if it is possible to
express this Pfaffian system with 4 variables χ1, χ2, χ3, χ4 (i.e. there exists a basis of this Pfaffian
system made of two 1-forms which are linear combinations of dχ1,dχ2,dχ3,dχ4 with coefficients
functions of χ1, χ2, χ3, χ4 only), then its characteristic system is {dχ1,dχ2,dχ3, dχ4}, and for
any forms η1 and η2 such that {ω1, ω2, η1, η2} spans the same module as {dχ1, dχ2, dχ3, dχ4},
we have

dωk = ω1 ∧ Γk,1 + ω2 ∧ Γk,2 + λk η1 ∧ η2 (8.192)

for some 1-forms Γk,j and some functions λk.





Chapitre 9

Reproduction de l’article:

D. Avanessoff et J.-B. Pomet, “Flatness and
Monge parameterization of two-input systems,
control-affine with 4 states or general with 3 states”,

ESAIM Control Optim. Calc. Var., vol. 13 , pp. 237–264, 2007.

Abstract. This paper studies Monge parameterization, or differential flatness, of
control-affine systems with four states and two controls. Some of them are known to
be flat, and this implies admitting a Monge parameterization. Focusing on systems
outside this class, we describe the only possible structure of such a parameterization
for these systems, and give a lower bound on the order of this parameterization,
if it exists. This lower-bound is good enough to recover the known results about
“(x, u)-flatness” of these systems, with much more elementary techniques.

9.1 Introduction

In control theory, after a line of research on exact linearization by dynamic state feedback
[53, 22, 23], the concept of differential flatness was introduced in 1992 in[37] (see also [40, 41]).
Flatness is equivalent to exact linearization by dynamic state feedback of a special type, called
“endogenous” [37], but, as pointed out in that reference, it has its own interest, maybe more
important than linearity. An interpretation and framework for that notion is also proposed in
Chapters 6 and 7 or in [104] ; see [71] for a recent review.

The Monge problem (see the the survey article [111], published in 1932, that mentions the
prominent contributions [48] and [20], and others) is the one of finding explicit formulas giving
the “general solution” of an under-determined system of ODEs as functions of some arbitrary
functions of time and a certain number of their time-derivatives (in fact [111] allows to change
the independent variable, but we keep it to be time). Let us call such formulas a Monge para-
meterization, its order being the number of time-derivatives.

The authors of [37] already made the link with the above mentioned work on under-determined
systems of ODEs dating back from the beginning of 20th century ; for instance, they used [48, 20]
to obtain, in [88, 73] some results on flatness or linearizability of control systems.

Let us precise the relation between flatness and Monge parameterizability : flatness is exis-
tence of some functions —we call this collection of functions a flat output— of the state, the
controls and a certain number j of time-derivatives of the control, that “invert” the formulas of
a Monge parameterization, i.e. a solution t 7→ (x(t), u(t)) of the control system corresponds to
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only one choice of the arbitrary functions of time appearing in the parameterization, given by
these functions. Let us call j the order of the flat output.

Characterizing differential flatness, or dynamic state feedback linearizability is still an open
problem [42], apart from the case of single-input systems [22, 20]. The main difficulty is that
the order of a parameterization or a flat output, if there exists any, is not known beforehand :
for a given system, if one can construct a parameterization, or a flat output, it has a definite
order, but if, for some integer j, one prove that there is no parameterization of order j, then it
might admit a parameterization of higher order, and we do not know any a priori bound on the
possible j’s. In the present paper, we consider systems of the smallest dimensions for which the
answer is not known ; we do not really overcome the above mentioned “main difficulty”, in the
sense that we only say that our class of systems does not admit a parameterization of order less
than some numbers, but the description of the parameterization that we give, and the resulting
system of PDEs is valid at any order.

Consider a general control-affine system in R4 with two controls, where ξ ∈ R4 is the state,
w̃1 and w̃2 are the two scalar controls and X0, X1 and X2 are three smooth vector fields :

ξ̇ = X0(ξ) + w̃1X1(ξ) + w̃2X2(ξ) .

In Chapter 8, one can find a necessary and sufficient condition on X0, X1, X2 for this system
to admit a flat output depending on the state and control only (j = 0 according to the above
notations). Systems who do not satisfy this conditions may or may not admit flat outputs
depending also on some time-derivatives of the control (j > 0). This is recalled and commented
in section 9.2.4 and 9.5.

Instead of the above control system, we study a reduced equation (9.3) ; let us briefly explain
why it represents, modulo a possibly dynamic feedback transformation, all the relevant cases.
Systems for which the iterated Lie brackets of X1 and X2 do not have maximum rank can be
treated in a rather simple manner, see the first cases of Theorem8.3.1 ; if on the contrary iterated
Lie brackets do have maximum rank, it is well known (Engel normal form for distributions of
rank 2 in R4, see [18]) that, after a nonsingular feedback (w̃i = βi,0(ξ) + βi,1(ξ)w1 + βi,2(ξ)w2,
i = 1, 2, with β1,1β2,2 − β1,2β2,1 6= 0), there are coordinates such that the system reads

ξ̇1 = w1 , ξ̇2 = γ(ξ1, ξ2, ξ3, ξ4) + ξ3w1 , ξ̇3 = δ(ξ1, ξ2, ξ3, ξ4) + ξ4w1 , ξ̇4 = w2 (9.1)

with some smooth functions γ and δ. One can eliminate w1 and w2 and, renaming ξ1, ξ2, ξ3, ξ4

as x, y, z, w, obtain the two following relations between these four functions of time :

ẏ = γ(x, y, z, w) + zẋ , ż = δ(x, y, z, w) + wẋ (9.2)

(this can also be seen as a control system with state (x, y, z) and controls w and ẋ). If γ
does not depend on w, this system is always parameterizable, and even flat (see Chapter 8 or
Example 9.2.5 below). If, on the contrary, γ does depend on its last argument, one can, around
a point where the partial derivative is nonzero, invert γ with respect to w, i.e. transform the
first equation into w = g(x, y, z, ẏ − zẋ) for some function g, and obtain, substituting into the
last equation, a single differential relation between x, y, z written as (9.3) in next section.

Note that (9.3) also represents the general (non-affine) systems in R3 with two controls that
satisfy the necessary condition given in [88, 96], i.e. they are “ruled” ; we do not develop this
here, see [7] or a future publication.

The paper technically focuses on Monge parameterizations of (9.3). The problem is unsolved
if g and h are such that system (9.1) does not satisfy the above mentioned necessary and
sufficient condition. We do not give a complete solution, but our results are more general than
—and imply— these of Chapter 8. The techniques used in the present paper, derived from the
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original proof of non-parameterizability of some special systems in [48] (see also [87]), are much
simpler and elementary that these of Chapter 8 : recovering the results from that paper in this
way has some interest in itself.

9.2 Problem statement

9.2.1 The systems under consideration

This paper studies the solutions t 7→ (x(t), y(t), z(t)) of the scalar differential equation

ż = h(x, y, z, λ) + g(x, y, z, λ) ẋ with λ = ẏ − zẋ (9.3)

where g and h are two real analytic functions Ω → R, Ω being an open connected subset of
R4. We assume that g does depend on λ ; more precisely, associating to g a map G : Ω → R4

defined by G(x, y, z, λ) = (x, y, z, g(x, y, z, λ)), and denoting by g4 the partial derivative of g
with respect to its fourth argument,

g4 does not vanish on Ω and G defines a diffeomorphism Ω→ G(Ω) . (9.4)

We denote by Ω̂ the open connected subset of R5 defined from Ω by :

(x, y, z, ẋ, ẏ) ∈ Ω̂ ⇔ (x, y, z, ẏ − zẋ) ∈ Ω . (9.5)

From g and h one may define γ and δ, two real analytic functions G(Ω) → R, such that
G−1(x, y, z, w) = (x, y, z, γ(x, y, z, w)) and δ = h ◦G−1, i.e.

w = g(x, y, z, λ)⇔ λ = γ(x, y, z, w) , (9.6)
h(x, y, z, λ) = δ(x, y, z, g(x, y, z, λ)) , i.e. δ(x, y, z, w) = h(x, y, z, γ(x, y, z, w)) . (9.7)

Then, one may associate to (9.3) the control-affine system (9.1) in R4 with two controls, that
can also be written as (9.2) ; our interest however focuses on system (9.3) defined by g and h as
above. Let us set some conventions :

The functions γ and δ when using the notations γ and δ, it is not assumed that they are
related to g and h by (9.6) and (9.7), unless this is explicitly stated.

Notations for the derivatives We denote partial derivatives by subscript indexes. For func-
tions of many variables, like ϕ(u, . . . , u(k), v, . . . , v(`)) in (9.10), we use the name of the
variable as a subscript : ϕv(`) means ∂ϕ/∂v(`) ; pxu(k−1) means ∂2p/∂x∂u(k−1) in (9.16-b).
Since the arguments of g, h, γ, δ and a few other functions will sometimes be intricate func-
tions of other variables, we use numeric subscripts for their partial derivatives : h2 stands
for ∂h/∂y, or g4,4,4 for ∂3g/∂λ3. To avoid confusions, we will not use numeric subscripts
for other purposes than partial derivatives, except the subscript 0, as in (x0, y0, z0, ẋ0, ẏ0)
for a reference point.
The dot denotes, as usual, derivative with respect to time, and (j) the jth time-derivatives.

The following elementary lemma —we do write it for the argument is used repeatedly throu-
ghout the paper— states that no differential equation independent from (9.3) can be satisfied
identically by all solutions of (9.3) :

Lemma 9.2.1. For M ∈ N, let W be an open subset of R3+2M and R : W → R a smooth
function. If any solution I → R3, t 7→ (x(t), y(t), z(t)), with I some time interval, of sys-
tem (9.3) such that (z(t), x(t), . . . , x(M)(t), y(t), . . . y(M)(t)) is in W for all t in I, satisfies
R(z(t), y(t), . . . , y(M)(t), x(t), . . . , x(M)(t)) = 0 identically, then R is identically zero on W .
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Proof. For any X ∈ W there is a germ of solution of (9.3) such that (z(0), x(0), . . . , x(M)(0),
y(0), . . . , y(M)(0)) = X . Indeed, take e.g. for x(.) and y(.) the polynomials in t of degree M
that have these derivatives at time zero ; Cauchy-Lipschitz theorem then yields a (unique) z(.)
solution of (9.3) with the prescribed z(0).

9.2.2 The notion of parameterization

In order to give rigorous definitions without taking care of time-intervals of definition of
the solutions, we consider germs of solutions at time 0, instead of solutions themselves. For O
an open subset of Rn, the notation C∞0 (R, O) stands for the set of germs at t = 0 of smooth
functions of one variable with values in O, see e.g. [43].

Let k, `, L be some non negative integers, U an open subset of Rk+`+2 and V an open subset
of R2L+3. We denote by U ⊂ C∞0 (R,R2) (resp. V ⊂ C∞0 (R,R3) ) the set of germs of smooth
functions t 7→ (u(t), v(t)) (resp. t 7→ (x(t), y(t), z(t)) ) such that their jets at t = 0 to the order
precised below are in U (resp. in V ) :

U = {(u, v) ∈ C∞0 (R,R2)|(u(0), u̇(0), . . . , u(k)(0), v(0), . . . , v(`)(0)) ∈ U}, (9.8)
V = {(x, y, z) ∈ C∞0 (R,R3)|(x(0), y(0), z(0), ẋ(0), ẏ(0), . . . , x(L)(0), y(L)(0)) ∈ V }. (9.9)

These are open sets for the Whitney C∞ topology [43, p. 42].

Definition 9.2.2 (Monge parameterization). Let k, `, L be non negative integers, L > 0, k ≤ `,
and X = (x0, y0, z0, ẋ0, ẏ0, . . . , x

(L)
0 , y(L)

0 ) be a point in Ω̂ × R2L−2 (Ω̂ is defined in (9.5)). A
parameterization of order (k, `) at X for system (9.3) is defined by

– a neighborhood V of X in Ω̂× R2L−2,
– an open subset U ⊂ Rk+`+2 and
– three real analytic functions U → R, denoted ϕ, ψ, χ,

such that, with U and V defined from U and V according to (9.8)-(9.9), and Γ : U → C∞0 (R,R3)
the map that assigns to (u, v) ∈ U the germ Γ(u, v) at t = 0 of

t 7→
 x(t)

y(t)
z(t)

 =

 ϕ(u(t), u̇(t), . . . , u(k)(t), v(t), v̇(t), . . . , v(`)(t))
ψ(u(t), u̇(t), . . . , u(k)(t), v(t), v̇(t), . . . , v(`)(t))
χ(u(t), u̇(t), . . . , u(k)(t), v(t), v̇(t), . . . , v(`)(t))

 , (9.10)

the following three properties hold :

1. for all (u, v) belonging to U , Γ(u, v) is a solution of system (9.3),

2. the map Γ is open and Γ(U) ⊃ V,

3. the two maps U → R3 defined by the triples (ϕu(k) , ψu(k) , χu(k)) and (ϕv(`) , ψv(`) , χv(`)) are
identically zero on no open subset of U .

Remark 9.2.3 (On ordering the pairs (k, `)). Since u and v play a symmetric role, they can
always be exchanged, and there is no lack of generality in assuming k ≤ `. This convention is
useful only when giving bounds on (k, `). For instance, k ≥ 2 means that both integers are no
smaller than 2.

Example 9.2.4. Consider the equation ż = y + (ẏ − zẋ)ẋ , i.e. (9.3) with g = λ, h = y (and
Ω̂ = R3). At any (x0, y0, z0, ẋ0, ẏ0, ẍ0, ÿ0) such that ẍ0 + ẋ 3

0 6= 1, a parameterization of order
(1, 2) is given by :

x = v , y =
v̇2u+ u̇

v̈ + v̇3 − 1
, z =

(1− v̈)u+ v̇u̇

v̈ + v̇3 − 1
. (9.11)
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It is easy to check that (x, y, z) given by these formulas does satisfy the equation, point 2 is true
because the above formulas can be “inverted” by u = −z+ yẋ, v = x (this gives the “flat output”
see section 9.7), point 3 is true because ψu̇, ψv̈, χu̇ and χv̈ are nonzero rational functions. Here,
L = 2 and V can be taken the whole set of (x, y, z, ẋ, ẏ, ẍ, ÿ) ∈ R7 such that ẍ + ẋ3 6= 1 and U
the whole set of (u, u̇, v, v̇, v̈) ∈ R5 such that v̈ + v̇3 6= 1.

Example 9.2.5. Suppose that the function γ in (9.2) depends on x, y, z only (this is treated
by case 6 of Theorem8.3.1). For such systems, eliminating w does not lead to (9.3), but to the
simpler relation ẏ− zẋ = γ(x, y, z). One can easily adapt the above definition replacing (9.3) by
this relation. This system ẏ − zẋ = γ(x, y, z) admits a parameterization of order (1,1) at any
(x0, y0, z0, ẋ0, ẏ0) such that ẋ0 + γ3(x0, y0, z0) 6= 0.
Proof. In a neighborhood of such a point,, the map (x, ẋ, y, z) 7→ (x, ẋ, y, γ(x, y, z) + zẋ) is a
local diffeomorphism, whose inverse can be written as (x, ẋ, y, ẏ) 7→ (x, ẋ, y, χ(x, ẋ, y, ẏ)), thus
defining a map χ. Then x = u, y = v, z = χ(u, u̇, v, v̇) defines a parameterization of order (1,1)
in a neighborhood of these points.

Remark 9.2.6. The integer L characterizes the number of derivatives needed to describe the
open set where the parameterization is valid. For instance, in Examples 9.2.4 and 9.2.5, L must
be taken no smaller than 2 and 1 respectively. Obviously, a parameterization of order (k, `) at
(x0, y0, z0, ẋ0, ẏ0, . . . , x

(L)
0 , y

(L)
0 ) is also, for L′ > L and any (x(L+1)

0 , y
(L+1)
0 , . . . , x

(L′)
0 , y

(L′)
0 ), a

parameterization of the same order at (x0, y0, z0, ẋ0, ẏ0, . . . , x
(L′)
0 , y

(L′)
0 ).

The above definition is local around some jet of solutions of (9.3). In general, the idea of
a global parameterization, meaning that Γ would be defined globally, is not realistic ; it is not
realistic either to require that there exists a parameterization around all jets (this would be
“everywhere local” rather than “global”) : the systems in example 9.2.5 admit a local paramete-
rization around “almost every” jets, meaning jets outside the zeroes of a real analytic function
(namely jets such that ẋ + γ3(x, y, z) 6= 0). We shall not define more precisely the notion of
“almost everywhere local” parameterizability, but rather the following (sloppier) one.

Definition 9.2.7. We say that system (9.3) admits a parameterization of order (k, `) somewhere
in Ω if there exist an integer L and at least one jet (x0, y0, z0, ẋ0, ẏ0, . . . , x

(L)
0 , y

(L)
0 ) ∈ Ω̂×R2L−2

with a parameterization of order (k, `) at this jet in the sense of Definition 9.2.2

In a colloquial way this is a “somewhere local” property. Using real analyticity, “somewhere
local” should imply “almost everywhere local”, but we do not investigate this.

9.2.3 The functions S, T and J

Given g, h, let us define three functions S, T and J , to be used to discriminate different cases.
They were already more or less present in Chapter 8. The most compact way is as follows : let
ω, ω1 and η be the following differential forms in the variables x, y, z, λ :

ω1 = dy − z dx , ω = −2 g4
2 dx+ (g4,4 h4 − g4 h4,4)ω1 − g4,4 ( dz − g dx) ,

η = dz − g dx− h4 ω
1 .

(9.12)

From (9.4), ω∧ω1∧η = 2g4
2 dx∧ dy∧ dz 6= 0. Decompose dω∧ω on the basis ω, ω1, η, dλ, thus

defining the functions S, T and J (we say more on their expression and meaning in section 9.4) :

dω ∧ ω = −
(
S

2g4
dλ ∧ η +

T

2
dλ ∧ ω1 + J ω1 ∧ η

)
∧ ω . (9.13)
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Example 9.2.8. Le us illustrate the computation of S, T and J on the following three parti-
cular cases of (9.3). For each of them, the table below gives the differential forms ω and η, the
decomposition of dω∧ω on ω1, ω, η, dλ and the resulting S, T, J according to (9.13). System (a)
was already studied in Example 9.2.4.

(a) : ż = y+(ẏ−zẋ)ẋ , (b) : ż = y+(ẏ−zẋ)(ẏ−(z−1)ẋ) , (c) : ż = y+(ẏ−zẋ)2ẋ . (9.14)

system
(9.14)

g(x, y, z, λ) h(x, y, z, λ)
−ω/2
η

dω ∧ ω S, T, J

(a) λ y
dx
dz − λ dx

0 0, 0, 0

(b) λ y + λ2 dy − (z − 1) dx
dz − λ dx− 2λω1 ω1 ∧ η ∧ ω 0, 0, −1

(c) λ2 y
dz + 3λ2 dx
dz − λ2 dx

3
λ dλ ∧ η ∧ ω −12, 0, 0

9.2.4 Contributions and organization of the paper

If S = T = J = 0, i.e. dω ∧ ω = 0, system (9.3) admits a parameterization of order (1,2),
at all points except some singularities. This is stated further as Theorem 9.4.3, but was already
contained in Chapter 8. We conjecture that these systems are the only parameterizable ones of
these dimensions, i.e. system (9.3) admits no parameterization of any order if (S, T, J) 6= (0, 0, 0),
i.e. if dω ∧ ω 6= 0.

This is unfortunately still a conjecture, but we give the following results, valid if (S, T, J) 6=
(0, 0, 0) (recall that k ≤ `, see Remark 9.2.3) :

– system (9.3) admits no parameterization of order (k, `) with k ≤ 2 or k = ` = 3 (Theo-
rem 9.5.4),

– a parameterization of order (k, `) must come from a solution of the system of PDEs E γ,δk,`

(Theorem 9.5.1),
– since a solution of this system of PDEs is also sufficient to construct a parameterization

(Theorem 9.3.7), the conjecture can be entirely re-formulated in terms of this system of
partial differential relations.

Note that this allows one to recover the results from Chapter 8 on (x, u)-flatness1. See Re-
mark 9.5.6 for details.

The paper is organized as follows. Section 9.3 is about the above mentioned partial differential
system E γ,δk,` . Section 9.4 is devoted to some special constructions for the case where S = T = 0,
and geometric interpretations. The main results are stated in Section 9.5, based on sufficient
conditions obtained in Sections 9.3 and 9.4, and necessary conditions stated and proved in
Section 9.6. Section 9.7 and 9.8 comment on flatness versus Monge parameterization and then
give a conclusion and some perspectives.

9.3 A system of partial differential equations

This section can profitably be skipped or overlooked in a first reading ; the reader will come
back when needed to this material that might appear, at first sight, somehow disconnected from
the thread of the paper.

It defines E γ,δk,` and its “regular solutions”, proves that a regular solution induces a parame-
terization of order (k, `), and that no regular solution exists unless k ≥ 3 and ` ≥ 4.

1The term “dynamic linearizable” in Chapter 8 is synonymous to “flat” here.
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9.3.1 The equation E γ,δk,` , regular solutions

For k and ` some positive integers, we define a partial differential system in k + ` + 1
independent variables and one dependent variable, i.e. the unknown is one function of k +
` + 1 variables. The dependent variable is denoted by p and the independent variables by
u, u̇, . . . , u(k−1), x, v, v̇, . . . , v(`−1). Although the names of the variables may suggest “time-derivatives”,
time is not a variable here.

In Rk+`+1 with the independent variables as coordinates, let F be the differential operator
of order 1

F =
k−2∑
i=0

u(i+1) ∂

∂u(i)
+

`−2∑
i=0

v(i+1) ∂

∂v(i)
, (9.15)

where the first sum is zero if k ≤ 1 and the second one is zero if ` ≤ 1.
Let Ω̃ be an open connected subset of R4 and γ, δ two real analytic functions Ω̃ → R such

that γ4 (partial derivative of γ with respect to its 4th argument, see end of section 9.2.1) does not
vanish on Ω̃. Consider the system of two partial differential equations and three inequations :

E γ,δk,`


pu(k−1)

(
Fpx − δ(x, p, px, pxx)

)− pxu(k−1)

(
Fp− γ(x, p, px, pxx)

)
= 0 , (a)

pu(k−1) pxv(`−1) − pxu(k−1) pv(`−1) = 0 , (b)
pu(k−1) 6= 0 , (c)
pv(`−1) 6= 0 , (d)
γ1 + γ2 px + γ3 pxx + γ4 pxxx − δ 6= 0 . (e)

(9.16)

To any p satisfying E γ,δk,` , we associate two functions σ and τ , and a vector field E :

σ = − pv(`−1)

pu(k−1)

, τ =
−Fp+ γ(x, p, px, pxx)

pu(k−1)

, E = σ
∂

∂u(k−1)
+

∂

∂v(`−1)
. (9.17)

We also introduce the differential operator D (see Remark 9.3.2 on the additional variables
ẋ, . . . , x(k+`−1)) :

D = F + τ
∂

∂u(k−1)
+
k+`−2∑
i=0

x(i+1) ∂

∂x(i)
. (9.18)

Definition 9.3.1 (Regular solutions of E γ,δk,` ). A regular solution of system E γ,δk,` is a real analytic
function p : O → R, with O a connected open subset of Rk+`+1, such that the image of O by
(x, p, px, pxx) is contained in Ω̃, (9.16-a,b) are identically satisfied on O, the left-hand sides of
(9.16-c,d,e) are not identically zero, and, for at least one integer K ∈ {1, . . . , k + `− 2},

EDKp 6= 0 (9.19)

(not identically zero, as a function of u, . . . , u(k−1), x, v, . . . , v(`−1), ẋ, . . . , x(K) on O × RK).
We call it K-regular if K is the smallest such integer, i.e. if EDip = 0 for all i ≤ K − 1.

Remark 9.3.2 (on the additionnal variables ẋ, . . . , x(k+`−1) in D). These variables appear in the
expression (9.18). Note that D is only applied (recursively) to functions of u, . . . , u(k−1), x, v, . . . , v(`−1)

only ; hence we view it as a vector field in Rk+`+1 with these variables as parameters. In fact,
D is only used in EDip, 1 ≤ i ≤ k + ` − 1. This is a polynomial with respect to the variables
ẋ, ẍ, . . . , x(i) with coefficients depending on u, . . . , u(k−1), x, v, . . . , v(`−1) via the functions p, γ,
δ and their partial derivatives. Hence EDip = 0 means that all these coefficients are zero, i.e. it
encodes a collection of differential relations on p, where the spurious variables ẋ, ẍ, . . . , x(i) no
longer appear. Likewise, EDip 6= 0 means that one of these relations is not satisfied.
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Definition 9.3.3. We say that system E γ,δk,` admits a regular (resp. K-regular) solution somew-

here in Ω̂ if there exist at least an open connected O ⊂ Rk+`+1 and a regular (resp. K-regular)
solution p : O → R.

Remark 9.3.4. It is easily seen that p is solution of E γ,δk,` if and only if there exist σ and τ such
that (p, σ, τ) is a solution of

Fp+ τpu(k−1) = γ(x, p, px, pxx) Ep = 0 , σx = 0 ,
Fpx + τpx,u(k−1) = δ(x, p, px, pxx) pu(k−1) 6= 0 , τx 6= 0 , σ 6= 0 (9.20)

Indeed, (9.16) does imply the above relations with σ and τ given by (9.17) ; in particular, τx 6= 0
is equivalent to (e) and σ 6= 0 to (d) ; conversely, eliminating σ and τ in (9.20), one recovers
E γ,δk,` . Note also that, with g and h related to γ and δ by (9.6) and (9.7), any solution of the
above equations and inequations satisfies

Dpx = h(x, p, px, Dp− pxẋ) + g(x, p, px, Dp− pxẋ)ẋ . (9.21)

The following will be used repeatedly in the paper :

Lemma 9.3.5. If p is a solution of system E γ,δk,` and

1. either it satisfies a relation of the type px = α(x, p) with α a function of two variables,

2. or it satisfies a relation of the type pxx = α(x, p, px) with α a function of three variables,

3. or it satisfies two relations of the type pxxx = α(x, p, px, pxx) and Fpxx + τpxxu(k−1) =
ψ(x, p, px, pxx), with ψ and α two functions of four variables,

then it satisfies EDip = 0 for all i ≥ 0 and hence is not a regular solution of E γ,δk,` .

Proof. Point 1 implies point 2 because differentiating the relation px = α(x, p) with respect to x
yields pxx = αx(x, p) + pxαp(x, p). Likewise, point 2 implies point 3 : differentiating the relation
px,x = α(x, p, px) with respect to x yields pxxx = αx(x, p, px) + pxαp(x, p, px) + pxxαpx(x, p, px)
while differentiating it along the vector field F + τ ∂/∂u(k−1) and using (9.20) yields Fpxx +
τpxxu(k−1) = γ(x, p, px, pxx)αp(x, p, px) + δ(x, p, px, pxx)αpx(x, p, px).

Let us prove that point 3 implies EDip = EDipx = EDipxx = 0 for all i ≥ 0, hence the
lemma. It is indeed true for i = 0 and the following three relations

Dp = γ(x, p, px, pxx)+ẋ px , Dpx = δ(x, p, px, pxx)+ẋ pxx , Dpxx = ψ(x, p, px, pxx)+ẋ α(x, p, px, pxx) ,

that are implied by (9.18), (9.20) and the two relations in point 3 allow one to go from i to i+ 1
(EDix = Ex(i) = 0 and EDiẋ = Ex(i+1) = 0 from the very definition of D and E).

9.3.2 The relation with Monge parameterizations

Let us now explain how a Monge parameterization for system (9.3) can be deduced from a
regular solution p : O → R of E γ,δk,` . This may seem anecdotal but it is not, for we shall prove
(cf. sections 9.5 and 9.6) that all Monge parameterizations are of this type, except when g and
h are such that dω ∧ ω = 0 (see (9.12)-(9.13)).

We saw in Remark 9.3.4 that (9.16-e) is equivalent to τx 6= 0 ; let (u0, . . . , u
(k−1)
0 , x0, v0, . . .,

v
(`−1)
0 ) ∈ O be such that τx(u0, . . . , u

(k−1)
0 , x0, v0, . . . , v

(`−1)
0 ) 6= 0. Choose any (u(k)

0 , v
(`)
0 ) ∈ R2

(for instance with v
(`)
0 = 0) such that

u
(k)
0 − σ(u0, . . . , u

(k−1)
0 , v0, . . . , v

(`−1)
0 ) v(`)

0 = τ(u0, . . . , u
(k−1)
0 , x0, v0, . . . , v

(`−1)
0 ) . (9.22)
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Then, the implicit function theorem provides a neighborhood V of (u0, . . . , u
(k)
0 , v0, . . . , v

(`)
0 ) in

Rk+`+2 and a real analytic map ϕ : V → R such that ϕ(u0, . . . , u
(k)
0 , v0, . . . , v

(`)
0 ) = x0 and

τ(u, . . . , u(k−1), ϕ(u · · · v(`)), v, . . . , v(`−1)) = u(k) − σ(u, . . . , u(k−1), v, . . . , v(`−1)) v(`)(9.23)

identically on V . Two other maps V → R may be defined by

ψ(u, . . . , u(k), v, . . . , v(`)) = p(u, . . . , u(k−1), ϕ(· · · ), v, . . . , v(`−1)), (9.24)
χ(u, . . . , u(k), v, . . . , v(`)) = px(u, . . . , u(k−1), ϕ(· · · ), v, . . . , v(`−1)). (9.25)

From these ϕ, ψ and χ, one can define a map Γ as in (9.10) that is a candidate for a
parameterization. We prove below that, if p is a regular solution of E γ,δk,` , then this Γ is indeed
a parameterization, at least away from some singularities. The following lemma describes these
singularities ; it is proved at the end of the paper, page 231.

Lemma 9.3.6. Let O be an open connected subset of Rk+`+1 and p : O → R be a K-regular
solution of system E γ,δk,` , see (9.16). Define the map π : O × RK → RK+2 by

π(u · · ·u(k−1), x, v · · · v(`−1), ẋ · · ·x(K)) =


px(u · · ·u(k−1), x, v · · · v(`−1))
p(u · · ·u(k−1), x, v · · · v(`−1))

Dp(u · · ·u(k−1), x, v · · · v(`−1), ẋ)
...

DKp(u · · ·u(k−1), x, v · · · v(`−1), ẋ · · ·x(K))

 .

(9.26)
There exist two non-negative integers i0 ≤ k and j0 ≤ ` such that i0 + j0 = K + 2 and

det
(

∂π

∂u(k−i0)
, . . . ,

∂π

∂u(k−1)
,

∂π

∂v(`−j0)
, . . . ,

∂π

∂v(`−1)

)
(9.27)

is a nonzero real analytic function on O × RK .

We can now state precisely the announced sufficient condition. Its interest is discussed in
Remark 9.5.5.

Theorem 9.3.7. Let p : O → R, with O ⊂ Rk+`+1 open, be a K-regular solution of system
E γ,δk,` , and i0, j0 be given by Lemma 9.3.6. Then, the maps ϕ,ψ, χ constructed above define a
parameterization Γ of system (9.3) of order (k, `) (see Definition 9.2.2) at any jet of solutions
(x0, y0, z0, ẋ0, . . . , x

(K)
0 , ẏ0, . . . , y

(K)
0 ) such that, for some u0, . . . , u

(k−1)
0 , v0, . . . , v

(`−1)
0 ,

(u0, . . . , u
(k−1)
0 , x0, v0, . . . , v

(`−1)
0 ) ∈ O ,

z0 = px(u0, . . . , u
(k−1)
0 , v0, . . . , v

(`−1)
0 , x0) ,

y
(i)
0 = Dip(u0, . . . , u

(k−1)
0 , v0, . . . , v

(`−1)
0 , x0, . . . , x

(i)
0 ) 0 ≤ i ≤ K ,

 (9.28)

the left-hand sides of (9.16-c,d,e) are all nonzero at (u0, . . . , u
(k−1)
0 , x0, v0, . . . , v

(`−1)
0 ), and the

function EDKp and the determinant (9.27) are nonzero at point
(u0, . . . , u

(k−1)
0 , x0, . . . , x

(K)
0 , v0, . . . , v

(`−1)
0 ) ∈ O × RK .

Proof. Let us prove that Γ given by (9.10), with the maps ϕ,ψ, χ constructed above, satisfies
the three points of Definition 9.2.2. Differentiating (9.23) with respect to u(k) and v(`) yields
ϕu(k)τx = 1, ϕv(`)τx = −σ, hence the point 3 (σ 6= 0 from (9.20)). To prove point 1, let u(.), v(.)
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be arbitrary and x(.), y(.), z(.) be defined by (9.10). Differentiating (9.10) with respect to time,
using relations (9.24) and (9.25), taking u(k)(t) from (9.23), one has

ẏ(t) = Fp+ τpu(k−1) + v(`)(t)Ep+ ẋ(t) z(t) , ż(t) = Fpx + τpx,u(k−1) + v(`)(t)Epx + ẋ(t) pxx ,

where F is given by (9.15) and the argument (u(t) . . . u(k−1)(t), x(t), v(t) . . . v(`−1)(t)) for Fp, Fpx
Ep, Epx, τ , px,u(k−1) , pu(k−1) and pxx is omitted. Then, (9.20) implies, again omitting the argu-
ments of pxx, one has ẏ(t) = γ(x(t), y(t), z(t), pxx) + z(t)ẋ(t), and ż(t) = δ(x(t), y(t), z(t), pxx) +
pxxẋ(t). The first equation yields pxx = g(x(t), y(t), z(t), ẏ(t)− z(t)ẋ(t)) with g related to γ by
(9.6), and then the second one yields (9.3), with h related to δ by (9.7). This proves point 1.
The rest of the proof is devoted to point 2.

Let t 7→ (x(t), y(t), z(t)) be a solution of (9.3). We may consider Γ(u, v) = (x, y, z) (see
(9.10)) as a system of three ordinary differential equations in two unknown functions u, v :

u(k) − σ(u, . . . , u(k−1), v, . . . , v(`−1))v(`) − τ(u, . . . , u(k−1), x, v, . . . , v(`−1)) = 0, (9.29)
p(u, . . . , u(k−1), x, v, . . . , v(`−1)) = y, (9.30)
px(u, . . . , u(k−1), x, v, . . . , v(`−1)) = z. (9.31)

Differentiating (9.30) K+1 times, substituting u(k) from (9.29), and using the fact that EDip = 0
for i ≤ K (see Definition 9.3.1), we get

Dip (u(t), . . . , u(k−1)(t), v(t), . . . , v(`−1)(t), x(t), . . . , x(i)(t)) =
diy

dti
(t) , 1 ≤ i ≤ K, (9.32)

v(`)(t) EDKp (u(t), . . . , u(k−1)(t), v(t), . . . , v(`−1)(t), x(t), . . . , x(K)(t))

+ DK+1p (u(t), . . . , u(k−1)(t), v(t), . . . , v(`−1)(t), x(t), . . . , x(K+1)(t)) =
dK+1y

dtK+1
(t) . (9.33)

Equations (9.30)-(9.31)-(9.32) can be written

π(u, . . . , . . . , u(k−1), x, v, . . . , v(`−1), ẋ, . . . , x(K)) =


z
y
ẏ
...

y(K)

 (9.34)

with π given by (9.26). From the implicit function theorem, since the determinant (9.27) is
nonzero, (9.30)-(9.31)-(9.32) yields u(k−i0), . . . , u(k−1), v(`−j0), . . . , v(`−1) as explicit functions of
u, . . . , u(k−i0−1), v, . . . , v(`−j0−1), x, . . . , x(K), y, . . . , y(K) and z. Let us single out these giving
the lowest order derivatives :

u(k−i0) = f1(u, . . . , u(k−1−i0−1), v, . . . , v(`−j0−1), x, . . . , x(K), z, y, . . . , y(K)),
v(`−j0) = f2(u, . . . , u(k−1−i0−1), v, . . . , v(`−j0−1), x, . . . , x(K), z, y, . . . , y(K)).

(9.35)

Let us prove that, provided that (x, y, z) is a solution of (9.3), system (9.35) is equivalent to
(9.29)-(9.30)-(9.31), i.e. to Γ(u, v) = (x, y, z). It is obvious that any t 7→ (u(t), v(t), x(t), y(t), z(t))
that satisfies (9.3), (9.29), (9.30) and (9.31) also satisfies (9.35), because these equations were
obtained from consequences of those. Conversely, let t 7→ (u(t), v(t), x(t), y(t), z(t)) be such that
(9.3) and (9.35) are satisfied ; differentiating (9.35) and substituting each time ż from (9.3) and
(u(k−i0), v(`−j0)) from (9.35), one obtains

u(k−i0+i) = f1,i(u, . . . , u(k−1−i0−1), v, . . . , v(`−j0−1), x, . . . , x(K+i), z, y, . . . , y(K+i)), i ∈ N,
v(`−j0+j) = f2,j(u, . . . , u(k−1−i0−1), v, . . . , v(`−j0−1), x, . . . , x(K+j), z, y, . . . , y(K+j)), j ∈ N.

(9.36)
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Now, substitute the values of u(k−i0), . . . , u(k), v(`−j0), . . . , v(`) from (9.36) into (9.29), (9.30)
and (9.31) ; either the obtained relations are identically satisfied, and hence it is true that any
solution of (9.3) and (9.35) also satisfies (9.29)-(9.30)-(9.31), or one obtains at least one relation
of the form (recall that k ≤ `) :

R(u, . . . , u(k−1−i0−1), v, . . . , v(`−j0−1), x, . . . , x(K+`), z, y, . . . , y(K+`)) = 0.

This relation has been obtained (indirectly) by differentiating and combining (9.3)-(9.29)-(9.30)-
(9.31). This is absurd because (9.29)-(9.30)-(9.31)-(9.32)-(9.33) are the only independent rela-
tions of order k, ` obtained by differentiating and combining2 (9.29)-(9.30)-(9.31) because, on
the one hand, since DKp 6= 0, differentiating more (9.33) and (9.29) will produce higher order
differential equations in which higher order derivatives cannot be eliminated, and on the other
hand, differentiating (9.31) and substituting ż from (9.3), u(k) from (9.29) and ẏ from (9.32) for
i = 1 yields the trivial 0 = 0 because p is a solution of E γ,δk,` , see the proof of point 1 above.

We have now established that, for (x, y, z) a solution of (9.3), Γ(u, v) = (x, y, z) is equivalent
to (9.35). Using Cauchy Lipschitz theorem with continuous dependence on the parameters, one
can define a continuous map s : V → U mapping a germ (x, y, z) to the unique germ of solution of
(9.35) with fixed initial condition (u, . . . , u(k−i0−1), v, . . . , v(`−j0−1)) = (u0, . . . , u

(k−i0−1)
0 , v0, . . .,

v
(`−j0−1)
0 ). Then s is a continuous right inverse of Γ, i.e. Γ ◦ s = Id. This proves point 2.

9.3.3 On (non-)existence of regular solutions of system E γ,δk,`

Conjecture 9.3.8. For any real analytic functions γ and δ (with γ4 6= 0), and any integers k, `,
the partial differential system E γ,δk,` (see (9.16)) does not admit any regular solution p.

An equivalent way of stating this conjecture is : “the equations EDip = 0, for 1 ≤ i ≤
k + ` − 2, are consequences of (9.16)”. Note that “EDip = 0” in fact encodes several partial
differential relations on p ; see Remark 9.3.2. If γ and δ are polynomials, this can be easily
phrased in terms of the differential ideals in the set of polynomials with respect to the variables
u, . . . , u(k−1), x, v, . . . , v(`−1) with k + ` + 1 commuting derivatives (all the partial derivatives
with respect to these variables).

This is still a conjecture for general integers k and `, but we prove it for “small enough” k, `,
namely if one of them is smaller than 3 or if k = ` = 3. The following statements assume k ≤ `
(see remark 9.2.3).

Proposition 9.3.9. If system E γ,δk,` , with k ≤ `, admits a regular solution, then k ≥ 3, ` ≥ 4
and the determinant ∣∣∣∣∣∣

pu(k−1) pu(k−2) pu(k−3)

pxu(k−1) pxu(k−2) pxu(k−3)

pxxu(k−1) pxxu(k−2) pxxu(k−3)

∣∣∣∣∣∣ (9.37)

is a nonzero real analytic function.

Proof. Straightforward consequence of Lemma 9.3.5 and the three following lemmas, proved
pages 232 through 237.

2 In other words, (9.29)-(9.30)-(9.31)-(9.32)-(9.33), as a system of ODEs in u and v, is formally integrable (see
e.g. [18, Chapter IX]). This means, for a systems of ODEs with independent variable t, that no new independent
equation of the same orders (k with respect to u and ` with respect to v) can be obtained by differentiating
and combining these equations. It is known [18, Chapter IX] that a sufficient condition is that this is true when
differentiating only once and the system allows one to express the highest order derivatives as functions of the
others. Formal integrability also means that, given any initial condition (u(0), . . . , u(k)(0), v(0), . . . , v(`)(0)) that
satisfies these relations, there is a solution of the system of ODEs with these initial conditions.
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Lemma 9.3.10. If p is a solution of system E γ,δk,` and either k = 1 or
∣∣∣∣ pu(k−1) pu(k−2)

pxu(k−1) pxu(k−2)

∣∣∣∣ = 0,

then around each point such that pu(k−1) 6= 0, there exists a function α of two variables such that
a relation px = α(x, p) holds identically on a neighborhood of that point.

Lemma 9.3.11. Suppose that p is a solution of E γ,δk,` with

` ≥ k ≥ 2 , pu(k−1) 6= 0 ,
∣∣∣∣ pu(k−1) pu(k−2)

pxu(k−1) pxu(k−2)

∣∣∣∣ 6= 0 . (9.38)

If either k = 2 or the determinant (9.37) is identically zero, then, around any point where the
two quantities in (9.38) are nonzero, there exists a function α of three variables such that a
relation px,x = α(x, p, px) holds identically on a neighborhood of that point.

Lemma 9.3.12. Let k = ` = 3. For any solution p of E γ,δ3,3 , in a neighborhood of any point where
the determinant (9.37) is nonzero, there exist two functions α and ψ of four variables such that
pxxx = α(x, p, px, pxx) and Fpxx + τpxxu(k−1) = ψ(x, p, px, pxx) identically on a neighborhood of
that point.

9.4 Remarks on the case where S = T = 0.

9.4.1 Geometric meaning of the differential form ω and the condition
S = T = 0

For (x, y, z) such that the set Λ = {λ ∈ R, (x, y, z, λ) ∈ Ω} is nonempty, (9.3) defines, by
varying λ in Λ and ẋ in R, a surface Σ in [the tangent space at (x, y, z) to] R3. Fixing λ in Λ and
varying ẋ in R yields a straight line Sλ (direction (1, z, g(x, y, z, λ))). Obviously, Σ =

⋃
λ∈Λ Sλ ;

Σ is a ruled surface. For each λ ∈ Λ, let Pλ be the osculating hyperbolic paraboloid to Σ along
Sλ, i.e. the unique3 such quadric that contains Sλ and has a contact of order 2 with Σ at all
points of Sλ. Its equation is, omitting the argument (x, y, z, λ) of h and g,

(ẏ − zẋ− λ)
(
ẋ+

(h44g4 − g44h4)
2 g4

2 (ẏ − zẋ− λ) +
g44

2 g4
2

(ż − gẋ− h)
)
− ż − gẋ− h

g4
+
h4

g4
(ẏ − zẋ− λ) = 0 .

With ω, ω1, η defined in (9.12) and ξ̇ the vector with coordinates ẋ, ẏ, ż, the above equation
reads

−
(
〈ω1, ξ̇〉 − λ

) 〈ω, ξ̇〉+ (h44g4 − g44h4)λ+ g44h

2g4
2

− 〈η, ξ̇〉 − h
g4

= 0 ,

that can in turn be rewritten 〈ω1, ξ̇〉〈ω, ξ̇〉 − 〈ω3, ξ̇〉 − a0 = 0, with ω3 and a0 some differential
form and function ; ω, ω3 and a0 are uniquely defined up to multiplication by a non-vanishing
function ; they encode how the “osculating hyperbolic paraboloid” depends on x, y, z and λ.

We will have to distinguish the case when S and T , whose explicit expressions derive from
(9.12) and (9.13) :

S = 2 g4 g4,4,4 − 3 g4,4
2 , T = 2 g4 h4,4,4 − 3 g4,4 h4,4 , (9.39)

3General hyperbolic paraboloid :
`
a11ẋ+ a12Y + a13Z

´ `
a21ẋ+ a22Y + a23Z

´
+a31ẋ+a32Y +a33Z+a0 = 0,

where the matrix [aij ] is invertible and Y,Z stand for ẏ − zẋ− λ, ż − gẋ− h. It contains Sλ if and only if a11 =
a31 = a0 = 0. Contact at order 2 means a13 = 0, a33 = −a12a21/g4, a32 = −h4a

33, a22 = 1
2
a21(g4h44−g44h4)/g4

2,
a23 = 1

2
a21g44/g4

2. Normalization : a12 = a21 = 1.
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are zero. From (9.13), it means that the Lie derivative of ω along ∂/∂λ is co-linear to ω, and
this is classically equivalent to a decomposition ω = k ω̂2 where k 6= 0 is a function of the four
variables x, y, x, λ but ω̂2 is a differential form in the three variables x, y, z, the first integrals of
∂/∂λ. Then, one can prove that the form ω̂3 = ω3/k and the function â0 = a0/k also involve the
variables x, y, z only. From ω’s expression, one can take for instance k = g44 or k = gg44 − 2g4

2

(they do not vanish simultaneously because g4 does not vanish). Hence S = T = 0 if and only
if, for each fixed (x, y, z), the osculating hyperbolic paraboloid Pλ in fact does not depend on λ
i.e. the surface Σ itself is a hyperbolic paraboloid, its equation being

〈ω1, ξ̇〉〈ω̂2, ξ̇〉+ 〈ω̂3, ξ̇〉+ â0 = 0 , (9.40)

where ξ̇ is the vector of coordinates ẋ, ẏ, ż. This yields the following proposition4, where the
functions â0, â1, â2, b̂0, b̂1, ĉ0, ĉ1 of x, y, z are defined by

ω̂2 =
ω

k
= b̂1 dx+ â2ω1 − ĉ1 dz, ω̂3 =

ω3

k
= b̂0 dx+ â1ω1 − ĉ0 dz, â0 =

a0

k
. (9.41)

Proposition 9.4.1. If S and T , given by (9.12)-(9.13), or (9.39), are identically zero on Ω,
then, for any (x0, y0, z0, λ0) in Ω, there exist an open set W ⊂ R3, an open interval I ⊂ R, with
(x0, y0, z0, λ0) ∈ W × I ⊂ Ω, and seven smooth functions W → R denoted by â0, â1, â2, b̂0, b̂1,
ĉ0, ĉ1 such that ĉ0 + ĉ1λ does not vanish on W × I, ĉ1b̂0 − b̂1ĉ0 does not vanish on W , and, for
(x, y, z, λ) ∈W × I, ẋ ∈ R and ż ∈ R, equation (9.3) is equivalent to

λ
(
b̂1(x, y, z)ẋ+ â2(x, y, z)λ− ĉ1(x, y, z)ż

)
+
(
b̂0(x, y, z)ẋ+ â1(x, y, z)λ− ĉ0(x, y, z)ż

)
+â0(x, y, z) = 0.

9.4.2 A parameterization of order (1, 2) if S = T = J = 0

It is known Chapter 8 that system (9.3) is (x, u)-flat (see section 9.7) if S = T = J = 0. For
the sake of completeness, let re-state this result in terms of parameterization. We start with the
following particular case of (9.3) :

ż = κ(x, y, z) ẋ λ+ a(x, y, z)λ+ b(x, y, z) ẋ+ c(x, y, z) with λ = ẏ − zẋ (9.42)

where κ does not vanish on the domain where it is defined. Note that Example 9.2.4 was of this
type with κ = 1, a = b = 0, c = y. For short, define the following vector fields :

X0 = c
∂

∂z
, X1 =

∂

∂x
+ z

∂

∂y
+ b

∂

∂z
, X2 =

∂

∂y
+ a

∂

∂z
, X3 = κ

∂

∂z
.

Note that, for h an arbitrary smooth function of x, y and z, X0h, X1h, X2h, X3h also depend
on x, y, z only.

Lemma 9.4.2. System (9.42) admits a parameterization of order (1,2) at any
(x0, y0, z0, ẋ0, ẏ0, ẍ0, ÿ0) such that

κ ẍ0 +κ2ẋ3
0 +
(
X1κ−X3b+2aκ

)
ẋ2

0 +
(
X1a+X0κ−X3c−X2b+a2

)
ẋ0 +X0a−X3c 6= 0. (9.43)

4 We introduced the osculating hyperbolic paraboloid because it gives some geometric insight on ω, S and T ,
but it is not formally needed : Proposition 9.4.1 can be stated without it, and proved as follows, based on (9.39)
(see also [7]) : the general solution of S = 0 is a linear fractional expression g =

`
b̂0 + b̂1λ

´‹`
ĉ0 + ĉ1λ

´
where b̂0,

b̂1, ĉ0, ĉ1 are functions of x, y, z only —this is known, for S/(g4)2 is the Schwartzian derivative of g with respect
to its 4th argument, but anyway elementary— and g4 6= 0 translates into b̂0ĉ1 − b̂1ĉ0 6= 0 ; then T = 0 yields
h =

`
â0 + â1λ+ â2λ2´‹`

ĉ0 + ĉ1λ
´

with â0, â1, â2 functions of x, y, z. With such g and h, multiplying both sides
of (9.3) by ĉ0 + ĉ1λ yields the equation in Proposition 9.4.1.
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Proof. From (9.43), the two vector fields Y = X2 + ẋX3 and Z = [X0 + ẋX1 , X2 + ẋX3 ]+ ẍX3

are linearly independent at point (x0, y0, z0, ẋ0, ẍ0). Let then h be a function of (x, y, z, ẋ) such
that Y h = 0 and Zh 6= 0 ; its “time-derivative along system (9.42)”, given by ḣ = X0h +(
X1h

)
ẋ +

(
Y h
)
λ +

(
∂h/∂ẋ)ẍ, does not depend on λ : it is a function of (x, y, z, ẋ, ẍ) ; also,

since Y h = 0, one has Y ḣ = Zh ; finally, Zh 6= 0 implies that dh ∧ dḣ ∧ dx ∧ dẋ ∧ dẍ 6=
0. In turn, this implies that (x, y, z, ẋ, ẍ) 7→ (h(x, y, z, ẋ), ḣ(x, y, z, ẋ, ẍ), x, ẋ, ẍ) defines a local
diffeomorphism at (x0, y0, z0, ẋ0, ẍ0). Let ψ and χ be the two functions of five variables such that
the inverse of that local diffeomorphism is (u, u̇, v, v̇, v̈) 7→ (v, ψ(u, u̇, v, v̇, v̈), χ(u, u̇, v, v̇, v̈), v̇, v̈).
The parameterization (9.10) is given by : x = v, y = ψ(u, u̇, v, v̇, v̈), z = χ(u, u̇, v, v̇, v̈).

Theorem 9.4.3. If S = T = J = 0, then system (9.3) admits a parameterization of order (1, 2)
at any (x0, y0, z0, ẋ0, ẏ0, ẍ0, ÿ0) ∈ (Ω̂×R2

) \F , where F ⊂ Ω̂×R2 is closed with empty interior.

Proof. From Proposition 9.4.1, (9.3) and (9.40) are identical. Since dω̂2 ∧ ω̂2 = 0 (see (9.13)-
(9.41)), there is a local change of coordinates (x̃, ỹ, z̃) = P (x, y, z) such that ω̂2 = k′ dx̃ and
ω1 = k′′

(
dỹ − z̃ dx̃

)
with k′ 6= 0, k′′ 6= 0. Hence P transforms (9.40) into (9.42), for some

κ, a, b, c. Lemma 9.4.2 gives ϕ,ψ, χ defining a parameterization of order (1,2) for this system.
Then P−1 ◦ ϕ, P−1 ◦ ψ, P−1 ◦ χ define one for the original system (9.3), or (9.40) ;

(
Ω̂×R2

) \ F
is the inverse image by P of the set defined by (9.43).

9.4.3 A normal form if S = T = 0 and J 6= 0

Proposition 9.4.4. Assume that the functions g and h defining system (9.3) are such that S
and T defined by (9.13) or (9.39) are identically zero on Ω, and let (x0, y0, z0, λ0) ∈ Ω be such
that J(x0, y0, z0, λ0) 6= 0.

There exist an open set W ⊂ R3 and an open interval I ⊂ R such that (x0, y0, z0, λ0) ∈
W × I ⊂ Ω, a smooth diffeomorphism P from W to P (W ) ⊂ R3 and six smooth functions
P (W )→ R denoted κ, α, β, a, b, c such that, with the change of coordinates (x̃, ỹ, z̃) = P (x, y, z),
system (9.3) reads

˙̃z = κ(x̃, ỹ, z̃)
( ˙̃y − α(x̃, ỹ, z̃) ˙̃x

) ( ˙̃y − β(x̃, ỹ, z̃) ˙̃x
)

+ a(x̃, ỹ, z̃) ˙̃x+ b(x̃, ỹ, z̃) ˙̃y + c(x̃, ỹ, z̃) (9.44)

and none of the functions κ, α− β, α3 and β3 vanish on W .

Proof. From Lemma 9.4.1, we consider system (9.40). Let P 1, P 2 be a pair of independent first
integrals of the vector field ĉ1

(
∂
∂x + z ∂

∂y

)
+ b̂1 ∂

∂z ; from (9.41), ω1, ω̂2 span the annihilator of

this vector field, and hence are independent linear combinations of dP 1 and dP 2 : possibly
interchanging P 1 and P 2 or adding one to the other, there exist smooth functions k1, k2, f1, f2

such that ω̂i = ki
(

dP 2 − f i dP 1
)
, f1 − f2 6= 0, ki 6= 0, i = 1, 2. Now, take for P 3 any function

such that dP 1 ∧ dP 2 ∧ dP 3 6= 0 ; decomposing ω̂3, we get three smooth functions p0, p1, p2 such
that ω̂3 = p0

(−dP 3 + p1 dP 1 + p2 dP 2
)
, p0 6= 0. The change of coordinates P = (P 1, P 2, P 3)

does transform system (9.40) into (9.44) with

κ =
k1k2

p0
◦ P−1, α = f1 ◦ P−1, β = f2 ◦ P−1, a = p1 ◦ P−1, b = p2 ◦ P−1, c =

â0

p0
◦ P−1 .

κ and α − β are nonzero because f1 − f2, k1 and k2 are. α3 and β3 are nonzero because the
inverse images of α3 dx̃ ∧ dỹ ∧ dz̃ and β3 dx̃ ∧ dỹ ∧ dz̃ by P are dP 1 ∧ dP 2 ∧ df i for i = 1, 2,
that are equal, by construction, to dω1 ∧ω1/(k1)2 and dω̂2 ∧ ω̂2/(k2)2, which are both nonzero
(the second one because J 6= 0).
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Note that (9.44) is not in the form (9.3) unless α = z̃ or β = z̃. This suggests, since α3 6= 0
and β3 6= 0, the following local changes of coordinates A and B, that both turn (9.44) to a new
system of the form (9.3) :

(x̃, ỹ, z̃) 7→ A(x̃, ỹ, z̃) = (x̃, ỹ, α(x̃, ỹ, z̃)) and (x̃, ỹ, z̃) 7→ B(x̃, ỹ, z̃) = (x̃, ỹ, β(x̃, ỹ, z̃)) . (9.45)

These two systems of the form (9.3) correspond to two choices h1, g1 and h2, g2 instead of the
original h, g, and they yield, according to (9.6) and (9.7), two possible sets of functions γ and δ.
These will be used in Theorem 9.6.5 ; let us give their explicit expression :

γi(x, y, z, w) =
w −mi,0(x, y, z)
mi,1(x, y, z)

, δi = ni,0 + ni,1γ + ni,2γ2 , i ∈ {1, 2} (9.46)

with (these are obtained from each other by interchanging α and β) :

m1,0 = (α1 + αα2 + (a+ b α)α3) ◦A−1 , m1,1 = (κα3 (α− β)) ◦A−1 ,
n1,0 = α3 ◦A−1 , n1,1 = (α2 + b α3) ◦A−1 , n1,2 = (κα3) ◦A−1 ,

m2,0 = (β1 + β β2 + (a+ b β)β3) ◦B−1 , m2,1 = (κβ3 (β − α)) ◦B−1 ,
n2,0 = β3 ◦B−1 , n2,1 = (β2 + b β3) ◦B−1 , n2,2 = (κβ3) ◦B−1 .

(9.47)

Example 9.4.5. System (9.14-b) in Example 9.2.8 is already as in (9.44). The above choices
are, for this system :

γ1(x, y, z, w) = w , δ1(x, y, z, w) = y + w2 , γ2(x, y, z, w) = −w , δ2(x, y, z, w) = y + w2 .
(9.48)

9.5 Main results

We gather here our main results in a synthetic manner. They rely on precise local results
from other sections : sufficient (sections 9.4 and 9.3.2) or necessary (section 9.6) conditions for
parameterizability, results on solutions of the partial differential system E γ,δk,` (section 9.3.3) and
on the relation between flatness and parameterizability (section 9.7). We are not able to give
local precise necessary and sufficient conditions at a given point (jet) because singularities are
not the same for necessary and for sufficient conditions ; instead, we use the “somewhere” notion
as in Definitions 9.3.3 and 9.2.7.

Theorem 9.5.1. System (9.3) admits a parameterization of order (k, `) somewhere in Ω if and
only if

1. either S = T = J = 0 on Ω (in this case, one can take (k, `) = (1, 2)),

2. or S = T = 0 on Ω and one of the two systems E γ1,δ1

k,` or E γ2,δ2

k,` with γi, δi given by

(9.46)-(9.47), admits a regular solution somewhere in Ω̂.

3. or S and T are not both identically zero, and the system E γ,δk,` with γ and δ defined from

g and h according to (9.6) and (9.7) admits a regular solution somewhere in Ω̂.

Proof. Sufficiency : the parameterization is provided, away from an explicitly described set of
singularities, by Theorem 9.4.3 if point 1 holds, and by Theorem 9.3.7 if one of the two other
points holds. For necessity, assume that there is a parameterization of order (k, `) at a point
(x, y, z, ẋ, ẏ, . . . , x(L), y(L)) in

(
Ω̂ × R2L−2

)\F . From Theorems 9.6.2 and 9.6.5, it implies that
one of the three points holds.
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Example 9.5.2. Consider again systems (a), (b) and (c) in (9.14). From point 1 of the theorem,
system (a) admits a parameterization of order (1,2), see also Example 9.2.4. System (b) is
concerned by point 2 of the theorem : it has a parameterization of order k, ` if and only one of
the two systems of PDEs

pu(k−1)

(
Fpx − p− pxx2)

)− pxu(k−1)

(
Fp± pxx)

)
= pu(k−1) pxv(`−1) − pxu(k−1) pv(`−1) = 0 ,

pu(k−1) 6= 0 , pv(`−1) 6= 0 , p+ pxx
2 ± pxxx 6= 0

(9.49)
admits a “regular solution”. Point 3 of the theorem is relevant to system (c) because S 6= 0 : (c)
admits a parameterization of order k, ` if and only there is a “regular solution” p to

pu(k−1)

(
Fpx − p)

)− pxu(k−1)

(
Fp−√pxx)

)
= pu(k−1) pxv(`−1) − pxu(k−1) pv(`−1) = 0 ,

pu(k−1) 6= 0 , pv(`−1) 6= 0 , p− pxxx/2√pxx 6= 0 .
(9.50)

If Conjecture 9.3.8 is true, neither system (b) nor system (c) admits a parameterization of any
order.

Theorem 9.5.1 gives a central role to the system of PDEs E γ,δk,` . It makes Conjecture 9.3.8
equivalent to Conjecture 9.5.3 below. Theorem 9.5.4 states that the conjecture is true for k, `
“small enough”.

Conjecture 9.5.3. If dω ∧ω (or (S, T, J)) is not identically zero on Ω, then system (9.3) does
not admit a parameterization of any order at any point (jet of any order).

Theorem 9.5.4. If system (9.3) admits a parameterization of order (k, `), with k ≤ `, at some
jet, then either S = T = J = 0 or k ≥ 3 and ` ≥ 4.

Proof. This is a simple consequence of Theorem 9.5.1 and Proposition 9.3.9.

Remark 9.5.5. If our Conjecture 9.3.8 is correct, the systems E γ,δk,` never have any regular
solutions, and the sufficiency part of Theorem 9.5.1 (apart from case 1) is essentially void,
and so is Theorem 9.3.7. However, Conjecture 9.3.8 is still a conjecture, and the interest of
the sufficient conditions above is to make this conjecture, that only deals with a set of partial
differential equalities and inequalities, equivalent to Conjecture 9.5.3 below. For instance, if one
comes up with a regular solution of some of these systems E γ,δk,` , this will yield a new class of
systems that admit a parameterization.

Remark 9.5.6 (on recovering the results of Chapter 8). The main result in that reference can
be phrased :

“ (9.1) is (x, u)-dynamic linearizable (i.e. (x, u)-flat) if and only if S = T = J = 0 ” .

Sufficiency is elementary in Chapter 8 ; Theorem 9.4.3 implies it. The difficult part is to prove
that S = T = J = 0 is necessary ; that proof is very technical in Chapter 8 : it relies on
some simplifications performed via computer algebra. From our Proposition 9.7.4, (x, u)-flatness
implies existence of a parameterization of some order (k, `) with k ≤ 3 and ` ≤ 3. Hence
Theorem 9.5.1 does imply the above statement.

9.6 Necessary conditions

9.6.1 The case where S and T are not both zero

The following lemma is needed to state the theorem.
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Lemma 9.6.1. If (S, T, J) 6= (0, 0, 0) and system (9.3) admits a parameterization (ϕ,ψ, χ) of
order (k, `) at point (x0, y0, z0, . . . , x

(L)
0 , y

(L)
0 ) ∈ R2L+3, then ϕu(k) is a nonzero real analytic

function.

Proof. Assume a parameterization where ϕ does not depend on u(k). Substituting in (9.3) yields

χ̇ = h(ϕ,ψ, χ, ψ̇ − χϕ̇) + g(ϕ,ψ, χ, ψ̇ − χϕ̇)ϕ̇ .

Since ϕ̇ does not depend on u(k+1), differentiating twice with respect to u(k+1) yields

χu(k) = ψu(k)(h4 + g4ϕ̇) , 0 = ψu(k)
2(h4,4 + g4,4ϕ̇) .

If ψu(k) was zero, then, from the first relation, χu(k) would too, and this would contradict
point 3 in Definition 9.2.2 ; hence the second relation implies that h4,4 + g4,4ϕ̇ is identically
zero. From point 2 in the same definition, it implies that all solutions of (9.3) satisfy the rela-
tion : h4,4(x, y, z, ẏ − zẋ) + g4,4(x, y, z, ẏ − zẋ)ẋ = 0. From Lemma 9.2.1, this implies that h4,4

and g4,4 are the zero function of four variables, and hence S = T = J = 0. This proves the
lemma.

Theorem 9.6.2. Assume that either S or T is not identically zero on Ω, and that system (9.3)
admits a parameterization of order (k, `) at X = (x0, y0, z0, ẋ0, ẏ0, . . . , x

(L)
0 , y

(L)
0 ) ∈ Ω̂ × R2L−2,

with k, `, L some integers and ϕ,ψ, χ defined on U ⊂ Rk+`+2.
Then k ≥ 1, ` ≥ 1 and, for any point (u0, . . . , u

(k)
0 , v0, . . . , v

(`)
0 ) ∈ U (not necessarily sent to

X by the parameterization) such that

ϕu(k)(u0, . . . , u
(k)
0 , v0, . . . , v

(`)
0 ) 6= 0,

there exist a neighborhood O of (u0, . . . , u
(k−1)
0 , ϕ(u0 · · · v(`)

0 ) , v0, . . . , v
(`−1)
0 ) in Rk+`+1 and a

regular solution p : O → R of E γ,δk,` , related to ϕ,ψ, χ by (9.23), (9.24) and (9.25), the functions
γ and δ being related to g and h by (9.6) and (9.7).

Remark 9.6.3. The regular solution p is K-regular for some positive integer K ≤ k + `− 2.
If L > K, Theorem 9.3.7 implies, possibly away from some singular values of (x0, y0, z0, ẋ0, ẏ0, . . .,
x

(K)
0 , y

(K)
0 ), that system (9.3) also admits a parameterization of order (k, `) at (x0, y0, z0, ẋ0,

ẏ0, . . . , x
(K)
0 , y

(K)
0 ). See also Remark 9.2.6.

Proof. Assume that system (9.3) admits a parameterization (ϕ,ψ, χ) of order (k, `) at (x0, y0, z0, ẋ0,

ẏ0, . . . , x(L)
0 , y(L)

0 ). Since ϕu(k) does not vanish, one can apply the inverse function theorem to
the map

(u, u̇, . . . , u(k), v, v̇, . . . , v(`)) 7→ (u, . . . , u(k−1), ϕ(u, . . . , u(k), v, . . . , v(`)), v, . . . , v(`))

and define locally a function r of k + `+ 2 variables such that

ϕ(u, u̇, . . . , u(k), v, v̇, . . . , v(`)) = x ⇔ r(u, u̇, . . . , u(k−1), x, v, v̇, . . . , v(`)) = u(k) . (9.51)

Defining two functions p, q by substitution of u(k) in ψ, χ, the parameterization can be re-written
implicitly as 

y = p(u, u̇, . . . , u(k−1), x, v, v̇, . . . , v(`)),
z = q(u, u̇, . . . , u(k−1), x, v, v̇, . . . , v(`)),
u(k) = r(u, u̇, . . . , u(k−1), x, v, v̇, . . . , v(`)).

(9.52)
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We now work with this form of the parameterization and u, u̇, . . . , u(k−1), x, ẋ, ẍ, . . . v, v̇, . . . , v(`),
v(`+1), . . . instead of u, u̇, . . . , u(k−1), u(k), . . . v, v̇, . . . , v(`), v(`+1), . . . . In order to simplify nota-
tions, let us agree that, if k = 0, the list u, u̇, . . . , u(k−1) is empty and any term involving the
index k − 1 is zero (same with `− 1 if ` = 0). Let us also define P and Q by

P = Fp+rpu(k−1) +v(`)pv(`−1) +v(`+1)pv(`) , Q = Fq+rqu(k−1) +v(`)qv(`−1) +v(`+1)qv(`) , (9.53)

with F given by (9.15). P and Q depend on u, u̇, . . . , u(k−1), x, v, v̇, . . . , v(`+1) but not on ẋ ; Fp
and Fq depend neither on ẋ nor on v(`+1). When substituting (9.52) in (9.3), using ẏ = P + ẋpx
and ż = Q+ ẋqx, one obtains :

Q+ ẋqx = h(x, p, q, λ) + g(x, p, q, λ)ẋ with λ = P + ẋ(px − q). (9.54)

Differentiating each side three times with respect to ẋ, one obtains :

qx = (h4(x, p, q, λ) + g4(x, p, q, λ)ẋ) (px − q) + g(x, p, q, λ), (9.55)
0 = (h4,4(x, p, q, λ) + g4,4(x, p, q, λ)ẋ) (px − q)2 + 2g4(x, p, q, λ)(px − q), (9.56)
0 = (h4,4,4(x, p, q, λ) + g4,4,4(x, p, q, λ)ẋ) (px − q)3 + 3g4,4(x, p, q, λ)(px − q)2. (9.57)

Combining (9.56) and (9.57) to cancel the first term in each equation, one obtains (see S and T
in (9.39)) : (

T (x, p, q, λ) + S(x, p, q, λ)ẋ
)

(px − q)2 = 0. (9.58)

The second factor must be zero because, if T + Sẋ was identically zero as a function of
u, . . . , u(k−1), x, v, . . . v(`−1), then, by Definition 9.2.2 (point 2), all solutions (x(t), y(t), z(t))
of (9.3) would satisfy T (x, y, z, ẏ− zẋ) + ẋS(x, y, z, ẏ− zẋ) = 0 identically, and this would imply
that S and T are identically zero functions of 4 variables, but we supposed the contrary. The
relation q = px implies

λ = P = Fp+ rpu(k−1) + v(`)pv(`−1) + v(`+1)pv(`) (9.59)

and (9.55) then yields pxx = g(x, p, px, λ), or, with γ defined by (9.6),

λ = γ(x, p, px, pxx) . (9.60)

Since neither p nor Fp nor r depend on v(`+1), (9.59) and (9.60) yield pv(`) = 0, i.e. p is a
function of u, . . . , u(k−1), x, v, . . . , v(`−1) only. Then (9.59) and (9.60) imply (9.109) with f = γ.
Furthermore, since ϕv(`) 6= 0 (point 3 of Definition 9.2.2), (9.51) implies rv(`) 6= 0. Also, if p was
a function of x only, then all solutions of (9.63) should satisfy a relation y(t) = p(x(t)), which is
absurd from Lemma 9.2.1. We may then apply Lemma 9.9.2 (page 238) and assert that k ≥ 1,
` ≥ 1, pu(k−1) 6= 0, pv(`−1) 6= 0.

Since p does not depend on v(`), (9.60) implies that the right-hand side of (9.59) does not
depend on v(`) either ; since pu(k−1) 6= 0, r must be affine with respect to v(`), i.e.

r = τ + σ v(`) , (9.61)

with σ and τ some functions of u, . . . , u(k−1), x, v, . . . , v(`−1). Since p, q = px, λ and qx = pxx do
not depend on v(`), (9.54) implies that Q does not depend on v(`) either ; with px = q, and r
given by (9.61), the expression of Qv(`) is σpxu(k−1) + pxv(`−1) while, from (9.59), the expression
of Pv(`) . Collecting this, one gets

σpu(k−1) + pv(`−1) = σpxu(k−1) + pxv(`−1) = 0 . (9.62)
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Since pu(k−1) 6= 0 and pv(`−1) 6= 0, (9.62) implies Eσ = 0, and also σx = 0, σ 6= 0. Then,
since rx 6= 0 (see (9.51)), (9.61) implies τx 6= 0. With the above remarks, (9.59) yields P = λ =
Fp+ τpu(k−1) and hence, from (9.60), the first relation in (9.20). In a similar way, (9.53) yields
Q = Fpx + τpxu(k−1) , and substituting in (9.54), one obtains (the terms involving ẋ disappear
according to (9.60)) Fpx − δ(x, p, px, pxx) + pxu(k−1)τ = 0 with δ defined by (9.7). This proves
that p satisfies (9.20), equivalent to (9.16) according to Remark 9.3.4, and hence that p is a
solution of E γ,δk,` .

To prove by contradiction that it is K-regular for some K ≤ k+`+1, assume that EDip = 0
for 0 ≤ i ≤ k + `. Then px, p, . . . , D

(k+`−1)p, x, . . . , x(k+`−1) are 2k + 2` + 1 functions in the
2k+2` variables u, . . . , u(k−1), v, . . . , v(`−1), x, . . . , x(k+`−1). At points where the Jacobian matrix
has constant rank, there is at least one nontrivial relation between them. From point 2 of
Definition 9.2.2, this would imply that all solutions of system (9.3) satisfy this relation, say
R(z(t), y(t), . . . , y(k+`−1)(t), x(t), . . . , x(k+`−1)(t)) = 0, which is absurd from Lemma 9.2.1.

9.6.2 The case where S and T are zero

Here, the situation is slightly more complicated : we also establish that any parameterization
“derives from” a solution of the system of PDEs (9.16), but this is correct only if J is not zero,
and there are two distinct (non equivalent) choices for γ and δ. If J 6= 0, we saw, in section 9.4,
that possibly after a change of coordinates, system (9.3) can be written as (9.44), which we
re-write here without the tildes :

ż = κ(x, y, z) (ẏ − α(x, y, z) ẋ) (ẏ − β(x, y, z) ẋ) + a(x, y, z) ẋ+ b(x, y, z) ẏ + c(x, y, z) , (9.63)

where κ, α, β, a, b, c are real analytic functions of three variables and κ 6= 0, α−β 6= 0, ∂α/∂x 6= 0,
∂β/∂x 6= 0. We state the theorem for this class of systems, because it is simpler to describe the
two possible choices for γ and δ than with (9.3), knowing that S = T = 0.

Lemma 9.6.4. If system (9.63) admits a parameterization (ϕ,ψ, χ) of order (k, `) at a point,
then ϕu(k) is a nonzero real analytic function.

Proof. After a change of coordinates (9.45), use Lemma 9.6.1.

Theorem 9.6.5. Let (x0, y0, z0) be a point where κ, α− β, α3 and β3 are nonzero, and k, `, L
three integers. If system (9.63) has a parameterization of order (k, `) at X = (x0, y0, z0, ẋ0,
ẏ0, . . . , x

(L)
0 , y

(L)
0 ) with ϕ,ψ, χ defined on U ⊂ Rk+`+2, then k ≥ 1, ` ≥ 1 and, for any point

(u0, . . . , u
(k)
0 , v0, . . . , v(`)

0 ) ∈ U (not necessarily sent to X by the parameterization) such that

ϕu(k)(u0, . . . , u
(k)
0 , v0, . . . , v

(`)
0 ) 6= 0,

there exist a neighborhood O of (u0, . . . , u
(k−1)
0 , ϕ(u0 · · · v(`)

0 ) , v0, . . . , v
(`−1)
0 ) in Rk+`+1 and a

regular solution p : O → R of one of the two systems E γ1,δ1

k,` or E γ2,δ2

k,` with γi, δi given by
(9.46)-(9.47), such that p, ϕ, ψ, χ are related by (9.23), (9.24) and (9.25).

Remark 9.6.3 applies to this theorem in the same way as theorem 9.6.2.

Proof. Like in the beginning of the proof of Theorem 9.6.2, a parameterization (ϕ,ψ, χ) of order
(k, `) with ϕu(k) 6= 0 yields an implicit form (9.52). Substituting in (9.63), one obtains an identity
between two polynomials in v(`+1) and ẋ. The coefficient of (v(`+1))2 in the right-hand side must
be zero and this yields that p cannot depend on v(`) ; the linear term in v(`+1) then implies that
q does not depend on v(`) either. To go further, let us define, as in the proof of Theorem 9.6.2,

P = Fp+ rpu(k−1) + v(`)pv(`−1) , Q = Fq + rqu(k−1) + v(`)qv(`−1) , (9.64)
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with F as in (9.15). Still substituting in (9.63), the terms of degree 0, 1 and 2 with respect to ẋ
then yield

Q = κ(x, p, q)P2 + b(x, p, q)P + c(x, p, q) ,
qx = κ(x, p, q) (2px − α(x, p, q)− β(x, p, q))P + a(x, p, q) + b(x, p, q)px ,
0 = (px − α(x, p, q)) (px − β(x, p, q)) .

(9.65)

The factors in the third equation cannot both be zero because α− β 6= 0. Let us assume

px − α(x, p, q) = 0 , px − β(x, p, q) 6= 0 (9.66)

(interchange the roles of α and β for the other alternative). Since α3 6= 0, the map A defi-
ned in (9.45) has locally an inverse A−1, and the equation in (9.66) is equivalent to (x, p, q) =
A−1(x, p, px) ; by differentiation an expression of qx as a function of x, p, px, pxx is obtained ;
solving the second equation in (9.65) for P and substituting q and qx, one obtains P =
γ1(x, p, px, pxx) with γ1 defined by (9.46)-(9.47). If one had chosen the other alternative in
(9.66), A and γ1 would be replaced by B and γ2.

Since P is also given by (9.64), the relation (9.109) holds with f = γ1 ; also, for the same
reasons as in the proof of Theorem 9.6.2 (two lines further than (9.60)), rv(`) is nonzero and it
would be absurd that p depends on x only. One may then apply Lemma 9.9.2 (page 238) and
deduce that k ≥ 1, ` ≥ 1, pu(k−1) 6= 0, pv(`−1) 6= 0.

Since neither p nor P = γ1(x, p, px, pxx) depend on v(`) and pu(k−1) 6= 0, the first equation
in (9.64) implies that r assumes the form (9.61) with σ and τ some functions of the k + ` +
1 variables u, u̇, . . . , u(k−1), x, v, v̇, . . . , v(`−1), and that two relations hold : on the one hand
σpu(k−1) + pv(`−1) = 0, i.e. one of the relations in (9.20), and on the other hand the first relation
in (9.20) with γ = γ1. Similarly, the second equation in (9.64) yields σqu(k−1) + qv(`−1) = 0 and
Fq+τqu(k−1) = Q = κP2 + bP+ c. Applying F +τ∂/∂u(k−1) and E to the first relation in (9.66)
and using the four relations we just established, one obtains on the one hand the second relation
in (9.20), with δ = δ1 (δ1 defined in (9.46)-(9.47)) and on the other hand σpxu(k−1) +pxv(`−1) = 0.
The relations σx = 0, σ 6= 0 and τx 6= 0 are then obtained exactly like at the end of the proof
of theorem 9.6.2 ; hence p satisfies (9.20) with γ = γ1 and δ = δ1 ; this proves, thanks to
Remark 9.3.4, that p is a solution of E γ1,δ1

k,` (it would be E γ2,δ2

k,` if one had chosen the other
alternative in (9.66)). The last paragraph of the proof of Theorem 9.6.2 can be used to prove
that this solution is K-regular with K ≤ k + `+ 1.

9.7 Flat outputs and differential flatness

Definition 9.7.1 (flatness, endogenous parameterization [37]). A pair A=(a, b) of real analytic
functions on a neighborhood of (x0, y0, z0, . . . , x

(j)
0 , y

(j)
0 ) in Ω̂ × R2j−2 is a flat output of order

j at X = (x0, y0, z0, . . . , x
(L)
0 , y

(L)
0 ) (with L ≥ j ≥ 0) for system (9.3) if there exists a Monge

parameterization (9.10) of some order (k, `) at X such that any germ (x(.), y(.), z(.), u(.), v(.)) ∈
V×U (with U, V possibly smaller than in (9.10)) satisfies (9.67) if and only if it satisfies (9.68) :

ϕ
(
u(t), u̇(t), . . . , u(k)(t), v(t), v̇(t), . . . , v(`)(t)

)
= x(t)

ψ
(
u(t), u̇(t), . . . , u(k)(t), v(t), v̇(t), . . . , v(`)(t)

)
= y(t)

χ
(
u(t), u̇(t), . . . , u(k)(t), v(t), v̇(t), . . . , v(`)(t)

)
= z(t)

 , (9.67)

ż(t) = h
(
x(t), y(t), z(t), ẏ(t)−z(t)ẋ(t)

)
+ g

(
x(t), y(t), z(t), ẏ(t)−z(t)ẋ(t)

)
ẋ(t)

u(t) = a
(
x(t), y(t), z(t), ẋ(t), ẏ(t), ẍ(t), ÿ(t), . . . , x(j)(t), y(j)(t)

)
v(t) = b

(
(x(t), y(t), z(t), ẋ(t), ẏ(t), ẍ(t), ÿ(t), . . . , x(j)(t), y(j)(t)

)
 .(9.68)
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System (9.3) is called flat if and only if it admits a flat output of order j for some j ∈ N. A
Monge parameterization is endogenous5 if and only if there exists a flat output associated to this
parameterization as above.

In control theory, flatness is a better known notion than Monge parameterization. For general
control systems, it implies existence of a parameterization (obvious in the above definition), and
people conjecture [42] that the two notions are in fact equivalent, at least away from some
singular points. In any case, our results are relevant to both : systems (9.3) that are proved
to be parameterizable are also flat and our efforts toward proving that the other ones are not
parameterizable would also prove that they are not flat.

Theorem 9.3.7 gave a procedure to derive a parameterization of (9.3) from a regular solution
p of E γ,δk,` , and we saw in Section 9.5 that, unless S = T = J = 0, these are the only possible
parameterizations. One can tell when such a parameterization is endogenous :

Proposition 9.7.2. Let p : O → R, with O ⊂ Rk+`+1 open, be a regular solution of system E γ,δk,` .
The parameterization of order (k, `) of system (9.3) associated to p according to Theorem 9.3.7
is endogenous if and only if p is exactly (k+ `− 2)-regular ; then, the associated flat output is of
order j ≤ k + `− 2.

Proof. In the end of the proof of Theorem 9.3.7, it was established that (9.67), written Γ(u, v) =
(x, y, z), is equivalent to (9.35) if (x, y, z) is a solution of (9.3). If either i0 < k or j0 < ` in (9.35),
then there are, for fixed x(.), y(.), z(.)), infinitely many solutions u(.), v(.)) of (9.35) while there
is a unique one for (9.68). Hence i0 = k and j0 = ` if (9.67) is equivalent to (9.68) ; then
K = i0 + j0 − 2 = k + ` − 2 so that p is (k + ` − 2)-regular and (9.35) (where u and v do not
appear in the right-hand side) is of the form (9.68) with j = K = k + `− 2.

The main result in Chapter 8 is a necessary condition for “(x, u)-dynamic linearizability”
((x, u)-flatness might be more appropriate) of system (9.1). For system (9.1), it means existence
of a flat output whose components are functions of ξ1, ξ2, ξ3, ξ4, w1, w2 ; for system (9.3), it
translates as follows. The functions γ and δ in (9.1) are supposed to be related to g and h in
(9.3) according to (9.6) and (9.7).

Definition 9.7.3. System (9.1) is “(x, u)-dynamic linearizable” is and only if system (9.3)
admits a flat output of order 2 of a special kind : A(x, y, z, ẋ, ẏ, ẍ, ÿ) = a(x, y, z, λ, ẋ, λ̇) for some
smooth a.

The following proposition is useful to recover the main result from Chapter 8, see Re-
mark 9.5.6.

Proposition 9.7.4. If system (9.1) is “(x, u)-dynamic linearizable” in the sense of Chapter 8,
then (9.3) admits a parameterization of order (k, `) with k ≤ 3 and ` ≤ 3.

Proof. Consider the map (x, y, z, λ, ẋ, λ̇, . . . , x(4), λ(4)) 7→


a(x, y, z, λ, ẋ, λ̇)

ȧ(x, y, z, λ, ẋ, λ̇, ẍ, λ̈)
ä(x, y, z, λ, ẋ, λ̇, . . . , x(3), λ(3))

a(3)(x, y, z, λ, ẋ, λ̇, . . . , x(4), λ(4))

 .

Its Jacobian is 8×12, and has rank 8, but the 8×8 sub-matrix corresponding to derivatives with
respect to ẋ, λ̇, . . . , x(4), λ(4) has rank 4 only. Hence x, y, z, and λ can be expressed as functions
of the components of a, ȧ, ä, a(3), yielding a Monge parameterization of order at most (3, 3).

5 This terminology (endogenous vs. exogenous) is borrowed from the authors of [37, 68] ; it usually qualifies
feedbacks rather than parameterizations, but the notion is exactly the same.



230 CHAPITRE 9. “FLATNESS AND MONGE PARAMETERIZATION...”

9.8 Conclusion

Let us discuss both flatness (see Section 9.7) and Monge parameterization. For convenience,
assume k ≤ ` and call F-systems the systems (9.3) such that S = T = J = 0 and C-systems all
the other ones.

F-systems are flat ; this was proved in Chapter 8. This paper adds that they admit a Monge
parameterization of order (1,2), but does not prove differential flatness of any system not known
to be flat up to now : C-systems are not believed to be flat. It does not either prove non-flatness
of any system : it only conjectures that no C-system admits a parameterization, and hence none
of them is flat. To the best of our knowledge, no one knows whether simple systems like (9.14-b)
or (9.14-c) are flat of not.

The first contribution of the paper is to prove that a C-system admits a parameterization
of order (k, `) if and only if the PDEs E γ,δk,` , for suitable γ, δ, admit a “regular solution” p. The

second contribution is to prove that, for any γ, δ, there is no regular solution to E γ,δk,` if either
k ≤ 2 or k = ` = 3 (this does not contradict existence of parameterizations of order (1, 2) for
F-systems : these do not “derive from” a solution of these PDEs). We guess, in Conjecture 9.3.8,
that even for higher values of the integers k, `, none of these PDEs have any regular solution ;
this would imply that C-systems are not flat.

Besides recovering the results from Chapter 8 with far more natural and elementary argu-
ments, we believe that some insight was gained on Monge parameterizations of any order for
“C-systems”, by reducing non-parameterizability to non-existence of solutions to a systems of
PDEs that can easily be written for any k, `.

The main perspective raised by this paper is to prove Conjecture 9.3.8. The only theoreti-
cal difficulty is, in fact, that no a priori bound on the integers k, ` is known. Indeed, as explained
in Section 9.3.3, for fixed k, `, γ, δ, it amounts to a classical problem. To prove Proposition 9.3.9,
we solved, in a synthetic manner, that problem for k ≤ 2 or k = ` = 3 and arbitrary γ and δ. We
lack a non-finite argument, or a better understanding of the structure, to go to arbitrary k, `.
Let us comment more on the (non trivial) case where γ and δ are polynomials, for instance the
very simple ones in (9.49). For fixed k, `, the question can be formulated in terms of differential
polynomial rings : does the differential ideal generated by left-hand sides of the equations (9.49)
contain the polynomials EDip ? Differential elimination (see [86] or the recent survey [49]) is
relevant here ; finite algorithms have been already implemented in computer algebra. Although
we have not yet succeeded (because of complexity) in carrying out these computations, even on
example (9.49) for (k, `) = (3, 4), and although it will certainly not provide a bound on k, `, we
do believe that computer algebra is a considerable potential help.

Another perspective is to enlarge the present approach to higher dimensional control
systems. For instance, what would play the role of our system of PDEs E γ,δk,` when, instead
of (9.3), one considers a single relation between more than three scalar functions of time (this
captures, instead of (9.1), control affine systems with n states and 2 controls, n > 4) ? We have
very little insight on this question : the present paper strongly takes advantage of the special
structure inherent to our small dimension ; the situation could be far more complex.



9.9. PROOFS 231

9.9 Proofs

Proof of Lemma 9.3.6

For this proof only, the notation Fi,j (0 ≤ i ≤ k, 0 ≤ j ≤ `) stands either for the following
family of i+ j vectors in RK+2 or for the corresponding (K + 2)× (i+ j) matrix :

Fi,j =
(

∂π

∂u(k−i) , . . . ,
∂π

∂u(k−1)
,

∂π

∂v(`−j) , . . . ,
∂π

∂v(`−1)

)
with the convention that if i or j is zero the corresponding list is empty ; Fi,j depends on
u, . . . , u(k−1), v, . . ., v(`−1), x, . . . , x(K). Let us first prove that, at least outside a closed subset of
empty interior,

rankFk,` = K + 2 . (9.69)

Indeed, if it is smaller at all points of O × RK , then, around points (they form an open dense
set) where it is locally constant, there is at least one function R such that a non-trivial identity
R(px, p, . . . , DKp, x, . . . , x(K)) = 0 holds and the partial derivative of R with respect to at least
one of its K + 2 first arguments is nonzero. Since p is K-regular, applying E to this relation,
shows that R does not depend on DKp, and hence does not depend on x(K) either. Then,
applying ED, ED2 and so on, and using the fact that, according to (9.21), Dpx is a function
of px, p,Dp, x, ẋ, we get finally a relation R(px, p, x) = 0 with (Rpx , Rp) 6= (0, 0). Differentiating
with respect to u(k−1), one obtains Rpxpxu(k−1) + Rppu(k−1) = 0 ; hence, from the first relation
in (9.16-c), Rpx 6= 0, and the relation R(px, p, x) = 0 implies, in a neighborhood of almost any
point, px = f(p, x) for some smooth function f . From Lemma 9.3.5, this would contradict the
fact that the solution p is K-regular. This proves (9.69).

Let now Ws (1 ≤ s ≤ K + 2) be the set of pairs (i, j) such that i + j = s and the rank of
Fi,j is s at least at one point in O × RK , i.e. one of the s × s minors of Fi,j is a nonzero real
analytic function on O × RK . The lemma states that WK+2 is nonempty ; in order to prove it
by contradiction, suppose that WK+2 = ∅ and let s be the smallest s such that Ws = ∅. From
(9.16-c), W1 contains (1, 0), hence 2 ≤ s ≤ K + 2 < k + ` + 1. Take (i′, j′) in Ws−1 ; Fi′,j′ has
rank i′+j′ (i.e. is made of i′+j′ linearly independent vectors) on an open dense set A ⊂ O×RK .
Let the i1 ≤ k and j1 ≤ ` be the largest such that Fi1,j′ and Fi′,j1 have rank s− 1 on A. On the
one hand, since i′ + j′ = s− 1 < k + `, one has either i′ < k or j′ < `. On the other hand since
Ws is empty, it contains neither (i′ + 1, j′) nor (i′, j′ + 1) ; hence the rank of Fi′+1,j′ is less than
i′ + j′ + 1 if i′ < k, and so is the rank of Fi′,j′+1 if j′ < `.

To sum up, the following implications hold : i′ < k ⇒ i1 ≥ i′+ 1 and j′ < `⇒ j1 ≥ j′+ 1 .
From (9.69), one has either i1 < k or j1 < `. Possibly exchanging u and v, assume i1 < k ;
all the vectors ∂π/∂u(k−i1), . . . , ∂π/∂u(k−i′+1), ∂π/∂u(`−j1), . . . , ∂π/∂u(`−j′+1) are then linear
combinations of the vectors in Fi′,j′ , while ∂π/∂u(k−i1−1) is not :

rankFi′,j′ = i′ + j′ , rankFi1,j1 = i′ + j′ , rank
(

∂π

∂u(k−i1−1)
, Fi′,j′

)
= i′ + j′ + 1 (9.70)

on an open dense subset of O × RK , that we still call A although it could be smaller. In
a neighborhood of any point in this set, one can, from the third relation, apply the inverse
function theorem and obtain, for an open Ω ⊂ Rk+`+K+1, a map Ω → Ri′+j′+1 that expresses
u(k−i′), . . . , u(k−1), v(`−j′), . . . , v(`−1) and u(k−i1−1) as functions of

u, . . . , u(k−i1−2), u(k−i1), . . . , u(k−i′−1), v, . . . , v(`−j′−1), x, . . . , x(K)
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and i′+j′+1 functions chosen among px, p,Dp, . . . ,DKp (i′+j′+1 columns defining an invertible
minor in

(
∂π/∂u(k−i1−1) , Fi′,j′

)
). Focusing on u(k−i1−1), one has

u(k−i1−1) = B
(
u, . . . , u(k−i1−2), u(k−i1), . . . , u(k−i′−1), v, . . . , v(`−j′−1), x, . . . , x(K), px, p, . . . , D

Kp
)

(9.71)
where B is some smooth function of k + ` + 2K + 2 − i′ − j′ variables and we have written all
the functions px, p,Dp, . . . ,DK−1p although B really depends only on i′ + j′ + 1 of them.

Differentiating (9.71) with respect to u(k−i′), . . . , u(k−1), v(`−j′), . . . , v(`−1), one has, with ob-
vious matrix notation,

(
∂B
∂px

∂B
∂p · · · ∂B

∂DK−1p

)
Fi′,j′ = 0, where the right-hand side is a line-vector

of dimension i′ + j′ ; from (9.70), this implies(
∂B

∂px

∂B

∂p
· · · ∂B

∂DK−1p

)
Fi1,j1 = 0 , (9.72)

where the right-hand side is a now a bigger line-vector of dimension i1 +j1. Differentiating (9.71)
with respect to u(k−i1), . . . , u(k−i′−1), v(`−j1), . . . , v(`−j′−1) and using (9.72) yields that B does
not depend on its arguments u(k−i1), . . . , u(k−i′−1) and v(`−j1), . . . , v(`−j′−1). B cannot depend
on DKp either because EDKp 6= 0 and all the other arguments of B are constant along E ; then
it cannot depend on x(K) either because x(K) appears in no other argument ; (9.71) becomes

u(k−i1−1) = B
(
u, . . . , u(k−i1−2), v, . . . , v(`−j1−1), x, . . . , x(K−1), px, p, . . . , D

K−1p
)
.

Applying D, using (9.21) and substituting u(k−i1−1) from above, one gets, from some smooth C,

u(k−i1) = C
(
u, . . . , u(k−i1−2), v, . . . , v(`−j1)︸ ︷︷ ︸

rm empty if j1=`

, x, . . . , x(K), px, p, . . . , D
Kp
)
. (9.73)

Differentiating with respect to u(k−i′), . . . , u(k−1), v(`−j′), . . . , v(`−1) yields(
∂C

∂px

∂C

∂p
· · · ∂C

∂DK−1p

)
Fi′,j′ = 0 ,

the right-hand side being a line-vector of dimension i′ + j′. From the first two relations in
(9.70), ∂π/∂u(k−i1−1) is a linear combination of the columns of Fi′,j′ , hence one also has(
∂C

∂px

∂C

∂p
· · · ∂C

∂DK−1p

)
∂π

∂u(k−i1−1)
= 0 .

This implies that the derivative of the right-hand side of (9.73) with respect to u(k−i1−1) is zero.
This is absurd.

Proof of Lemmas 9.3.10, 9.3.11 and 9.3.12

We need some notations and preliminaries. With F , E and τ defined in (9.15) and (9.17),
define the vector fields

X =
∂

∂x
, Y = F + τ

∂

∂u(k−1)
(9.74)

X1 = [X,Y ], X2 = [X1, Y ] , E2 = [E, Y ], E3 = [E2, Y ] . (9.75)

Then (9.20) obviously implies

Y p = γ(x, p, px, px,x) , Y px = δ(x, p, px, px,x) , Xσ = 0 , (9.76)
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and a simple computation yields (we recall E from (9.17)) :

X1 = τx
∂

∂u(k−1) , X2 = τx
∂

∂u(k−2) + (· · · ) ∂
∂u(k−1) , (9.77)

E = ∂
∂v(`−1) + σ ∂

∂u(k−1) , E2 = ∂
∂v(`−2) + σ ∂

∂u(k−2) + (· · · ) ∂
∂u(k−1) ,

E3 = ∂
∂v(`−3) + σ ∂

∂u(k−3) + (· · · ) ∂
∂u(k−2) + (· · · ) ∂

∂u(k−1) .

The vector field X1 and X2 are linearly independent because τx 6= 0, see (9.20). Computing the
following brackets and decomposing on X1 and X2, one gets

[X,X1] = λX1 , [X1, X2] = λ′X1 + λ′′X2 , (9.78)
[X,E] = 0 , [X,E2] = µX1 , [X,E3] = µ′X1 + µ′′X2 , [E2, X2] = ν ′X1 + ν ′′X2 .(9.79)

for some functions λ, λ′, λ′′, µ, µ′, µ′′, ν ′, ν ′′.

Proof of Lemma 9.3.10. From (9.16-c), y = p(u, . . . , u(k−1), x, v, . . . , v(`−1)) defines local coordi-
nates u, . . . u(k−2), y, x, v, . . . , v(`−1). Composing px by the inverse of this change of coordinates,
there is a function α of k+ `+ 1 variables such that px = α(u, . . . , u(k−2), p , x, . . . , v(`−1)) iden-
tically. Since Ep = Epx = 0 (see (9.20)), applying E to both sides of this identity yields that
α does not depend on its argument v(`−1). Similarly, if k ≥ 2, differentiating both sides of the
same identity with respect to u(k−1) and u(k−2), the fact that the determinant in the lemma is
zero implies that α does not depend on its argument u(k−2). To sum up, p and px satisfy an
identity

px = α(u, . . . , u(k−3), p , x, v, . . . , v(`−2)),

where the first list is empty if k = 1 or k = 2. Now define two integers m ≤ k−3 and n ≤ `−2 as
the smallest such that α depends on u, . . . , u(m), x, y, v, . . . , v(n), with the convention that m < 0
if k = 1, k = 2, or α depends on none of the variables u, . . . , u(k−3) and n < 0 if α depends on
none of the variables v, . . . , v(`−2).

Applying Y to both sides of the above identity yields

Y px = αy Y p+
m∑
i=0

u(i+1)αu(i) +
n∑
i=0

v(i+1)αv(i) ,

where, if m < 0 or n < 0, the corresponding sum is empty. Using (9.76), since pxx = αx + ααy,
one can replace Y p with γ(x, y, α, αx + ααy) and Y px with δ(x, y, α, αx + ααy) in the above
equation, where all terms except the last one of each non-empty sum therefore depend on
u, . . . , u(m), x, y, v, . . . , v(n) only. Differentiating with respect to u(m+1) and v(n+1) yields αu(m) =
αv(n) = 0, which is possible only if m < 0 and n < 0, hence the lemma.

Proof of Lemma 9.3.11. From (9.38), setting

y = p(u, . . . , u(k−1), x, v, . . . , v(`−1)), z = px(u, . . . , u(k−1), x, v, . . . , v(`−1)), (9.80)

one gets some local coordinates (u, . . . , u(k−3), x, y, z, v, . . . , v(`−1)). In these coordinates, the
vector fields X and Y defined by (9.74) have the following expressions, where χ and α are some
functions, to be studied further :

X =
∂

∂x
+ z

∂

∂y
+ α

∂

∂z
, (9.81)

Y = γ
∂

∂y
+ δ

∂

∂z
+ χ

∂

∂u(k−3)
+
k−4∑
i=0

u(i+1) ∂

∂u(i)
+

`−1∑
i=0

v(i+1) ∂

∂v(i)
. (9.82)



234 CHAPITRE 9. “FLATNESS AND MONGE PARAMETERIZATION...”

In the expression of Y , the third term is zero if k = 2, the fourth term (
∑k−4

i=0 · · · ) is zero if
k = 2 or k = 3, and the notations γ and δ are slightly abusive : γ stands for the function

(u, . . . , u(k−3), x, y, z, v, . . . , v(`−1)) 7→ γ(x, y, z, α(u, . . . , u(k−3), x, y, z, v, . . . , v(`−1))) ,

and the same for δ. With the same abuse of notations, (9.16-e) reads

Xγ − δ 6= 0. (9.83)

The equalities (σ ∂
∂u(k−1) + ∂

∂v(`−1) )u(k−2) = ∂
∂xu

(k−2) = ∂
∂u(k−1)u

(k−2) = 0 are obvious in the
original coordinates. Since the inverse of the change of coordinates (9.80) is given by

u(k−2) = χ(u, . . . , u(k−3), x, y, z, v, . . . , v(`−1)), u(k−1) = Y χ(u, . . . , u(k−3), x, y, z, v, . . . , v(`−1)),

and E, X and X1 are given by (9.77), those equalities imply

Eχ = Xχ = X 1 χ = 0 . (9.84)

Then, from (9.75), (9.81) and (9.82),

X1 = (Xγ − δ) ∂

∂y
+ (Xδ − Y α)

∂

∂z
, (9.85)

[X,X1] =
(
X2γ − 2Xδ − Y α) ∂

∂y
+
(
X2δ −XY α−X1α

) ∂
∂z

. (9.86)

With these expressions of X and X1, the first relation in (9.78) implies :∣∣∣∣ Xγ − δ X2γ − 2Xδ + Y α
Xδ − Y α X2δ −XY α−X1α

∣∣∣∣ = 0 . (9.87)

The definition of α implies Xz = α. In the original coordinates, this translates into the
identity pxx = α(u, . . . , u(k−3), x, p, px, v, . . . , v

(`−1)). Since Ep = Epx = Epx,x = 0 (see (9.20)),
applying E to both sides of this identity yields that α does not depend on its argument v(`−1).
Also, if k ≥ 3, differentiating both sides with respect to u(k−1), u(k−2) and u(k−3), we obtain
that the determinant (9.37) is zero if and only if α does not depend on its argument u(k−3). To
sum up, under the assumptions of the lemma,

α depends on u, . . . , u(k−4), x, y, z, v, . . . , v(`−2) only (9.88)

with the convention that the first list is empty if k = 2 or k = 3. Now define two integers
m ≤ k − 4 and n ≤ ` − 2 as the smallest such that α depends on u, . . . , u(m), x, y, v, . . . , v(n),
with the convention that m < 0 if k = 2, k = 3, or α depends on none of the variables
u, . . . , u(k−4), and n < 0 if α depends on none of the variables v, . . . , v(`−2). We have

m ≥ 0 ⇒ αu(m) 6= 0 , n ≥ 0 ⇒ αv(n) 6= 0 . (9.89)

Since m is no larger that k − 4, χ does not appear in the expression of Y α :

Y α = γαy + δαz +
m∑
i=0

u(i+1)αu(i) +
n∑
i=0

v(i+1)αv(i) (9.90)

where the first (or second) sum is empty if m (or n) is negative.
In the left-hand side of (9.87), all the terms depend only on u, . . . , u(m), x, y, z, v, . . . , v(n),

except Y α, XY α and X1α that depend on u(m+1) if m ≥ 0 or on v(n+1) if n ≥ 0 (see above) ; the
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determinant is a polynomial of degree two with respect to u(m+1) and v(n+1) with coefficients
depending on u, . . . , u(m), x, y, z, v, . . . , v(n) only, and the term of degree two, coming from (Y α)2,
is (

αu(m)u(m+1) + αv(n)v(n+1)
)2

.

Hence (9.87) implies αu(m) = αv(n) = 0 and, from (9.89), negativity of m and n are negative.
By definition of these integers, this implies that α depends on (x, y, z) only : in the original
coordinates, one has pxx = α(x, p, px).

Before proving Lemma 9.3.12, we need to extract more information from the previous proof :

Lemma 9.9.1. Assume, as in Lemma 9.3.11, that p is a solution of E γ,δk,` satisfying (9.38), but
assume also that ` ≥ k ≥ 3 and the determinant (9.37) is nonzero. Then [X,E2] = [X,E3] = 0.

Proof. Starting as in the proof of Lemma 9.3.11, one does not obtain (9.88) but, since (9.37) is
nonzero,

α depends on u, . . . , u(k−4), x, y, z, v, . . . , v(`−2) and αu(k−3) 6= 0 . (9.91)

Since Ep = Epx = 0, one has E = ∂/∂v(`−1) in these coordinates. The first equation in (9.84)
then reads χv(`−1) = 0, and (9.75) and (9.82) yield

E2 =
∂

∂v(`−2)
, [X,E2] = −αv(`−2)

∂

∂z
.

Since [X,E2] = µX1 (see (9.79)), relations (9.85) and (9.83) imply that αv(`−2) , µ, and the
bracket [X,E2] are zero, and prove the first part of the lemma. Let us turn to [X,E3] : from
(9.75) and (9.82), one gets, since E2 and X commute, and Xχ = 0,

E3 = χv(`−2)

∂

∂u(k−3)
+

∂

∂v(`−3)
, [X,E3] = −(E3α)

∂

∂z
. (9.92)

In order to prove that E3α = 0, let us examine equation (9.87). For short, we use the symbol
O to denote any function that depends on u, . . . , u(k−3), x, y, z, v, . . . , v(`−3) only. For instance,
Xγ − δ = O, and all terms in the determinant are of this nature, except the following three :

Y α = χαu(k−3) + v(`−2)αv(`−3) +O,
XY α = χXαu(k−3) + v(`−2)Xαv(`−3) +O,
X1α = −αz

(
χαu(k−3) + v(`−2)αv(`−3)

)
+O

(we used Xχ = 0). Setting ζ = χαu(k−3) + v(`−2)αv(`−3) , one has

Xζ =
Xαu(k−3)

αu(k−3)

ζ + b v(`−2) with b = Xαv(`−3) − αv(`−3)

Xαu(k−3)

αu(k−3)

, (9.93)

and equation (9.87) reads

ζ2 +O ζ − (Xγ − δ) b v(`−2) +O = 0 . (9.94)

Differentiating with respect to X and using (9.93) yields

2
Xαu(k−3)

αu(k−3)

ζ2 +
(

2b v(`−2) +O
)
ζ +O v(`−2) +O = 0 .
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Then, eliminating ζ between these two polynomials yields the resultant∣∣∣∣∣∣∣∣∣∣
1 O −(Xγ − δ)b v(`−2) +O 0
0 1 O −(Xγ − δ)b v(`−2) +O

2
Xα

u(k−3)

α
u(k−3)

2b v(`−2) +O O v(`−2) +O 0

0 2
Xα

u(k−3)

α
u(k−3)

2b v(`−2) +O O v(`−2) +O

∣∣∣∣∣∣∣∣∣∣
= 0 .

This is a polynomial of degree at most three with respect to v(`−2), the coefficient of (v(`−2))3

being −4b3(Xγ − δ). Hence b = 0 and, from (9.94), ζ does not depend on v(`−2). This implies
E3α = 0 because, from (9.92) and the definition of ζ, one has ζv(`−2) = E3α.

Proof of Lemma 9.3.12. The independent variables in E γ,δ3,3 are u, u̇, ü, x, v, v̇, v̈. Since the deter-
minant (9.37) is nonzero, one defines local coordinates (x, y, z, w, v, v̇, v̈) by

y = p(u, u̇, ü, x, v, v̇, v̈), z = px(u, u̇, ü, x, v, v̇, v̈), w = pxx(u, u̇, ü, x, v, v̇, v̈). (9.95)

In these coordinates, X and Y , defined in (9.74), have the following expressions, with ψ and α
some functions to be studied further :

X =
∂

∂x
+ z

∂

∂y
+ w

∂

∂z
+ α

∂

∂w
, (9.96)

Y = γ
∂

∂y
+ δ

∂

∂z
+ ψ

∂

∂w
+ v̇

∂

∂v
+ v̈

∂

∂v̇
. (9.97)

Then, using, for short, the following notation Γ :

Γ = Xγ − δ 6= 0 , (9.98)

one has

X1 = Γ
∂

∂y
+ (Xδ − ψ)

∂

∂z
+ (Xψ − Y α)

∂

∂w
, (9.99)

[X,X1] = (XΓ−Xδ + ψ)
∂

∂y
+
(
X2δ − 2Xψ + Y α

) ∂
∂z

+
(
X2ψ −XY α−X1α

) ∂

∂w
.(9.100)

Also,

E =
∂

∂v̈
, E2 = [E1, Y ] = ψv̈

∂

∂w
+

∂

∂v̇
, [X,E2] = ψv̈

∂

∂z
+ (Xψu(k−1) − E2α)

∂

∂w

but, from Lemma 9.9.1, one has [X,E2] = 0, hence ψv̈ = 0, E2 = ∂/∂v̇ and αv̇ = 0. Then

E3 = [
∂

∂v̇
, Y ] = ψv̇

∂

∂w
+

∂

∂v
, [X,E3] = ψv̇

∂

∂z
+ (Xψv̇ − E3α)

∂

∂w
,

but, from Lemma 9.9.1, one has [X,E3] = 0, hence ψv̇ = 0, E3 = ∂/∂v and αv = 0. To sum up,

E =
∂

∂v̈
, E2 =

∂

∂v̇
, E3 =

∂

∂v
, (9.101)

α depends at most on (x, y, z, w) only and ψ on (x, y, z, w, v).
Notation : until the end of this proof, O stands for any function of x, y, z, w only. For instance,
α = O, γ = O, δ = O, Γ = O, XΓ = O , Xδ = O and X2δ = O.
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From (9.78), (9.99) and (9.100), one has
∣∣∣∣ Γ Xδ − ψ
XΓ−Xδ + ψ X2δ − 2Xψ + Y α

∣∣∣∣ = 0 . Hence

Xψ =
1

2Γ
ψ2 +Oψ +O . (9.102)

We now write the expression (9.99) of X1 as

X1 = X0
1 + ψX1

1 + ψ2X2
1 (9.103)

with X0
1 = Γ

∂

∂y
+O ∂

∂z
+O ∂

∂w
, X1

1 = − ∂

∂z
+O ∂

∂w
, X2

1 =
1

2Γ
∂

∂w
. (9.104)

Note that X0
1 , X1

1 and X2
1 are vector fields in the variables x, y, z, w only. Now define :

U = −X1
1 −

ψ

Γ
∂

∂w
=

∂

∂z
+
(
O − ψ

Γ

)
∂

∂w
, (9.105)

V = X0
1 − ψ2X2

1 = Γ
∂

∂y
+O ∂

∂z
+
(
O − ψ2

2Γ

)
∂

∂w
, (9.106)

so that
X1 = V − ψU (9.107)

and, from (9.97) and (9.103) one deduces the following expression of X2 = [X1, Y ] :

X2 =
(
Y ψ
)
U +

(
X1ψ

) ∂

∂w
+ ψ3 Γw

2Γ2

∂

∂w
+ ψ2

(
γw
2Γ

∂

∂y
+O ∂

∂z
+O ∂

∂w

)
+ ψX1

2 +X0
2 (9.108)

where X1
2 and X0

2 are two vector fields in the variables x, y, z, w only.
This formula and (9.101) imply [E2, X2] =

(
Y ψ
)
v̇
U = ψv U ; hence, from the last relation in

(9.79), either ψv is identically zero or U is a linear combination of X1 and X2. We assume, until
the end of the proof, that U is a linear combination of X1 and X2. This implies, using (9.107),
that X2 and X1 are linear combinations of U and V ; hence U, V is another basis for X1, X2.
Also, from (9.78) [U, V ] must be a linear combination of U and V . From (9.105) and (9.106),

[U, V ] =
X1ψ

Γ
∂

∂w
− ψ2O ∂

∂w
+ ψW 1 +W 0

where W 1 and W 0 are two vector fields in the variables x, y, z, w only, and, finally, with Z1 and
Z0 two other vector fields in the variables x, y, z, w only, one has, from (9.108)

X2 − (Yψ)U − Γ [U, V ] = ψ3 Γw
2Γ2

∂

∂w
+ ψ2

(
γw
2Γ

∂

∂y
+O ∂

∂z
+O ∂

∂w

)
+ ψ Z1 + Z0 .

This vector field is also a linear combination of U and V . Computing the determinant in the
basis ∂/∂y, ∂/∂z, ∂/∂w, one has, using (9.105) and (9.106),

det
(
U, V, X2 − (Yψ)U − Γ[U, V ]

)
=
γw
Γ3
ψ4 +Oψ3 +Oψ2 +Oψ +O = 0 .

It is assumed from the definition of E γ,δk,` that the partial derivative of γ with respect to its
fourth argument is nonzero ; hence γw 6= 0 and the above polynomial of degree 4 with respect
to ψ is nontrivial ; its coefficients depend on x, y, z, w only, hence ψ cannot depend on v.

We have proved that, in any case, both α and ψ depend on x, y, z, w only, and this yields
the desired identities in the lemma.
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A technical lemma

Lemma 9.9.2. Let p be a smooth function of u, . . . , u(k−1), x, v, . . . , v(`−1), r a smooth function
of u, . . . , u(k−1), x, v, . . . , v(`), with rv(`) 6= 0, and f a smooth function of four variables such that

k−2∑
i=0

u(i+1)pu(i) + rpu(k−1) +
`−1∑
i=0

v(i+1)pv(i) = f(x, p, px, pxx) (9.109)

where, by convention, rpu(k−1) is zero if k = 0 and the first (resp. last) sum is zero if k ≤ 1
(resp. ` = 0). Then either p depends on x only or

k ≥ 1 , ` ≥ 1 , pu(k−1) 6= 0 , pv(`−1) 6= 0 . (9.110)

Proof. Let m ≤ k− 1 and n ≤ `− 1 be the smallest integers such that p depends on u, . . . , u(m),
x, v, . . . , v(n) ; if p depends on none of the variables u, . . . , u(k−1) (or v, . . . , v(`−1)), take m < 0
(or n < 0). Then pu(m) 6= 0 if m ≥ 0 and pv(n) 6= 0 if n ≥ 0.

The lemma states that either m < 0 and n < 0 or k ≥ 1, ` ≥ 1 and (m,n) = (k − 1, `− 1).
This is indeed true :
- if m = k − 1 and k ≥ 1 then n = ` − 1 and ` ≥ 1 because if not, differentiating both sides in
(9.109) with respect to v(`) would yield rv(`)pu(k−1) = 0, but the lemma assumes that rv(`) 6= 0,
- if m < k − 1 or m = 0, (9.109) becomes :

∑m
i=0 u

(i+1)pu(i) +
∑n

i=0 v
(i+1)pv(i) = f(x, p, px, pxx) ;

if m ≥ 0, differentiating with respect to u(m+1) yields pu(m) = 0 and if n ≥ 0, differentiating
with respect to u(m+1) yields pv(n) = 0 ; hence m and n must both be negative.
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[5] V. I. Arnold. Equations différentielles Ordinaires. MIR, 3rd edition, 1974.

[6] V. I. Arnold. Chapitres supplémentaires de la théorie des equations différentielles ordi-
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[90] W. Rudin. Analyse réelle et complexe. Masson, Paris, 1975.

[91] W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics.
McGraw-Hill Inc., New York, second edition, 1991.

[92] D. J. Saunders. The Geometry of Jet Bundles, volume 142 of London Math. Soc. Lect.
Notes. Cambridge University Press, Cambridge, New-York, Melbourne, 1989.

[93] W. Shadwick. Absolute equivalence and dynamic feedback linearization. Syst. & Control
Lett., 15 :35–39, 1990.

[94] W. F. Shadwick and W. M. Sluis. Dynamic feedback for classical geometries. In Differen-
tial geometry and mathematical physics (Vancouver, BC, 1993), volume 170 of Contemp.
Math., pages 207–213. Amer. Math. Soc., Providence (USA), 1994.
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