
A New Upper Bound on Cache Hit Probability for
Non-anticipative Caching Policies∗

Nitish K. Panigrahy†, Philippe Nain‡, Giovanni Neglia § and Don Towsley†
† University of Massachusetts Amherst, MA, USA. Email: {nitish, towsley}@cs.umass.edu

‡ Inria, France. Email: philippe.nain@inria.fr
§ Inria, Sophia Antipolis, France. Email: giovanni.neglia@inria.fr

ABSTRACT
Caching systems have long been crucial for improving the
performance of a wide variety of network and web based
online applications. In such systems, end-to-end applica-
tion performance heavily depends on the fraction of objects
transfered from the cache, also known as the cache hit proba-
bility. Many cache eviction policies have been proposed and
implemented to improve the hit probability. In this work,
we propose a new method to compute an upper bound on
hit probability for all non-anticipative caching policies, i.e.
for policies that have no knowledge of future requests. At
each object request arrival, we use hazard rate (HR) func-
tion based ordering to classify the request as a hit or not.
Under some statistical assumptions, we prove that our pro-
posed HR based ordering model computes the maximum
achievable hit probability and serves as an upper bound for
all non-anticipative caching policies. We also provide sim-
ulation results to validate its correctness and to compare it
to Belady’s upper bound. We find it to almost always be
tighter than Belady’s bound.

1. INTRODUCTION
Caches are pervasive in computing systems, and their im-

portance is reflected in many networks and distributed en-
vironments including content delivery networks (CDNs). In
such networks, the end user quality of experience primar-
ily depends on whether the requested object is cached near
the user. Thus the cache hit probability, i.e., the percentage
of requests satisfied by the cache, plays an important role
in determining the end-to-end application performance. In
general, the number of objects available in a system is quite
large compared to the cache capacity. Hence, the design
of caching algorithms typically focuses on maximizing the
overall cache hit probability. Also, maximizing the cache
hit probability corresponds to minimizing the expected re-
trieval time, the load on the server and on the network for

∗This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Defence Science and Technology
Laboratory under Agreement Number W911NF-16-3-0001
and by the NSF under grant NSF CNS-1617437. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. De-
fence Science and Technology Laboratory.

Copyright is held by author/owner(s).

homogeneous setting.
One possible way to improve cache hit probability is by

increasing cache capacity. However, increasing cache capac-
ity only logarithmically improves cache hit probability[7].
Thus improving caching policies seems to be more effective
for maximizing the overall cache hit probability. In practice,
most caches employ least-recently used (LRU) or its variants
often coupled with call admission or prefetching. Apart from
LRU, other well known eviction policies include LFU, FIFO,
RANDOM. There has been plethora of work [13, 18, 2, 4] on
improving cache hit probabilities in the literature. In order
to gauge the potential effectiveness of these eviction policies,
an upper bound on maximum achievable cache hit probabil-
ity for a given cache capacity has been widely adopted [2].

1.1 Offline upper bound
For equal size object, Belady’s algorithm [1] has been

widely used as an upper bound for cache hit probability
among all feasible on demand and online caching policies,
togetherly known as non-anticipative policies. However, Be-
lady’s algorithm is an offline algorithm, i.e., it assumes ex-
act knowledge of future requests. Offline upper bounds on
object hit probability have been proposed for variable size
object [5]. Often system designers do not have access to the
exact request trace, but can estimate the statistical proper-
ties of the object request process such as the inter-request
time (irt) distribution. Also, caching studies typically in-
clude model driven simulations. Thus the following natural
question arises. With limited knowledge of the object arrival
process and no look ahead option, can we provide an up-
per bound on the cache hit probability for any feasible online
caching policy?

1.2 Our Approach: Hazard Rate based upper
bound

When object requests follow the Independent Reference
Model (IRM), i.e. when objects are referenced independently
with fixed probabilities, ideal Least-Frequently Used (LFU)
caching policy is asymptotically optimal in terms of object
hit probability. However, general request processes are more
complex and correlated.

In this work, we assume a larger class of statistical models
for object reference streams, see Section 2.1 and Section 2.2
for more details. We also assume that the hazard rate (HR)
function (or conditional intensity) associated with this point
process is well defined and can be computed at all points of
time t. Here, the HR function is the conditional density
of the occurrence of a object request at time t, given the



realization of the request process over the interval [0, t) [9].
We now propose the HR based upper bound as follows.

For each request arrival for object i at time t, we sort the
objects according to the ratio of their HR values at time t
to their sizes in decreasing order. Note that, an ideal LFU
policy keeps track of number of times an object is referenced
and order them accordingly in the cache. Similarly, in our
upper bound, we keep an ordered list but on the basis of
ratio of HR values to object sizes. We then classify the
request as a hit if object i is among the B objects with the
largest ratios. Here, B denotes the cache capacity.

Our contributions are summarized below:

1. We present a new upper bound for cache hit probabil-
ity among all non-anticipative caching policies:

• When objects have equal sizes, a simple HR based
ordering for the objects provides an upper bound
on cache hit probability.

• For variable size objects, we order the objects
with respect to the ratio of their HR function
values to their objects sizes and provide upper
bounds on the expected number of byte and ob-
ject hits.

2. We evaluate and compare the HR based upper bound
with different cache replacement policies for both syn-
thetic and real world traces.

The rest of this paper is organized as follows. In Section 2
we formally present the HR based upper bound for equal size
objects. In Section 3 we develop HR based upper bound for
variable size objects. We perform simulation experiments
to compare HR based upper bound with other policies in
Section 4. Finally, the conclusion of this work and potential
future works are given in Section 5.

2. EQUAL SIZE OBJECTS
We consider a cache of capacity B serving n distinct equal

size objects. Without loss of generality we assume that all
objects have size one. Later in Section 3, we also consider
objects with different sizes. Let D = {1, · · · , n} be the set
of objects.

2.1 Number of Hits for General object Arrival
Processes

Let {0 < Ti,1 < Ti,2 < . . . } be the successive time epochs
when object i is requested. For k ≥ 1, define Xi,k = Ti,k −
Ti,k−1, the inter-request time between the (k− 1)st and kth
request to object i, with Ti,0 = 0 by convention.

Define τi(t) = argmax{k ≥ 1 : Ti,k−1 < t} so that exactly
τi(t)− 1 requests for object i are made in [0, t). We denote
by Ht,i the history of the request stream for object i up to
time t, namely,

Ht,i = {Ti,k, k = 1, . . . , τi(t)− 1}.

The hazard rate function of {Ti,k, k = 1, 2, . . .} at time t, is
given by [9, Chapter 7]

λ∗i (t) =
d
dt
P (Xi,τi(t) < t− Ti,τi(t)−1 |Ht,i)
P (Xi,τi(t) > t− Ti,τi(t)−1 |Ht,i)

, (1)

by assuming the existence of d
dt
P (Xi,τi(t) < t−Ti,τi(t)−1 |Ht,i)

for each i and k (the latter is true if the point process {Ti,k}k
is a regular point process [9]).

Under the assumption that the hazard rate functions λ∗i (t),
i = 1, . . . , n exist, the process {Tk}k resulting from the su-
perposition of the point processes {T1,k}k, . . . , {Tn,k}k is a
simple point process, namely, 0 < T1 < T2 < . . . , since the
probability that at least two objects are requested at the
same time is zero. We define by Ht = ∪ni=1Ht,i the history
of the process {Tk}k up to time t. Call Rk ∈ {1, . . . , n} the
object requested at time Tk.

A caching policy π determines at any time t which B
objects among the n available objects are cached. For-
mally, π is a measurable deterministic mapping from R ×
(×ni=1R∞)→ SB , where SB is the set of subsets of {1, . . . , n}
which containB elements. In this setting, π(t,Ht,1, . . . ,Ht,n)
gives the B objects that are cached at time t.

Let Π be the collection of all such policies. Note that
policies in Π are non-anticipative policies, in the sense that
they do not know when future requests will occur.

We will only consider deterministic policies although the
setting can easily be extended to random policies (in this
case π : R× (×ni=1R∞)→ Q(SB), where Q(SB) is the set of
probability distributions on SB).

At time Tk there is a hit (resp. miss) if object Rk is in
the cache (resp. is not in the cache).

We introduce the hazard rate (HR) based policy for equal-
size objects, abbreviated as HR-E. At any time t and given
Ht, HR-E (i) determines the hazard rate function of each
object and (ii) places in the cache the B documents that
have the largest hazard rate functions, i.e. if λ∗i1(t) > · · · >
λ∗in(t) then objects i1, . . . , iB are cached at time t.

For any π ∈ Π, let Hπ
k = 1 if the k-th object request is

a hit and Hπ
k = 0 otherwise. Let Nπ

K =
∑K
k=1 H

π
k be the

number of hits during the first K requests for a object.
Let Bπk ∈ SB be the state of the cache just before time Tk

under π. Note that BHR−Ek = π(Tk−,HTk−). The following
lemma holds, regardless of the state of the cache at time
t = 0.

Lemma 1 (Expected number of hits).
Assume that the request object processes {Ti,k, k = 1, 2, . . .},

i = 1, . . . , n, are mutually independent. Then, for K ≥ 1,

E
[
NHR−E
K

]
≥ E [Nπ

K ] , ∀π ∈ Π. (2)

Proof. See Appendix 7.1.

It is worth noting that Lemma 1 holds for any non-stationary
request object processes.

2.2 Upper Bound on the Hit Probability for
Stationary and Ergodic object Arrival Pro-
cesses

Let {· · · < Ti,−1 < Ti,0 ≤ 0 < Ti,1 < · · · } be the
successive time epochs when object i is requested. Define
Xi,k = Ti,k − Ti,k−1 and introduce the two-sided sequence
{Xi,k, k ∈ Z} of inter-request times to object i. We assume
that {Xi,k, k ∈ Z} is a stationary and ergodic sequence,
and that Xi,k has a finite mean given by E[Xi,k] = 1

λi
.

We further assume that the point processes {Ti,k, k ∈ Z},
i = 1, . . . , n, are mutually independent.

Define the point process {· · · < T−1 < T0 < 0 ≤ T1 <
T2 < · · · } obtained as the superposition of the n point pro-
cesses {Ti,k, k ∈ Z}, i = 1, . . . , n, Define Xk := Tk − Tk−1,
so that {Xk, k ∈ Z} is the sequence of inter-request times
for the point process {Tk, k ∈ Z}. Call Rk ∈ {1, . . . , n} the
object requested at time Tk (see below).



The stationarity, ergodicity, and independence assump-
tions placed on point processes {Ti,k, k ∈ Z}, i = 1, . . . , n,
imply that the sequence {(Xk, Rk), k ∈ Z} is stationary and
ergodic (see e.g. [3, pp. 33-34]).

The stationary hit probability of policy π ∈ Π is defined
as

hπ = lim
K→∞

1

K

K∑
k=1

1(Rk ∈ Bπk ) a.s., (3)

when this limit exists, where Bπk is the object of the cache
just before time Tk under policy π (i.e. Bπk = π(Tk−,H(Tk−))
– see the definition of a policy in Section 2.1).

Define Y πk = 1(Rk ∈ Bπk ). For any π ∈ Π, there exists
a measurable mapping ϕπ : (R × R)∞ → [0, 1] such that
Y πk = ϕπ((Tj , Rj), j ≤ k−1), which shows that the sequence
{Y πk , k ∈ Z} is stationary and ergodic (e.g. see [15, Thm p.
62]). The ergodic theorem then yields the stationary hit
probability (see e.g. [14, Thm 1])

hπ = P(Rk ∈ Bπk ) (4)

under π. We are now in position to state and prove the main
result of the paper.

Theorem 1 (Stationary hit probability).

hHR−E ≥ max
π∈Π

hπ.

Proof. See Appendix 7.2.

Remark 1. The computation of the HR-E based upper
bound does not require the simulation of any caching policy.
At each request for a object, one can evaluate the HR values
for all objects. One can then treat the request Rk as a hit
if the hazard rate of Rk is among the top B hazard rates at
time Tk.

3. EXTENSION TO VARIABLE SIZE OB-
JECTS

We now assume object i has size si ∈ R+ for all i ∈ D.
Below we compute an upper bound on expected number of
hits for bytes and objects when objects have variable size.

3.1 Number of byte hits and and fractional
knapsack problem

The setting and assumptions are that of Section 2.1. Note
that, in this setting, fractional caching (FC) is allowed. De-
note Λi(t) as

Λi(t) := λ∗i (t).

For any π ∈ Π, we modify the definition of Hπ
k and Nπ

K

for computing upper bound on byte hit ratios. Let Hπ
k the

number of bytes of object in the cache that can be used
to satisfy the k-th request. Let xi,k denote the fraction
of object i in the cache at the time of the k-th request.
Then Hk = skx

π
i,k if the request is for object i. Let Nπ

K =∑K
k=1 H

π
k be the number of bytes of object served from the

cache during the first K requests for a object.
Given that a request for a object is made at time Tk with

the history HTk , E[Hπ
k ] can be expressed as

E[Hπ
k ] =

∑n
i=1 x

π
i,ksiΛi(Tk)∑n

j=1 Λj(Tk)
, (5)

Our goal is to maximize E[Hπ
k ] subject to capacity con-

straint which can be solved by the following optimization
problem.

FC(ΛkΛkΛk, sss,B): max

n∑
i=1

sixiΛi(Tk) (6a)

subject to

n∑
i=1

sixi ≤ B (6b)

0 ≤ xi ≤ 1, i = 1, · · · , n. (6c)

Note that, the optimization problem maps to a Fractional
Knapsack Problem (FKP). The optimal solution to FC(ΛΛΛ, sss,B)
can be obtained in polynomial time as follows [11].

Denote gi(Tk) = siΛi(Tk)/si = Λi(Tk). We order the ob-
jects according to

gi1(Tk) ≥ gi2(Tk) ≥ · · · ≥ gin(Tk), (7)

We call object ia
1 as the critical object with

ia = min
{
ij : si1 + si2 + · · ·+ sij > B

}
.

Denote fia =
(
B −

∑a−1
j=1 sij

)
/sia . Under our proposed HR

based byte hit rate upper bound for variable size objects
(HR-VB), the object request Rk is considered as a full hit
(of size sRk ) if Rk ∈ {i1, i2, · · · , ia−1}. If Rk = ia then it
is a fia fractional hit. All other cases are considered as full
misses.

Thus by definition E[HHR−V B
k ] ≥ E[Hπ

k ], ∀π ∈ Π. Sum-
ming both sides for k = 1, . . . ,K and from the definition of
Nπ
K we get

E
[
NHR−V B
K

]
≥ E [Nπ

K ] , ∀π ∈ Π. (8)

3.2 Number of object hits and 0-1 knapsack
problem

Again, the setting and assumptions are that of Section
2.1. Note that, in this setting, objects are assumed to be
indivisible (IC), i.e., every object hit counts the same (i.e.,
a hit for a large 1GB object and hit for a small 10B object
both count as a ”hit”). We assume the definitions of Hπ

k

and Nπ
K in Section 2.1 still hold. Given that a request for a

object is made at time Tk with history HTk , E[Hπ
k ] can be

expressed as

E[Hπ
k ] =

∑
i∈Bπ

k
Λi(Tk)∑n

j=1 Λj(Tk)
, (9)

Since objects are indivisible, E[Hπ
k ] can be maximized by

solving a 0-1 knapsack problem (KP) defined as follows.

IC(ΛkΛkΛk, sss,B): max

n∑
i=1

xiΛi(Tk) (10a)

subject to

n∑
i=1

sixi ≤ B (10b)

xi ∈ {0, 1}, i = 1, · · · , n. (10c)

Solving IC is NP-hard. However, the solution to the
corresponding relaxed FKP serves as an upper bound to

1ia is actually the critical object at time Tk. For brevity, we
replace ia(Tk) with ia.



0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1
O

b
je

ct
 H

it
 P

ro
b

ab
il

it
y

Belady-CA

HR Based

Static

LRU

FIFO

Random

(a) Exponential

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b

je
ct

 H
it

 P
ro

b
ab

il
it

y

Belady-CA

HR Based

Static

LRU

FIFO

Random

(b) Generalized-Pareto

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b

je
ct

 H
it

 P
ro

b
ab

il
it

y

Belady-CA

HR Based

Static

LRU

FIFO

Random

(c) Uniform

Figure 1: Simulation Results for HR based upper bound and various caching policies under different inter request arrival
distributions.

Distribution Hazard Rate Parameters Fi(t) Independent Parameters

Exponential CHR λi: rate 1− e−λit λi: Zipf(0.8)

Generalized Pareto DHR ki : shape, σi: scale 1− (1 + kit
σi

)
− 1
ki ki : 0.48

θi(= 0) : location
Uniform IHR bi : maximum value t/bi 2/bi:Zipf(0.8)

Table 1: Properties of specific traffic distributions where IHR, DHR and CHR denote Increasing, Decreasing and Constant
Hazard Rate respectively.

IP [11]. Thus we find an upper bound on E[Hπ
k ] by or-

dering the objects at time TK according to (7), but with
gi(Tk) = Λi(Tk)/si. Define ia and fia as before. Following
a procedure similar to that discussed in Section 3.1, we get
the HR based upper bound on number of object hits for
variable size objects (HR-VC). Thus by definition we have

ĤHR−V C
k =

∑a−1
j=1 Λij (Tk) + fiaΛia(Tk)∑n

j=1 Λj(Tk)

≥ E[HHR−V C
k ] ≥ E[Hπ

k ], ∀π ∈ Π.

Summing the leftmost and rightmost expressions for k =
1, . . . ,K and from the definition of Nπ

K yields

N̂HR−V C
k ≡

K∑
k=1

ĤHR−V C
k ≥ E [Nπ

K ] , ∀π ∈ Π.

4. EXPERIMENTS
We compare online policies for both equal and variable

sized objects to that of our proposed upper bound as follows.

4.1 Equal Sizes
In our experiments, we consider a object catalog of size

n = 1000. We vary cache size from B = 10 to B = 100. We
assume that object popularities follow a Zipf distribution
with parameter α = 0.8. We consider various renewal point
processes with different inter-request time (irt) distributions
as shown in Table 1. The independent parameters for each
irt distribution is shown in the last column of Table 1. The
other parameters for each of the distribution are set such
that the mean arrival rates (λi) across all the objects follow
a Zipf distribution. We consider a half a million synthetic
request trace and plot cache hit probability as a function of
cache capacity. We compare the hit probability for different
cache eviction policies to that of upper bounds as shown in
Figure 1.

4.1.1 Constant Hazard Rate
When the request arrival process for each object has con-

stant hazard rate (CHR), i.e the irts are described by an
exponential distribution, the hit probability obtained for
HR based upper bound equals that of STATIC policy, i.e.
hHR = hSTATIC as shown in Figure 1(a). This is due to
the fact that under CHR, Λi(t) = λi ∀t ∈ [0,∞) and i ∈ D.
Thus under HR, Bk = {λ1, λ2, · · · , λB} for all Tk ∈ (0,∞),
which essentially is the STATIC policy.

4.1.2 Decreasing Hazard Rate
When the request arrival process for each object has a

decreasing hazard rate (DHR), for ex: the irts are Pareto,
HR based bound serves as an upper bound for different on-
demand caching policies as shown in Figure 1 (b). Also,
note that, BELADY-CA’s policy produces a much larger
hit probability compared to HR based bound, i.e. hHR <<
hBELADY−CA. Thus HR based bound is tighter and pro-
vides a performance benchmark compared to BELADY-CA
under DHR. We get similar results for the case when the
irts are Hyperexponential or Gamma distributed.

4.1.3 Increasing Hazard Rate
We present hit probability as a function of cache capac-

ity for Uniform distributed irts in Figure 1 (c). Clearly, the
HR based bound serves as an upper bound also for the case
when irt distributions have increasing hazard rates (IHR).
For both these distributions hHR ≈ hBELADY . Note that,
for uniform irts hBELADY < hHR. Note that, HR based up-
per bound can be realized as prefetching based upper bound.
BELADY-CA only provides a provable upper bound for de-
mand based caching policies. We get similar results for the
case when the irts are Erlang distributed.

4.2 Variable Sizes
We consider the case when objects have variable sizes. For



0 20 40 60 80 100

Cache Capacity (in Mb)

0

2

4

6

8

N
u
m

b
er

 o
f 

O
b
je

ct
 H

it
s

10
4

Hazard Rate Based

LRU

GDSF

AdaptSize

(a) Exponential

0 20 40 60 80 100

Cache Capacity (in Mb)

0

2

4

6

8

N
u
m

b
er

 o
f 

O
b
je

ct
 H

it
s

10
4

Hazard Rate Based

LRU

GDSF

AdaptSize

(b) Generalized-Pareto

0 20 40 60 80 100

Cache Capacity (in Mb)

0

2

4

6

8

N
u
m

b
er

 o
f 

O
b
je

ct
 H

it
s

10
4

Hazard Rate Based

LRU

GDSF

AdaptSize

(c) Uniform

Figure 2: Simulation Results for HR based upper bound and various caching policies under different inter request arrival
distributions for variable object sizes.

our simulation, we assume a object catalog of size n = 100.
We vary cache size from B = 10Mb to 100Mb. We generate
object sizes for each object independently according to a
bounded Pareto distribution with Pareto shape parameter
1.8, minimum object size 5Mb and maximum object size
15Mb.

We assume that object popularities follow a Zipf distri-
bution with parameter α = 0.8. We consider various re-
newal point processes such as Uniform, Pareto and Expo-
nential distributions with parameters as shown in Table 1.
We consider half a million synthetic request trace and plot
cache hit probability as a function of cache capacity. We
compare the HR based upper bound to that of different
cache eviction/admission policies designed for variable ob-
ject sizes. Examples include LRU, Greedy Dual Size Fre-
quency Caching Policy (GDSF)[8] and AdaptSize [6].

We plot number of object hits as a function of cache capac-
ity for various irt distributions as shown in Figure 2 (a)-(c).
Note that our proposed HR based bound indeed serves as
an upper bound for different online cache eviction policies.
Also, note that, the number of object hits for conventional
online caching policies (for example GDSF) is closer to our
proposed upper bound under exponential and Pareto irt dis-
tributions (See Figures 2 (a) and (b)). However, the number
of object hits for conventional caching policies are farther
from the upper bound under uniform irt distribution. Thus
our proposed upper bound is tighter when irt distributions
have a non-increasing hazard rate. Another interpretation is
that there may be room for improving caching policy perfor-
mance in scenarios where irts have increasing hazard rates.

4.3 Real-world Data Trace and Hazard Rate
Estimation

We now compare the hit probability for different cache
eviction policies to HR-E under real data trace. We use
requests from a web access trace collected from a gateway
router at IBM research lab [20]. We filter the trace such that
each object have been requested at least a hundred times.
The filtered trace contains 3.5× 106 requests with a object
catalog of size n = 5638. We vary cache size from B = 100
to 600.

Various parametric and non-parametric estimators have
been developed in the literature to estimate the hazard rate

100 200 300 400 500 600

Cache Capacity

0.5

0.6

0.7

0.8

0.9

1

1.1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

Belady-CA

HR Based

Static

LRU

FIFO

Random

Figure 3: Performance comparison under real world data
trace.

[19, 17]. Here, we adopt a parametric estimator model and
assume that the inter-request times for each object are in-
dependent and identically distributed non-negative random
variables. Note that the web and storage traffic inter-request
times and access patterns are well modeled by the heavy-
tailed distributions [10, 12]. Hence we fit the density of
inter-request times of each object to a Generalized-Pareto
distribution using the maximum likelihood estimation tech-
nique and estimate the hazard rate for each object accord-
ingly.

We compare HR-E to that of different cache eviction poli-
cies as shown in Figure 3. Note that, both BELADY-CA
and HR-E provides an upper bound on cache hit probability
for different online cache eviction policies. Also, note that,
BELADY-CA’s policy produces almost similar hit probabil-
ities as that of HR-E.

5. CONCLUSION
In this paper, we developed an upper bound on the cache

hit probability for non-anticipative caching policies with equal
object sizes. We showed that hazard rate associated with
the object arrival process can be used to provide this upper
bound. Inspired by the results for equal size objects, we ex-
tended the HR based argument to obtain an upper bound on
expected number of byte hits and object hits for variable size



objects. We showed that HR based upper bound is tighter
for a variety of object arrival processes than those analyzed
in the literature. Future directions include to consider the
prefetching cost associated with any realizable hazard rate
based caching policy.

6. REFERENCES
[1] A. V. Aho, P. J. Denning, and J. D. Ullman.

Principles of Optimal Page Replacement. J. ACM,
18(1):80–93, 1971.

[2] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and
T. Jin. Evaluating content management techniques for
web proxy caches. Performance Evaluation Review,
27(4):3–11, 2000.

[3] F. Baccelli and P. Brémaud. Elements of Queueing
Theory. Springer, 2003.

[4] N. Beckmann, H. Chen, and A. Cidon. LHD :
Improving Cache Hit Rate by Maximizing Hit Density
Relative Size at. NSDI, 2018.

[5] D. S. Berger, N. Beckmann, and M. Harchol-Balter.
Practical Bounds on Optimal Caching with Variable
Object Sizes. POMACS, 2(2):1–32, 2018.

[6] D. S. Berger, R. K. Sitaraman, and
M. Harchol-Balter. AdaptSize: Orchestrating the hot
object memory cache in a content delivery network.
NSDI 2017, pages 483–498, 2017.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. Proceedings - IEEE
INFOCOM, 1:126–134, 1999.

[8] L. Cherkasova. Improving WWW proxies performance
with Greedy-Dual-Size-Frequency caching policy. HP
Laboratories Technical Report, (98 -69), 1998.

[9] D. Daley and D. Vere-Jones. An Introduction to the
Theory of Point Processes: Elementary Theory and
Methods. Springer, 2003.

[10] A. B. Downey. Lognormal and pareto distributions in
the internet. Computer Communications, 28(7):790 –
801, 2005.

[11] M. T. Goodrich and R. Tamassia. Chapter 5, The
Fractional Knapsack Problem. Algorithm Design:
Foundations, Analysis, and Internet Examples, pages
259–260, 2002.

[12] R. Gracia-Tinedo, Y. Tian, J. Sampé, H. Harkous,
J. Lenton, P. Garćıa-López, M. Sánchez-Artigas, and
M. Vukolic. Dissecting UbuntuOne: Autopsy of a
global-scale personal cloud back-end. IMC,
2015-October(February):155–168, 2015.

[13] S. Jiang and X. Zhang. LIRS: An efficient low
inter-reference recency set replacement policy to
improve buffer cache performance. Performance
Evaluation Review, 30(1):31–42, 2002.

[14] J. F. C. Kingman. The Ergodic Theory of Subadditive
Stochastic Processes. Journal of the Royal Statistical
Society: Series B (Methodological), 30(3):499–510,
1968.

[15] P. Phillips. Lectures on stationary and nonstationary
times series. 1992.

[16] S. Ross. Stochastic Processes, 2nd Ed. Wiley, 1996.

[17] N. D. Singpurwalla and M. Y. Wong. Kernel
estimators of the failure-rate function and density

estimation: An analogy. Journal of the American
Statistical Association, 78(382):478–481, 1983.

[18] A. S. Tanenbaum. Modern Operating Systems.
Prentice Hall Press, 2001.

[19] J.-L. Wang. Smoothing hazard rate. Encyclopedia of
Biostatistics (2nd ed.), 7:4986–4997, 2005.

[20] P. Zerfos, M. Srivatsa, H. Yu, D. Dennerline,
H. Franke, and D. Agrawal. Platform and
Applications for Massive-scale Streaming Network
Analytics. IBM Journal for Research and
Development: Special Edition on Massive Scale
Analytics, 57(136):1–11, 2013.

7. APPENDIX

7.1 Proof of Lemma 1
Proof. Given that a request for a content is made at

time t and given that the history Ht is known, this request
is for content i with the probability

pi(t) =
λ∗i (t)∑n
j=1 λ

∗
j (t)

. (11)

Proof of (11) is given as exercise 1.34 in [16]. This result
relies on the mutual independence of the point processes
{Ti,k, k = 1, 2, . . .}, i = 1, . . . , n. Observe that pi(t) does
not depend on the caching policy in use.

By the definition of the HR-E policy∑
i∈BHR−E

k

λ∗i (Tk−) ≥
∑
i∈Bπ

k

λ∗i (Tk−), (12)

for k ≥ 1. Therefore for k ≥ 1 (notice that under HR-E the
content of the cache may change at time t = 0+)

E
[
HHR−E
k

]
=

∑
i∈BHR−E

k
λ∗i (Tk−)∑n

j=1 λ
∗
j (Tk−)

from (11),

≥

∑
i∈Bπ

k
λ∗i (Tk−)∑n

j=1 λ
∗
j (Tk−)

from (12),

= E [Hπ
k ] , (13)

from (11) again. Summing both sides of (13) for k = 1, . . . ,K
gives (2) from the definition of Nπ

K .

7.2 Proof of Theorem 1
Proof. Taking the expectation on both sides of (3), us-

ing the fact that hπ is a constant from (4), and then invoking
the dominated convergence theorem, gives

hπ = lim
K→∞

1

K

K−1∑
k=0

E[1(Rk ∈ Bπk )] = lim
K→∞

E[Nπ
K ]

K
, (14)

withNπ
K =

∑K−1
k=0 1(Rk ∈ Bπk ) the number of hits in [T0, TK−1]

or, equivalently due to the stationary, the number of hits in
K consecutive requests. Proof is concluded by using Lemma
1.


	Introduction
	Offline upper bound
	Our Approach: Hazard Rate based upper bound

	Equal size Objects
	Number of Hits for General object Arrival Processes
	Upper Bound on the Hit Probability for Stationary and Ergodic object Arrival Processes

	Extension to Variable Size Objects
	Number of byte hits and and fractional knapsack problem
	Number of object hits and 0-1 knapsack problem

	Experiments
	Equal Sizes
	Constant Hazard Rate
	Decreasing Hazard Rate
	Increasing Hazard Rate

	Variable Sizes
	Real-world Data Trace and Hazard Rate Estimation

	Conclusion
	References
	Appendix
	Proof of Lemma 1
	Proof of Theorem 1


