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Abstract—The massive introduction of Electric Vehicles (EVs)
will make fleet managers spend a significant amount of money to
buy electric energy. If energy price changes over time, accurate
scheduling of recharging times may result in significant savings.
In this paper we evaluate the complexity of the optimal scheduling
problem considering a scenario with a fleet manager having full
knowledge of the customers’ traveling needs at the beginning
of the scheduling horizon. We prove that the problem has
polynomial complexity and provide complexity lower and upper
bounds. Moreover, we propose an online sub-optimal scheduling
heuristic that schedules the EVs’ recharge based on historical
travelling data. We compare the performance of the optimal and
sub-optimal methods to a benchmark online approach that does
not rely on any prior knowledge of the customers’ requests, in
order to evaluate whether the additional complexity required
by the proposed strategies is worth the achieved economic
advantages. Numerical results show up to of 35% cost savings
with respect to the benchmark approach.

Index Terms—Electric Vehicles; Vehicle-to-Grid Interactions;
Optimal Recharge Scheduling;

I. INTRODUCTION

Battery/fuel cell-powered vehicles and hybrid automobiles
are expected to play a pivotal role in the novel Smart Grid
scenario, concurring in reducing carbon emissions by foster-
ing the exploitation of Renewable Energy Sources (RESes).
The potential consequences of a widespread introduction of
Electric Vehicles (EVs) have been recently investigated [1]:
on one hand the EVs plugged at charging stations significantly
increase the power load experienced by the grid, on the other
hand the storage capacities of their batteries could also be
exploited to cope with the intermittent energy generation pat-
terns of RESes by recharging them in presence of surpluses in
energy production [2]. An entity which is responsible for intel-
ligently scheduling the charging/discharging process of a large
number of EVs [3] can coordinate such Vehicle-to-Grid (V2G)
interactions according to various business models [4], possibly
considering economic incentives to compensate the additional
battery deterioration due to frequent charge/discharge or to
encourage the owners to plug their EV when parked. The
reader is referred to [5] for a detailed overview on the techno-
economical models of load aggregation agents for EVs.

Therefore, V2G has recently gained increasing interest in
various disciplines related to Information and Communica-
tion Technologies (ICT), ranging from computer science to
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telecommunications and control theory: numerous optimal and
heuristic scheduling strategies have been investigated, mostly
aimed at reducing carbon emissions [6], [7] or the overall
recharge cost in presence of time-variable energy tariffs (see
e.g. [8]–[10]). Privacy-preserving solutions to perform the
battery recharge scheduling without disclosing the travelling
habits and battery level details of the users have also been
proposed [11]. The control-oriented research community thor-
oughly investigated the development of on-board controllers
for the recharging process [6], [12] and the stochastic modeling
of the individual EV behavior [13]. Conversely the telecommu-
nications community focused primarily on the characterization
of the overall system in terms of interactions among the
various stakeholders (EVs, load aggregator, energy utility),
assuming either a centralized scheduler [14] or a set of
aggregators operating in a distributed scenario [9].

A substantial body of work investigates optimal and heuris-
tic policies for the battery recharge of a population of EVs.
Among the most remarkable contributions, Han et al. [8]
formulate a game model for V2G interactions in presence
of a profit-driven recharging station and two coexisting sets
of EVs, behaving respectively as selfish or cooperative: the
recharge of the former set of EVs is decided by the customers
themselves according to the real-time energy selling price,
while the station can directly control the charging/discharging
process of the EVs belonging to the latter set. A game
theoretical framework is adopted also by Zou et al. [15],
who design a distributed charging coordination method for
EVs relying on an auction mechanism based on progressive
second price. A distributed approach aimed at increasing
scalability is applied by Rivera et al. [16]: they propose a
decentralized optimization algorithm based on the Alternating
Direction Method of Multipliers and separate the centralized
optimal fleet charging problem into individual optimization
problems for the single EVs, which are coupled and solved
consistently by exchanging incentive signals between them,
plus one aggregated problem that optimizes fleet goals. The
framework can be parameterized to trade-off the importance
of fleet goals versus the objectives of the individual EVs.
Conversely, since our scenario assumes that the entire fleet is
owned by a unique entity, competitiveness among the vehicles
is not considered and thus the objective function models only
the aggregator’s utility.

He et al. [9] propose a convex optimization model for a
global scheduling optimization problem aimed at the mini-
mization of the recharging cost assuming full knowledge of
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the future behavior of the customers. The authors compare it
to a distributed version that takes into account dynamic arrivals
and finds local optima for subsets of vehicles. They show that
this version achieves close-to-optimum performance. However,
the authors assume that the periods in which each vehicle
is plugged and available for recharging are problem inputs,
while our model optimizes the assignment between vehicles
and users to be served, with the aim of minimizing the recharge
costs. The approach adopted in our work also compares the
global optimum achievable by means of an Integer Linear
Program (ILP) formulation run by an omniscient scheduler
to the results obtained by a sub-optimal online scheduling.

Joe-Wong et al. [17] combine a convex optimization formu-
lation for computing day-ahead energy prices and an algorithm
for estimating and refining EVs’ user reaction to the prices.
The algorithm allows the provider to dynamically adjust the
offered prices based on the EVs’ behavior. Conversely, our
optimization scenario does not allow for price negotiation,
since it is based on day-ahead tariffs.

Chenrui et al. [18] address the EV recharge scheduling
problems by considering both a static and a dynamic scenario:
in the former, customers’ charging demands are provided to
the aggregator in advance, whereas in the latter vehicle arrivals
and departures are not known to the aggregator in advance.
The authors present linear programming (LP)-based optimal
schemes for the static problems and heuristic algorithms for
the dynamic problems. In our paper, we adopt the same
approach. However, that work does not address the complexity
evaluation of the proposed scheduling techniques, which is the
aim of our contribution.

Li et al. [10] discuss a methodology for modeling the
overall charging demand of EVs based on queuing theory,
which allows for the differentiation of the fleet behavior in
case of a charging station and a local residential community.
A queuing theory-based approach is used also by Alizadeh
et al. [14] and Zhang et al. [19] to provide a stochastic
mathematical model for EV aggregate load aimed at short-
term load forecasting. Paper [10] assumes a maximum limit on
the number of vehicles contemporaneously charged, whereas
paper [14] assumes an infinite number of available plugs. In
our work, we adopt the latter assumption, which does not
introduce additional waiting times in the recharging process.

This paper investigates the cost savings achievable by an
optimal centralized scheduling strategy minimizing the over-
all recharging cost. The considered scenario is a day-ahead
planning, that assumes knowledge of the details about the
customers’ travelling needs and the day-ahead energy price.
The contribution of the paper is twofold: first, we propose
a planning algorithm which is used by a service provider
(e.g. car rental, logistics/transportation company owning a fleet
of EVs) to obtain the EV-to-user assignment and the battery
recharge scheduling that minimizes the overall recharge cost
in presence of variable energy prices. To the best of our
knowledge, this is the first work which jointly optimizes the
assignment of the EVs to users’ trips and the schedule of
the EV charging periods. We prove that the problem has
polynomial complexity and provide complexity lower and
upper bounds.

The drawback of such optimal scheduling approach is that it
requires prior knowledge of the travelling patterns of the users,
which could be impractical to be obtained in real scenarios.
As a comparison, we propose an online scheduling heuristic,
which relies exclusively on statistics of the departure process
obtained from historical data. To assess the performance of our
proposed optimal and sub-optimal approaches, we evaluate the
achieved cost savings w.r.t. an online benchmark scheduling
strategy that does not rely on prior knowledge of the users’
requests nor aims to minimize the total recharge costs, but
simply finds a feasible recharge plan fulfilling the users’
travelling needs, with a computational complexity exhibiting
linear dependency on the problem input size.

The remainder of the paper is structured as follows: Section
II recalls some background notions, whereas Section III de-
fines the scheduling problem, proves that it can be solved to the
optimum in a number of operations polynomially depending
on the problem input size, describes an optimal algorithm for
its solution, and provides complexity upper and lower bounds.
The online heuristic and the benchmark approach are presented
in Section IV. Section V evaluates the cost savings achieved
by the optimal solution approach w.r.t. the online heuristic
approach and the benchmark technique. Finally, we draw our
conclusions in the last Section.

II. BACKGROUND

In this Section we shortly describe the Minimum Weighted
Matching Problem (MWMP) in a complete balanced bipartite
graph, which constitutes one of the building blocks of our
proposed scheduling mechanisms. Let G = (N1, N2) be a
graph whose vertexes can be divided into two disjoint subsets
N1, N2 such that |N1| = |N2| and that each vertex n1 ∈ N1 is
connected to every vertex n2 ∈ N2 by an edge (n1, n2) ∈ E
with non-negative weight w(n1, n2). The problem goal is to
individuate a perfect matching E of minimum weight for graph
G, i.e. a set of |N1| edges connecting each node n1 ∈ N1 to
a different node n2 ∈ N2 such that from each vertex exactly
one edge starts and the sum of the weights associated to these
edges is minimum.

Formulation:

min
E

∑
(n1,n2)∈E

w(n1, n2)

Subject to:

∀n1 ∈ N1 ∃ n2 ∈ N2 : (n1, n2) ∈ E (1)

∀n2 ∈ N2 ∃n1 ∈ N1 : (n1, n2) ∈ E (2)

|E| = |N1| = |N2| (3)

The objective function minimizes the total weight of the
selected edges. Constraints (1) and (2) impose that each vertex
in N1 is connected to a vertex in N2 by one of the edges
in E (and vice versa), whereas Constraint (3) sets the size
of E to the cardinality of N1 and N2, which ensures that
the selected edges form a matching. Therefore, the above
formulation individuates the perfect matching of minimum
weight for graph G.
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The MWMP problem has been proved to be solved to the
optimum in O(|N1|3) operations by means of the so called
Hungarian algorithm [20]. More efficient algorithms with
complexity between O(|N1|2) and O(|N1|3) can be applied
by making additional assumptions on the maximum weight
value or by relaxing the assumption of completeness of the
graph [21].

III. FORMULATION AND SOLUTION OF THE SCHEDULING
PROBLEM (SP)

A. Problem Formulation

We consider a scenario in which a service provider owns
a fleet of vehicles V and a recharging station where the
vehicles are parked and can be recharged after usage. We
assume that the station is equipped with a sufficient number
of plugs to recharge the vehicles at any time without queuing.
Each vehicle is characterized by the same battery charging
rate r. Note that the recharge operations are assumed to be
non-interruptible, meaning that, once the recharge process has
started, it must be completed without intermediate breaks. We
also assume that time is divided in epochs of duration ∆. Let,
U and T be the set of users and the set of discretized epochs
within the optimization time span, respectively. Before the be-
ginning of the scheduling horizon, every user u ∈ U specifies
a service request in terms of the triplet (tdu, t

a
u, eu), indicating

the user’s departure and arrival time (0 < tdu < tau < |T |) and
the amount of energy discharged from the battery during the
travel, respectively.1 Without loss of generality, we assume
that each user expresses a single service request during the
optimization period. Moreover, we assume that at epoch t = 0
all the vehicles are parked at the recharging station with fully
charged batteries. A vehicle returning to the charging station
after serving a customer must be fully recharged before being
assigned to a new user. At the end of the scheduling period
(t = |T |), every vehicle must be back to the recharging station
and the recharge of its battery must be completed, in order to
be ready to serve another user by the beginning of the next
scheduling horizon.

Let cτ ≥ 0 be the energy price for each epoch τ ∈ T . A
possible schedule for the recharge of the set of vehicles V to
serve the set of users U during the set of time epochs T is
defined by the set Z ⊆ Z = U×V×T of |U| triplets (u, v, t),
indicating the starting epoch t for the recharge of vehicle v
serving user u. The goal of the problem is to individuate
the feasible scheduling ensuring the lowest overall recharge
cost experienced by the service provider. Note that the pattern
of time-variable energy cost ct can be designed according
to different criteria, e.g. the maintenance of the balancing
between energy generation and usage within the power grid.
In such case, increasing the energy price during periods of
peak energy consumption or of lack of energy production from
renewable sources automatically discourages the recharge of
the vehicles (unless strictly required to serve incoming users).

1The battery discharge associated to the travel can be computed as a
function of the expected travelling distance. Note that the proposed scheduling
approach is agnostic w.r.t. the technique adopted for the computation of such
amount.

Conversely, the energy tariff can be lowered in case of excess
of energy production (or lack of power load) experienced by
the grid, in order to incentivize energy absorption by charging
the vehicles currently parked at the recharging stations.

Formulation:

min
Z⊆Z

∑
(u,v,t)∈Z

t+d eur e−1∑
k=t

ck (4)

subject to:
|Zu| = 1 ∀ u ∈ U (5)

where Zu = {(u′, v, t) ∈ Z : u′ = u}.

t ≥ tau ∀ (u, v, t) ∈ Z (6)

t ≤ tdu′−d
eu
r
e ∀ ((u, v, t), (u′, v, t′)) ∈ Z×Z : tau ≤ tdu′ (7)

The objective function minimizes the overall recharging cost
experienced by the service provider. Constraint (5) ensures
that the set of vehicles serving a given user has cardinality
1, i.e. that each user is associated to exactly one vehicle.
Constraint (6) imposes that a vehicle is charged only after
its return to the charging station and Constraint (7) states that
vehicle v associated to a given user u can serve a second
user u′ only in case u′ departs after the return of u and there
is sufficient time to complete the battery recharge before the
departure of u′.

In the following Subsections we prove the computational
equivalence of SP and MWMP by showing that SP is poly-
nomially reducible to MWMP and vice versa. Moreover, we
provide upper and lower bounds for the complexity of SP.

B. Resolution Procedure of the Scheduling Problem

In order to find the optimal solution of a generic instance
of the SP problem, we first transform it into a corresponding
instance of the MWMP problem. Let NU1 ,NU2 be two disjoint
sets of nodes of cardinality |U| each, representing the users’
arrivals and departures, respectively. Moreover, let NV1 , NV2
be two disjoint sets of nodes of cardinality |V|, representing
the fleet of EVs parked at the charging station at times
t = 0 and t = |T |, respectively. Finally, we define the
sets N1 = NU1 ∪ NV1 , N2 = NU2 ∪ NV2 and consider the
complete balanced bipartite graph G = (N1, N2). Links have
non-negative weights defined as follows.

If n1 ∈ NV1 , then w(n1, n2) = 0.
If n1 ∈ NU1 and n2 ∈ NV2 , then

w(n1, n2) = min
tan≤t≤|T |−d en1

r e

t+d en1
r e−1∑
k=t

ck. (8)

If n1 ∈ NU1 , n2 ∈ NU2 , and tan1
≤ tdn2

−
⌈ en1

r

⌉
, then

w(n1, n2) = min
tan1
≤t≤tdn2

−d en1
r e

t+d en1
r e−1∑
k=t

ck. (9)

Finally, w(n1, n2) =∞ in all other cases. A pictorial view
of G is proposed in Figure 1.
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Fig. 1. Complete balanced bipartite graph obtained from the SP problem.
Weights of the outgoing edges from the nodes corresponding to vehicle v = 2
and user u = 2 are shown as example.

Each link corresponds to a possible scheduling choice and
its weight is the associated battery recharge cost. An edge
connecting a node n1 ∈ NV1 to a node n2 ∈ NV2 corresponds
to a vehicle that is not used during the scheduling period, thus
its weight is 0. An edge between a node n1 ∈ NV1 and a node
n2 ∈ NU2 denotes that n2 is the first user of vehicle n1. The
vehicle does not need to be charged (because all vehicles are
fully charged at the beginning), therefore, also in this case,
the associated weight is 0. Conversely, an edge (n1, n2) with
n1 ∈ NU1 , n2 ∈ NV2 corresponds to user n1 being the last
user for vehicle n2, so its weight is the minimum energy cost
associated to a recharge period of d enr e slots, chosen during
the interval [tan1

, |T |], i.e. the time window between the return
of the customer n1 and the end of the scheduling horizon (the
vehicle n2 must be charged after serving its last customer,
in order to be fully charged before the beginning of the next
scheduling period). This cost is expressed by (8). Finally, an
edge between n1 ∈ NU1 and n2 ∈ NU2 denotes that the same
vehicle is consecutively used for users n1 and n2. This is
not possible if the time interval between the return of user n
and the departure of user n2 is not long enough to guarantee
that the vehicle can be fully recharged (i.e. if tan1

> tdn2
−

den1
/re). In such case the weight of edge (n1, n2) is set to

∞. Otherwise, if the interval is long enough, Equation (9)
sets the cost of the edges (n1, n2) to the minimum energy
cost associated to a recharge period of d en1

r e slots chosen in
the period [tan1

, tdn2
− 1] (which is the time span between the

return of user n1 and the departure of user n2). The asymptotic
complexity of computing the weights is O(|T |(|U| + |V|)2),
which shows a polynomial dependency on |T |, |U|, and |V|.

Once the mapping is completed, the minimum weight
matching over graph G can be computed by means of the
Hungarian algorithm (or any other state-of-the-art approach).
The algorithm output E can be converted in a solution Z of the
SP instance by means of Algorithm 1, which runs in O(|U||T |)
operations. The algorithm considers the vehicles one at a
time (lines 2-11), sequentially visits in chronological order

Algorithm 1 Mapping a solution of MWMP to a solution of
SP

1: Z ← �
2: for all e(n1, n2) ∈ E : n1 ∈ NV1 do
3: t̃← tan1

, v ← n1

4: while n2 6∈ NV2 do
5: while

∑t̃+den1
/re−1

k=t̃
ck 6= w(n1, n2) do

6: t̃ ← t̃ + 1 {A feasible solution exists by con-
struction, which breaks the cycle before t̃ reaches
tdn2
− d en1

r e}
7: end while
8: Z ← Z ∪ {(n2, v, t̃)}
9: t̃← tan2

, (n1, n2)← e(n′1, n
′
2) ∈ E : tan′1

= t̃
10: end while
11: end for

the edges of the matching E which correspond to the recharge
periods scheduled for vehicle v (lines 4-10), and adds to the set
Z the associated triplets (line 8). Note that, if the matching E
has finite weight, by construction the corresponding scheduling
Z has the same cost. If the matching has infinite cost, then
it contains at least one edge with infinite weight and we can
conclude that the corresponding schedule is not feasible.

Theorem 1: Given a generic instance of the SP problem
and the corresponding MWMP problem over the complete
balanced bipartite graph G(N1, N2), a scheduling Z is optimal
if and only if its corresponding matching has minimum weight.

Proof: We start observing that for any arbitrary schedule
Z there exists a matching E with cost no higher than Z , which
can be obtained starting from Z and applying Algorithm 2:
for each vehicle v ∈ V , the algorithm identifies the set of
users who drive it (line 3), sorts them in ascending order w.r.t.
their respective recharge starting times (line 5), and includes
in the set E the edges with weight equal to the corresponding
recharge cost (line 6-15). Since Z is a feasible solution of the
SP problem, by construction it holds that n1 6= n′1, n2 6= n′2 for
all (n1, n2), (n′1, n

′
2) ∈ E , and that for each n1 ∈ N1 (n2 ∈

N2) there exists a node n2 ∈ N2 (n1 ∈ N1) such that the edge
(n1, n2) belongs to set E. It follows the set of |N1| sequences
identifies a matching E on G, according to the interpretation
of the different kind of links we have provided in Section
III-B (e.g. if users n1 and n2 consecutively drive vehicle v,
then the edge between n1 ∈ NU1 and n2 ∈ NU2 is included
in the matching E). We observe that different schedules can
produce the same set of ordered sequences of users (these
schedules only differ for the time epochs when the recharge
periods start). The weights of the links in E correspond to
the minimum recharge costs that can be obtained under the
constraint that each vehicle is assigned that specific sequence
of users. It follows that the matching E has cost no higher
than the scheduling Z .

Let Zopt be the optimal solution of a given instance of SP,
with cost

Ξ =
∑

(u,v,t)∈Zopt

t+deu/re−1∑
k=t

ck.
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Algorithm 2 Mapping a solution of SP to a solution of
MWMP

1: E ← �
2: for all v ∈ V do
3: Zv ← {(u, v′, t) ∈ Z : v′ = v}
4: if Zv 6= � then
5: sort (u, v, t) ∈ Zv over t in ascending order and

store the ordered list in ZSv {Let (ui, vi, ti) be the
ith element of the list ZSv }

6: E ← E ∪ {(n1, n2)} : n1 ∈ NV1 ∧ n1 = v, n2 ∈
NU2 ∧ tdn2

= tdu1
}

7: if |Zv| ≥ 2 then
8: for all i : 2 ≤ i ≤ |Zv| do
9: E ← E ∪ {(n1, n2)} : n1 ∈ NU1 ∧ tan1

=
taui−1

, n2 ∈ NU2 ∧ tdn2
= tdui

}
10: end for
11: end if
12: E ← E ∪ {(n1, n2)} : n1 ∈ NU1 ∧ tan1

= tau|Zv|
, n2 ∈

NV2 ∧ n2 = v}
13: else
14: E ← E ∪ {(n1, n2)} : n1 ∈ NV1 ∧ n1 = v, n2 ∈

NV2 ∧ n2 = v}
15: end if
16: end for

Let Eopt be the solution of the corresponding MWMP instance
obtained by means of Algorithm 2, having cost no higher than
Ξ. If Eopt is not the optimal solution of MWMP, then there
exists a solution E

∗
opt with cost Ξ∗ < Ξ. On input of E

∗
opt,

Algorithm 1 computes a scheduling Z∗opt of cost Ξ∗, which
contradicts the hypothesis of optimality of Zopt.

Analogously, let Eopt be the matching of minimum weight
of an instance of MWMP constructed as in Section III-B, with
cost Γ =

∑
(n1,n2)∈Eopt

w(n1, n2). Let Zopt be the solution
of the original SP instance obtained by Algorithm 1 on input
of Eopt, which has cost no higher than Γ. If there exists a
scheduling Z∗opt with cost Γ∗ < Γ, then Algorithm 2 computes
a matching E

∗
opt of cost Γ∗, which implies that Eopt is not

optimal.
It follows that for a given instance of SP, a scheduling

Z obtained by mapping a matching E computed over the
corresponding instance of MWMP by means of Algorithm 1
is optimal iff E is the matching of minimum weight.

C. Complexity Evaluation of SP

We now derive upper and lower bounds for the complexity
of the SP problem. To do so, we first prove the computational
equivalence of SP and MWMP by means of the following
three theorems.

Theorem 2: The SP and MWMP problems are computation-
ally equivalent, i.e. SP ≡P MWMP

Proof: The proof that the SP problem is polynomially
reducible to the MWMP problem, i.e. SP ≤P MWMP,
consists in a Cook reduction which can be straightforwardly
derived from the proof of Theorem 1. Moreover, the proof
that the MWMP problem is polynomially reducible to the

SP problem, i.e. MWMP ≤P SP. is provided in Appendix
A. From these, the computational equivalence of the SP and
MWMP problems follows directly.

Let CSP(|U|, |V|, |T |) and CMWMP(n) be the complexity of
the SP problem and of the MWMP problem, respectively. The
variable n denotes the number of vertexes.

Corollary 1: The following upper bound to the complexity
of the SP problem holds:

CSP(|U|, |V|, |T |) ∈
O(max{(|U|+ |V|)2|T |, CMWMP(2(|U|+ |V|))}) (10)

Proof: The proof is a direct consequence of Theorem
1, which proves the polynomial-time reducibility of SP to
MWMP. Hence, any instance of SP can be solved by mapping
it onto an instance of MWMP as described above, i.e. construct
a bipartite graph G = (V,E) (cost O(|U| + |V|)2|T ), find
the optimal solution of MWMP over G (cost CMWMP(2(|U|+
|V|))) and convert it to the corresponding solution of SP (cost
O(|U||T |)). The thesis follows immediately by combining the
costs of the three steps.

The above bounds can be refined by defining CSP(n) as the
complexity of the SP problem versus the total size of the input:
n = |U|+ |V|+ |T |. Since it is known [21] that the complexity
of MWMP is smaller than O(n3), the following bound can be
easily derived: CSP(n) ∈ O(n3). This bound is tight in the
sense that it cannot be reduced without making assumptions
on the relative size of the input variables. If, for example, the
number of time epochs is assumed to be a fixed parameter, then
the following tighter bound holds: CSP(n) ∈ O(CMWMP(n)).

Corollary 2: With CSP(n) and CMWMP(n) defined above,
the following holds:

CSP(n) ∈ Ω(CMWMP(
√
n)) (11)

where Ω is defined according to Knuth definition, i.e. f ∈
Ω(g) iff g ∈ O(f).

Proof: Let m be the number of vertexes in the MWMP
problem. A trivial bound to CMWMP(m) is the number of
edges, m2/4. By using the same definitions in Appendix A,
the sizes of the sets U , V , T can be expressed as:

|U| = m

|V| = m/2

|T | = m(m+ 2)

4
+ 3.

Then, by virtue of Theorem 2, the following equality holds:

CMWMP(m) ∈ O
(

max

{
m2

4
, CSP

(
m+

m

2
+
m(m+ 2)

4
+ 3

)})
∈ O(max{m2, CSP(m2)}).

Since, the complexity of SP is at least linear, it holds
O(max{m2, CSP(m2)}) = O(CSP(m2)) and then, by the
definition of Ω, we obtain

CSP(m2) ∈ Ω(CMWMP(m))

By performing the variable substitution n =
√
m, we obtain

the thesis.
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The exact complexity of MWMP is not known. The best
lower bound in the literature for the MWMP is CMWMP(n) =
Ω(n2). Applying this bound to Corollary 2 results in the
obvious lower bound CSP(n) = Ω(n). However, if a larger
lower bound for MWMP were found, then the lower bound
for SP would be similarly increased.

D. Discussion on Problem Assumptions

It is worth noting that the assumption of uninterruptibility
of the battery recharge process stated in Section III-A can be
relaxed by replacing the triplet (u, v, t) with a tuple (u, v, Tu),
where Tu ⊂ T : |T | = d eur e is a set of d eur e time intervals
(not necessarily contiguous) within the optimization time span.
The objective funtion (4), must be replaced by

min
Z⊆Z

∑
(u,v,Tu)∈Z

∑
k∈Tu

ck (12)

Equations (8), and (9) must be replaced as follows.
If n1 ∈ NU1 and n2 ∈ NV2 , then

w(n1, n2) = min
Tu : tan≤k≤|T |∀k∈Tu

∑
k∈Tu

ck (13)

While if n1 ∈ NU1 , n2 ∈ NU2 and tan1
≤ tdn2

− d en1

r e, then

w(n1, n2) = min
Tu : tan1

≤k≤tdn2

∑
k∈Tu

ck (14)

Algorithm 1 can be applied by replacing lines 5-7 with
a cycle which retrieves d eur e time intervals within the range
[t̃, tdn2

] such that the overall recharge cost equals w(n1, n2).
Therefore, the optimal scheduling can still be computed. How-
ever, since the proof of polynomial reducibility of MWMP
to SP provided in Appendix A cannot be straightforwardly
extended to an interruptible recharge scenario, no conclusion
on the computational equivalence of SP and MWMP can be
drawn in such case.

Conversely, the assumption of constant recharge rate for all
the vehicles of the fleet stated in Section III-A is necessary to
allow for the computation of the weights w(n1, n2) without
prior assignment of the user requests to specific vehicles.
Therefore, the relaxation of such assumption prevents the
conversion of an SP instance into an MWMP instance. Note
that recently commercialized EV rechargers [22], [23] support
multiple rates. Therefore, in the future, the recharge rates of
the vehicles are expected to be tunable, which could ensure
rate homogeneity in the fleet.

IV. HEURISTIC AND BENCHMARK SCHEDULING
APPROACHES

As discussed in the previous Sections, the optimal solution
to the SP can be obtained by solving the corresponding
MWMP and converting the optimal matching to the optimal
schedule. However, such approach requires full knowledge of
the users’ arrival and departure times, which is an unrealis-
tic assumption for the majority of real world applications.
Therefore, in this Section we propose an heuristic online
algorithm which schedules the recharge periods of the EVs
by relying on historical data about the users’ travel patterns

Algorithm 3 History-based Online Scheduling Approach for
SP
Input: t : the current time
Input: dep(τ) : the number of vehicles departure requests at

time τ . This is exact for τ = t and an estimate for τ > t.
Input: V : the set of vehicles that are not traveling or in

charge at time t
Input: epochs(v), ∀v ∈ V : the number of epochs necessary

to recharge vehicle v.
Output: start(t) : the set of vehicles departing at time t
Output: charge(t) : the set of vehicles starting their charge

at time t
1: Instantiate the set of departure requests D = {d1 . . . d|V |}

of size |V |.
2: Let deptime(d), ∀d ∈ D the departure time of request d
3: j ← 1
4: for τ ← t to |T | do
5: for i← 1 to dep(τ) do
6: deptime(dj)← τ ; j ← j + 1
7: if j = |V | break
8: end for
9: end for

10: loop
11: Build the graph G(V,D)
12: Calculate the edge weights w(v, d) according to (15)
13: while ∃v ∈ V : w(v, d) =∞ ∀d ∈ D do
14: Remove v from V .
15: Drop the element in D having the largest departure

time. If such departure time equals t, the departure
request cannot be fulfilled.

16: end while
17: Compute the matching E of minimum weight over

graph G(v, d)
18: if E includes an edge (v, d) with infinite weight then
19: Remove v from V and d from D.
20: else
21: exit loop
22: end if
23: end loop
24: start(t)← {v ∈ V : (v, d) ∈ E ∧ deptime(d) = t}
25: charge(t)← vehicles in V whose edges in E has a weight

implying starting to charge at t plus the vertexes removed
from V in lines 14 and 19

and updates the schedules at every epoch according to the
actual departures/arrivals, with the aim of minimizing the
overall recharge cost. We call such heuristic history-based
online scheduler. Moreover, we introduce a benchmark online
approach which simply schedules the recharge of each vehicle
immediately upon arrival to the recharging station without any
attempt to minimize the recharge cost. This approach is called
immediate-charge online scheduler.

A. History-based Online Scheduling Approach

The history-based online algorithm (see Alg. 3) assumes
the knowledge at the current time t of the users’ expected
departure rate for each epoch τ ∈ T with τ > t and the



7

actual departures for τ ≤ t. In the Algorithm we denote
both quantities by dep(τ). Based on the above information,
the algorithm builds a list D of departures (lines 3–9). The
algorithm also considers a set V of vehicles, including the
fully-charged ones and the ones that are not in charge. The
charging process is considered uninterruptible, therefore the
vehicles in charge and the traveling vehicles are not considered
available for scheduling.

First, the graph G(V,D) is built with edge weights accord-
ing to the following equation:

w(v, d) =
0 if epochs(v) = 0

∞ if ∆(d, v) < 0 ∧ epochs(v) > 0

min
t≤τ≤∆(d,v)

τ+epochs(v)−1∑
k=τ

ck if ∆(d, v) ≥ 0 ∧ epochs(v) > 0

(15)

where epochs(v) denotes the number of epochs needed to
recharge vehicle v and ∆(d, v) = deptime(d)− epochs(v).

If such graph includes any node v ∈ V whose edges have
all infinite weight, then v is removed along with the farthest
departure (lines 13–16). This is the case in which a vehicle
cannot be charged in time for any departure in the list.

Then, the algorithm searches for a minimum weight match-
ing E over the graph G(V,D). In case the solution includes
some edges with infinite weight, one of them is randomly
selected and removed, the corresponding vertexes (a vehicle
and a departure request) are respectively removed from the
sets V and D (lines 10–23). In case the departure time of
the removed vertex d ∈ D equals t, then such departure
request cannot be fulfilled and the user remains unserved. This
procedure is repeated until a matching with finite weight is
identified (line 21).

Finally, the algorithm outputs the vehicles departing at time
t and the vehicles starting to charge at time t.

The vehicles connected to users departing at time t in the
matching E are the vehicles departing at t. Note that the
difference between departure requests, dep(t), and the actual
departures, |start(t)|, is equal to the number of unsatisfied
requests.

The set of vehicles starting to charge at t is built by consid-
ering the each vehicle v ∈ V . If the cost of charging starting
immediately equal to the weight of the edge (v, d) ∈ E, then
the vehicle v starts to charge immediately . In addition, all the
vehicles removed from the graph at lines 14 and 19, also start
to charge immediately.

The complexity of the history-based algorithm is O(|T | ·
|V| · CMWMP(|V|)).

The history-based algorithm can be straightforwardly en-
hanced to a scenario in which the users’ departure times are
known in advance (whereas arrival times and the amount of
discharged energy remain unknown) by building the list D
using the actual departures.

B. Immediate-Charge Online Scheduling Approach

As a benchmark, we define the immediate-charge on-line
scheduling which does not assume any future knowledge about

the traveling requests of the users in terms of departure/arrival
times and amount of energy usage during the travel. We keep
the assumption that all the vehicles are fully charged at the
beginning of the scheduling horizon. Whenever a travel request
by user u comes, it is assigned to a randomly chosen vehicle
among the ones parked at the recharging station and currently
not under recharge (i.e. with full battery level). Then, as soon
as v returns at time tau after serving user u, it is immediately
recharged during the next deu/re consecutive epochs. There-
fore, the complexity of the algorithm is O(|U|), i.e. shows
linear dependency on the number of users. Note that, since
each recharge is scheduled immediately after the vehicle’s
return without introducing any waiting time, this algorithm
always provides a feasible solution with no unsatisfied users,
given that the considered instance of SP admits at least one
feasible scheduling.

V. PERFORMANCE ASSESSMENT

In this Section we quantify the savings of the optimal
scheduling with day-ahead knowledge w.r.t. the online ap-
proaches presented in Section IV.

Numerical results are obtained assuming a scenario of a
fleet ranging from 20 to 500 vehicles equipped with a 22
kWh battery pack [22] (recharge rate of 2.5 kW), and two
set of 50 and 500 users. The departure time, arrival time
and amount of energy required for the travel have been com-
puted based on the TripChaining dataset [24], which records
departure/arrival time and covered distance for thousands of
tours, i.e. sequences of trips that are linked together (chained)
between two anchored destinations (e.g. home and work). For
our purposes, we considered only the subset of tours in which
the two anchors are identical (e.g. home-to-home or work-to-
work tours). The overall battery discharge at the end of the
tour has been computed proportionally to the total covered
distance. Statistics used by the history-based approach have
been computed by averaging data of the whole subset. Each
daily departure/arrival pattern includes 500 tours (one per user)
randomly chosen within the subset. Note that the dataset does
not provide the date in which the trips occurred, therefore
possible weekly/seasonal variations in the travel patterns could
not be captured by our simulations.

The trend of the hourly energy cost on the day-ahead energy
market has been obtained from [25], which provides the real-
time locational marginal pricing for several bus location of an
American regional transmission organization. Typically, such
prices exhibits hourly variations. For the sake of easiness, we
have considered daily prices at a single bus location.

Results have been averaged over 365 days. Each 24-hours
period from 06:00 to 05:59 is divided in 96 epochs each
15 minutes long. We assume that in the time span between
00:00 and 5:59 no departure takes place, which ensures that
the vehicles can be fully recharged on time for the next day.
Note that, though in our simulations the battery capacity and
recharge rate are assumed constant over time, variations in
such parameters due to aging or to environmental conditions
(e.g. external temperature) can be easily incorporated by up-
dating their value at the beginning of each scheduling period.
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Table I compares the performance of the optimal day-ahead
scheduling, which assumes full knowledge of the departure
and arrival times of the users, and of the history-based al-
gorithm, which assumes only knowledge of historical travel
data, to the immediate-charge algorithm, which does not rely
on any information about the future travelling patterns of the
users. The comparison is done in terms of average recharge
cost gap (i.e. the percent increase of the overall energy cost
due to the online approaches w.r.t. the optimal day-ahead
scheduling) and in terms of percentage of unserved users (i.e.
the fraction of users who do not find a fully charged vehicle
at the moment of their expected departure from the charging
station)2. Results with 500 users show that the immediate-
charge strategy increases the total recharge cost by on average
40-64%, with peaks up to almost five times the optimal sched-
ules. The history-based approach provides the same results of
the optimal approach when the number of vehicles equals the
number of users, but also for smaller fleet sizes its performance
closely approaches the optimal one (on average the cost is
increased by 1-13% w.r.t the optimal scheduling). Moreover,
the average percentage of users not served by the history-based
approach never exceeds 0.3% for the considered scenarios.
Such percentage is considerably reduced in case knowledge
of the users’ departure times is available (at most 0.003%
for the considered instances). Moreover, knowing the users’
departure times allows for a slight reduction in the recharge
cost with respect to the case in which only historical data are
available. The savings allowed by both the optimal and history-
based approaches decrease when the fleet size decreases, since
a small fleet imposes that each EV must sequentially serve
multiple users, which reduces the periods in which the EV
is plugged at the recharging station and limits the recharge
cost minimization, which must be performed over shorter time
spans.

Analogous results are reported in Table II for a set of 50
users and a fleet size ranging from 20 to 50 vehicles. As one
could expect, the relative improvement depends mainly from
the ratio between the number of users and the fleet size. The
Table confirms this intuition: the average gap and the percent-
age of unserved users for the immediate-charge scheduling
algorithm and for the enhanced history-based scheduling are
basically the same than in Table I given the same number-
of-users/fleet-size ratio. The only difference is for the history-
based scheduling. In fact, due to the smaller number of users,
the actual users’ arrival process exhibits a larger variability in
comparison to its mean. The historical information is then a
worse predictor of the actual arrival process and performance
are worse than in the first scenario.

An example of the daily recharge schedule is plotted in
Fig. 2 for the optimal, history-based, and immediate-charge
approaches, from which it results that the optimal and history-
based scheduling tend to schedule most of the recharges in the
early afternoon and during the night, when the energy cost is
significantly lower. However, the history-based approach tends

2We estimated computational times in the order of milliseconds for the
online immediate charge scheduling, and in the order of minutes for the online
history-based/ enhenced history-based and the day-ahead approaches on a 2.5
GHz Intel Core i5 processor

TABLE I
PERFORMANCE COMPARISON OF THE HISTORY-BASED AND

IMMEDIATE-CHARGE SCHEDULING APPROACHES VS. THE OPTIMAL
SCHEDULING, ASSUMING 500 USERS

|V| Aver. Cost [$] Aver. Gap [%] Unserved Users [%]

Immediate-charge scheduling
500 135.25± 13.01 64.2 0

400 134.83± 12.68 60.3 0

300 135.55± 12.79 52.6 0

200 136.64± 13.06 40.4 0

History-based scheduling
500 83.05± 6.40 0.8 0

400 86.80± 6.42 4.0 0.007

300 95.44± 7.51 9.0 0.10

200 107.00± 9.06 13.0 0.29

Enhanced history-based scheduling
500 82.54± 6.39 0 0

400 85.76± 6.35 2.7 < 5× 10−6

300 93.73± 6.99 7.7 < 5× 10−6

200 106.80± 8.41 12.4 0.003

95% confidence intervals are reported for average recharge costs.

TABLE II
PERFORMANCE COMPARISON OF THE HISTORY-BASED AND

IMMEDIATE-CHARGE SCHEDULING APPROACHES VS. THE OPTIMAL
SCHEDULING ASSUMING 50 USERS

|V| Aver. Cost [$] Aver. Gap [%] Unserved Users [%]

Immediate-charge scheduling
50 13.56± 1.30 64.4 0

40 13.72± 1.31 60.4 0

30 13.45± 1.31 52.3 0

20 13.72± 1.34 39.6 0

History-based scheduling
50 9.36± 0.74 12.8 0

40 10.17± 0.87 18.5 5× 10−3

30 10.73± 1.02 22.1 0.02

20 11.98± 1.08 23.4 0.74

Enhanced history-based scheduling
50 8.33± 0.64 0 0

40 8.78± 0.69 2.6 0

30 9.39± 0.82 7.5 0

20 10.91± 0.95 12.8 0.03

95% confidence intervals are reported for average recharge costs.

to anticipate the recharge of some vehicles, in order to keep
some fully recharged EVs parked, which can be used when
the number of users’ departures exceeds the estimates based
on the historical data. The effect of such strategy on EVs’
availability is shown in Fig. 3, which shows the time evolution
of the number of EVs parked at the recharging station (either
fully charged, in charge or uncharged) and of those traveling.

In order to evaluate the effects of ageing, we also computed
the overall distance covered by a vehicle during 365 days.
Table III compares the average distance covered by the fleet
and its standard deviation obtained with the Immediate-Charge
online scheduling approach, first according to the version
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History-basedImmediate-charge

Fig. 2. Daily trend of overall scheduled recharge (optimal, history-based and immediate-charge approaches) vs. energy cost, assuming |V| = 200, |U| = 500.

Fig. 3. Daily trend of the number of fully charged, in charge, uncharged and travelling EVs obtained by means of the history-based scheduling algorithm,
assuming |V| = 200, |U| = 500.

TABLE III
EVALUATION OF AVERAGE COVERED DISTANCE

Imm. Charge Enhanced Imm. Charge
|V| Aver. Distance [km] Standard Dev. Standard Dev.

500 6499.9 493.7 25.7

400 8159.4 500.7 26.9

300 10834.8 635.8 28.0

200 16305.0 633.0 27.8

Results assuming |U| = 500.

described in Section IV-B, then by applying an enhanced
version which assigns to a user the vehicle with the lowest
total covered distance chosen among the set of fully charged
vehicles. Results show that introducing an ageing-aware policy
allows for a reduction of one order of magnitude in the
standard deviation of the covered distance (hundreds versus
tens of km for the standard versus the enhanced scheduling).
However, we believe that variations within the range of a few
thousands of km per year in the distances covered by the
fleet vehicles (which are achieved by our proposed scheduling
mechanism) are sufficiently low to conclude that the ageing
process is quite homogeneous.

VI. CONCLUSIONS

This paper evaluates the computational complexity of an
algorithm for optimal day-ahead scheduling of the battery

recharge of a fleet of electric vehicles. We provide analytical
upper and lower bounds to the problem complexity and
compare the performance of the proposed algorithm to an
online heuristic and a benchmark approach, showing that both
the optimal and suboptimal methods lead to significant cost
savings w.r.t. the naive benchmark. In case of our history-
based heuristic approach, the price to be paid is a very low
probability of service unavailability experienced by the users.

APPENDIX A
PROOF OF POLYNOMIAL REDUCIBILITY OF MWMP TO SP
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Fig. 4. Cost function obtained by means of Equation 17 from a bipartite
complete balanced graph G = (V,E) with |V | = 6.

Let G = (N1, N2) be a complete balanced bipartite graph
as defined in Section II. In order to map a generic instance
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of MWMP with finite weights onto an instance of SP, con-
sider |N1| vehicles (V = {1, . . . , |N1|}) and 2|N1| users
(U = {1, . . . , 2|N1|}). Let T = {−1, 0, . . . , |N1|2 + |N1|+ 1}
be the set of time slots within the optimization horizon3. In
the horizon we can distinguish the first and last time slots and
|N1| intermediate intervals Ih (1 ≤ h ≤ |N1|), each of length
|N1| + 1 slots. Figure 4 shows such instance for |N1| = 6.
A half of the users depart at the begin of timeslot −1 and
return by the begin of time slot 0 (for u ∈ U : 1 ≤ u ≤ |N1|,
tdu = −1, tau = 0), the other half of users departs later on (one
user at the end of every intermediate interval) and returns at
the end of the scheduling period (for u ∈ U : |N1|+ 1 ≤ u ≤
2|N1|, tdu = (u− |N1|)(|N1|+ 1), tau = |N1|2 + |N1|+ 1).

By construction, it follows that each vehicle will be used by
two and only two users. Since all the vehicles are back at the
begin of timeslot 0, this SP instance is equivalent to decide
how to match the |N1| vehicles with the |N1| users departing
later on. The rest of the proof will show that it is possible
to determine energy costs so that the SP instance is able to
capture all the variability of the |N1|2 weights of the MWMP
instance.

In order to decouple the total energy recharge cost for the
different vehicles, we can tune the required amount of energy
to be recharged. In particular, the vehicle used by user u ∈
U : 1 ≤ u ≤ |N1| requires eu = ur. For the second half of
users we can consider arbitrary energy requests (e.g. eu = 0
for u ∈ U : |N1|+ 1 ≤ u ≤ 2|N1|).

Let us denote by m and M two positive numbers such that
m > max(n1,n2) w(n1, n2), M > m|N1|. We first observe that
if all the weights of the links outgoing from a given node n1

in N1 (or n2 in N2) are increased by the same amount xn1
(or

xn2
), the MWMP instance is transformed in an equivalent one

with the same minimum weight matching (whose value will
be increased by xn1 or xn2 ). We can apply this transformation
for all the nodes, thus obtaining a sequence of equivalent
MWMP instances. This reasoning leads us to conclude that
if we transform the weight of each link as follows:

w′(n1, n2) = w(n1, n2) +Mn2
1 +m(|N1| − n2), (16)

we obtain an equivalent MWMP, because each weight has
been increased by two quantities that depend only on the two
terminating nodes.

We define the energy cost cτ as follows:

cτ =


w(1, d τ+1

|N1|+1e) if τ = 0 ∨ τ mod (|N1|+ 1) = 0

M |N1|2 if τ mod (|N1|+ 1) = |N1|
w′(τ mod (|N1|+ 1) + 1, d τ+1

|N1|+1e)+
−w′(τ mod (|N1|+ 1), d τ+1

|N1|+1e) otherwise
(17)

We observe that the computation of ctau starting from the
weights w(n1, n2) requires O(|N1|2) operations.

It can be checked that this definition of the costs leads
to the following consequences (the reader may find useful
to refer to Figure 4). First, because of the presence of the

3For ease of notation we set the first epoch to -1, but the mapping from
the MWMP instance to the corresponding SP instance could be performed
considering any arbitrary time horizon of |N1|2 + |N1|+ 1 + 3 epochs

large constant M , energy costs are always increasing within
each intermediate interval. Moreover, the presence of slots
with cost M |N1|2 at the end of each intermediate interval
makes inconvenient for the recharge of a vehicle to span
two consecutive intervals. As a result, every vehicle will
be charged by starting only at the begin of an interval. In
particular, if the vehicle driven by user n1 ∈ {1, . . . |N1|}
is charged during the interval Ih, the aggregate recharge
cost is:

∑(h−1)(|N1|+1)+n
k=(h−1)(|N1|+1) ck = w′e(n1,h), i.e. equal to the

weight of link e(n1, h) in the equivalent MWMP we are
considering. Second, the presence of the constant m in the
weight function guarantees that the vehicle to be driven by
user u ∈ {|N1|+ 1, . . . 2|N1|} will not be charged before the
interval Iu−|N1|. As a consequence, only one vehicle will be
charged during each interval.

In conclusion this SP instance is equivalent to match each
of the |N1| vehicles to a different recharging interval.

Consider a matching E over graph G such that∑
(n1,n2)∈E w(n1, n2) = Ξ. Then, by construction there

always exists a feasible schedule Z defined as:

Z =
⋃

(n1,n2)∈E

{(n1, n1, (|N1|+1)(n2−1)), ((n2+|N1|, n1, |T |)}

(18)
. Note that, since users |N1|+1, . . . , 2|N1| do not consume

any energy during their travel, the associated recharging peri-
ods last 0 epochs and are scheduled at τ = |T |.

From Eqs. (16), (17) it follows that:

∑
(u,v,t)∈Z

t+deu/re−1∑
k=t

ck =
∑

(n1,n2)∈E

w(n1, n2) =

∑
e(n1,n2)∈E

w(n1, n2) +

|N1|∑
i=1

((i− 1)m+ i2M) =

Ξ +m
|N1|

2
(|N1| − 1) +M

(
|N1|3

3
+
|N1|2

2
+
|N1|

6

)
i.e. the cost of the schedule Z is obtained by adding to the
cost of the matching E a positive quantity which depends only
on the cardinality of N1.

Consider now an arbitrary scheduling Z defined over an
instance of SP constructed as discussed at the beginning
of this Section. It is worth noting that, for a given asso-
ciation between users and vehicles, the schedule of lowest
cost imposes that each vehicle is recharged in a different
time interval Ih, starting from the first time slot of the
interval. This can be shown by considering any pair of triplets
(u, v, t), (u′, v′, t′) : u ≤ |N1|, u′ > |N1|. By construction the
following equality holds:

w′(n1, n2) =

k=(n2−1)(|N1|+1)+n1−1∑
k=(n2−1)(|N1|+1)

ck

= min
t∈T : 0≤t<(|N1|+1)n2

t+n1−1∑
k=t

ck
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where n1 = u, n2 = u′ − |N1|. Let n2 = d t+1
|N1|+1e. We start

with n1 = 1 and distinguish the following three cases:
1) if t mod (|N1| + 1) = 0, we get

∑t+d eur e−1

k=t ck =
w′e(1,n2). By applying Formula 16 the inequality

w′(1, n2) ≥ w′(1, n2) (19)

results in:

w(1, n2) +m(n2 − n2) ≥ w(1, n2)

which always holds, since m > max(n1,n2) w(n1, n2)
by construction and t < n2(|N1|+ 1) implies that n2 ≤
n2.

2) if t mod (|N1| + 1) = |N1|, we get
∑t+d eur e−1

k=t ck =
M |N1|2. The inequality resulting from Eq. 19 by sub-
stitution is:

M
(
|N1|2 − 1

)
≥ w(1, n2) +m(|N1| − n2)

which always holds by construction, since m >
max(n1,n2) w(n1, n2), M > m|N1|.

3) if t mod (|N1| + 1) 6= |N1| ∧ t mod (|N1| + 1) 6= 0,
we obtain

∑t+d eur e−1

k=t ck = w′(n1 +1, n2)−w′(n1, n2).
By substitution, from Eq. 19 it results:

w(n1 + 1, n2) +M(1 + 2n1) ≥
w(n1, n2) + w(n1, n2) +m(|N1| − n2)

which always holds by construction, since m >
max(n1,n2) w(n1, n2), M > m|N1|.

The generalization for n1 > 1 is straightforward.
It follows that, considering an arbitrary association between

vehicles and users as defined by the scheduling Z of cost Ψ =∑
(u,v,t)∈Z

∑t+deu/re−1
k=t ck, a scheduling Z ′ which allocates

|N1| recharge periods of 1, . . . , |N1| slots respectively, each of
them starting at the beginning of a different interval Ih, results
in a cost Ψ′ ≤ Ψ. Since our objective is the minimization of
the recharge cost, in the rest of the proof we will consider
schedules which satisfy the above stated condition. Under
such assumption, the matching E corresponding to Z ′ can
be computed as follows:

E = {(u, u′ − |N1|) ∀(u, v, t), (u′, v′, t′) ∈ Z ′ : v = v′}
(20)

and, by construction, its cost is:∑
(n1,n2)∈E

w(n1, n2) = Ψ′ −m |N1|
2

(|N1| − 1)−

M

(
|N1|3

3
+
|N1|2

2
+
|N1|

6

)
.

Let now Eopt be the matching of minimum cost Ξ of a
generic instance of MWMP. Compute the scheduling Zopt
of the equivalent SP instance by means of Eq. 18, which
has cost Ξ + m |N1|

2 (|N1| − 1) + M
(
|N1|3

3 + |N1|2
2 + |N1|

6

)
.

If Zopt is not optimal, then there exists a solution Z∗opt of

cost Ψ < Ξ +m |N1|
2 (|N1| − 1) +M

(
|N1|3

3 + |N1|2
2 + |N1|

6

)
,

which is the optimal one Z∗opt and thus respects the condi-
tion that each recharge period starts at the beginning of a

different time interval, which allows for the application of
Eq. 20. Map Z∗opt onto the corresponding matching E

∗
opt by

means of Eq.20. By construction, such matching has cost
Ψ − m |N1|

2 (|N1| − 1) − M
(
|N1|3

3 + |N1|2
2 + |N1|

6

)
< Ξ. It

follows that Eopt is not the matching of minimum weight,
which contradicts the hypothesis.

Similarly, let Zopt be the optimal scheduling of an in-
stance of SP constructed as discussed at the beginning of
this Section, with cost Γ. Since such scheduling is opti-
mal, it must allocate each recharge period at the beginning
of a different time interval, thus Eq. 20 can be applied.
Convert Zopt into Eopt of the equivalent MWMP instance
by means of Eq. 20, thus obtaining a matching of cost
Γ − m |N1|

2 (|N1| − 1) − M
(
|N1|3

3 + |N1|2
2 + |N1|

6

)
. If Eopt

is not the matching of minimum weight, then there must be
another matching E

∗
opt of weight ∆ < Γ−m |N1|

2 (|N1| − 1)−
M
(
|N1|3

3 + |N1|2
2 + |N1|

6

)
. Map E

∗
opt onto the corresponding

scheduling Z∗opt by means of Eq. 18. It follows that the cost of

Z∗opt is ∆+m |N1|
2 (|N1| − 1)+M

(
|N1|3

3 + |N1|2
2 + |N1|

6

)
<

Γ, therefore Zopt is not optimal, which contradicts the hy-
pothesis.

It follows that Zopt is the optimal scheduling iff Eopt is the
matching of minimum weight.
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