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Abstract. Simulating soft tissues in real time is a significant challenge
since a compromise between biomechanical accuracy and computational
efficiency must be found. In this paper, we propose a new discretiza-
tion method, the Multiplicative Jacobian Energy Decomposition (MJED)
which is an alternative to the classical Galerkin FEM (Finite Element
Method) formulation. This method for discretizing non-linear hyperelas-
tic materials on linear tetrahedral meshes leads to faster stiffness matrix
assembly for a large variety of isotropic and anisotropic materials. We
show that our new approach, implemented within an implicit time inte-
gration scheme, can lead to fast and realistic liver deformations including
hyperelasticity, porosity and viscosity.

1 Introduction

The simulation of soft tissue deformation has attracted a growing interest in the
past 15 years both in the biomechanics and the medical image analysis com-
munities. Modeling in silico the deformation of soft tissues is of high interest in
particular for surgical gesture training[1] and therapy planning[2]. In this paper,
we focus on the simulation of liver deformation in the context of surgery training.
In such case, it is crucial that soft tissue deformation is simulated in real-time,
i.e. at a minimum of 25 frames per second for visual feedback. Furthermore, in
surgery simulation, there are additional constraints of numerical stability during
the occurrence of contact between soft tissue and (virtual) surgical instruments.

To simulate soft tissues efficiently and realistically, some authors have relied
on the Total Lagrangian Explicit Dynamic (TLED) algorithm[3, 4] to simulate
deformations with explicit time integration schemes. However, the main limi-
tation of these explicit schemes is that they require very small time steps to
keep the computation stable, especially for stiff materials. Indeed, it is necessary
to iterate multiple times to propagate applied forces from a node to the whole
mesh. Therefore, with such approaches, it is difficult to produce realistic simu-
lations of contact with rigid objects, such as surgical tools. Implicit integration
schemes require the evaluation of a global stiffness matrix and the solution of
linear system of equations at each time step.



In this paper, we first introduce the Multiplicative Jacobian Energy Decom-
position (MJED): a general algorithm to implement hyperelastic materials based
on total Lagrangian FEM with implicit time integration schemes. Then we pro-
pose a realistic biomechanical model of the liver which combines hyperelasticity,
viscoelasticity as well as poroelasticity. The viscoelasticity of our liver model is
based on Prony series, the parameters of which have been experimentally es-
timated through a dynamic strain sweep testing. Finally, we take into account
the porous medium of the liver parenchyma through a poro-elastic model which
computes the fluid pressure and the resulting applied pressure on the solid phase.

2 Multiplicative Jacobian Energy Decomposition

Under large deformation, linear elasticity is no longer valid and the liver behavior
is better represented as an hyperelastic material. Since we are using implicit time
integration schemes, it is necessary at each time step to compute hyperelastic
forces and stiffness matrices with a discretization method. The Finite Element
Method is a widely used approach to this end, however the constraint of real-time
simulation is not always satisfied. The objective of this section is to introduce a
fast discretization method suitable for all hyperelastic materials.

To discretize the liver geometry, we use tetrahedral linear finite elements.
TP is the rest tetrahedron (with vertices Pi) which is transformed under the
deformation function φ(X) into the tetrahedron TQ (with vertices Qi). Any
hyperelastic material is fully determined by its strain energy function Wh which
describes the amount of energy necessary to deform the material. This strain
energy function is defined in a way which is invariant to the application of
rigid transformations: it involves the invariants of the Cauchy-deformation tensor
defined as C = ∇φT∇φ. There are numerous invariants of C (see [5] for detailed
explanation) but the one commonly used are the following: I1 = trC, I2 =
1
2 ((trC)2 − trC2), I4 = aTCa (where a is the main fiber direction), and the
Jacobian J = det∇φ.

2.1 Decomposition of Strain Energy

We decouple in the strain energy, the invariants of C from J so as to avoid com-
plex derivative expressions and matrix inversion of C. Instead of computing the
force and stiffness matrix using the classical Galerkin FEM[6], we compute them
directly using the Rayleigh-Ritz method by deriving the energy with respect to
the nodal position:

Fi = −
(
∂Wh

∂Qi

)T

and Kij =

(
∂2Wh

∂Qj∂Qi

)
(1)

It is important to note that the approach developed in this section is completely
equivalent to the classical FEM one but leads to more efficient computation. A
comparison with the open source software FEBio proved this equivalence. We



propose to write the strain energy functions as a sum of terms W k
h = fk(J)gk(Ĩ)

or exponentials of W k
h , where Ĩ = (I1, I2, I4...). This decomposition applies to

every material models we studied so far (Costa , Veronda Westmann, Boyce
Arruda, StVenant Kirchhoff, NeoHookean, Ogden, Mooney Rivlin). This gives
the following expression of the tetrahedron strain energy:

Wh = V0

n∑
k=1

fk(J)gk(Ĩ) + V0 exp

 n′∑
k=n+1

fk(J)gk(Ĩ)

 (2)

Using this exact decomposition of strain energy enables complex material for-
mulation to be computed more efficiently with only a sum of reasonably simple
terms. With this decomposition, getting fk

′
(J) requires a 1D derivation, and

getting Sk
h = 2∂gk(Ĩ)

∂C requires to combine well-known derivatives of the invari-

ants (such as ∂I1
∂C = Id or ∂I2

∂C = IdI1−C where Id is the 3×3 identity matrix).
For instance, the nodal force expression becomes:

Fh,i = −V0

n∑
k=1

(
fk
′
(J)gk(Ĩ)

(
∂J

∂Qi

)T

+ fk(J)∇φ Sk
h Di

)
(3)

where Di are gradients of shape functions, called shape vectors.

2.2 Formulation of the Stiffness Matrix

Implicit time integration schemes require the computation of the tangent stiffness
matrix at each time step. This naturally involves elasticity tensors computed as
the derivative of Sk

h with respect to C for each tetrahedron and at each time step.
The MJED leads to far simpler expressions of those tensors because Sk

h is inde-
pendent of J . Furthermore, in many common material models, the term contain-
ing those elasticity tensors can be precomputed. The full expression of the stiff-
ness matrix includes 6 terms. Due to space constraints, we only focus below on

the term involving the fourth order elasticity tensor: Rk
h = fk(J)

(
∂Sk

h

∂Qj
Di

)T
∇φT

which requires the computation of the tensor
∂Sk

h

∂C : H where H is a symmetric
matrix. In all cases, this tensor can be written as a sum of two kinds of terms,
βk

1 Ak
1HAk

1 or βk
2 (H : Ak

2)Ak
2 where βk

u are scalars, Ak
u are symmetric matrices,

and A : B = tr(BTA) for any two matrices A,B. Therefore, the term Rk
h is a

combination of two terms:

fk(J)∇φLk
1(i, j)∇φT and fk(J)∇φLk

2(i, j)∇φT (4)

where Lk
1(i, j) and Lk

2(i, j) are linear matrices depending on the shape vectors
Di, Dj , the matrices Ak

u and the scalars βk
u. This formulation leads to an opti-

mization for the assembly of the stiffness matrix for two reasons. First, no fourth
order tensors are required, only scalars and symmetric matrices are involved in
the computation. Second, except for the Ogden model, the matrices Ak

u are con-
stant and therefore matrices Lk

1(i, j) and Lk
2(i, j) can be precomputed for each

tetrahedron before the simulation.



2.3 Coping with highly compressed elements

In case of high compression, the volumetric terms fk(J) in the strain energy
become dominant. This makes the stiffness matrix singular and thus leads to
numerically unstable computations. We propose to regularize a second term of

the stiffness matrix Gk
h = fk

′′

(J) gk(Ĩ) ∂J
∂Qj
⊗ ∂J

∂Qi
by replacing it with the

following expression : Gk
h = fk

′′

(J)gk(Ĩ)
(

(1− b) ∂J
∂Qj
⊗ ∂J

∂Qi
+ b ∂J

∂Qj
· ∂J
∂Qi

Id
)

.

The closer b is to 1, the more Gk
h resembles to a diagonal matrix. In practice,

we set b = (1 − J) if 0 ≤ J ≤ 1, b = 0 if J ≥ 1 and b = 1 if J ≤ 0. With this
technique, it is even possible to handle inverted elements when the strain energy
remains finite at J = 0.

3 Modeling Visco - Poro - Hyperelasticity

3.1 Visco-Hyperelasticity based on Prony Series

To accurately model the viscoelasticity of the liver,we propose to rely on Prony
series [4]. In this method, time-dependent stresses are added to the hyperelastic
stress tensor Sv. Time-dependence is given by α(t) = α∞ +

∑
i αi exp(−t/τi)

with the condition (α∞ +
∑

i αi) = 1. The visco-hyperelastic SPK tensor Sv

can be written as:

Sv = Sh −
∑
i

γi where γi =

∫ t

0

αi

(
1− exp

(
t′ − t
τi

))
∂Sh

∂t′
dt′ (5)

After a discretization over time this results in the recursive formula: γni = aiS
n
h +

biγ
n−1
i where ai = ∆tαi/(∆t + τi) and bi = τi/(∆t + τi). ∆t is the time step

used for discretization and has to be the same as the time step for the solvers of
the simulation.

3.2 Poro-Elasticity

Following Kerdok’s model [7], we propose to model the liver as a fluid-filled
sponge as it filters the blood through its parenchyma. The proportion of free-fluid
(blood, water. . .) in the liver parenchyma in the reference configuration is set to
a constant fw, 1− fw represents the initial ratio of the solid phase (e.g. hepatic
cells...). We introduce the effective volumetric Jacobian J∗ = (fw + J − 1)/fw,
and define the volumetric Cauchy stress following Hencky’s elasticity : σHeq =
K0 fw ln(J∗) where K0 is the bulk modulus of the material. With this model,
when J gets close to 1−fw, the solid phase of the liver is completely compressed
and the resulting stress is infinite. To avoid instabilities due to this infinite
stress, we substitute σHeq when J ≤ J0 by its tangent curve at J0 = 1 − fw +
K0/Klim where Klim is a bulk modulus and represents the slope of the tangent
(see Fig.1). The fluid phase of the liver also applies some volumetric stresses
due to the transient response of the fluid through the porous liver parenchyma.



A straightforward way of modeling the porous behavior is through the linear
Darcy’s law. In this setting, variation of fluid pressure Pfluid is governed by the
variation of volume change and a diffusive process:

1

Klim
Ṗfluid = κ∇2Pfluid −

J̇

J
(6)

where κ is the permeability parameter, kept constant to decrease the compu-
tational cost. Finally, the total Cauchy stress response in the volumetric part
is defined by summing the solid and the fluid terms: σp = σheqId − PfluidId.
The simulated fluid pressure field during a deformation under gravity force is
shown in Fig.1. Highest pressure in the fluid occurs when the liver is compressed
either by the gravity pressure (diffusion starts at the top) or by elastic reaction
(diffusion starts at the bottom).

P=10(Pa)

t=0s t=2s t=4s

Fig. 1. (Left) Representation of the static Cauchy stress before and after substitution.
The dot curve represents the new stress. Here fw = 0.8. (Right) Pressure field of the
porous component on a liver under gravity. Using fw = 0.5, K0 = 400 Pa, Klim =
2200Pa and κ = 20 m4/Ns.

4 Results and Validation

4.1 Computation time of the hyperelastic implementation

Decreasing computation time of the hyperelastic term is essential to reach real-
time simulation as this term represents around 60% of the total time needed
in one step (see Fig.2). In order to validate the MJED method, we compared
our implementation with the classical FEM method explained in [6], referred
to as ”Standard FEM”, implemented in SOFA3. We measured the time elapsed
for the computation of the nodal forces and the stiffness matrices averaged over
100 iterations. We simulated the deformation of a cube with 20 700 tetrahedra
and 4300 nodes. The results are given in Fig.2. For all implemented models the
proposed strategy is more efficient than the standard FEM, up to five times as
fast for St Venant Kirchhoff material.
3 SOFA is an Open Source medical simulation software available at www.sofa-

framework.org



Fig. 2. (Left) Break-down of computational time between the components during one
time step. (Right) Comparison of the computation times of nodal forces and stiffness
matrices between two different discretization methods averaged over 100 iterations.

4.2 Visco-elasticity validation

To calibrate the visco-elastic parameters of our liver model, tests on at least 60
samples from 5 animals were performed on porcine livers. Dynamic viscoelastic
behavior of hepatic tissue was investigated using in vitro Dynamic Mechani-
cal Analysis (DMA) without perfusion in order to capture only the viscoelas-
ticity. Dynamic Frequency Sweep tests were performed on a dedicated stress-
controlled AR2000 rheometer (TA-Instruments, New Castle, DE, USA) in the
linear viscoelastic strain range of the samples (see Fig.3). From the results, the
Dynamic Modulus G can be obtained as a function of the frequency or function
of the time, and the viscoelastic behavior can be modeled after fitting a gen-
eralized Maxwell model with two modes of relaxation to those measurements:
G(t) = G0(g∞ + g1 exp(−t/τ1) + g2 exp(−t/τ2) ) where G0 g∞ = G∞ is called
the equilibrium modulus, g1, g2, τ1, τ2 are parameters such as g∞ + g1 + g2 = 1.

Fig. 3. (Left) Rheometer: Lower plate is fixed whereas upper is sinusoidally rotating.
(Right) Comparison of the simulated values with the data obtained by DMA testing.
The moduli are given on a X-log scale. The material is St Venant Kirchhoff with
G0 = 770Pa, (α1, α2) = (0.235, 0.333) and (τ1, τ2) = (0.27s, 0.03s) .



From the rheological experiments we derive the shear modulus G0 required
in the hyperelastic term and the Prony series parameters for the viscous term.
To check the validity of those parameters, we compared in silico simulations
with the performed in vitro rheological tests. Dynamic frequency sweep tests are
simulated using similar geometries and boundary conditions as in the real DMA
tests. We estimated the values of the Dynamic Modulus and compared them
with experimental data. Figure 3 shows the results: the simulation manages to
capture the viscous behavior of the liver for small deformations with a mean
relative error of 5%. Given the fitting errors and the standard deviation of the
values obtained with the DMA tests, this mean error is reasonably good.

4.3 Complete Liver Model

To analyze the influence of each component in the complete model, several simu-
lations were performed using the same liver mesh (1240 vertices and 5000 tetrahe-
dra) with Boyce Arruda hyperelastic material[7]. The liver mesh was segmented
from a CT scan image and meshed with tetrahedra by the GHS3D software4. An
Euler implicit time integration scheme was used, the linear equation was solved
with a conjugated gradient algorithm. As boundary conditions, several nodes of
the liver were fixed along the vena cava and suspensive ligament. The liver then
deformed under the action of gravity.All computations were performed on a lap-
top PC with a Intel Core Duo processor at 2.80 GHz (simulations are available
in the video clip). Adding viscosity to hyperelasticity increases the amplitude of
the oscillations as the material becomes less stiff (see Fig.4). The frame rate is
around 7 FPS against 7.5 FPS for hyperelasticity alone. We did not reach the 25
FPS needed for real-time interaction. However, the implicit integration scheme
allows larger time step (0.3s for instance) which speeds up the simulation and
makes user interactions efficient. High amount of extension and compression are
possible which may be somewhat unrealistic, therefore the porous component
is necessary to control the amount of viscosity. The maximum amplitude with

Fig. 4. Comparison of the maximum amplitudes under gravity. (Left) Hyperelastic
Liver, (Middle) Visco-Hyperelastic liver, (Right) Visco-Poro-Hyperelastic.

4 GHS3D is a mesh generator for tetrahedral elements, developed at INRIA, France



porosity is in between the hyperelasticity alone and the visco-hyperelasticity. The
addition of this component decreases the computational efficiency (6 FPS) since
a semi-implicit integration scheme is used for the porous component. Because
of the fast variation of the explicit term J̇/J , the time step has to be decreased
to 0.15s. On our laptop PC, the simulation is still fluid enough to allow user
interactions.

5 Conclusion

In this paper, we have introduced an efficient method to assemble stiffness matri-
ces for complex biomechanical material models which compares favorably with
the standard FEM method. We have also proposed a poro-visco-hyperelastic
liver model suitable for real-time interaction which is, up to our knowledge,
among the most realistic ones. Several model parameters have been identified
from rheometric tests performed on porcine livers and a validation study has
been successfully performed to reproduce those tests. Despite those advances,
further research is needed to achieve realistic liver surgery simulations including
the realistic contact with neighboring structures, the influence of breathing and
cardiac motion, the simulation of hepatic resection, bleeding and suturing.

Acknowledgment This work is supported by the European PASSPORT project
(Patient-Specific Simulation for Pre-Operative Realistic Training of Liver Surgery)
FP7- ICT-2007- 223894.

References

1. Delingette, H., Ayache, N.: Soft tissue modeling for surgery simulation. In: Com-
putational Models for the Human Body. Elsevier (2004) 453–550

2. Hawkes, D., Barratt, D., Blackall, J., Chan, C., Edwards, P., Rhode, K., Penney,
G., McClelland, J., Hill, D.: Tissue deformation and shape models in image-guided
interventions: a discussion paper. Medical Image Analysis 9(2) (2005) 163 – 175

3. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total lagrangian explicit dynamics
finite element algorithm for computing soft tissue deformation. Communications in
Numerical Methods in Engineering 23 (2006) 121–134

4. Taylor, Z., Comas, O., Cheng, M., passenger, J., hawkes, D., Atkinson, D.., Ourselin,
S.: On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical
solution and gpu execution. medical image Analysis 13 (2009) 234–244

5. Weiss, J., Maker, B., Govindjee, S.: Finite element implementation of incompress-
ible, transversely isotropic hyperelasticity. Computer methods in applied mechanics
and engineering 135 (1996) 107–128

6. Zienkiewicz, C., Taylor, R.: The Finite Element Method, Volume 2 : Solid Mechan-
ics. Butterworth-Heinemann (2000)

7. Kerdok, A.E.: Characterizing the Nonlinear Mechanical Response of Liver to Sur-
gical Manipulation. PhD thesis, Harvard University (2006)


