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Abstract— In Wi-Fi networks, mobile nodes compete for
accessing the shared channel by means of a random access pro-
tocol called Distributed Coordination Function (DCF), which
is long term fair. But recent drivers allow users to configure
protocol parameters differently from their standard values in
order to break the protocol fairness and obtain a larger share
of the available bandwidth at the expense of other users. This
motivates a game theoretical analysis of DCF.

Previous studies have already modeled access to a shared
wireless channel in terms of non-cooperative games among
the nodes, but they have mainly considered ad hoc mode
operation. In this paper we consider the role of the Access
Point (AP) in infrastructure mode operation, for mitigating
or discouraging such selfish behaviors. Solving a mechanism
design problem, we use the AP as a network coordinator, for
encouraging node strategies which maximize a global utility
function. We analyze both unidirectional and bidirectional
(uplink and downlink) traffic scenarios. It is well known that
nodes selfishness jeopardize performance, but we show that
simple changes to AP operation can let the system achieve
optimal performance in spite of nodes selfishness. Instead for
the bidirectional scenario the legacy behaviour of an AP is
sufficient to guarantee quasi optimal performance.

I. INTRODUCTION

The problem of resource sharing in IEEE 802.11 [1] net-
works is addressed by the Medium Access Protocol (MAC)
according to the carrier sense multiple access with colli-
sion avoidance (CSMA/CA) paradigm. The protocol relies
on random deferments of packet transmissions, distributely
computed by each contending station, in order to avoid
synchronized accesses to the channel. In fact, simultaneous
transmissions interfere and result in the loss of the transmit-
ted frames.

The distributed protocol is in principle fair, because in
long term each station receives the same number of access
opportunities. Nevertheless it has been observed that cards
produced by different vendors (and certified by the Wi-
Fi alliance [2]) experience different performance. In many
cases, such different behaviors have been recognized as a
consequence of malicious settings of the MAC parameters
[3], whose configuration is often easily available to end
users thanks to open-source drivers. Since the MAC protocol
regulates the resource repartition among multiple users in a
distributed manner, selfish nodes gain more resources at the
expense of other users.

ilenia.tinnirello@tti.unipa.it, D.I.E.E.T. (Dipartimento di Ingegneria Elet-
trica, Elettronica e delle Telecomunicazioni),Universitá degli Studi di
Palermo, viale delle scienze, 90128 Palermo, Italy

giarre@unipa.it, D.I.A.S. (Dipartimento di Ingegneria dell’Automazione
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Resource sharing in Wi-Fi networks have often been mod-
eled in terms of non-cooperative game among the stations.
Most of these approaches assume that the station utility
function is expressed by the node throughput or related
to this performance figure. In [5], it has been shown that
a utility function equal to the throughput may lead to
a Nash Equilibrium (NE) in which stations do not defer
their transmission anymore. This situation creates a resource
collapse, because all stations transmit simultaneously thus
destroying all packet transmissions. More complex utility
functions combining throughput and costs related to collision
rates [5], [6] or to energy consumptions [7] lead to different
equilibria, but at the same time they appear less natural.
Distributed mechanisms to drive the the system to socially
good operation point have also been proposed [5].

In relation to existing literature our work has two main
novel contributions. First, we explicitly consider infrastruc-
ture network scenarios, in which n greedy mobile nodes
compete for accessing the Internet through a common Ac-
cess Point (AP). While each node tries to maximize each
utility, the access point may be configured by the network
administrator in order to counteract nodes selfishness. We
show that this approach is promising, in fact we are able to
design simple mechanisms that can be deployed at the AP
and can guarantee optimal global performance. The second
main contribution is that we do not only study the unidi-
rectional scenario, where users simply need to upload some
information and so want to maximize their uploading rate,
but we consider also a bidirectional scenario in which user
uplink traffic generates downlink traffic from the Internet. In
this case the user is interested in maximizing at the same
time its uploading and downloading rate.

The rest of the paper is organized as follows. Section II
briefly summarizes the DCF operations and the node strategy
model; section III proposes some punishment strategies for
imposing collision costs in case of unidirectional traffic;
section ?? analyzes the case of coexistence between uplink
and downlink streams; finally, some conclusions are drawn
in section V. Extended results are provided in a companion
technical report [?].

II. DCF OPERATIONS AND MODELS

We assume that the reader is familiar with the IEEE
802.11 Distributed Coordination Function (DCF) and its
performance evaluation. Thus, we briefly summarize the
protocol operation and the modeling approaches used for our
game formulation.

In DCF, a station with a new data packet to be transmitted
monitors channel activity. If the channel is idle for a period



called Distributed InterFrame Space (DIFS), the station trans-
mits. The receiving station signals the successful reception by
replying with an acknowledgment frame (ACK). The ACK
is transmitted at the end of the data packet reception, and
within a period of time called Short InterFrame Space (SIFS).
The SIFS duration is shorter than the DIFS one, to impede
that other stations trying to access the channel may interfere
with the ACK transmission. If the transmitting station does
not receive the ACK within a specified ACK timeout, it
reschedules the packet transmission after a random interval
of time, using the backoff rules described in what follows.
Stations revealing the corrupted frame on the channel wait
for an Extended Interframe Space (EIFS) before resuming
the channel access procedure.

DCF employs a technique called collision avoidance to
reduce the probability that two or more competing stations
simultaneously transmit and hence cause packet corruption.
Whenever the channel is sensed busy, the station continues to
monitor the channel until it is idle for a DIFS. At this point,
rather than immediately transmitting, the station schedules
the packet transmission after a random time interval called
backoff1. For efficiency reasons, the backoff interval is
expressed as an integer number of backoff slots. The number
of waiting slots is called backoff counter and is uniformly
chosen in the range (0, w − 1), where w is the contention
window. The backoff counter is decremented as long as the
channel is sensed idle, frozen when a transmission is detected
on the channel, and reactivated when the channel is again
sensed idle for more than a DIFS. The station transmits when
the backoff counter reaches 0. The range in which the counter
is extracted (i.e. w) is an adaptive parameter, which follows a
truncated exponential increment law (doubling from CWmin

up to CWmax), according to the number of consecutive
failed transmissions.

Although DCF is based on the backoff process previously
described, it has been shown [9] that it can be accurately
modeled as a persistent slotted access protocol. When all
stations are permanently in contention, that is when they all
have always at least one frame in the transmission buffer,
the interval between the end of activity on the channel and
the next access is always equivalent to a entire number of
idle backoff slots. Considering a nonuniform scale for slots,
in which each slot represents either an idle backoff slot or
an activity period plus the final DIFS time, the behavior of
the protocol can be summarized by a single parameter τ ,
representing the probability that a tagged station accesses
the channel during a generic channel slot:

τ =
1

1 + E[b]
(1)

where E[b] is the average backoff interval, that can be de-
rived as a function of the average contention window, which
in turns depend on the collision probability. Specifically, the
equivalent channel access probability τ of a legacy station

1 A random backoff is also extracted between consecutive packet trans-
missions.

experiencing a collision probability p is given by:

τ = f(p) =


2(1−pR+1)

1−pR+1+(1−p)
PR

i=0 p
iW (i)

0 ≤ p < 1
2(R+1)

1+
PR
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p = 1

(2)
where R is the retry limit employed in the network and W (i)
is the contention window at the i−th retry stage (i.e. W (i) =
min{2iCWmin, CWmax}).

A very obvious way for differentiating station performance
is the adoption of nonuniform contention window settings.
In fact, stations employing lower contention windows will
probabilistically expire their backoff counter more often
and will transmit more packets than the competing stations.
Thus, we assume that the strategy of each selfish user i is
represented by the selection of the contention window ranges
or equivalently its channel access probability.

III. UNIDIRECTIONAL TRAFFIC SCENARIO

In this section we consider the application scenario re-
ferred in most of the related literature, according to which
only uplink data streams are present. In particular a fixed
number of mobile stations (say it n) transmit to a single
Access Point (AP). It is quite natural to consider that a
selfish mobile station would like to maximize its uploading
rate. For this purpose we assume that each station i can
arbitrarily set its channel access probability τi. The set of
strategies is then [0, 1]n and we define an outcome of the
game a set of strategies taken by the players, then a vector
τ = (τ1, τ2, · · · , τn) ∈ [0, 1]n. Being that in our case all
the players are homogeneous, the equilibria we are going to
define are invariant to player permutations. For this reason
we define two outcomes τa and τ b equivalent if they
can be obtained one from the other through an opportune
permutation of the indexes and we write τa ∼ τ b. We
denote a class of equivalent outcomes as {τ̃}, where τ̃ is
an ordered vector, i.e. a vector with increasing component
(τ̃1 ≤ τ̃2 ≤ · · · τ̃n). If A is a set of ordered vectors, then
{A} denotes the union of the classes of equivalence of the
vectors in A.

Station i experiences collisions during its own transmis-
sions, when at least one of the competing nodes transmits
in the same slot. This happens with probability pi = 1 −∏
j 6=i(1− τj). Note that the product Pidle = (1− τi)(1−pi)

is the probability that no station accesses the channel in a
given slot and does not depend on the index i = 1, 2, · · ·n.
Following [8], we can express the uplink throughput Siu for
the i-th station as:

Siu =
τi(1− pi)P

Pidleσ + [1− Pidle]T
(3)

where P is the frame payload which is assumed to be fixed,
while σ and T are, respectively, the empty and the busy
slot duration2, so that the denominator is the expected slot
duration (E[Tslot]).

2We are implicitly considering a basic access scheme, with
EIFS=ACK Timeout +DIFS, which corresponds to have a fixed busy
slot duration in both the cases of successful transmission and collision.



We define the utility function J iUN for the mobile station
i equal to its uploading rate, then:

J iUN = Siu. (4)

A. Nash equilibria

The following remark will be useful to characterizes Nash
equilibria and identify Pareto optimal outcomes.

Remark 3.1: In general player i utility is a function of
the whole set of strategies (τ ), but it is constant and equal
to 0 if a) pi = 1, i.e. if at least one of the other player is
transmitting with probability 1 (∃j | τj = 1), or if b) τi = 0.
In all the other cases J iUN is strictly increasing in user i
strategy τi and strictly decreasing in other users strategies.
As a consequence, if τ ∈ [0, 1)n, then J iUN < Jj if and
only if τi < τj

In [5] the authors study the Nash equilibria of this game
and they prove the following result that we show here for
the sake of completeness.

Proposition 3.1: The Nash equilibria of the game de-
scribed above are all and only the vectors of strategies τ ,
such that ∃ i ∈ 1, 2, · · ·n | τi = 1 .

Proof: The result is an immediate consequence of
remark 3.1.

We observe that we can distinguish two different set of
Nash equilibria. If there is only a single station i transmitting
with probability 1, this station achieves an uplink rate equal
to Siu = P (1 − pi)/T = Cu(1 − pi), where Cu is the
uplink capacity. All the other stations are not able to transmit
Sju = 0 for j 6= i. This set of strategies is {(x, 1),x ∈
[0, 1)n−1}. In particular for (0, 0, · · · , 0, 1) the single station
transmitting is able to achieve the maximum throughput Cu.
If there are two or more stations transmitting with probability
1, then the channel is entirely wasted because of collisions
and Shu = 0,∀h. This set of strategies is then {(x, 1, 1),x ∈
[0, 1]n−2}. Performance at these Nash Equilibria are very
poor. In what follows we design a different game, changing
the behaviour of the Access Point, in order to improve global
performance.

B. Mechanism Design

In order to improve the performance achieved in presence
of selfish mobile stations, we introduce some incentive
mechanisms by adding new simple functionalities to the
Access Point. As a preliminary step, we need to identify
desirable outcomes from the global point of view. A natural
choice is to look at outcomes that maximize the global utility,
i.e. the aggregate uplink rate

∑
i J

i
UN =

∑
i S

i
u. It is easy

to derive that, given the probabilistic access protocol, the
maximum uplink rate can be achieved only when there is a
single station transmitting with probability 1 and all the other
stations are silent. These are the NE outcomes of the type
{(0, 0, · · · 0, 1)}. We observe that they are Pareto optimal
outcomes. We remember that a Pareto optimal outcome is
one such that no-one could be made better off by chang-
ing the vector of strategies without making someone else
worse off. At the same time, the outcomes {(0, 0, · · · 0, 1)}
appear to be extremely unfair. This motivates us to look for

outcomes, that maximize the uplink rate under a fairness
constraint. We want then to consider as social utility the
following function:

JS = min
i=1,···n

J iUN .

Proposition 3.2: There is a unique outcome that maxi-
mizes JSUN and such outcome is homogeneous, i.e. τ ∗UN =
(τ∗UN , τ

∗
UN , ...τ

∗
UN ), and Pareto optimal.

Proof: First we observe that the social utility is null
(JSUN = 0) for the sets of strategies {(0,x),x ∈ [0, 1]n−1}
and {(x, 1),x ∈ [0, 1]n−1}, while it is strictly positive
otherwise, i.e. for the set of strategies A = {x,x ∈ (0, 1)n}
(every player has a positive uploading rate). We can then
restrict our attention to A.

Let τ be a non-homogeneous outcome in A, we prove
that social utility cannot be maximum for τ . Without loss
of generality we consider that τ is an ordered vector, then
1 > τn ≥ τn−1 ≥ · · · τ1 > 0 with τn > τ1 and JSUN (τ ) =
J1(τ ). Let us consider τ ′n, such that τ1 < τ ′n < τn, the
outcome τ ′ = (τ1, τ2, · · · , τn−1, τ

′
n) has higher social utility

than τ . In fact JSUN (τ ′) = mini J iUN (τ ′) = J1(τ ′) >
J1(τ ) = JSUN (τ ). The second and third equalities follows
from τ1 being the smallest element both in τ ′ and in τ . The
inequality follows from player n having reduced its access
probability from τn to τ ′n (see Remark 3.1).

If we focus on homogeneous outcomes, we can consider
the single variable function JSUN ((τ, τ, · · · , τ)). The sign of
its derivative is equal to the sign of

−T − σ
T

(1− τ)n + n(1− τ)− n+ 1.

This expression is positive for τ = 0, non positive for τ = 1
(in particular negative for n > 1) and strictly decreasing
in τ . We can then observe that there is a unique point of
maximum of the single variable function JSUN ((τ, τ, · · · , τ))
-say it τ∗UN - and then a unique point of maximum of the
function JSUN (τ ) for τ ∗UN = (τ∗UN , τ

∗
UN , · · · , τ∗UN ).

Finally we prove Pareto optimality. Say τ an allocation
different from τ ∗UN with at least a player better off than
in τ ∗UN . This allocation is necessarily non-homogenous
(among the homogeneous allocations every player utility
is maximized at τ ∗UN ). Let j = argminh Jh(τ ), then
JSUN (τ ) = Jj(τ ). From the uniqueness of JSUN maximum,
it follows that JSUN (τ ) < JSUN (τ ∗UN ) = Jj(τ ∗UN ). Then
player j has a lower utility at τ than at τ ∗UN and τ ∗UN is a
Pareto outcome.

Remark 3.2: The outcome τ ∗UN is not a Nash Equilib-
rium, in fact every player can increase its utility by increasing
its own access probability.

In [8] it has been shown that the optimal value τ ∗UN can
be approximated for T >> σ as:

τ∗UN ≈
1

n
√
T/2σ

. (5)



Incidentally we observe that, given this definition of the
global utility, both price of anarchy and price of stability3

have infinite value for this game. In fact in all the NEs
there is at least one player with throughput equal to 0, so
JSUN (τNE) = 0.

We want to design the game so that τ∗UN is a NE. This
case requires some punishment policies in order to prevent
that each station i accesses the channel with probability
τi = 1. Punishment policies proposed in previous works are
usually based on jamming. A jam signal is a short burst sent
on the channel in order to interfere with another transmission
and creating an artificial collision. The responsibility of
jamming the packets is collectively carried out by all the
nodes in the system in order to introduce a uniform cost for
all transmissions [5].

Indeed, since we are referring to infrastructure mode
operation, where an AP is present, we can design a different
punishment strategy, whose responsibility is given to the AP
only. Specifically, for saving energy and avoiding distributed
cost assignments, we create artificial collisions by simply
suppressing some ACK transmissions originated by the AP.
Since the AP is the common receiver for all the stations,
suppressing the ACKs from the AP side corresponds to
triggering ACK timeouts at the station side, which are
interpreted as collisions. We propose the following threshold
scheme: if a generic station i has access probability τi higher
than the a given value τ̄ , the AP drops an ACK frame
transmission with probability min{α(τi − τ̄), 1}.

In this case, the utility function J iUN of a given station i
can be expressed as:

J iUN =


τi(1−pi)
E[Tslot] 0 < τi < τ̄
τi(1−pi)[1−α(τi−τ̄)]

E[Tslot] τ̄ ≤ τi < τ̄ + 1/α
0 τ̄ + 1/α ≤ τi ≤ 1

(6)

where E[Tslot] = Pidleσ + [1 − Pidle]T is equal to the
denominator in equation (3) and we recall that Pidle =
(1 − τi)(1 − pi). According to the previous expression, for
τi ≤ τ̄ the utility function J iUN is an increasing function
of τi, while for τi ≤ τ̄ its slope depends on the α setting.
By selecting an α value which corresponds to a negative
derivative for τ̄ < τi < τ̄ + 1/α, the utility function is
maximized for τi = τ̄ .

We can then prove the following result.
Proposition 3.3: The outcome τ∗UN is a Pareto optimal

Nash equilibrium of the game, when the ACK suppression
scheme indicated above is implemented with:

τ̄ = τ∗UN ,

α ≥ 1
τ∗UN (1 + τ∗UN (−1 + T

T−(T−s)(1−τ∗UN )n−1 ))
. (7)

Proof: First we observe that τ ∗UN is a NE. In fact,
whatever player we consider, say it player i, Remark 3.1

3We remind that the price of anarchy is the ratio between the social utility
of the optimal coordinated outcome (i.e. when users are not selfish), and
the utility of the worst NE. The price of stability has a similar definition
but it consider the best NE rather than the worst one.

guarantees that for τi < τ∗UN J iUN decreases as τi decreases.
For τ∗UN < τi < τ∗UN + 1/α inequality (7) guarantees that
J iUN decreases as τi increases until it does not reach the
value 0. For τ > τ∗UN+1/α, the punishment strategy implies
J iUN = 0. Then deviating from τ ∗UN is not convenient for
player i.

Second, τ ∗UN is still the unique point of maximum for
JSUN (τ ) because the punishment strategy can only decrease
the social utility for τ ∈ [0, 1]n − [0, τ∗UN ]n and keeps it
unchanged otherwise. Reasoning as in 3.2, we can conclude
that the outcome τ ∗UN is Pareto optimal.

still maximizes it can be observed that the punishment
strategy decreases the social utility JSUN (τ ) for τ ∈
(τ∗UN , 1]n and keeps it unchanged otherwise, so that the
Proposition 3.2 holds also under the punishment strategy.

We observe that in this new game the outcomes {(x, 1),x ∈
[0, 1)n−1} are no more NEs. Nevertheless the outcomes
{(x, 1, 1),x ∈ [0, 1]n−2} are still NEs, where all user
utilities are zero. Then, while the price of stability is equal
to 1 (there is a NE with optimal performance), the price of
anarchy of the game is still infinite. At the same time these
other NEs are not Pareto optimal, so that the outcome τ∗UN

looks a more reasonable operation point.

IV. BIDIRECTIONAL TRAFFIC SCENARIO

Nodes belonging to an infrastructure network are usually
involved into two different data streams: on one side, they
need to upload traffic to the AP, which is connected to
external networks; on the other side, they need to download
traffic from the external networks through the AP. The first
data stream is usually referred as uplink data stream, while
the second one is usually referred as downlink data stream.
In this section, we define a utility function which takes into
account both the streams and we analyze the impact of such
a definition on the network equilibria.

We assume that the AP behaves as a legacy DCF station
with saturated downlink traffic. Thus, it randomly defers
its transmissions according to backoff counter extractions
performed in the range [0, w − 1], where w follows the
updating law described in section II.

Let again τ = (τ1, τ2, · · · τn) be the vector of strategies
taken by the players, i.e. by the n mobile stations. We
consider the AP separately because it is not a player, but
simply follows legacy operation. For a given station i, the
strategies of the competing stations can be summarized into
the probability pi = 1−

∏
j 6=i(1−τj). Thus, from the station

point of view, the vector strategy τ can be represented by the
couple of values (τi, pi). Note that pi simply represents the
probability that no mobile station transmits in the current
slot, and it is no more equal to the collision probability
because it does not take into account the AP. The overall
collision probability suffered by station i results equal to
1 − (1 − pi)(1 − τAP ), where τAP is the channel access
probability employed by the AP, which is function of the
perceived collision probability pAP according to (2). We
can evaluate the AP collision probability as a function of



Fig. 1. Utility of a given station i, for different pi values, as a function
of the strategy τi.

Fig. 2. Station utility in case of symmetric access probability employed
by all the stations.

the vector strategy τ or as a function of the a generic pair
(τi, pi):

pAP = 1−
n∏
i=1

(1− τi) = 1− (1− pi)(1− τi)

Moreover, the probability that a channel slot is idle is the
probability that neither the stations, nor the AP transmit on
the channel, i.e. Pidle = (1−pAP )(1−τAP ). Assuming that
the AP equally shares the downlink throughput among the
stations, we can readily express the uplink throughput Siu
and the downlink throughput Sid for the i-th station as:

Siu(τi, pi) =
τi(1− pi)(1− τAP )P
Pidleσ + [1− Pidle]T

(8)

Sid(τi, pi) =
1
n

τAP (1− pAP )P
Pidleσ + [1− Pidle]T

(9)

where pAP -and τAP = f(pAP )- can be expressed as a
function of the pair (τi, pi). Since the downlink throughput
is equal for all the stations, we can avoid the i apex. We
define the utility function J iBI for the mobile station i as:

J iBI = min{Siu, Sd}. (10)

The rationale of such a definition is the assumption that the
station applications require bandwidth on both directions,
and they cannot work whenever the throughput on a given
direction (either uplink or downlink) is zero.

Figure 1 plots the utility of a given station i versus its
access probability τi for different values of pi, i.e. different
strategies of the other players. The frame payload P has been
considered equal to 1500 bytes, the other parameters have
been determined considering a IEEE 802.11b physical layer,
with data rate equal to 11 Mbps, and an ACK rate of 1 Mbps.
In such a scenario, by including physical preambles, MAC
headers and interframe times, the T duration is equal to 1667
µs and σ duration to 20 µs. From the figure, it is evident that,
for each pi, the utility is maximized for a given best response
value (about 0.01 for p = 0.15), which slightly decreases as
pi grows. Figure 2 plots again the utility of a given station in
case of homogeneous outcome τ = (τ, τ, · · · τ), for different
number of competing mobile stations. In these curves pi =
(1−τi)n−1 is not fixed, because the strategy changes are not
unilateral. The optimal homogeneous outcome appears to be
a function of the number of competing stations n.

A. Nash equilibria

From the utility definition, it is evident that the strategies
{(x, 1),x ∈ [0, 1)n−1} are not Nash equilibria anymore. In
fact, when one station employs a channel access probability

equal to 1, the AP collides with probability pAP = 1, thus
resulting in a downlink throughput Sd equal to 0. Thus, the
station is motivated to reduce its transmission probability to a
value lower than 1. Conversely, the strategies {(x, 1, 1),x ∈
[0, 1]n−2} are still Nash equilibria, because for a given
station i the utility function is fixed to 0, regardless of its
specific strategy τi. We define the social utility as:

JSBI = min
i=1,···n

J iBI .

The price of anarchy is infinite also in this case. But,
differently from the unidirectional scenario, we are going
to show that there is also a NE with a good social utility,
i.e. with a price of stability near to 1.

The following remark will be useful to characterize Nash
equilibria and Pareto optimality.

Remark 4.1: Consider a generic station i and the collision
probability pi suffered because of the other station strategies.
For a given pi ∈ (0, 1), by taking into account that τAP
depends on τi and pi according to (2), Sd(τi) is a monotonic
decreasing function of τi, starting from Sid(0) > 0, and
Siu(τi) is a monotonic increasing function of τi, starting from
Siu(0) = 0.

From the previous remark, we can state that for pi 6= 1,
the best response of player i to pi is the access probability
τ

(br)
i such that Siu(τ (br)

i ) = Sid(τ
(br)
i ). It follows that τ (br)

i

is the solution of the following implicit equation:

τ
(br)
i =

τAP
n− (n− 1)τAP

=

=
f
(

1− (1− pi)
(

1− τ (br)
i

))
n− (n− 1) f

(
1− (1− pi)

(
1− τ (br)

i

)) .(11)

It can be shown that the previous equation has a single
solution τ (br)

i in the range (0, 1), which can be numerically
solved in a few fixed point iterations.

Let us consider the homogeneous outcome τ̃BI =
(τ̃∗BI , τ̃BI , · · · τ̃BI), such that

τ̃BI =
f (1− (1− τ̃BI)n)

n− (n− 1)f (1− (1− τ̃BI)n)
.

We are going to show that τ̃BI is a NE.
Proposition 4.1: The outcomes {(x, 1, 1),x ∈ [0, 1]n−2}

and τ̃BI are the unique Nash equilibria of the game.
Proof: We have already observed that the outcome in

{(x, 1, 1),x ∈ [0, 1]n−2} are NE also in the bidirectional
traffic scenario, while outcomes {(x, 1),x ∈ [0, 1)n−1} are
not. We can then restrict our analysis to the set [0, 1)n for
which pi < 1 for each i and then best response satisfies (11).
τ̃BI is a NE because it satisfies equation (11) considering

pi = (1 − τ̃∗BI)
n−1. Indeed the equation can be read as

a mutual best response. Since equation (11) has a single
solution, it exists a unique symmetric NE.

Now we need to prove that there is no asymmetric NE in
[0, 1)n. Being that

(1− pi)(1− τi) =
n∏
j=1

(1− τj),∀i



then the right hand of the best response equation (11) is
the same for all the stations. This excludes that a non-
homogeneous outcome can satisfy it and then be a NE.

We can consider which outcomes maximize the social
utility and prove that

Proposition 4.2: There is a unique outcome that maxi-
mizes JSBI and such outcome is homogeneous, i.e. τ ∗BI =
(τ∗BI , τ

∗
BI , ...τ

∗
BI), and Pareto optimal.

The proof is omitted because similar to that of proposi-
tion 3.2. It is interesting to investigate what is the relation
between τ∗BI and τ̃BI . For example Figure 2 shows how
the utility changes for homogeneous outcomes and it seems
that τ∗BI = τ̃BI because the maximum of J iBI (= JSBI for a
homogeneous case) corresponds to the value where Siu = Sid
as it is evident from the cusp in the curve. This happens when
the point of maximum of Siu((τ, τ, · · · τ)) is for τ ≥ τ∗BI ,
so that τ∗BI is the point of maximum of JSBI . Our numerical
results show that this is the case at least for the realistic
values we considered for the parameters in (2) (CWmin,
CWmax, R), but we were not able to prove that the result
is general. We observe that when τ∗BI = τ̃BI the NE τ̃BI
is also the best social outcome and the price of stability is
then equal to 1.

An interesting remark is that the NE τ̃BI only depends
on the number of stations n and it is not affected either by
the PHY layer parameters (such as backoff slot duration,
interframe spaces, etc.) or by the frame length. This result is
different from the optimal channel access probability derived
in [8]. In fact, the result in [8] is based on the assumption
that all stations use a fixed channel access probability, i.e.
a fixed contention window. Conversely, in our scenario the
AP adopts the standard exponential backoff scheme, thus
adapting its contention window to the level of congestion
perceived in the network. This adaptability allows the mobile
stations to tune their optimal strategy regardless of the
transmission times and backoff duration.

We verified via simulation that, starting from any strategy
vector τ , the station strategies converge to the NE τ̃BI
in a few steps, whenever strategy adjustments based on
best response criteria are employed simultaneously by the
stations.

B. Mechanism Design

We could argue that the system performance can be further
improved by also tuning the AP contention window to a fixed
value. In these conditions, since τAP does not depend on
τ anymore, the best response for all the stations is equal
to τ+ = τAP

n−(n−1)τAP
and the NE equilibrium point in

(0, 1)n becomes (τ+, τ+, · · · τ+). By maximizing the NE
equilibrium utility as a function of the parameter τAP , it
can be found a single optimal τ∗AP , that for T � σ can be
approximated as:

τ∗AP ≈
1√

2T/σ
.

Note that the optimal τAP is not proportional to 1/n as
in (IV-B), because the AP downlink throughput corresponds

to the aggregation of n flows, whose bandwidths is equal to
the uplink throughput perceived by each station at the NE
point. Such a point corresponds to τ+ = 1

n
√

2T/σ−(n−1)
,

which depends on both n and the parameters T and σ as in
[8].

We verified via simulation that the payoffs obtained for the
NE τ with a legacy AP are about the same payoffs obtained
with a fixed τAP value. Thus, since in the first case the
equilibrium strategies do not depend on T and σ, the use of
a legacy AP is a simpler solution able to achieve high values
of social utility.

V. CONCLUSIONS

In this paper we consider the role of the Access Point
in infrastructure mode operation, for mitigating or discour-
aging potential selfish behaviors from the node. We have
formulated some realistic games both for unidirectional and
bidirectional (uplink and downlink) traffic scenarios and
determined the set of Nash equilibria of these games. In
the unidirectional scenario in absence of some punishment
mechanisms, implemented at the AP side, nodes selfishness
would lead to very poor performance. We identify adequate
punishment mechanisms. On the contrary in the bidirectional
scenario, a legacy Access Point is sufficient to achieve
quasi-optimal performance without any need of a specific
configuration.
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