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Models vs. Systems

« Equivalence et linéarisation des | systémes | de contrdle »

System: the real physical plant.

Model: a mathematical object, “representing” the system.

Equivalence, transformations, classification, linearization...
apply to models.

Class of modaels:

continuous-time finite—dimensiona|>< Underdetermined
control systems ODEs
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Ordinary differential equations (ODEs)

F smooth,

: _ n
Fl,x)=0  xeR real analytic

Determined Under-determined [u: part of x]

x = f(x) x=Ff(x,u) xeR"ueR™ (¥
Solution depends on Solution depends on O<m<n
d constants (x(0)). e m functions of time u(.)

Flow: x(0) — x(t). e and n constants x(0).

“Set of solutions” for under-determined ODEs
B = set of all (germs of) t — (x(t), u(t)) solution of (*).

(behavior)
Trivial equation: no relation (F = 0).
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What is a control system (model) 7

x=1f(x,u), y=h(x) — —
(In the sequel, y = x..)

e Input-output operator, transfer function (linear).
e State-space representation.

e Differential equations with control
Calculus of variations, functional analysis.

e Dynamical systems — dynamical poly-systems,
families of vector fields, controllability.

e “Behavior” = collection of allowed signals

e Differentially algebraic extension of a purely transcendental

differential field.
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Our purpose

Goal

e Decide when two models “look alike”,
or can be transformed into one another.

Motivation

e Mathematical objects are born to be classified !

e Modeling. Help in choosing the right model to render
observations.

e Control. A control for X may carry on to X',

. Iy - K
t

e

M
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@® Equivalence
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Equivalence

[E. Cartan, “sur |'équivalence absolue...”, 1914]:

La premiére idée qui vient & 'esprit, et
qu’il s'agira de préciser, est la suivanle : deux systemes seront
dits « absolument équivalents » lorsqu’'on pourra établir une
correspondance univoque (au moins dans un champ fonctionnel
suffisamment petit) entre les solutions de ces deux systémes.

(¥) x=fFf(x,u), xeR", ueR™ B ={solutions}
(¥) z=g(z,v), z€R",veR"™, €= {solutions}

Definition n 3

Two systems are “equivalent” iff
their (germs of) solutions are in The nature of ®
one-to-one correspondence. matters a lot Il
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Linear controllable systems

Linear system (X): x = Ax + Bu. Transformation{ i ?;_F o
yields (') : 7 = P(A— BQ 'K)P~ 'z + PBQ !v. =

o - (t — (x(t), u(t))) — (t — (Px(t), Kx(t) + QU(t)))

Kronecker indices for ¥, or matrix pencil A, B.There are P, Q, K

such that X’ reads 0 1 (0) 0
Zo=AoZg, Z = Zi+ | , k>1

0) 1 0

0 1

with z = (Zg,Z1 ... Zm), Zx € R, g+ -+ + rm = n.

» Y is controllable iff p = 0 (no Zg).

. .. ) -1
Linear contr?® ~ trivial. 2, 1=z, ... z,Erﬁ )=z, z,Ef’{): V.

“Prolongation” of a trivial system.
Triviality is as important as linearity.

ble
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Nature of transformations

n 3 Two systems are equivalent iff their solutions
are in one-to-one correspondence.
Merely bijection? This distinguishes control systems (m # 0)

from systems with no control (m = 0) !
Functional transformations... continuity? smoothness?

Point-wise transformations: B *, e
® induced by a point transformation ¢
on state and input.

me(x().u()) = (x(t), u(t))

el Lme
Rn+m i) Rn’—|—m’

3I€n bjtvmve“en---” han” B and €, and B = ¢
an smaller than an an
PP M M
“larger than” R"™™ and R™ M e | & LT
X —
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© Static feedback
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Point-wise transformations

() x = f(x,u), x€e€R" ue R™,
() z=g(z,v), zeR", veR™,
(x(t), u(t)) is a solution of (X)

¢ conjugates A if and only if
() to () } - (z(t), v(t)) = ¢(x(¢), u(t))

is a solution of (¥')

Proposition

If ¢ is a homeomorphism that conjugates X to ¥/,
e ¢ must be triangular:
o(x,u) = (z,v) = (¢1(x), ¢u(x, u)),
e n=n"and m=m'.
e if ¢ is a diffeomorphism, conjugacy is equivalent to

¢I/(X)f(xau) = g(¢1(X),¢]I(X,U))
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Static feedback

e Control point of view:

<
I
=
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X
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e Invariants for smooth static feedback: a huge literature.
[Brockett, Jakubczyk, Bonnard, Kupka, Tchon, Respondek,

Zhitomirskii, Zelenko ... ]
This is a very fine classification, usually no object is stable :
equivalence classes have infinite co-dimension.
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@ Local linearisation (smooth, topological..)
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Topological vs. smooth linearization

x =f(x,u) = Ax+ Bu+e(x,u) ¢ of order 2 around (0,0).
Local behavior around (0,0) when A, B is controllable.

Engineering knowledge: If A, B controllable; one does not need €.

Nonlinear modelling: Is a nonlinear model necessary, locally?

Natural question: Is the nonlinear system/model transformable into
its linear approximation?

Smooth feedback linearization: A nonlinear system can very rarely
be transformed to a linear one by smooth feedback.

Grobman-Hartman theorem: Generic systems without control are
topologically linearizable...  Control systems?

Topological equivalence for control systems: ¢ homeomorphism.

Theorem (Baratchart, JBP)

Topologically linearizable control systems are smoothly linearizable.

(almost smoothly, in fact)
15 /32

Open questions

On topological vs. smooth equivalence. Does the result hold for
equivalence between general control systems (e.g.
whose linear approximation is controllable) ?

On “nonlinear” local phenomena. Does a nonlinear system locally
“look like" its linear approximation when controllable 7
Any qualitative phenomena 7
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A Grobman-Hartman theorem for control systems

Y x=f(x,u)=Ax+Bu+e(x,u) ¥ :z=Az+ By
Remark: Grobman-Hartman theorem is about conjugating flows.

Then define, from a control system ¥,
e U some space of functions 7 — u(7) € R™ (controls),
o [;: B — R"<U
(x().u0) = (<(B.01) () =u(e 7))
There is a flow (x7)7er on R"<U
such that xy7 oy =M1 for all T;t, i.e. [Colonius-Kliemann]

XT(x(t),ut () = (x(t+ T),u7()).

Theorem (Baratchart, Chyba, JBP) q)

B — €
There exists ¢ that conjugates, locally around [1; | 1T
zero, ¥ to ¥, and even to z = Az (+0v). Rl -2 ROV

» Does not yield a compensator.  » Meaning for modelling?
18/ 32

@ Dynamic equivalence
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(Endogenous) dynamic (feedback) transformations

)

n,m | x=f(x,u) B — C z=g(z,u)| n',m
> M | 1 My Y/
x7? ﬂ 27 <« jet spaces

Define NX : B — % by

ME(x() u()) = (x(8) &ttt u(t), 0(2), - .., ul(2))

Dynamic transformations: ® such that, for some K, K’, ¢ and 1),

B 2 e 3 & ¢
Jh | m . om L
gk 2 R x R™ R"x R™ L gk
®
B — C
P ¢> is invertible,
S I e e
or (infinite jets) Pl . L Ng 6 and 1 are not.
goo 3700

—

» Integers K, K’ are called the order of ®.
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(Endogenous) dynamic (feedback) transformations I

Dynamic equivalence

N\ (2v) = bl u,.. w0y [
- u — v zy
x = f(x,u) i - ; 5 — g(z.v)
: (x,u) = 9(z, V,...,V(K/)) :
Flatness: X is flat if this holds with X’ trivial:
X v=o¢(x,u,...,ur) v
Z: u — v Zy
x=flxu) : — v no relation

(s u) = (v, ..., V1K)

[Fliess,Lévine,Martin,Rouchon]
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(Endogenous) dynamic (feedback) transformations Il

Dynamic equivalence
e x and z need not have the same dimension.
Example (adding an integrator):
2= (x,u), v = i, g(z,v) = (£(z),v)
e Implementable via a compensator:

L. Z
u
2 x
'=a(é’;,x, u)
u=b(€,x,u)

4

is ¥’ (modulo “adding integrators”).
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Necessary conditions for dynamic equivalence

e Dynamic equivalence preserves m (= number of inputs, or of
arbitrary functions of time defining the “general solution”).

e A flat system must be ruled [Rouchon], [Sluis].
Definition (ruled system)

Y is ruled iff each X, = {f(x,u), v € R™} is a ruled
submanifold of (the tangent space at x to) R".

Theorem (JBP)

If ¥ and X' are dynamic equivalent and n = n’, then, locally,
e either they are static equivalent,
e or they are both ruled.

If n > n', ¥ must be ruled.
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Deciding dynamic equivalence

Beyond these necessary conditions, how to decide whether two
systems are dynamic equivalent, or whether one system is flat ?
e No a priori bound on K is known.
e For fixed K, conditions on ¢ — PDEs — in principle one may
decide in finitely many operations on existence of ¢,
hence on “K-equivalence’, or “K-flatness”.

D. Avanessoff, JBP (n,m) = (3,2)
Single relation x3 = h(x1, x2, x3, X1, x2). Conditions for “3-flatness”

e Difficult question: how do the “K + 1-conditions” project onto
the “K-conditions” 7

e Another possibility: look for objects (transformations)
depending on infinitely many variables and try afterwards to
characterize finiteness.

[Baratchart, Avanessoff, JBP]: “very formal integrability”.
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Open questions

e How to bound a priori the number K of derivatives?

e Conjecture: with (n, m) = (3,2), systems that are not
“2-flat” are in fact not flat.
Note: they are not 3-flat.

o Is x3 =x0 + ()'(2 — X3)'<1)2)'<1 flat?

Control system: %1 =u; Xo = Up+X3 U1 X3 = Xo + Uy U2 .
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Low thrust satellite orbit transfer

-
r, XeR3, — %~ 1073

1X]3 R |gravitat.|

~— SMALL control, or

gravitation perturbating acceleration

... but very efficient propulsion (high specific impulse).
e This system is TRIVIAL: linearizable, flat.... X = v

X = —u

e This is (almost) irrelevant because I is small.

e Instead, averaging techniques from perturbation of
Hamiltonian systems, adapted to control...
plus control design techniques.
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On equivalence and classification of control systems...

e This is conceptually central in control theory...
...although not the solution to all problems.

e A sound “classification” is almost unreachable

e We raised more questions than we solved !!
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Other contributions

(i) Adaptive nonlinear control (Praly)

(i) Output stabilization (Hirshorn, Cebuhar, Praly)

(iif) Time-varying stabilization (Morin, Samson)

(iv) Control Lyapunov functions and stabilisation (Faubourg)

(v) Control of a frequency converter in optic fibers, for
Alcatel CIT, 1 patent (US). (Bombrun, Seyfert...)

(vi) Nonlinear model for a river flow (Litrico)

(vii) Small control and averaging — Low-thrust satellite orbit
transfer, for Thales Alenia Space (Bombrun)
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