Séance III. Etude de l'erreur d'interpolation.

- **1.** (S'entraîner) Soit la fonction $f(x) = x^4$. Calculer le polynôme d'interpolation de Lagrange de f respectivement aux points $\{-1,0,1\}$ et $\{-1,0,1,2\}$. Que vaut l'erreur d'interpolation dans ce dernier cas?
- 2. (Bien comprendre que $\xi = \xi(\mathbf{z})$) Dans la formule de l'erreur, "pour z donné dans [a, b], il existe ξ dans [a, b] tel que ..." le fait que le point ξ dépende de z est fondamental : Si $f \in \mathcal{C}^2([x_0, x_1])$, l'erreur pour l'interpolation linéaire de f au points x_0, x_1 est :

$$f(z) - p(z) = (z - x_0)(z - x_1)\frac{f''(\xi(z))}{2}, \quad x_0 < z < x_1$$

Déterminer la fonction $\xi(z)$ explicitement dans le cas où $f(x) = \frac{1}{x}$, $x_0 = 1$, $x_1 = 2$.

3. (Les tracés graphiques sont-ils précis?) Soit la fonction f donnée par :

$$f(x) = \sqrt{2e} \int_0^x e^{-t^2} dt$$

On discrétise [0,1] en N intervalles $[x_i,x_{i+1}]$ (i=0,...,N-1) où $x_i=i.h$ et $h=\frac{1}{N}$.

On suppose que les valeurs exactes $f_i = f(x_i)$ sont connues et tabulées. Les valeurs intermédiaires sont calculées via l'interpolation linéaire des valeurs tabulées.

Pour $x_i \le x \le x_{i+1}$, on posera $x = x_i + \theta h$, avec $0 \le \theta \le 1$.

- **3.1** exprimer l'erreur d'interpolation e(x) en fonction de θ et de h,
- **3.2** trouver une majoration de cette erreur en fonction de h seul,
- **3.3** comment choisir h pour avoir

$$\forall x \in [0, 1] \quad |e(x)| \le 10^{-8}$$

- **4.** (Gagne-t-on à ajouter des points?) On discrétise l'intervalle [a, b] en N intervalles $[x_i, x_{i+1}]$ (i=0,...,N-1) où $x_i = a + i.h$ et $h = \frac{b-a}{N}$. Soit f une fonction de classe $C^{(N+1)}([a, b])$.
 - 4.1 Montrer que :

$$\forall x \in [a, b] \quad \prod_{j=0}^{j=N} |x - x_j| \le \frac{1}{4} h^{N+1} N!$$

4.2 En déduire que, dans le cas d'une discrétisation uniforme, l'erreur d'interpolation de Lagrange est majorée de la façon suivante :

$$|f(z) - P_n(z)| \le \frac{h^{N+1}}{4(N+1)} \max_{t \in [a,b]} |f^{(N+1)}(t)|$$