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Abstract

This paper presents an analysis of Godunov scheme in the low Mach number regime. We study the

Riemann problem and show that the interface pressure contains acoustic waves of order OðM�Þ where M� is
the reference Mach number even if the initial data are well-prepared and contain only pressure fluctuations

of order OðM2
� Þ. We then propose to modify the fluxes computed by Godunov type schemes by solving a

preconditioned Riemann problem instead of the original one. We show that this strategy allows to recover a

correct scaling of the pressure fluctuations. Numerical experiments confirm these theoretical results.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Incompressible flows are a particular case of compressible ones and therefore in principle, a
compressible flow solver should be able to compute these flows. Unfortunately, there are experi-
mental evidences showing that on a fixed mesh, the solutions of the compressible flow discretized
equations are not an accurate approximation of the solutions of the incompressible model (e.g. see
[29]). A first analysis of this problem appeared in [23] and this question has drawn a considerable
attention [1–3,7,9,26,28,30] in the recent past. Several works have tried to explain the reasons of
this difficulty and to construct numerical schemes valid for all Mach numbers. Some of these
works extend to the compressible regime the numerical methods used for the computation of
incompressible flows. Examples of these type of methods are for instance [1] or [30]. Another
approaches rely on some modifications of high order shock capturing techniques. These ap-
proaches are for instance described in [2,7,22] for Roe discretization, in [3] for the HLLE scheme
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and in [28] for Flux schemes. Their principal ingredient is the use of preconditioning techniques
originally developed for steady state computations [4,21,23] that are here selectively applied only
to the upwind artificial viscosity.

In [7], we have examined this technique for Roe type solvers where the numerical flux between
two cells takes the following form:
UðqL; qR; nLRÞ ¼
1

2
F � nLRðqLÞ
�

þ F � nLRðqRÞ þ
oF � nLR

oq

����
����DLRq

�
ð1Þ
Here nLR is the unit normal at the interface and DLRq ¼ qL � qR is the jump between the values qL
and qR on each side of the interface.

By performing an asymptotic analysis of the discrete equations, we identified the limit equations
satisfied by Roe discretization and showed that these limit equations support pressure fluctuations
of order OðM�Þ where M� is the reference Mach number. Therefore, the solutions of the Roe
compressible solver cannot be an accurate approximation in the low Mach number limit where
pressure fluctuations scale with the square of the Mach number. In this paper as well as in several
recent works ([23,26] for instance, see [22] for a recent survey) was put forward that this problem
results from the form of the artificial viscosity tensor when the Mach number goes to zero.

In the present paper, we study the same problem for Godunov type schemes. In contrast with
Roe type solvers, the flux here is of the form
UðqL; qR; nLRÞ ¼ F � nLRðqLRÞ ð2Þ
where qLR is the solution of an exact or approximate Riemann problem defined by the two states
qL and qR.

Fig. 1 shows that these types of schemes exhibit the same problem of accuracy as Roe�s scheme.
This figure shows a sequence of computations on the same mesh of the flow around a NACA0012
airfoil while the Mach number is decreasing. In these computations, the inflow velocity is kept
constant and equal to unity while the inflow pressure is increased. The figures show the nor-
malized pressure p � pmin=pmax � pmin. As the Mach number decreases, the results become worse
and the solutions do not converge to a reasonable approximation of the incompressible solution.
The figures display from left to right the results obtained with Roe scheme where the flux is of the
form (1), together with the results obtained by the VFRoe scheme (to be described below) and
Godunov scheme where the fluxes are of the form (2). It is seen that the same results are obtained
for these three upwind schemes.

Understanding the reason of this behavior is particularly interesting in the case of Godunov
scheme. In Godunov scheme, the analytic expression of the flux is unknown. Therefore it is not
possible to argue about the order of magnitude of the various terms of the artificial viscosity
tensor. Instead the basic Riemann problem has to be considered.

Moreover, because for the initial conditions that we consider, we expect that the limit solutions
of the compressible Euler equations are described by the incompressible Euler equations, a naive
point of view would be to consider that the Godunov solver would give an accurate approxi-
mation of the incompressible results since in Godunov scheme, the flux computed at the interface
is exact. Fig. 1 shows that this is not the case.

The reason why Godunov scheme fails to compute the incompressible limit is deeply linked to
the behavior of the solutions of the Euler equations in the low Mach number regime. The crucial



Fig. 1. Isovalues of the pressure, on a 3114 node mesh for M1 ¼ 0:1 (top), M1 ¼ 0:01 (middle), M1 ¼ 0:001 (bottom)

and for Roe scheme (left), VFRoe scheme (middle), Godunov scheme (right).
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point to understand is that in general the strong limit solution of the compressible Euler model is
not described by the incompressible Euler equations. From the work of Schochet [18] (see also
[5]), this behavior for general initial data is well-understood at least for the isentropic equations
and can be summarized as follows: the limit solution separates into an acoustic wave that depends
on a fast time variable t=M� plus a slow part that does not depend on this fast time variable.
Moreover, the slow part does satisfy the incompressible Euler equations. If qðx; tÞ denote the
solutions of the compressible model, we have as the Mach number approaches zero:
qðx; tÞ ¼ qslowðx; tÞ þ qoscðx; t; t=M�Þ þHOT ð3Þ

where qslowðx; tÞ denote the solution of the incompressible Euler equations, qoscðx; t; t=M�Þ an
oscillatory component described by an acoustic type equation and HOT stands for higher order
terms.

For a restricted class of special initial data (but not in the general case) the acoustic component
is not present at leading order and the solutions of the incompressible Euler equations are the
strong limits of the solutions of the compressible ones as was known from some earlier results of
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[8,10]. In the mathematical literature, this class of special initial data is referred to as ‘‘the well-
prepared case’’.

For the non-isentropic model, the situation is less clear. In the well-prepared case, as shown in
[17], it is known that the solutions of the incompressible model are strong limits of the solution of
the compressible model. The same result is true even for general initial data in the whole space
[12]. However, in the periodic case, a lot of questions remain open (see [13] for an up-to-date
review of this problem).

This complex behavior explains why Godunov scheme fails to compute the incompressible
limit. As we will see in Section 3, the interface values computed by a Riemann solver contain an
acoustic component that carries a pressure jump of order 1 in the Mach number. This fact is in
total agreement with the theoretical results recalled above. Since the initial data of the Riemann
problem is a discontinuity (and thus is not well-prepared), one cannot expect that the solution of
the Riemann problem will be free of acoustic component. A consequence of this fact is that the
field computed by the discrete scheme results from a balance of acoustic waves instead of satis-
fying the equations of the incompressible model.

The plan of this work is as follows. In Section 2 we recall some known results on the behavior
of the solutions of the Euler equations in the low Mach number limit. The purpose of this section
is to show that the solutions of the incompressible model are only weak limits of the solutions of
the compressible Euler model. For this, we introduce a simple linear model that displays the same
type of behavior than the Euler equations and we indicate how the results on this model extend to
the non-linear Euler model.

In Section 3, we study the solutions of the Riemann problem in the low Mach number limit. We
show that even if the initial data are well-prepared and close to an incompressible field with
pressure fluctuations of the order of the square of the Mach number, the solution of the Riemann
problem exhibits acoustic fluctuations that scale with the Mach number. This phenomena is a
direct consequence of the behavior of the compressible model for general initial data and is
simply due to the fact that the projection of the initial data on piecewise constant functions
creates artificial discontinuities that are responsible for the generation of pressure waves of order
OðM�Þ.

For the Roe scheme, it is known that the use of preconditioning is a powerful remedy to cure
the accuracy problem [2,7,22,26] the same conclusions have been reached for other types of up-
wind schemes as the HLLE scheme [3] or the VFFC type schemes [28]. In all these works, pre-
conditioning is used to modify the upwind artificial viscosity tensor. Such a strategy is not possible
for Godunov type schemes where the flux is expressed by (2). Thus in Section 4, we apply the idea
of preconditioning directly to the Riemann solver and solve instead of the original Riemann
problem a preconditioned Riemann problem. The numerical computations applied to the VFRoe
schemes [11] show that preconditioning is also a powerful remedy in this context and allows
accurate computations of near incompressible solutions.
2. The continuous problem

To help the understanding of the behavior of upwind schemes in the low Mach number limit,
we recall in this section some known results on the continuous problem. We begin with the is-
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entropic system where the mathematical theory is almost complete and restrict the discussion to
the periodic case.

(Note that in the case of the whole space and even for general initial data, the results are
stronger due to the decay at infinity of the energy of the acoustic component. As shown in [24] the
limit solutions of the compressible equations satisfy the equations of the incompressible Euler
model although uniform convergence breaks near t ¼ 0.)

The isentropic Euler equations are
oq
ot

þ u � rqþ qdiv u ¼ 0;
ou

ot
þ ðu � rÞuþ 1

q
rp ¼ 0 ð4Þ
In these equations, u ¼ ðu; vÞ is a vector field and q a scalar field, defined on R� T 2 where T 2 is a
two-dimensional periodic box. The pressure p is related to the density by the isentropic state law p ¼
Aqc where A is a constant. To analyze this system, we first put it into a symmetric form by defining
~rr ¼ 2

c� 1

ffiffiffiffiffiffiffiffiffiffi
p0ðqÞ

p
¼ 1

~cc

ffiffiffiffiffiffiffiffiffiffi
p0ðqÞ

p
ð5Þ
In term of the new variables ðr; uÞ, the system (4) takes the form
or
ot

þ u � rr þ ~ccrdiv u ¼ 0;
ou

ot
þ ðu � rÞuþ ~ccrrr ¼ 0 ð6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
Let qref be a typical value of the density field and define aref ¼ cAqc�1
ref as a characteristic scale

of the sound celerity. Moreover let uref be a characteristic value of the particle velocities. The
reference Mach number is defined as the ratio M� ¼ uref=aref and we are interested in the behavior
of the solutions of the system (6) when this parameter goes to zero. To analyze this behavior, we
first observe that up to a numerical constant of order unity, r is the speed of sound

ffiffiffiffiffiffiffiffiffiffi
p0ðqÞ

p
and

thus in (6) we change the variables into the following non-dimensional variables:
r ¼ arefðr0 þM�r1Þ; u ¼ arefð0þM�u1Þ ð7Þ

where r0 is a constant. Then, let xref be a reference length scale of the problem, we define the
reference time scale as the time necessary for a fluid particle to cross the length xref ,
tref ¼ xref=uref ¼ xref=ðarefM�Þ and then we set as non-dimensional independent variables
t ¼ trefs; x ¼ xrefn ð8Þ

With this choice of non-dimensional variables, the system (6) takes the form
or1
os

þ u1 � rr1 þ ~ccr1 div u1 þ
~ccr0
M�

div u1 ¼ 0;
ou1

os
þ ðu1 � rÞu1 þ ~ccr1rr1 þ

~ccr0
M�

rr1 ¼ 0 ð9Þ
From (9), we can expect that on very small time scales of the order s ¼ OðM�Þ (i.e. of the order of
t ¼ xref=aref in dimensional units) the behavior of the solutions of (9) will be totally dominated by
the acoustic part ~ccr0ðdiv u1;rr1Þt and the solutions of (9) will be close to the solutions of the system
or1
oh

þ ~ccr0 div u1 ¼ 0;
ou1

oh
þ ~ccr0rr1 ¼ 0 ð10Þ
with h ¼ s=M� (i.e. h ¼ aref t=xref ).
However, as the kernel of the linear acoustic operator is not void, from (9), we can also expect

that the components of the solutions of (9) that are in this kernel (i.e. the incompressible part of
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the solution characterized by div u1 ¼ 0 and rr1 ¼ 0) will not be affected by the acoustic operator
and will be present in the solution on large times scales. These components will satisfy the in-
compressible Euler equation:
ou1

os
þ P ððu1 � rÞu1Þ ¼ 0 ð11Þ
where P is the projection on the field of divergence free vectors. Thus in general, we can expect
from the structure of the system (9) that in the low Mach number limit, its solutions will char-
acterized by a slow (time scales of the order of xref=uref ) incompressible component and a fast (time
scales of the order of xref=aref ) acoustic component.

As a first step in the analysis of this complex behavior, consider the following constant coef-
ficient linear model problem obtained from (9) by a linearization around the state ðr1; u1Þ ¼ ð0; aÞ
where a is a constant vector. For the sake of simplicity, in the following we also set ~ccr0 ¼ 1:
or1
os

þ a � rr þ 1

M�
div u1 ¼ 0;

ou1

os
þ a � ru1 þ

1

M�
rr1 ¼ 0 ð12Þ
We write this linear system under the form
oq
os

þ Hqþ 1

M�
Lq ¼ 0 ð13Þ
where Hq ¼ a � rq is a constant velocity linear advection operator. Writing (13) in Fourier space
for the Fourier components q̂qðkÞ of q, we get
oq̂qðkÞ
os

þ i ĤHðkÞ
�

þ 1

M�
L̂LðkÞ

�
q̂qðkÞ ¼ 0 for k 2 Z2 ð14Þ
where the matrix ĤHðkÞ þ 1=M�L̂LðkÞ is equal to

a � k k1=M� k2=M�
k1=M� a � k 0
k2=M� 0 a � k

0
@

1
A ð15Þ
and where a � b means the Euclidean inner product of the two vectors a and b. This matrix is
diagonalizable, its eigenvectors are
s1ðkÞ ¼
1ffiffiffi
2

p
1

�k1=jkj
�k2=jkj

0
@

1
A; s2ðkÞ ¼

1

jkj

0

�k2
k1

0
@

1
A; s3ðkÞ ¼

1ffiffiffi
2

p
1

k1=jkj
k2=jkj

0
@

1
A ð16Þ
with associated eigenvalues k1 ¼ a � k� jkj
M�
, k2 ¼ a � k and k3 ¼ a � kþ jkj

M�
.

Therefore, the solution of (14) is
q̂qðk; sÞ ¼ 1ffiffiffi
2

p r̂r1ðk; 0Þ
�

� k1
jkj ûu1ðk; 0Þ �

k2
jkj v̂v1ðk; 0Þ

�
e�iða�k�jkj=M�Þss1ðkÞ þ

1

jkj ð�k2ûu1ðk; 0Þ

þ k1v̂v1ðk; 0ÞÞe�ia�kss2ðkÞ þ
1ffiffiffi
2

p r̂r1ðk; 0Þ
�

þ k1
jkj ûu1ðk; 0Þ þ

k2
jkj v̂v1ðk; 0Þ

�
e�iða�kþjkj=M�Þss3ðkÞ

ð17Þ
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where r̂r1ðk; 0Þ, ûu1ðk; 0Þ, v̂v1ðk; 0Þ are the Fourier components of the initial data. From (17) it is seen
that the solution separates into a fast oscillatory component that depends on the fast time variable
h ¼ s=M�
q̂qoscðk; s; s=M�Þ ¼
1ffiffiffi
2

p r̂r1ðk; 0Þ
��

� k1
jkj ûu1ðk; 0Þ �

k2
jkj v̂v1ðk; 0Þ

�
e�iða�k�jkj=M�Þss1ðkÞ

þ r̂r1ðk; 0Þ
�

þ k1
jkj ûu1ðk; 0Þ þ

k2
jkj v̂v1ðk; 0Þ

�
e�iða�kþjkj=M�Þss3ðkÞ

�
ð18Þ
plus a slow component that does not depend on this fast variable
q̂qslowðk; sÞ ¼
1

jkj ð�k2ûu1ðk; 0Þ þ k1v̂v1ðk; 0ÞÞe�ia�kss2ðkÞ ð19Þ
In Fourier space, the kernel of the linear acoustic operator L̂LðkÞ is the space spanned by the vector
s2ðkÞ ¼ ð0;�k2; k1Þt. This corresponds in physical space to the space defined by
ker L ¼ fðr1; u1Þ; r1 ¼ constant;div u1 ¼ 0g ð20Þ

The slow component qslow ¼

P
k q̂qslowðk; tÞeik�x is thus the projection of the solution on this space

and represents the incompressible component of the solution. It satisfies the ‘‘incompressible
system’’:
oqslow
os

þ Hqslow ¼ 0 ð21Þ
with initial data qslowðs ¼ 0Þ ¼ Pqðs ¼ 0Þ where P is the projection on ker L.
From expression (18), it is seen that qosc converges in the sense of distributions to 0 when

M� ! 0. However this is only a weak convergence and therefore except for a special class of initial
data, the solution contains very fast oscillatory components that do not disappear when M� ! 0:
in general, even for very small M� we have to write
qðx; tÞ ¼ qslowðx; tÞ þ qoscðx; t; t=M�Þ ð22Þ

We now describe a special class of initial data such that we will have a strong convergence

toward the incompressible limit. A necessary condition for qðx; tÞ to converge strongly to the
incompressible limit qslowðx; tÞ is that qoscðx; t; t=M�Þ converges strongly to 0. This is not possible
except if the initial data are close to the kernel of L. This is the case referred to as the ‘‘well-
prepared case’’. For the isentropic Euler equations, this situation has been examined in [8,10]
while for the non-isentropic model, we refer to [17].

For our model problem (12) the ‘‘well-prepared case’’ can be described as follows. It is clear
from (17) that if
r̂r1ðk; 0Þ �
k1
jkj ûu1ðk; 0Þ �

k2
jkj v̂v1ðk; 0Þ

� �
¼ OðM�Þ

r̂r1ðk; 0Þ þ
k1
jkj ûu1ðk; 0Þ þ

k2
jkj v̂v1ðk; 0Þ

� �
¼ OðM�Þ

8>><
>>: ð23Þ
then the oscillatory component of the solution qosc converges strongly to 0 and thus the incom-
pressible component qslow is the strong limit of q as M� ! 0.
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In physical space, the two conditions (23) mean that the initial data have the following form:
r1ðx; 0Þ ¼ M�r2ðx; 0Þ
u1ðx; 0Þ ¼ u01ðx; 0Þ þM�u2ðx; 0Þ

�
ð24Þ
where r2ðx; 0Þ is an Oð1Þ scalar field, u01ðx; 0Þ and u2ðx; 0Þ two Oð1Þ vector fields and u01ðx; 0Þ
satisfies div u01 ¼ 0.

Let us now return to the isentropic Euler equations (4). Although the analysis and techniques
of proof are much more complex than for our linear model problem, the results are essentially
the same. As proved in [18] (see also [5]), in the low Mach number limit, the solution can be
written as
qðx; sÞ ¼ qslowðx; sÞ þ qoscðx; s; s=M�Þ þ OðM�Þ ð25Þ

and can be splitted into a fast acoustic component qoscðx; s; s=M�Þ that depends on the fast time
variable s=M� and a slow part qslowðx; sÞ. Moreover, the slow part is a solution of the incom-
pressible equations:
div ðu1Þ ¼ 0 ð26aÞ

q0

o

os
u1

�
þ div ðu1 � u1Þ

�
þrp ¼ 0 ð26bÞ
In general qslowðx; sÞ is only a weak limit of the solutions except for well-prepared initial data close
to the kernel of L. As for the model problem, this special class of initial data is characterized by
r1ðx; 0Þ ¼ M�r2ðx; 0Þ
u1ðx; 0Þ ¼ u01ðx; 0Þ þM�u2ðx; 0Þ with divu01 ¼ 0

�
ð27Þ
Going back to the original variables ðp; uÞ, we see that this implies that the initial data are such
that
pðx; 0Þ ¼ qrefa
2
refðconstantþM2

�p2ðx; 0ÞÞ
uðx; 0Þ ¼ arefð0þM�u1ðx; 0Þ þM2

�u2ðx; 0ÞÞ with divu1 ¼ 0

�
ð28Þ
where p2ðx; 0Þ, u1ðx; 0Þ, u2ðx; 0Þ are smooth, regular functions.
3. The Riemann problem in the low Mach number limit

We are interested in computing flows close to the incompressible limit. As seen in the previous
section, if the initial data are well-prepared and of the form (28) with pressure fluctuations of the
order of the square of the Mach number, we have strong convergence of the solution of the
compressible equations to the solution of the incompressible equations. However even if the initial
data do verify this assumption, the projection of these data on piecewise constant functions
creates discontinuities at the interface between the cells. These discontinuities are the initial data
of the Riemann problem and hence an acoustic component with pressure fluctuations of order
Mach will be present in the solution of the Riemann problem.
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Consider the Riemann problem defined by
Fig. 2

(b) 1-s
oq
ot

þ oF ðqÞ
ox

¼ 0; qðx; 0Þ ¼ q ¼ qL if x < 0

q ¼ qR if x > 0

�
ð29Þ
with
q ¼

q
qu
qv
qe

2
664

3
775; F ðqÞ ¼

qu
qu2 þ p
quv

ðqeþ pÞu

2
664

3
775 ð30Þ
In order to make easier the description of this problem in the low Mach number limit, we recall
below how to solve it in the general case. For details, one can refer for instance to [6,19]. The
solution consists of four different constant states qL, q�L, q

�
R, qR connected by three waves that can

be from left to right, a 1-rarefaction or a 1-shock, a contact discontinuity and a 3-rarefaction or a
3-shock. The four possible wave patterns are represented in Fig. 2.

Through a 1-rarefaction, the entropy, the tangential velocity and the quantity uþ 2a=ðc� 1Þ
where a is the sound speed

ffiffiffiffiffiffiffiffiffiffi
cp=q

p
, are constant. Thus the states q, u, v, p that can be connected to

the state qL, uL, vL, pL through a 1-rarefaction have to satisfy
p
qc

¼ pL
qc
L

; uþ 2a
c� 1

¼ uL þ
2aL
c� 1

ð31Þ
and
v ¼ vL ð32Þ

Combining the two equations (31), we obtain the 1-rarefaction curve that defines in the ðu; pÞ
plane the states that can be connected to qL:
Case (a)

t
contact

X

1–rarefaction    3–shock

q q
L
*

R
*

q
L

q
R X

Case(b)

t

1–shock         3– rarefaction

q q

q q

L
*

R
*

L R

contact

Case(c)

t

X

1– rarefaction   3–rarefaction

q q

q

L
*

R
*

R

contact
t

contact

X
Case (d)

q q

qq

L
*

R
*

L R

1–shock     3–shock

q
L

. The four possible wave patterns in the solution of the Riemann problem: (a) 1-rarefaction, contact, 3-shock;

hock, contact, 3-rarefaction; (c) 1-rarefaction, contact, 3-rarefaction; (d) 1-shock, contact, 3-shock.
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u ¼ uL þ
2aL
c� 1

1

�
� p

pL

� �a�
with a ¼ ðc� 1Þ=2c and p < pL ð33Þ
Similarly, writing that the Riemann invariants are constant through a 3-rarefaction, we obtain the
3-rarefaction curve that defines all possible states that can be connected to qR through a 3-
rarefaction
u ¼ uR � 2aR
c� 1

1

�
� p

pR

� �a�
with p < pR ð34Þ
Consideration of the two curves (33) and (34) allows to compute the solution in case (c) of Fig. 2.
For the other three cases, one has to take into account the occurrence of shock waves. Writing the
Rankine–Hugoniot relations
Dqu ¼ rDq
Dqu2 þ p ¼ rDqu
Dquv ¼ rDqv
Dðqeþ pÞu ¼ rDqe

8>><
>>: ð35Þ
through the shocks, we obtain the 1-shock and 3-shock curves
u ¼ uL �
p � pLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p þ l2pL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þ=qL

p
with p > pL ð36Þ

u ¼ uR þ p � pRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p þ l2pR

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þ=qR

p
with p > pR ð37Þ
where l2 ¼ ðc� 1Þ=ðcþ 1Þ. The solution of the Riemann problem is completed by finding the
values ðu�; p�Þ in the states qL� and qR�. From an algebraic point of view, this consists to find the
intersection of the 1-rarefaction–1-shock curve originating from ðuL; pLÞ with the 3-rarefaction–3-
shock curve passing through ðuR; pRÞ. Except in the case of two extremely strong facing rare-
factions, these two curves admit a unique intersection point which completely determines the
solution of the Riemann problem.

We are now interested in the solution of this problem in the low Mach number limit. More
specifically, in agreement with the results of Section 2, we consider initial data ðqL; qRÞ close to a
constant density incompressible flow in the following sense:
qL ¼ qrefðq0 þM2
�qL;2 þ � � �Þ

uL ¼ arefð0þM�uL;1 þ � � �Þ
vL ¼ arefð0þM�vL;1 þ � � �Þ
pL ¼ qrefa

2
refðp0 þM2

�pL;2 þ � � �Þ

ð38Þ

qR ¼ qrefðq0 þM2
�qR;2 þ � � �Þ

uR ¼ arefð0þM�uR;1 þ � � �Þ
vR ¼ arefð0þM�vR;1 þ � � �Þ
pR ¼ qrefa

2
refðp0 þM2

�pR;2 þ � � �Þ

ð39Þ
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where qref , aref and M� ¼ uref=aref are respectively a reference density, sound velocity and Mach
number. Observe that these initial data are the projection on a piecewise constant field of ‘‘well-
prepared’’ initial data of the type considered in Eq. (28) of Section 2. In particular, the pressure
field does not contain fluctuations of order M�. To find the solution of the Riemann problem in
the limit M� ! 0, we write the solution in the form
3

F

q ¼ qrefðq0 þM�q1 þM2
�q2 þ � � �Þ

u ¼ arefð0þM�u1 þ � � �Þ
v ¼ arefð0þM�v1 þ � � �Þ
p ¼ qrefa

2
refðp0 þM�p1 þM2

�p2 þ � � �Þ

ð40Þ
Introducing these expressions in the rarefaction and shock curves (33), (34), (36) and (37), we
obtain after some calculus that in the limit M� ! 0, these curves become straight lines of slopes
�1=

ffiffiffiffiffiffiffiffiffiffiffi
cp0q0

p
:

1-rarefaction u1 ¼ uL;1 �
1ffiffiffiffiffiffiffiffiffiffiffi
cp0q0

p p1 for p1 < 0

1-shock u1 ¼ uL;1 �
1ffiffiffiffiffiffiffiffiffiffiffi
cp0q0

p p1 for p1 > 0

3-rarefaction u1 ¼ uR;1 þ
1ffiffiffiffiffiffiffiffiffiffiffi
cp0q0

p p1 for p1 < 0

3-shock u1 ¼ uR;1 þ
1ffiffiffiffiffiffiffiffiffiffiffi
cp0q0

p p1 for p1 > 0

ð41Þ
As shown in Fig. 3, out of the four possible wave patterns displayed in Fig. 2, only the 1-rare-
faction–3-rarefaction (when uR;1 � uL;1 > 0) and 1-shock–3-shock (when uR;1 � uL;1 < 0) solutions
are possible.

For these two cases, the computation of the intersection point of the curves (41) gives
u1 ¼ ðuL;1 þ uR;1Þ=2; p1 ¼ � ffiffiffiffiffiffiffiffiffiffiffi
cp0q0

p
Du1=2 ð42Þ
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ig. 3. Intersection of rarefaction curves for uR;1 � uL;1 > 0 (left) and shock curves for uR;1 � uL;1 < 0 (right).
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with Du1 ¼ DRLu1 ¼ uR;1 � uL;1. Therefore, it is seen that even if the initial data are of the form
(38) and (39) with pL;1 ¼ pR;1 ¼ 0, the interface pressure contains a fluctuation of order M�:
p ¼ qrefa
2
ref p0

�
�M�

2

ffiffiffiffiffiffiffiffiffiffiffi
cp0q0

p
Du1 þ � � �

�
ð43Þ
Actually, this pressure fluctuation is purely of acoustic origin. The shock curves of (41) are the
Rankine–Hugoniot relations for an acoustic system and (42) is in fact the solution of the linear
acoustic problem defined in Eq. (10) or in term of the variables u1, p1 by
o

ot
u1
p1

� �
þ 0 1=q0

cp0 0

� �
o

ox
u1
p1

� �
¼ 0 ð44Þ
Therefore, the flux computed at the interface instead of being an approximation of the ‘‘incom-
pressible flux’’ is to leading order the flux coming from an acoustic problem generated by the
artificial discontinuities at the interfaces between the cells.

To illustrate this analysis, we compare in Fig. 4 the solution of the Riemann problem (29) and
the asymptotic expression (42) for initial data of the form (38) and (39) defined by
qL ¼ 1

uL ¼ 1

vL ¼ 1

pL ¼ 10001

8>><
>>: and

qR ¼ 1

uR ¼ 1:75 or 0:25
vR ¼ 1:45
pR ¼ 10001:85

8>><
>>: ð45Þ
The reference Mach number for this case is of order 10�2. In Fig. 4, the left plots display the
case of a two rarefaction solution (when uR > uL) while the right plots show the case of a two
shock solution (when uR < uL). Observe that in the two cases, the pressure jump between the two
initial states is extremely small (of the order of 0.01%) but the velocity jump creates an extremely
large variation of the interface pressure.

From an examination of the Riemann problem in the limit M� ! 0, we can therefore conclude
that even if the initial data are close to a constant density incompressible field, the field computed
by the Godunov solver contains, after one time step, acoustic pressure waves of order M� that are
much larger than the pressure fluctuations due to the incompressible component. These acoustic
components remain present in the following time steps and the equilibrium state of the discrete
equations (if it exists) can be described as a balance of acoustic waves instead of representing an
approximation of an incompressible field. In Appendix A, we present this limit system, the reader
will notice the close resemblance of this system with the limit equations obtained from an as-
ymptotic analysis of the Roe scheme that we have presented in [7].
4. The effect of preconditioning

For Roe type schemes, we have shown in [7] that for very subsonic flows a clear improvement
of the accuracy can be obtained by modifying the numerical flux (1) in the following way:
UðqL; qR; nLRÞ ¼
1

2
F � nLRðqLÞ
�

þ F � nLRðqRÞ þ P�1 P
oF � nLR

oq

����
����DLRq

�
ð46Þ
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Fig. 4. Comparison between Godunov solver and asymptotic analysis for uR > uL (left) and for uR < uL (right).

H. Guillard, A. Murrone / Computers & Fluids 33 (2004) 655–675 667
where P is a preconditioning matrix. In this section, we propose a similar strategy to overcome the
accuracy problem encountered by Godunov type schemes.

More specifically, we will apply preconditioning to the VFRoe class of schemes that we describe
now. The VFRoe schemes [11] use a flux of the form
UðqL; qR; nLRÞ ¼ F � nLRðqLRÞ ð47Þ

where qLR is a state computed by the solution of a Riemann problem between the two states qL,
qR. If this Riemann problem is defined by the non-linear Euler equations, the scheme defined by
(47) is simply Godunov scheme. However, from a computational point of view, it may be in-
teresting to define this Riemann problem by a linearized problem between the two states (qL, qR):
o~qq
ot

þ hAi o~qq
ox

¼ 0; ~qqðx; 0Þ ¼ ~qq ¼ ~qqL if x < 0
~qq ¼ ~qqR if x > 0

�
ð48Þ
where hAi is a constant matrix and ~qq can be the conservative variables q or any other set of in-
dependent variables. Here, for instance, we will use the ‘‘entropic’’ variables ~qq ¼ ðp; u; v; sÞt and
define hAi by
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hAi ¼

hui chpi 0 0

1=hqi hui 0 0

0 0 hui 0

0 0 0 hui

2
664

3
775 ð49Þ
where h�i ¼ ðð�ÞL þ ð�ÞRÞ=2 denote the arithmetic average between ~ðð�ÞL and ~ðð�ÞR. Thus in (47), qLR
are the conservative variables corresponding to the solutions ~qqLR of the linearized Riemann
problem (48). An asymptotic analysis of this upwind scheme similar to the analysis presented in
Section 3 yields the same conclusions as for Godunov scheme. It shows that the interface pressure
is given by expression (43) and thus that the pressure field contains fluctuations of order Mach.

In the spirit of the preconditioning of Roe scheme (46), we propose to modify the interface flux
UðqL; qR; nLRÞ ¼ F � nLRðqLRÞ by computing qLR as the solution of a preconditioned Riemann
problem. More specifically, in (47) we take qLR as the solution of the preconditioned problem:
o~qq
ot

þ PhAi o~qq
ox

¼ 0; ~qqðx; 0Þ ¼ ~qq ¼ ~qqL if x < 0
~qq ¼ ~qqR if x > 0

�
ð50Þ
where P is the preconditioning matrix proposed in [20],
P ¼

b2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775 ð51Þ
with b a parameter of the order of the Mach number: b ¼ M�b1 with b1 ¼ Oð1Þ.
We proceed now to show that the interface pressure solution of the preconditioned Riemann

problem (50) does not contain fluctuations of order M� if the initial pressure contains only
pressure fluctuations of order M2

� . The left and right states are then defined by
qL ¼ qrefðqL;0 þM�qL;1 þM2
�qL;2 þ � � �Þ

uL ¼ arefð0þM�uL;1 þ � � �Þ
vL ¼ arefð0þM�vL;1 þ � � �Þ
pL ¼ qrefa

2
refðp0 þM2

�pL;2 þ � � �Þ

ð52Þ

qR ¼ qrefðqR;0 þM�qR;1 þM2
�qR;2 þ � � �Þ

uR ¼ arefð0þM�uR;1 þ � � �Þ
vR ¼ arefð0þM�vR;1 þ � � �Þ
pR ¼ qrefa

2
refðp0 þM2

�pR;2 þ � � �Þ

ð53Þ
Note that in (52) and (53), we allow the presence of density discontinuities of order Oð1Þ but that
the pressure jump between the left and right states is of order M2

� .
To obtain an explicit expression for the solution of (50), we diagonalize the matrix hAi. Its

eigenvalues are given by
k1 ¼ ½ð1þ b2Þhui �
ffiffiffiffi
X

p �=2; k2 ¼ k3 ¼ hui; k4 ¼ ½ð1þ b2Þhui þ
ffiffiffiffi
X

p �=2 ð54Þ
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with X ¼ ½ð1� b2Þhui�2 þ 4b2chpi=hqi and the associated eigenvectors Rk are
R1 ¼

1

k1 � b2hui
b2chpi

0

0

2
666664

3
777775; R2 ¼

0

0

0

1

2
66664

3
77775; R3 ¼

0

0

1

0

2
6664
3
7775; R4 ¼

1

k4 � b2hui
b2chpi

0

0

2
666664

3
777775 ð55Þ
Finally, let us introduce the coordinates akðDRL~qqÞ of the jump DRL~qq ¼ ~qqR � ~qqL in the basis of the
eigenvectors Rk
a1 ¼ �ðk1 � huiÞDp þ b2chpiDuffiffiffiffi
X

p ; a2 ¼ DS

a3 ¼ Dv; a4 ¼
ðk4 � huiÞDp þ b2chpiDuffiffiffiffi

X
p

ð56Þ
Then, the solution of (50) is given by four constant states ~qqL, ~qq�L, ~qq
�
R, ~qqR defined by
~qqðx; tÞ ¼

~qqL for x=t < k1
~qq�L ¼ ~qqL þ a1R1 for k1 < x=t < k2
~qq�R ¼ ~qqR � a4R4 for k2 < x=t < k4
~qqR for k4 > x=t

8>>><
>>>:

ð57Þ
Using the expressions of the left and right eigenvectors (56) and (55), together with the asymptotic
expansions (52) and (53), we obtain the following asymptotic expressions for the two states ~qq�L, ~qq

�
R

(note that the value of u and p are equal in the two states ~qq�L, ~qq
�
R):
u� ¼ aref 0

�
þM� hu1i

�
� hu1i
2
ffiffiffiffiffi
X0

p Du1 �
Dp2

hq0i
ffiffiffiffiffi
X0

p
�

þM2
� hu2i
�

� hu1i
2
ffiffiffiffiffi
X0

p Du2 þ ð� � �ÞDu1 þ
hq1iDp2
hq0i

ffiffiffiffiffi
X0

p þ ð� � �ÞDp2
�
þ � � �

�

p� ¼ qrefa
2
ref p0

�
þM2

� hp2i
�

� b2
1cp0ffiffiffiffiffi
X0

p Du1 þ
hu1i
2
ffiffiffiffiffi
X0

p Dp2

�
þ � � �

� ð58Þ
where X0 ¼ ðhu1iÞ2 þ 4b2
1cp0=hq0i, h�i ¼ ðð�ÞL þ ð�ÞRÞ=2 denotes the arithmetic average and ð� � �Þ

stands for some complex terms that are not explicited here.
The values of the densities and tangential velocities are given by
q�
L ¼ qref qL;0

 
þM�qL;1 þM2

� qL;2

 
�
b2
1qL;0ffiffiffiffiffi
X0

p Du1 þ
qL;0hu1i
2cp0

ffiffiffiffiffi
X0

p Dp2 þ
qL;0

2cp0
Dp2

!
þ � � �

!

v�L ¼ vL

q�
R ¼ qref qR;0

 
þM�qR;1 þM2

� qR;2

 
�
b2
1qR;0ffiffiffiffiffi
X0

p Du1 þ
qR;0hu1i
2cp0

ffiffiffiffiffi
X0

p Dp2 �
qR;0

2cp0
Dp2

!
þ � � �

!

v�R ¼ vR

ð59Þ
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From expression (58), it is seen that the interface pressure is free of fluctuations of order Mach.
Now, let us return to the numerical experiments that we have presented in the introduction.

Fig. 6 presents the pressure fields for the same three decreasing Mach numbers as in Fig. 1. We
see, that in contrast to the results obtained with the original fluxes, the solution converge to a
unique solution.

Fig. 5 presents the pressure fluctuations with respect to the Mach number. As implied by ex-
pression (58), the pressure fluctuations scale exactly with the square of the Mach number in
agreement with the behavior of the continuous equations in the case of well-prepared initial data.
5. Conclusion

Using an asymptotic analysis of Godunov scheme, we have exhibited the mechanism that
prevents this type of approximation to compute near incompressible flows. The trouble comes
from the fact that the interface pressure computed by the Riemann solver contains pressure
fluctuations of order Mach even if the initial data that define the Riemann problem contain
fluctuations that scale with the square of the Mach number. This fact is deeply linked to the
behavior of the solutions of the Euler equations at low Mach number: if the initial data are not
well-prepared, then, in addition to the incompressible component, the solutions of the Euler
equations contain also an extremely fast acoustic part. This acoustic part is computed by the
discrete scheme that reacts to the artificial discontinuities due to the projection of the initial data
on piecewise constants by creating acoustic waves at the interface between the cells.

We also show that as in the case of Roe scheme [7], this situation can be controlled by mod-
ifying the numerical fluxes with the help of preconditioning techniques. More specifically, we
propose to change the original Riemann problem by a preconditioned Riemann problem. We
apply this strategy to a VFRoe scheme. In this latter case, we show both theoretically and nu-
merically that the solution of the preconditioned Riemann problem possesses pressure fluctua-
tions of the correct magnitude.



Fig. 6. Isovalues of the pressure, on a 3114 node mesh for M1 ¼ 0:1 (top), M1 ¼ 0:01 (middle), M1 ¼ 0:001 (bottom).
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Preconditioned compressible solvers [2,3,7,22,26] are able to deal with the singularity of the
Euler equations in the low Mach number regime. Comparisons with incompressible and low
Mach number solvers show the excellent behavior of these methods (see e.g. [14–16,26,27].
However, in our opinion, the reason of this good behavior remains unclear. As mentioned by van
Leer and Darmofal in [25] the beneficial influence of preconditioning on the accuracy of com-
pressible solvers in the low Mach number regime was an unexpected side effect. In this paper, as a
first step in the analysis of these methods, we have shown that the most obvious result of pre-
conditioning consists of removing the fluctuations of order Mach in the interface pressures. Thus,
in some sense, the preconditioned solvers suppress the unwanted acoustic waves generated by the
interface discontinuities. It will remain to prove that the resulting fluxes provide a good ap-
proximation of the incompressible system. While there is experimental evidence showing that this
is indeed the case, the theoretical proof of this fact remains to be found.
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Appendix A

Here, as in Section 3, we consider the limit solution of the Riemann problem (29) in order to
identify the limit system satisfied by the discrete unknowns. In Section 3, we have shown that even
if the initial data are ‘‘well-prepared’’ and of the form (38) and (39), the solution after one time
step contains pressure waves of orderM�. Therefore, we have to consider more general initial data
than (38) and (39), i.e. we have to consider the case where the initial data although still charac-
terized by a low Mach number are not well-prepared. In addition, since the incompressible Euler
model supports density discontinuities, we also allow in the initial data the possibility to have Oð1Þ
density discontinuities. Thus the two states qL and qR are assumed to have the following form:
qL ¼ qrefðqL;0 þM�qL;1 þM2
�qL;2 þ � � �Þ

uL ¼ arefð0þM�uL;1 þM2
�uL;2 þ � � �Þ

vL ¼ arefð0þM�vL;1 þM2
� vL;2 þ � � �Þ

pL ¼ qrefa
2
refðp0 þM�pL;1 þM2

�pL;2 þ � � �Þ

ðA:1Þ
and
qR ¼ qrefðqR;0 þM�qR;1 þM2
�qR;2 þ � � �Þ

uR ¼ arefð0þM�uR;1 þM2
�uR;2 þ � � �Þ

vR ¼ arefð0þM�vR;1 þM2
� vR;2 þ � � �Þ

pR ¼ qrefa
2
refðp0 þM�pR;1 þM2

�pR;2 þ � � �Þ

ðA:2Þ
As in Section 3, we introduce these asymptotic expansions in the shock and rarefaction curves. It
is easily seen that again these curves degenerate into straight lines of slopes �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0qL;0

p
and

þ1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0qR;0

p
. However, because pL;1 and pR;1 are not zero, the four possible waves pattern of Fig.

2 can occur. Moreover, due to the Oð1Þ density discontinuities, the speeds of sound are not equal
on the two sides of the contact discontinuity. However, in the four possible cases, the intersection
of the shock and rarefaction curves gives
u� ¼ aref 0

 
þM�

ffiffiffiffiffiffiffiffi
qL;0

p uL;1 þ ffiffiffiffiffiffiffiffi
qR;0

p uR;1ffiffiffiffiffiffiffiffi
qL;0

p þ ffiffiffiffiffiffiffiffi
qR;0

p

 
� 1ffiffiffiffiffiffiffi

cp0
p

Dp1ffiffiffiffiffiffiffiffi
qL;0

p þ ffiffiffiffiffiffiffiffi
qR;0

p

!
þM2

� � � �
!

p� ¼ qrefa
2
ref p0

 
þM�

ffiffiffiffiffiffiffiffi
qR;0

p pL;1 þ ffiffiffiffiffiffiffiffi
qL;0

p pR;1ffiffiffiffiffiffiffiffiqL;0
p þ ffiffiffiffiffiffiffiffiqR;0

p

 
� ffiffiffiffiffiffiffi

cp0
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qL;0qR;0
pffiffiffiffiffiffiffiffiqL;0

p þ ffiffiffiffiffiffiffiffiqR;0
p Du1

!
þM2

� � � �
! ðA:3Þ
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where Dð�Þ ¼ DRLð�Þ ¼ ð�ÞR � ð�ÞL.
The values of the density and tangential velocities on the two sides of the contact discontinuity

are given by
q�
L ¼ qref qL;0

 
þM� qL;1

 
� qL;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qL;0qR;0

pffiffiffiffiffiffiffiffiqL;0
p þ ffiffiffiffiffiffiffiffiqR;0

p
Du1ffiffiffiffiffiffiffi
cp0

p þ
qL;0

ffiffiffiffiffiffiffiffi
qL;0

pffiffiffiffiffiffiffiffiqL;0
p þ ffiffiffiffiffiffiffiffiqR;0

p
Dp1
cp0

!
þM2

� � � �
!

v�L ¼ vL

q�
R ¼ qref qR;0

 
þM� qR;1

 
� qR;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqL;0qR;0
pffiffiffiffiffiffiffiffi
qL;0

p þ ffiffiffiffiffiffiffiffi
qR;0

p
Du1ffiffiffiffiffiffiffi
cp0

p þ
qR;0

ffiffiffiffiffiffiffiffiqR;0
pffiffiffiffiffiffiffiffi

qL;0
p þ ffiffiffiffiffiffiffiffi

qR;0
p

Dp1
cp0

!
þM2

� � � �
!

v�R ¼ vR

ðA:4Þ

Consider now the application of Godunov scheme in a Finite Volume framework. For sim-

plicity, we consider that we use a regular Cartesian grid of uniform mesh size d in two dimensions.
i ¼ ði; jÞ is the index of the node whose coordinates are ðid; jdÞ and we use the notation
VðiÞ ¼ fði� 1; jÞ; ðiþ 1; jÞ; ði; j� 1Þ; ði; jþ 1Þg or VðiÞ ¼ fN;S;E;Wg for labeling the neighbors
of the grid node i. The cell associated with node i is Ci ¼ ½ði� 1=2Þd; ðiþ 1=2Þd� �
½ðj� 1=2Þd; ðjþ 1=2Þd�, ~nn is the outward unit normal vector on oCi and we note ~nnil ¼

R
Ci\Cl

~nn=d.
When a steady state is reached, the application of a first-order finite volume scheme yields the

following semi-discrete equation:
X
l2VðiÞ

~FF ðqilÞ �~nnil ¼ 0 ðA:5Þ
where qil denote the value of the state on the interfaces between the cells i and l. Following the
analysis that we have performed on the asymptotic solution of the Riemann problem, we write
these interface values in the following form:
qil ¼ qrefðq0
il þM�q

1
il þM2

�q
2
il þ � � �Þ

uil ¼ arefð0þM�u1il þM2
�u

2
il þ � � �Þ

vil ¼ arefð0þM�v1il þM2
� v

2
il þ � � �Þ

pil ¼ qrefa
2
refðp0il þM�p1il þM2

�p
2
il þ � � �Þ

ðA:6Þ
then the flux function evaluated on this state has the following expansion (here uil ; vil denote
respectively the normal and tangential velocities on the interface):
ð~FF ðqilÞ �~nnilÞ1 ¼ qrefarefðM�q
0
ilu

1
il þ OðM2

� ÞÞ
ð~FF ðqilÞ �~nnilÞ2 ¼ qrefa

2
refðp0il þM�p1il þM2

� ðq0
ilðu1ilÞ

2 þ p2ilÞ þ OðM3
� ÞÞ

ð~FF ðqilÞ �~nnilÞ3 ¼ qrefa
2
refðM2

�q
0
ilu

1
ilv

1
il þ OðM3

� ÞÞ

ð~FF ðqilÞ �~nnilÞ4 ¼ qrefa
3
ref M�

c
c� 1

p0ilu
1
il

 
þ OðM2

� Þ
!
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From the expression (A.3) of the interface pressure, it is seen that p0il ¼ p0 8 il. Then the order 0
momentum equations degenerates into
p0
X
l2VðiÞ

~nnil ¼ 0
but the order M� momentum equations are
X
l2VðiÞ

p1il~nnil ¼ 0 ðA:7Þ
where the value of p1il is given in (A.3). This gives for the horizontal momentum equation
�
ffiffiffiffiffi
q0
i

p
p1W þ

ffiffiffiffiffiffi
q0
W

p
p1iffiffiffiffiffi

q0
i

p
þ

ffiffiffiffiffiffi
q0
W

p þ
ffiffiffiffiffi
q0
E

p
p1i þ

ffiffiffiffiffi
q0
i

p
p1Effiffiffiffiffi

q0
i

p
þ

ffiffiffiffiffi
q0
E

p ¼
ffiffiffiffiffiffiffi
cp0

p ffiffiffiffiffiffiffiffiffiffi
q0
i q

0
E

p
ffiffiffiffiffi
q0
i

p
þ

ffiffiffiffiffi
q0
E

p DEi u1

0
B@ �

ffiffiffiffiffiffiffiffiffiffiffi
q0
i q

0
W

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0
i þ

ffiffiffiffiffiffi
q0
W

pq DiWu1

1
CA

ðA:8Þ
and a similar expression for the vertical momentum equation. From (A.8), it is clear that p1 does
not vanish as soon as the velocity field is not uniform. Note also that Eq. (A.8) is almost identical
to the equation obtained for Roe discretization in [7].
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