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Abstract—We propose two unstructured file sharing games,
unilateral and bilateral unstructured file sharing games, to study
the interaction among self-interested players (users) of unstruc-
tured P2P file sharing applications. In a unilateral unstructured
file sharing game, players compete for network resources (link
bandwidth) by opening multiple connections to each other on
multiple paths so as to maximize their individual benefits. A
player always allows other players to connect to itself. Multiple
concurrent connections are allowed on any path between a
pair of players. Per-connection throughput is determined by
the transport protocol implemented by users’ computers. In a
bilateral unstructured file sharing game, users adopt a Tit-for-Tat
strategy, under which an active connection between two players is
set up only when they both find it beneficial. Two players can set
up at most one connection between themselves and bottlenecks
occur only at upstream access links in a star network. For
both games, we prove the existence of an equilibrium, quantify
the efficiency losses of equilibria, and demonstrate the dynamic
stability of equilibria in best-response or better-response dynamic
game playing processes.

Index Terms—game theory, peer-to-peer, BitTorrent, unstruc-
tured file sharing, Nash equilibrium, efficiency loss, dynamic
stability, Tit-for-Tat, pairwise stability, pairwise equilibrium
network.

I. INTRODUCTION

I IS WELL known that peer-to-peer (P2P) file sharing appli-cations (e.g., BitTorrent [1], Kazaa, eDonkey, and Gnutella
[2]) are major contributors of Internet traffic. For example, [3]
estimates that P2P generated 60% of all US Internet traffic at
the end of 2004. Sprint’s IP Monitoring Project [4] shows that
in April 2003, 20 − 40% of total bytes corresponded to peer-
to-peer traffic on one backbone link. According to [5] P2P
traffic accounts for 30% of daytime and 70% of nighttime
Internet traffic in Germany. As P2P applications contribute
significantly to Internet traffic, it is important to understand
the behavior and performance of these applications. The net-
works formed by such P2P applications can be thought of as
unstructured file sharing overlay networks, as users/peers relay
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Sophia Antipolis, France, and Università degli Studi di Palermo, Italia (e-mail:
giovanni.neglia@ieee.org).
Don Towsley is with the Department of Computer Science, Uni-

versity of Massachusetts Amherst, Amherst, MA 01003, USA (e-mail:
towsley@cs.umass.edu).
Giuseppe Lo Presti is with CERN, European Organization for Nuclear Re-

search, CH-1211 Geneva 23, Switzerland (e-mail: giuseppe.lopresti@cern.ch).
Digital Object Identifier 10.1109/JSAC.2008.080925.

data for each other over the Internet and there are no central
routing controls and no well-defined network topologies.
In order to investigate the stability and efficiency of such

unstructured file sharing networks, we introduce two unstruc-
tured file sharing games to study the strategic behavior of self-
interested users (players) on these networks. Henceforth we
use the term users and players interchangeably. The stability
and efficiency are respectively captured by the equilibria in
the games and the network performance at the equilibria.
Specifically, we introduce a unilateral unstructured file

sharing game and a bilateral unstructured file sharing game.
By unilateral, we mean that a player always allows other play-
ers to set up connections or data transfer sessions with itself,
and only the player sending a connection request receives
data from the connection. In other words, connection setup
requests are always accepted and each connection/session is
unidirectional. This is representative of P2P networks such as
eDonkey [6]. By bilateral, we mean that two players set up
a connection between each other only when they both find it
beneficial and they both receive data through the connection.
In other words, each connection is bidirectional and requires
mutual consent. Note that the mutual consent captures the Tit-
for-Tat strategy implemented in BitTorrent [1] applications.
In addition, in the unilateral unstructured file sharing game,

players compete for available network resources (link band-
width or capacity) by opening multiple connections/sessions
on multiple paths, and their strategies are the numbers of ses-
sions on available paths. Note that a player can open multiple
concurrent connections on each path to another player. The
data rates allocated to connections are implicitly determined
by the transport protocols implemented by users’ computers.
The data rate allocation mechanism can be captured by the
bandwidth sharing framework proposed by Kelly [7] with TCP
networks as special cases [8][9]. In the bilateral unstructured
file sharing game, we restrict a player to open either zero
or one connection to another player on a star network, and
we further assume that bottlenecks only occur at upstream
access links of players. A player’s upload bandwidth is equally
shared by other players that download data from this player.
Note, in the unilateral file sharing game, proportional fairness
is assumed by models on star networks and parallel networks,
and link capacities are not assumed to be the same.
We introduce a benefit function to capture the performance

that a player attempts to optimize. The benefit is a combination
of a utility function (increasing and concave in throughput)
and a cost associated with maintaining connections.
The contributions of this paper are summarized as follows.

We show the existence of multiple Nash equilibria (NEs) in
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the unilateral unstructured file sharing game. We then use
parallel link and star networks (similar to [10][11][12][13]) to
model unstructured file sharing, and prove the existence of an
NE. We show that the price of anarchy (the worst efficiency
loss of NEs) [14] is upper bounded if users have resource
constraints. Note that the efficiency loss of an NE is defined
as the ratio of optimal system performance over the system
performance at the NE. We show that a dynamic game playing
process converges to an NE if users play a variant of the game
in a best-response fashion. For the bilateral unstructured file
sharing game, we show the existence of symmetric pairwise
equilibrium networks (PENs) in a homogeneous star network
and that the price of anarchy is unbounded (for linear cost
functions) even though Tit-for-Tat is used to prevent selfish
behavior. We also characterize asymmetric PENs and show
that all PENs asymptotically converge to symmetric PENs as
the number of players increases. We further show that a PEN
can always be achieved in a better-response dynamic game
playing process when the cost function is linear.
The rest of this paper is organized as follows. A formal

description of the unilateral unstructured file sharing game
is presented in Section II. Sections III and IV focus on
the unilateral unstructured file sharing game on parallel link
and star networks respectively. The bilateral unstructured file
sharing game is discussed in Section V. Related work is
presented in Section VI, and Section VII concludes the paper.

II. UNILATERAL UNSTRUCTURED FILE SHARING GAME

A. Network Formulation

A set of users R = {1, ..., R} share a network consisting
of a set of links J = {1, ..., J}, which provides a set of
paths P = {1, ..., P}. Link j has a capacity or bandwidth
Cj > 0. Each path p ∈ P consists of a sequence of links;
if link j is used by path p, we denote this by j ∈ p. Each
user r has a set of available paths; if path p serves user r,
we denote this by p ∈ r. User r can open a number of
concurrent connections nrp on path p if p ∈ r. User r’s
strategy is defined as nr = (nrp) with p ∈ P and p ∈ r. A
composite strategy of all users is given by n = (n1, ...,nR).
For a given n, a data rate allocation mechanism allocates
rate yp to each connection on path p. The rate allocation
mechanism is implicitly defined by the data transmission
protocol implemented by users. One example in the Internet
is Transmission Control Protocol (TCP). We will discuss the
rate allocation mechanism in the following section. For now,
we simply state that yp is a function of n. A rate allocation
on all paths can be denoted by vector y = (yp, p ∈ P). Any
feasible rate allocation y must satisfy capacity constraints:∑

r∈R

∑
p:j∈p nrpyp ≤ Cj , ∀j ∈ J.

Let Gr denote the total data rate or throughput received by
user r, written as Gr(nr) =

∑
p∈r nrpyp. As yp is a function

of n,Gr is also a function of n. We assume that user r receives
a utility Ur(Gr) when obtaining throughput Gr, where Ur

is a continuous, concave, and increasing function of Gr. A
cost Φr(nr) is associated with opened connections. User r’s
objective is to maximize a received benefit, represented as a
combination of Ur and Φr:

Br(nr) = Ur(Gr(nr)) − Φr(nr). (1)

where Φr is assumed to be a continuous, convex, and increas-
ing function of nr.
One special case of Φr is a linear cost function where Φr

is proportional to the total number of connections opened by
user r on all of its available paths, defined as:

Φr(nr) = β
∑
p∈r

nrp. (2)

We assume β ∈ [0, 1], and interpret β as the aggressiveness
coefficient. A smaller β is used to characterize a more power-
ful computation resource. This type of cost is also considered
in [15]. A user with a more powerful computational resource
puts less weight β on its total number of connections when
computing its connection costs.

B. Rate Allocation Mechanism

As mentioned before, the data transmission protocol im-
plemented by users implicitly defines a data rate allocation
scheme for connections opened by users. In this paper, we
use the α-bandwidth allocation scheme [8][7][9]:

maxy
∑

p

wpn
α
p

(ypnp)(1−α)

1 − α
(3)

s.t.
∑
r∈R

∑
p:j∈p

nrpyp ≤ Cj ; np =
∑

r:p∈r

nrp. (4)

where wp is the weight of path p. Different values of α
yield different rate allocations. For example, as α → ∞, the
resulting allocation is Max-Min fair. Rate allocation in a TCP
network is approximated by α = 2 and wp = 1/T 2

p , where Tp

is the Round Trip Time (RTT) of path p.
If a network consists of only one congested link and user

r has nr flows and different users have different RTTs, then
[15] shows that Gr is given by:

Gr(nr) =

{
nr/TrP

k∈R nk/Tk
C, if nr > 0

0, otherwise
(5)

Note, this expression is only valid for TCP. We refer to this
as the simple rate allocation function. If all n connections
or flows sharing the link have the same RTT, then each flow
gets an equal share of C. Note that (5) holds only when all
connections share one bottleneck link. Furthermore the links of
a path cannot be treated independently, as they all must carry
the connections opened on the path. An illustrative example
is given in [16]. This requirement makes a user’s throughput
neither concave nor convex in its numbers of connections. An
example of this observation is given in the next section.

C. Unilateral Unstructured File Sharing Game

We now formally introduce the unilateral unstructured file
sharing game to model the interaction among self-interested
users that compete for the total network bandwidth by opening
multiple concurrent connections on multiple paths. By unilat-
eral, we mean that a user or player always allows other players
to set up connections or data transfer sessions with itself,
and only the player sending a connection request receives
data from the connection. In other words, connection setup
requests are always accepted and each connection/session is
unidirectional.
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Each user r tries to maximize its benefit Br by adjusting nr.
More precisely, user r tries to solve the following optimization
problem:

maxnr Br(nr,y∗(nr)) (6)

s.t.nrp ∈ (0, nmax
rp ],∀p ∈ Pr (7)

y∗ = argmaxy
∑

p

wpn
α
p (ypnp)(1−α)

1 − α
(8)

s.t.
∑
r∈R

∑
p:j∈p

nrpyp ≤ Cj ; np =
∑

r:p∈r

nrp

where vector nr is the decision variable of user r and Pr

is the set of paths available to user r. (8) indicates that the
throughput of each connection on a path is the solution of
the optimization problem defined in (3). As there is no closed
form solution for the rate allocation problem (8) on a general
network, we cannot obtain an explicit expression for Br(nr)
for a general network. In fact, (6) is a bi-level programming
problem, which is NP-hard [17]. However, as shown later,
we can obtain an explicit form of Br(nr) for some specific
networks such as grid networks. Note that, a related game
was studied in the context of proportional games by Hajek and
Gopal [18], in which the efficiency loss can be arbitrarily high.
But the benefit received by a user in [18] does not include a
cost of the user’s own actions, only the utility for rate. Please
see a more detailed discussion in Section VI.
Let n∗

r represent the solution to user r’s optimization
problem defined above, namely, n∗

r = argmaxnr
Br(n). A

Nash equilibrium (NE) is defined as n∗ = (n∗
1,n

∗
2, ...,n

∗
R),

a vector of connections of all users such that no user can
gain by unilaterally deviating from it. In the context of
unstructured file sharing networks, an NE represents a stable
network state produced by the interaction among users. The
network performance at an NE can be quantified by the loss
of efficiency of the NE, defined as:

Leff = Bmax/Bne (9)

where Bne is the total benefit of all users when the network is
at the NE, and Bmax is the maximum total benefit. The worst
efficiency loss is also known as the price of anarchy [14].

D. Remarks on Benefit Function and Multiple NEs

It is not necessarily true that throughput Gr(nr) always
increases in nr. Consider the network shown in Figure 1.
Suppose user r has three paths: p1, p2, and p3. Suppose p1

consists of links j1 and j2 (each with capacity C), p2 consists
of link j1, and p3 consists of link j2. If nr = (0, 1, 1), then
Gr(nr) = 2C. But if nr = (1, 1, 1), then Gr(nr) = 3C/2.
Thus, Gr(nr) decreases in np1.
Next, we illustrate the existence of multiple NEs on a grid

network (introduced in [8], and shown in Figure 2(a)). A
possible instance of this grid network is a “fish” network,
shown in Figure 2(b). A closed form rate allocation based on
the α-bandwidth sharing mechanism for such a grid network
is given in [8]; See [16] for details.
Consider the unilateral unstructured file sharing game with

two players on the grid network. Suppose that player 1 uses
route 1 and player 2 uses route 2, and both players have

p1
p2

p3j1

j2

Fig. 1. A case where the throughput of user r does not increase in nr .

the same benefit function. Assume that the players use TCP,
namely, α = 2 and wp = 1/T 2

p in (3). Suppose that all vertical
and horizontal routes have RTTs of 50ms, and there are ten
background flows on each vertical route. In the following, we
discuss two examples of the game that differ in users’ benefit
functions.
First consider an example where β is 0.0005 in the linear

cost function given by (2) and a user’s utility equals its
received throughput. In Figures 3 and 4 we plot the benefit B1

of user 1 as a function of the number of its connections on its
single available route, given that the number of connections
of user 2 is 50 and 100 respectively. We observe that B1

is neither concave nor convex in n1. In addition, B1 does
not always increase in n1. This suggests that existing game-
theoretic results on the existence of an NE cannot be directly
applied here because those results require the concavity of the
benefit function [19][20].
For this game, we can use best response curves to identify

NEs. The best response n∗
r of player r is defined as the solu-

tion of r’s optimization problem provided that the strategies
of all other players n−r are fixed. In Figure 5, we plot the
best response curves of both players. Note that there are three
intersecting points. An intersecting point is an NE because at
that point, each user’s strategy is the best response to the other
user’s strategy. Thus, there are three NEs in this game. It is
also interesting to note that these two players do not share any
common link (Figure 2). Their interaction arises because they
share links with other common sessions.
Next, consider the case where players are aggressive in

the sense that they are only concerned with total throughput
and have no resource limits. That is, Br(nr) = Gr(nr). For
example, consider again the two users in the previous game.
Suppose that user 2 opens 100 connections. From Figure 6, we
observe the throughput of user 1 is neither concave nor convex
in n1, its number of connections on its single available path.
However, note that the throughput of user 1 increases in n1,
which can be verified by checking its first-order derivative.
Similarly, user 2’s throughput increases in n2. Therefore, if
both users play the game, there is a unique NE, at which both
players open their maximal allowable numbers of connections.
The above examples demonstrate that the interactions

among multiple users on a general network topology can be
much more complex than the single link TCP connection
game in [15]. The existence and uniqueness of NE depend
on network topologies and users’ utility functions. In what
follows, we study this game on two special networks which
are used to model P2P unstructured file sharing networks.

III. PARALLEL LINK NETWORK

Parallel link networks can be used to model unstructured file
sharing. In such a network, users share a common source node
and a common destination node connected by a number of
parallel links. For example in eDonkey [6], a peer can down-
load a file from multiple other peers. Peers simultaneously
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(a) (b)

Fig. 2. (a) is a grid network where squares represent links. (b) is an instance of (a). A → E → B and C → D → A correspond to route 1 and 2 in (a).
D → A → E, E → F → D, C → F → B correspond to routes 3, 4, 5.
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Fig. 3. Benefit of user 1 as a function of the number of connections when
user 2 has 50 connections.
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Fig. 4. Benefit of user 1 as a function of the number of connections when
user 2 has 100 connections.
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Fig. 5. Best response curves of both player 1 and player 2.
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Fig. 6. User 1’s data rate as a function of the number of connections on
its path.

downloading a common file can be thought of as residing
on a common destination node. Each file-providing peer is a
“link” or “path” connecting the common destination node with
a common virtual file-providing source node. Downloading
peers are players competing for those parallel links’ capacities.
In this section we show the existence of an NE in the unilateral
unstructured file sharing game on parallel-link networks and
study its performance.

A. Nash equilibrium and network performance

We first restate the game formulation briefly for the par-
allel link network. Consider R users sharing L links on a
parallel link network. One example is shown in Figure 7.
The throughput Grj obtained by user r on link j is given by
the simple rate allocation function introduced in the previous
section: Grj(nrj) = Cjnrj/Trj/(

∑R
k=1 nkj/Tkj), where Trj

is the Round Trip Time of user r from source node S to
destination node D, Cj is the capacity of link j, and nrj is

the number of connections of user r on link j. The strategy
of user r is a vector of the number of connections on its
available paths or links, given as nr = (nr1, ..., nrL), where
nrj ∈ (0, nmax

r ], ∀j ∈ L and nmax
r is the maximal allowable

number of connections for user r. This game is a continuous
kernel game [19] as we assume that a user’s strategy is a
real-valued vector and users’ benefit functions are continuous.

Our game when applied on parallel links decouples in
a manner similar to that in Johari and Tsitsiklis [21]. A
key difference is that the social welfare in our model is an
aggregate of all users’ benefits (including utility and cost),
whereas the social welfare in [21] does not include the cost
term. This decoupling does not hold when our game is played
on a star network (shown later). It is interesting to note that
the utility function in our game when applied on a single link
can be transformed into one studied in Maheswaran and Basar
[22] in the context of design efficient auction mechanisms for
divisible resources. The existence of Nash equilibrium was
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user 1
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Fig. 7. A parallel-link network topology.

also proved in [22]. But, the social welfare defined in [22]
differs from ours in that user costs are not included in the
computation of social welfare in [22]. It is also interesting to
note that Herve Moulin [23] explicitly includes the cost in
the efficiency metric in his study on the efficiency and budget
balance in cost sharing for infinitely divisible resource. But
the utility function in the game model in [23] is completely
different from ours. See Section VI for a detailed discussion.
1) Nash equilibrium: Recall that the benefit received by

user r is: Br(nr) = Ur(Gr(nr)) − Φr(nr). It is easy to
see that Gr is continuous, concave, and increasing in nr (see
[16] for details). As we assume that Ur(Gr) is continuous,
concave, and increasing in Gr, and Φr is continuous, convex,
and increasing in nr, hence, Br is concave in nr. As Br is
also continuous in n and a user’s strategy space is a compact,
convex, and nonempty subset of RL. Then this game is an
n-person concave game which admits an NE [20]. Hence we
have the following result; See [16] for a detailed proof.
Theorem 1: A unilateral unstructured file sharing game

admits an NE on a parallel link network.
Consider a special case where a user’s utility equals its

received throughput, and its cost is proportional to its total
number of connections (defined in (2)). That is, Br(nr) =
Gr(nr) − β

∑L
j=1 nrj , where β is the aggressiveness coeffi-

cient. We have the following result for this case.
Corollary 1: When a user’s utility equals its throughput

and all users have the same RTT and the same cost function
defined in (2), then the game on a parallel-link network admits
a unique NE. In addition, if the network is homogeneous (all
links’ capacities are the same), the efficiency loss of the NE
is bounded, but asymptotically unbounded as the number of
users increases.
A detailed proof of Corollary 1 is given in [16]. This

corollary gives the number of connections of user r at the
NE as n∗

rj = (R − 1)Cj/(R2β) and user r’s benefit at the
NE as B∗

r =
∑L

j=1 Cj/R − ∑L
j=1(R − 1)Cj/R2. Therefore

the total social benefit of all users at the NE is given by
Bne =

∑L
j=1 Cj/R. As the number of users increases, Bne

goes to zero.
Note that the efficiency loss of an NE is the ratio between

the maximum total benefit and the total benefit at the NE.
In this game, the total benefit can be represented as B =∑R

r=1 Br =
∑R

r=1

∑L
j=1 Grj − β

∑R
r=1

∑L
j=1 nrj . Then, we

can derive the maximum total benefit as: Bmax =
∑L

j=1 Cj −
βNmin. Consider a homogeneous network where all links
have the same capacity. Then we have Bmax = LC − βL,
as we need at least one connection for each link in order to
get the bandwidth of that link. Then the efficiency loss of the
NE is given by Leff = Bmax/Bne = (LC − βL)/(LC/R).
This result indicates that the efficiency loss of the unique NE
is bounded. However, as R → ∞, we have Leff → ∞. This

suggests that the system performance at the NE can arbitrarily
degrade as the number of users becomes large.

B. Stability of NE in best-response dynamics

Best-response dynamics [19][15] is a dynamic game playing
process in which users make moves at discrete time steps,
following a prescribed sequence. When a user makes a move,
it adopts its best response (that maximizes its benefit) to other
users’ strategies at the previous step. An NE is globally stable
with respect to a certain moving sequence if the best-response
dynamics (in which players make moves following the given
moving sequence) converges to the NE no matter where the
game starts in the feasible strategy space of the game.
The best response of a user is a solution of its benefit

maximization problem given that other users’ strategies remain
fixed. Consider the special case in the last section where
Br(nr) = Gr(nr) − β

∑L
j=1 nrj . We can show the best

response function of user r is a continuous and concave
function of the numbers of connections of other players. Then,
based on [15], we can conclude (in the following theorem) that
the unique NE in a two-player variant of the game is globally
stable. A detailed proof is found in [16].
Theorem 2: In a two-player unilateral unstructured file

sharing game on a parallel link network, when a player’s utility
equals its throughput and all players have the same RTT and
the same linear cost function defined in (2), the unique NE is
globally stable in the best-response dynamics.

C. Constrained Game

Consider another game where the total number of con-
nections allowed by a user to open is fixed. This game is
motivated by the original implementation of BitTorrent [1]
where each peer always has exactly five active connections
to five different other peers. Note that in BitTorrent, a peer
can open up to 80 connections, but only five of them actively
send and receive data. We refer to this game as a constrained
game. Consider the special case in the last section where
Br(nr) = Gr(nr) − β

∑L
j=1 nrj . We have the following

theorem for this game.
Theorem 3: In a constrained unilateral unstructured file

sharing game, assume that a user’s utility equals its received
throughput, a user’s cost is proportional to its total number
of connections and all users have the same RTT and the
same linear cost function. Then, the game admits a unique
symmetric Nash equilibrium on a parallel-link network.
The basic idea for proving this theorem is to construct

Lagrangians for the constrained optimization problems of
all users, then one can find the optimal solutions for those
Lagrangians, which further gives us the symmetric NE. See
[16] for the proof of this theorem. Note that at this symmetric
NE, all users have the same number of connections. There
may also be asymmetric NEs. See [16] for details.
As the total number of connections of user r is fixed at

nr, the maximum total benefit can be derived as Bmax =∑L
j=1 Cj − β

∑R
r=1 nr. The optimal system performance is

the same as the system performance at the unique symmetric
NE.
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Fig. 8. An example of star network.

IV. STAR NETWORK

We now investigate the unilateral unstructured file sharing
game on a star network which can be used to model a P2P
file sharing overlay. As shown in an example in Figure 8,
we assume that a user has two access links to the Internet:
one downstream link and one upstream link. A user r uses
its downstream link to get data from other peers, and it is
a “private” link in the sense that this link is only used by
user r itself. On the other hand, the upstream link of user
r is shared by all peers that download files from user r,
so the upstream link of user r is a “public” link from user
r’s point of view. Usually the downstream link has higher
capacity than the upstream link. This asymmetric access link
assumption is supported in a measurement study in [24], where
it is found that most users in current peer-to-peer networks
use cable modem or ADSL to connect to the Internet. Similar
to [10][11][12][13], we assume that bottlenecks occur only at
access links. This is a reasonable approximation of the current
P2P file sharing networks such as Gnutella and BitTorrent,
where the data throughput of a connection is usually limited by
the “last mile” (cable or ADSL or modem) of the connection.
Thus, in the example shown in Figure 8, the Internet cloud can
be simply represented as a center node in a star network, and
all peer nodes (A, B, ..., I) are connected only to the center
node.
In this section, we prove the existence of an NE in the

unilateral unstructured file sharing game on a star network, and
discuss the best-response dynamics and the loss of efficiency
of NE.

A. Nash Equilibrium

Recall that the benefit of user r is given by (1), restated
as: Br(nr) = Ur(Gr(nr)) − Φr(nr). In the following, we
first present a lemma and later use it to prove that a user’s
benefit function Br is concave in nr. Then following a similar
argument for Theorem 1, this game is an n-person concave
game which admits an NE [20].
Consider the network in Figure 9. User r is at node D, and

there are m paths along which user r can get data from peers
S1, S2, ..., Sm. All paths share a common link CD, which
can be thought of as the “private” downstream link of user r.
On each of those links from S1, S2, ..., Sm to node C, user r
competes with other users’ data flows. That is, those links are
“public” links, as discussed earlier. A strategy vector of user r
is nr = (nr1, nr2, ..., nrm) withm ≥ 1. The following lemma
shows that user r’s throughput Gr is a concave function of
nr. The proof of this lemma is found in [16]. The outline
of the proof of this lemma is the following. First we prove a
base case where each user only has two paths. By exploring
the structure of the throughput function, we can show it is
a concave function of the vector of numbers of connections.
Then, this result can be extended to more than two paths.

Fig. 9. A network where a user has multiple paths to get data.

Lemma 1: In a star network, player r’s throughput Gr

is a concave function of its number of connections nr =
(nr1, nr2, ..., nrm), where m (m ≥ 1) is the number of paths
player r has.
Based on Lemma 1, we can establish the existence of an

NE on a star network in the following theorem. The idea
of proving this theorem is as follows. Based on the result
from Lemma 1, we can show that a user’s benefit function is
a continuous and concave function of its vector of numbers
of connections. Then the game can be shown as a n-player
concave game which admits an NE [20]. See [16] for a detailed
proof of this theorem and simulation examples to show the
existence of an NE.
Theorem 4: A unilateral unstructured file sharing game

admits an NE on a star network.

B. Efficiency Loss of Nash Equilibrium

In reality, most users in P2P networks use cable modem or
ADSL to connect to the Internet [24], so downstream links
have much higher capacity than upstream links. Consider a
case where bottlenecks only occur at upstream access links in
a homogeneous network and users are homogeneous. Then we
can transform a star network to a parallel link network, then
the efficiency loss of an NE can be immediately derived from
results given in Section III. This transformation indicates that
a variant of the game on a star network can be thought of as
a variant of the game on a parallel link network. We illustrate
this transformation in the following example.
For example, we can transform the star network in Figure 10

(assume that bottlenecks occur only at upstream access links)
into the network in Figure 11. Three users, A, B, and C, are
attached to nodes A, B, and C respectively in Figure 10. Note
that each user has two download paths with each path consist-
ing of two links. The strategies of usersA, B, and C are: nA =
(nBA, nCA), nB = (nAB, nCB), and nC = (nAC , nBC).
Center node D in Figure 10 is decomposed into six inter-
connected virtual nodes DAd, DAu, DBd, DBu, DCd, DCu in
Figure 11. Links between these six virtual nodes have infinite
capacity. Node A is decomposed into nodes Adown and Aup.
Link DAdAdown represents the downstream link of node A.
Link AupDAu represents the upstream link of node A. Other
links have similar interpretations.
Observe that user A at node Adown downloads data from

node Bup and Cup via two paths: Bup → DBu → DAd →
Adown and Cup → DCu → DAd → Adown. The first path
includes only one bottleneck link BupDBu. The second one
includes only one bottleneck link CupDCu. We also have
similar observations for users B and C. This transformation
yields a parallel link network. Then the previous results for
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Fig. 10. A simple star topology with three users A, B, and C.

the loss of efficiency at NE on a parallel link network can
be applied here. That is, when the utility of a user equals
its throughput and the cost of a user is proportional to the
total number of its connections, the loss of efficiency of any
NE is bounded. Also, the loss of efficiency is asymptotically
unbounded as the number of users increases.

V. BILATERAL UNSTRUCTURED FILE SHARING GAME

The Tit-for-Tat strategy, an incentive mechanism, was in-
troduced into BitTorrent (BT) [1]. Under this strategy a peer
uploads data to a fixed number of peers from which it can
download at the highest rate. Note that a peer can open up to
80 connections to other peers in BT, but only five of them
actively send and receive data at any given time [1]. We
refer to these five connections as active connections. In the
rest of the paper, a connection in our games corresponds to
an active connection in BT. Then under Tit-for-Tat, we say
that a connection between two peers is set up only if both
peers find it beneficial. This differs from other traditional
P2P applications where active connections are always allowed
(assume peers have sufficient computation resources), which is
assumed in our previous games. In this section, we investigate
this Tit-for-Tat strategy by introducing a bilateral unstructured
file sharing game.

A. Network Model

We again assume that bottlenecks occur only at access links,
so an unstructured file sharing P2P network can be modeled
as a star network. Each peer is attached to a node and the
center node in the star represents the Internet. Peers connect
to the center node via access links. We also assume that peers
always have demands for data that can be satisfied by others.
Different from previous sections, here we assume that there

can only be zero or one connection between a pair of peers.
Unlike the last section, we assume that bottlenecks only occur
at peers’ upstream access links. In other words, we assume
that each downstream access link has infinite capacity. For
example, a connection or virtual link (i, j) between peers i
and j provides peer i with a download and an upload path.
Peer i’s upstream access link is the bottleneck for all peers
downloading from i. In the mean time, the bottleneck on peer
i’s download path from j is the upstream access link of j.
This is true for all peers. Note that on the star topology in last
section, bottlenecks can appear in the downstream links. The
places where bottlenecks can appear depend on the network
configuration.
We now look at self-interested user behavior. Peer i obtains

a share of the upload bandwidth of peer j through a connection

Fig. 11. Transformation of star network into equivalent parallel link network.

between i and j. In the mean time, other peers may also
want to obtain some share of peer j’s upload bandwidth by
setting up connections with j. The upload bandwidth of j
is equally shared among all connections with other peers.
However, if peer j adopts a Tit-for-Tat strategy, it may refuse
the connection setup request from peer i if j believes that it
cannot benefit from such a connection. One example is that
peer i cannot provide a large enough data rate to j (as in
BT). Note that a peer may want to obtain bandwidth shares
of all other peers’ upload bandwidths and wants to maximize
its received total bandwidth. When all peers behave in such a
self-interested manner, we have a game among the peers, and
any stable state of this game is an overlay network consisting
of a set of virtual links (or connections) among peer nodes.
We refer to this game as the bilateral unstructured file sharing
game (which will be defined formally in the next section).
The Tit-for-Tat strategy is generally considered robust in

the sense that it defeats self-interested behavior and leads the
system into an efficient state. To the best of our knowledge,
the only analytical support for this belief is found in [12]. Note
that in [12], a peer can only establish a fixed number of active
connections to other peers. However, in our game, we allow a
peer to freely choose the number of other peers that it wants to
connect to (this is introduced in some recently developed BT
clients such as μTorrent 1.7.2 [25]). We observe that peers can
change the numbers of connections to open in order to improve
their performance; see [16] for details. This observation shows
that users of BT can effectively cheat by not following the
standard protocol in order to gain advantage. Another example
is a recently proposed BT client, BitTyrant [13], in which
high upload capacity peers can change the default Tit-for-Tat
strategy to gain advantage.

B. Game Formulation

Based on the previous network model, we now formally
introduce the bilateral unstructured file sharing game. We
refer to peers as players and connections as links. Note that,
by bilateral, we mean that two players set up a connection
between each other only when they both find it beneficial
and they both receive data through the connection. In other
words, each connection is bidirectional and requires mutual
consent. The mutual consent captures the Tit-for-Tat strategy
implemented in BitTorrent [1] applications. Recall that a
connection in our game corresponds to an active connection
in BitTorrent.
Let R = {1, 2, · · · , R} denote the set of players. Player i’s

strategy is the set of intended connections it wants to establish,
denoted by si = {si,j | j ∈ R\{i}}. Here si,j = 1 means
player i intends to create a link to player j and si,j = 0 means
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i does not intend so. Under Tit-for-Tat, both players have to
agree on creating a link; hence a link (i, j) is formed if and
only if si,j = sj,i = 1. A strategy profile s = {s1, s2, · · · , sR}
induces an overlay network g(s) = {gi,j, i, j ∈ R}, where
gi,j = 1 denotes the existence of link (i, j) and gi,j = 0
denotes the absence of that link. Given a network g, we use
g+gi,j and g−gi,j to denote respectively the network obtained
by adding and severing the link (i, j). We also let Ni(g) =
{j ∈ R : j �= i, gi,j = 1} be the set of player i’s neighbors in
graph g, and let ni(g) = |Ni(g)|. A network is a symmetric
or regular graph if ni(g) = nj(g), ∀i, j ∈ R.
The benefit of player i is given by its download rate minus

a cost for opening connections: Bi(ni) = Gi(ni)−Φi(ni) =∑
j∈Ni(g) Cj/nj − Φi(ni). We assume that Φi is a convex

function of ni. The marginal benefit for i to open a new
connection with j is given by:
bi(ni(g), nj(g))=Bi(g + gi,j) − Bi(g) (10)

=
Cj

nj(g) + 1
− Φi(ni(g) + 1) + Φi(ni(g)).

Because of Tit-for-Tat, the concept of Nash equilibrium
(NE) is inadequate as it can be seen that an empty overlay
network is always an NE. In order to address this issue, a
solution concept called pairwise equilibrium network (PEN)
is proposed by [26] to supplement the idea of NE with the
requirement of pairwise stability.
Definition 1: A network g is a pairwise equilibrium net-

work (PEN) if the following conditions hold: 1) there is
an NE strategy profile that supports g; 2) for gi,j = 0,
Bi(g + gi,j) > Bi(g) ⇒ Bj(g + gi,j) < Bj(g).
Any stable network state in the bilateral unstructured file
sharing game is captured by a PEN.

C. Equilibria in Homogeneous Networks

We consider homogeneous networks where all peers have
the same upload capacity and benefit function. We characterize
PEN overlays, and evaluate the price of anarchy for these
overlays.
1) Existence of Equilibria: As formulated, the game is

a local spillovers game with strategic substitutes property
studied in [27]. “Strategic substitutes” simply means that the
part of player i’s marginal benefit that comes from another
player j’s contribution decreases in the number of connections
of j. This is true in our game as the marginal throughput
increase to i from setting up a connection with player j is
Cj/nj , which decreases in nj . In our game Φ(·) is a convex
function. Hence according to the terminology of [27] the
benefit function in our game “satisfies the local spillovers
property, concavity in own links and strategic substitutability”.
For a detailed description of why our game is a local spillovers
game, see [16].
A key observation is that marginal benefit bi(ni, nj) of

player i decreases in nj and does not increase in ni. We
can transform our games to the games in [27] and modify
the derivations in [27], to derive Statements 1, 2 and 3. A
detailed description of how to derive these statements can be
found in [16].
Statement 1: Symmetric PEN. If the number of players is

even, a symmetric PEN always exists. Specifically, if b(0, 0) ≤
0, the empty network is a PEN; if b(r − 2, r − 2) ≥ 0, the

Fig. 12. Different Pairwise Symmetric Equilibria.

complete network is a PEN; if b(k, k) ≤ 0 ≤ b(k − 1, k − 1),
the regular graph with degree k is a PEN. When the previous
inequalities are strict, the degree of the PEN is unique.
This statement provides a procedure to compute the degree

of a symmetric PEN by simply checking the marginal benefit
b(k, k). We observe that a symmetric PEN is not necessarily
connected. Figure 12 shows two possible PENs with 8 players
and degree k = 2. In what follows we assume b(k, h) �= 0,
namely, we exclude the case where a player is indifferent to
creating a connection or not.
Statement 2: Asymmetric PEN. In an asymmetric PEN,

there can be at most one singleton player and the rest of the
network is a symmetric network with a unique degree. In an
asymmetric PEN with no singleton components, if two players
i and j with the same number of connections or degree k are
connected (or linked) to each other, then the number of players
with degrees smaller than k is at most k and any two such
players must be mutually connected. In addition, if two players
i and j with the same degree k do not have a link to each
other, then all players with a degree greater than k are not
mutually connected.
This statement implies that if two players i and j with

the same degree k are connected, then the number of players
with degrees smaller than k is limited (at most k). A related
case is described in the first property of Statement 5 (shown
below). This statement also implies that a PEN cannot consist
of interlinked stars [16] with two or more central players. But
this statement does not imply that a star cannot be a PEN.
Note that for file sharing purposes, an overlay star topology
is inefficient as the operation falls back to the server-client
paradigm.
Statement 3: Asymmetric PEN. Let g be a PEN in which

ni(g) < nj(g). If ∀u ∈ Ni(g), ∃v ∈ Nj(g) s.t. nu = nv, then
Bi(g) < Bj(g).
A corollary of this statement is that if player i’s neighbor-

hood is included in player j’s neighborhood (Ni ⊂ Nj), then
Bi(g) < Bj(g). Statement 3 shows that players having more
connections obtain larger payoffs than other players.
We further characterize an asymmetric PEN in the following

theorem.
Theorem 5: Asymmetric PEN. When a network admits

both a symmetric PEN with a unique degree h and an
asymmetric PEN, then the asymmetric PEN has the following
properties: 1) there can be at most h players with a degree
smaller than h; 2) if b(h− 1, h) < 0 or b(h, h− 1) < 0, then
there can be at most (h−m)m players with a degree greater
than h, and their degrees are smaller than or equal to h + m,
where m denotes the number of players with a degree smaller
than h; 3) if the cost function is linear, no player can have a
degree larger than h.
A detailed proof of Theorem 5 is found in [16]. Note that

the first property in this theorem states that the number of
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players with degrees smaller than h is small. A similar result
is described in Statement 2. Based on this theorem, we make
the following observation. Let

∑R
i=1 |ni(gPEN ) − h| denote

the distance between an arbitrary PEN and a symmetric PEN
with degree h. We note that the degree of a symmetric PEN h
depends only on Φ and C (independent of the number of play-
ers R). Then according to Theorem 5, the distance is bounded
and becomes less significant as R increases. Formally, we
have limR→∞ 1

RE
{∑R

i=1 |ni(gPEN ) − h|
}

= 0. Similarly
the average payoff per player in a PEN converges to that of
a symmetric PEN, which is also observed in our simulations
[16].
2) Loss of Efficiency: We define the efficiency loss of a

PEN as follows: Leff (r, C, Φ) =
P

i∈R Bi(gopt)P
i∈R Bi(g) , where gopt is

a network with maximum total payoff
∑

i∈R Bi(gopt), and g is
a PEN. Because there is a fixed number of players, the number
of possible overlays players can create is finite. Therefore
there exists at least one network with highest total payoff.
We note that Leff depends on the number of players, the
upload capacities, and the cost functions of those players. We
show in the following theorem (a proof is in [16]) that Leff

may be unbounded even for a class of linear connection cost
functions. Therefore, the price of anarchy is infinite. The basic
idea of proving this theorem is as follows. We consider the
ratio of the total benefit of a symmetric PEN with degree k
and a regular network of degree one. This ratio can be shown
to approach infinity when the linear coefficient α approaches
1/k from the left. The proof of this theorem in [16] shows that
the efficiency loss is actually independent of the network size,
but it can become arbitrarily high if we change the parameter
α in the cost function.
Theorem 6: The efficiency loss of a PEN is unbounded

for the class of linear connection cost functions. Specifically,
given an even number of players and an upload capacity
C, ∀M ∈ R, ∃α∗ ∈ R

+ s.t. Leff (r, C, Φ∗) > M , where
Φ∗(n) = α∗n.

D. Dynamic Models

We now investigate a discrete-time dynamic game playing
process. We focus on linear costs (Φ(ni) = αni). Suppose that
the game starts from an empty network. At each time step a
player pair (i,j) is randomly chosen. Link (i, j) is created (or
kept) if both players find it beneficial. Link (i, j) (if present) is
removed if at least one of the two players of that link does not
find it useful. We can show that this dynamic process always
reach a PEN.
Compared with the best-response dynamics in Section III,

the dynamics considered here can be thought of as a better-
response dynamics. This is because only one randomly chosen
link is examined for removing or adding at each step in
the better-response dynamics, whereas in the best-response
dynamics, the best set of links is chosen from all possible
sets to replace the current set at each step.
1) Convergence to a PEN: We now introduce some termi-

nology similar to [28]. A network g′ is adjacent to a network
g if g′ = g + gi,j or g′ = g − gi,j for some pair (i, j). A
network g′ defeats another network g if either g′ = g − gi,j

and Bi(g′) > Bi(g), or if g′ = g + gi,j with Bi(g′) ≥ Bi(g)

and Bj(g′) ≥ Bj(g) with at least one strict inequality. A game
exhibits no indifference if for any two adjacent networks, one
defeats the other.
In the dynamic process described before, the current net-

work is altered if and only if the addition or deletion of a
link can defeat the current network. This process produces
an improving path, i.e. a sequence of networks g1, g2, ..., gK

where each network gk is defeated by the subsequent adjacent
network gk+1. There are two kinds of improving paths:
those exhibiting cycles (which have infinite length) and those
terminating with a PEN (a stable state). [29] shows that there
always exists either a PEN or a cycle in any improving path.
Thus, if we can rule out cycles, then the better-response
dynamics always achieves a PEN. The following lemma (a
theorem in [29]) provides a way to rule out cycles.
Lemma 2: Given G (the set of all possible networks g), if

there exists a real valued function w : G → R such that “g′

defeats g” if and only if “w(g′) > w(g) and g′ and g are
adjacent”, then there are no cycles. Conversely, if the network
game exhibits no indifference, then no cycles implies that there
exists a function w : G → R such that “g′ defeats g” if and
only if “w(g′) > w(g) and g′ and g are adjacent”.
Based on Lemma 2, we can derive the following theorem.

The basic idea of proving this theorem is to construct a
function w(g) that satisfies the conditions given in Lemma
2. Its detailed proof is found in [16].
Theorem 7: If the connection cost function is a linear

function Φ(n) = αn, the better-response dynamics always
achieves a PEN.
Our simulations have verified our analytical results pre-

sented up to now. See [16] for details of these simulations.
An interesting observation from our simulations is that the
average number of iterations to reach a PEN is on order R2.
Consider this number in the context of BitTorrent (BT) [1].
Each peer in a BT network tries to replace an existing active
connection with a new, better connection every 10 seconds.
All peers do such replacements asynchronously in parallel,
unlike the sequential replacement in our simulations. So R2

iterations in our simulations corresponds to 10R seconds in
BT. For a population of 100 peers, the time needed to reach
a PEN is on order 17 minutes, which is probably faster than
the average time between changes in the population of peers
(due to arrivals or departures).

VI. RELATED WORK

The efficiency losses of Nash equilibria was studied in
economics [30], and computer science literature [31][14][32]
where most of the results focused on network routing and
network design.
Johari and Tsitsiklis [21] study a congestion game where

users compete for each link independently from other links in
the network. But this independence characteristic is not true
for our unilateral unstructured file sharing game, because if a
user opens a connection on a path, then all links of this path
must carry this connection. On the other hand, a special case of
our game on the parallel link topology, exhibits this decoupling
property. But [21] and our work still differ in how to evaluate
the efficiency loss. There is a specific physical meaning of
the efficiency loss in our game model as our game models
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a specific kind of applications in the Internet. Actually the
proportional sharing mechanism adopted in [21] can be traced
back to Hajek and Gopalakrishnan [18] where a proportional
sharing mechanism was considered in the competition among
Internet autonomous systems. Their model can be thought of
as a network consisting of only a single link, and a user is
allocated a fraction of the link’s bandwidth equal to its bid
divided by the sum of all users’ bids. It is interesting to note
that in the context of designing efficient auction mechanisms
for divisible resources, Maheswaran and Basar [22] studied a
user utility function similar to that in our game on a single link.
The existence of Nash equilibrium was also proved in [22].
But, the social welfare defined in [22] differs from ours in that
user costs are not included in the computation of social welfare
in [22]. Another interesting related work is by Herve Moulin
[23], which studied the efficiency and budget balance in cost
sharing for infinitely divisible resource. Each user’s utility in
[23] is its received value minus its cost, both being functions
of its strategy, which is its demanded outcome. In our model,
a user’s received value is a function of its bandwidth share
which is then a function of its number of connections (the
strategy of this user). The user strategy in our game cannot
be mapped to a user’s strategy in [23] as the former cannot
be interpreted as demand. In addition, the bandwidth share
received by a user in our game cannot be mapped to a user’s
strategy in [23] as the total bandwidth shares of all users equals
to the bottleneck link on a path. But the total demands of all
users are not fixed in [23]. Another related work is a game
studied in [33]. File downloaders compete for the bandwidth
of a single file provider (the source node). The utility received
by a downloader is a function of its received bandwidth
share. [33] shows that there exists a Nash equilibrium where
each user’s received bandwidth share is proportional to its
contribution. This game differs from our model in that in order
to achieve a Pareto-optimal bandwidth allocation, it stipulates
that each downloader is well-behaved in the sense that its
requested bandwidth share is proportional to its contribution
value and the source node needs to adopt a special allocation
mechanism. Smaragdakis et al [34] recently proposed two
peer-selection policies used by individual nodes to select their
neighbors in order to obtain optimal overlay topologies used
by swarming protocols such as BitTorrent. This work differs
from our overlay formation in bilateral file sharing game in
that different peer-selection policies are considered.

[35] and [15] study the interactions among selfish TCP users
competing for a single bottleneck link. [36][37] propose multi-
path congestion controllers by which users can coordinate
the data transfer sessions on different paths to improve data
throughput. A multi-path congestion controller chooses rates
at which to send data on all paths available to it. However
in our models, all sessions controlled by a single user are
independent congestion controllers. [12] studies how Tit-for-
Tat affects selfish peers who are able to set their uploading
bandwidth. Our work differs from [12] in that we assume that
a user can change the number of connections to open. The
analytical framework for our bilateral unstructured file sharing
game is in [27][28][29].

VII. CONCLUSIONS

Motivated by unstructured P2P file sharing applications
such as BitTorrent [1], we introduced unilateral and bilateral
unstructured file sharing games to model the interactions
among self-interested users in unstructured file sharing net-
works.
We demonstrated that there exist multiple stable network

states (Nash equilibria) in the unilateral unstructured file shar-
ing game on general networks. We further focus on parallel
link networks and star networks for modeling unstructured file
sharing. We proved the existence of NEs in several variants
of the game on both networks. We found that when there
are cost constraints, the loss of efficiency of NEs is bounded.
In addition, we proved the global stability of NEs in some
variants of the game. Furthermore, we studied the Tit-for-
Tat strategy through a bilateral unstructured file sharing game,
for which the notion of pairwise equilibrium network (PEN)
is used to describe an equilibrium. We proved the existence
of a symmetric PEN in a homogeneous star network, and
showed the convergence to symmetric PENs in a better-
response dynamic game-playing process when user cost is a
linear function. Although the general belief is that Tit-for-
Tat can prevent selfish behavior, we showed that the selfish
user behavior we studied can still lead to unbounded loss of
efficiency in unstructured file sharing.
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