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Abstract. In moving block systems for railway transportation a central
controller periodically communicates to the train how far it can safely
advance. On-board automatic protection mechanisms stop the train if no
message is received during a given time window.
In this paper we consider as reference a typical implementation of moving-
block control for metro and quantify the rate of spurious Emergency
Brakes (EBs), i.e. of train stops due to communication losses and not
to an actual risk of collision. Such unexpected EBs can happen at any
point on the track and are a major service disturbance.
Our general formula for the EB rate requires a probabilistic characteriza-
tion of losses and delays. Calculations are surprisingly simple in the case
of homogeneous and independent packet losses. Our approach is compu-
tationally efficient even when emergency brakes are very rare (as they
should be) and can no longer be estimated via discrete-event simulations.

Keywords: Emergency brakes · Communication Based Train Control
(CBTC) · European Train Control System (ETCS)

1 Introduction

In order to avoid collisions between consecutive trains traveling on the same
track, the track is traditionally divided in fixed sections—called blocks—and
only one train at a time is allowed to be in a given block.

The increasing demand for efficient mass transit transport requires to uti-
lize railway infrastructure more efficiently. The improvements of train-sidetrack
wireless communications, on board processing and actuators have made possible
the introduction in the last 15 years of moving block systems, where blocks are
dynamically calculated. Figure 1 schematically illustrates the two different ap-
proaches. The moving-block control can reduce the headway taking into account
the actual distance between the trains as well as their speeds. It is being de-
ployed as Communication-Based Train Control (CBTC) for urban mass transit



system and is under consideration for next generation of European Train Con-
trol System (ETCS). This is referred as ETCS level 3 and is currently under
standardization.
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Fig. 1. Fixed-block and moving-block operation.

Moving-block systems require a continuous information exchange (detailed
in Sec. 2) between an on board local controller, called the Carborne Controller
(CC) and an external ground controller, called the Zone Controller (ZC) because
it monitors all the trains in a given zone. Safety-critical messages are exchanged
using standard or proprietary radio technologies. If no message is received dur-
ing a given interval then the CC will no longer have valid guarantees that train
movement is still safe and will trigger an Emergency Brake (EB). It is clearly
desirable to limit the frequency of spurious emergency brakes, i.e. emergency
brakes that are simply due to losses on the wireless channel and not to a poten-
tial collision risk. Indeed spurious emergency brakes can be themselves a cause of
danger, with trains potentially blocked in tunnels, risks of passengers disembark-
ing on the tracks, etc. Moreover, a spurious EB can generate legitimate EBs on
the following trains on the track, causing in this way major service disturbance.
For this reason, the so-called performance based contracts can bind rail trans-
port companies to specify the maximum number of spurious emergency brakes
over a given period of time.

In spite of their criticality, the estimation of the rate of spurious EBs is
mostly based on historical operational data. This approach strongly limits the
possibility to evaluate ahead of time the performance when significant changes
are deployed and in particular when new lines based on new technologies are
built. It is often required to experimentally adapt different system parameters
(e.g. transmission power levels, timer values, . . . ) after the deployment of the
line, and sometimes even to deploy additional trackside equipment (e.g. radio
transmitters). These difficulties are often considered one of the reasons for the
delay in the standardization of ETCS level 3. For example [8] shows that the
official quality of service specifications for the different subcomponents of the



ETCS level 3 system can lead to a ridiculously high rate of spurious EBs (one
every 30 minutes).

A model-based analysis can then play a fundamental role for a preliminary
evaluation of the real performance of moving block control. Some work has been
done in this direction following [8], and then considering its abstraction from
ETCS level 3 specifications mostly using Stochastic Petri Nets (SPNs) [9,5,1,3,2].
In particular the approach proposed in [8] to numerically solve the SPN works
only under the so-called enabling restriction, i.e. only one transition can be gen-
erally distributed and all the others should be exponential random variables.
In the more realistic cases, the authors rely then on Monte Carlo simulations
of the SPN. The naive simulation approach presented in [8] cannot manage to
quantify EB rate smaller than 2 EBs per hour. Importance splitting techniques
used in [9] allow to estimate much smaller rates (about 10−10 per hour). It is
not clear if the computational cost of this numerical approach is insensitive to
the packet loss probability p. References [5] and [7] show how UML descriptions
can be used to describe the moving block control in ETCS level 3 and can be
automatically translated to MoDeST formal language (a process algebra-based
formalism) and to SPNs, but they do not solve the problem of quantitative eval-
uation of such rates when losses are rare. In the very recent paper [2] Carnevali
et al. use the tool ORIS to solve numerically the SPN proposed in [8,9], without
the need to rely on Monte Carlo simulations. The tool indeed overcomes the limit
of the enabling restriction thanks to recent advancements based on the method
of stochastic state classes [6]. Moreover, it allows for a transient analysis of the
system. As a case study, the authors consider a toy-example similar to that in [8]
leading to very high EB rates. From a preliminary analysis using their tool, it
is not clear if more realistic scenarios can be solved in a reasonable amount of
time.

Our approach differs from the related literature in three main aspects. First,
rather than moving from the current proposals for ETCS level 3, we consider
as reference an actual implementation of the moving-block system for metro by
Alstom, one of the world largest company in the domain of rail transport and
signaling. Looking at an actual implementation has led us to identify the impor-
tance of the time-slotted operation of the two controllers (the CC and the ZC).
Indeed, the most important delay component in the messages’ exchange between
the CC and the ZC is due to the waiting time for the next clock tick at which the
controller can process the message. This waiting time can be equal to hundreds
of milliseconds versus the tens of milliseconds due to network delays. This aspect
was ignored in the previous literature and we show that has to be addressed to
correctly evaluate the system performance. In particular, a consequence of the
time-slotted operation is that the EB rate exhibits non-trivial discontinuity as
the timer value changes. A second (methodological) difference in comparison to
the direction of [8] and follow-ups is that we push as further as possible the
probabilistic analysis to derive closed-formula expressions. We derive a general
formula for the rate of spurious EBs under general loss and delay processes, and
a simple formula for the case of independent and homogeneous packet losses. The



analysis allows to better understand the role of the different system parameters.
On the contrary, the existing literature only relies on simulations or (in the case
of [2]) on the numerical solution of a SPN. In both cases the dependence on the
system parameters is hidden. Finally, from the algorithmic point of view, it is
not clear if the numerical approaches proposed until now can be practically used
to estimate EB rates as low as in this paper. Our guess is that this is probably
not the case but, perhaps, for [9] and [2].Indeed our approach does not need to
simulate rare sequences of packet losses and is then practically implementable.

The paper is organized as follows. In Sec. 2 we describe our assumptions
about the train scenario and the details of the moving-block control including
typical values for system parameters. Then in Sec. 3 we describe our general
approach to study the system, we show that a worst case analysis is of limited
utility (Sec. 3.1) and then move to derive a general formula for the EB rate
(Sec. 3.1) that requires to characterize system delays (Sec. 3.2) and losses. The
case of independent and homogeneous packet losses is considered in Sec. 3.3.
Some numerical experiments are in Sec. 4. Section 5 concludes the paper and
discusses how to extend our approach to more general loss scenarios. The most
frequently used acronyms are listed in Table 1. Due to space constraints some
of the results are in the companion technical report [4].

Table 1. List of Acronyms

CBTC Communication Based Train Control
CC Carborne Controller
DCS Data Communication Sub-System
EB Emergency Brake
EOA End-Of-Authority
ETCS European Train Control System
LOC Location report
TM validity duration Timer of a LOC
ZC Zone Controller

2 Scenario

Here we describe the specific railway scenario we consider. In our description
we will refer to transmission technologies and parameters typical of a urban
rail network (and then of a CBTC system), but our following analysis does not
depend on these specific implementation details. What is instead required is
that the random variables (r.v.s) defined below (train speed, distances between
access points, etc.) have bounded support and are lower bounded by a positive



constant. For a given r.v. α, we denote by αmin > 0 its lower bound and by
αmax <∞ its upper bound.4

We consider a train moving on an infinitely long track. The train has two
WiFi On Board Modems (OBMs) with directional antennas: one is located at
the front of the train, the other at the back. We refer to them respectively as the
blue and the red OBMs. Along the track there are pairs of closely-located WiFi
Access Points (APs), using the same channel. The pair is called a Trackside Radio
Equipment (TRE). Each AP in a TRE is devoted to communicate with one of
the two OBMs and is connected to an independent wired network through which
the Zone Controller (ZC) can be reached. We also label the APs, the wireless
channels and the wired networks blue or red as the corresponding OBM. Hence
communications between the train and the ZC are possible through separate
paths, each with a single wireless link.

2.1 Train Moving-Block Control

In this section we describe the detailed operation of a moving block system
considering as reference the specific CBTC implementation by Alstom.5

Figure 2 shows a messages exchange between the on board controller (the
CC) and the ground controller (the ZC). Observe that both the controllers op-
erate in discrete time on the basis of clock periods of hundreds of milliseconds.
This is due to the fact that they are actually e-out-of-f voting systems where
different processors perform in parallel the same calculations and a time-slotted
operation simplifies the synchronism of the processors. The clock periods at the
ZC and at the CC (respectively TZC and TCC) are in general different because
the subsystems are provided by different vendors and also because they have
different computational loads during one period.

The most important CBTC messages are location reports (LOC) and end-of-
authority ones (EOA). A LOC is a message periodically transmitted from the on
board CC through the Data Communication Sub-System (DCS) to the ground
ZC. The message is actually sent twice through the blue and the red networks.
The first LOC arriving at the ZC is processed. Each LOC is acknowledged by
an EOA message in the reverse direction (again sent through the two networks).
The EOA communicates to the CC how far the train can advance. The LOC
has a validity duration TM and a timer with such duration is activated at
the generation of the LOC. An EOA is said to be valid if the timer of the
corresponding LOC has not expired yet. The CC-ZC-CC exchange works as
follows.

1. A LOC is generated at the CC every TLOC , multiple of the CC clock period
TCC .

4 Throughout the paper Greek letters always denote random variables, while capital
letters usually denote system parameters.

5 The parameters’ values have been slightly changed and some specific implementation
details are hidden to protect Alstom industrial know-how.
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Fig. 2. Illustration of LOC-EOA exchanges.

2. The LOC (say LOC k) is ready to be emitted and passed to the DCS after
a processing delay equal to TCC .

3. The delivery delay introduced by the DCS is a random variable χ1 with
support in [TDCS,min, TDCS,max].

4. At the ZC the LOC is available for computing at the next tick of the clock.
5. The computing time at the ZC required to process the LOCs from all the

trains in the zone and generate the corresponding EOAs is TZC .
6. The EOA k is emitted within the next cycle of the ZC at an offset O de-

pending on the train.
7. The EOA is delivered to the CC after a random delay χ2, distributed as χ1,

but independent from it.
8. At the CC the EOA gets in a processing queue, at the next tick of the CC

clock the most recent EOA present in the queue is processed unless there
are higher priority tasks arrived during the same CC clock period (which
happens with probability pD). In any case an EOA processing is not delayed
more than an additional CC period.

9. The EOA k is actually processed only if it remains valid until the end of the
current CC clock. Once processing starts, all the pending timers for older
LOCs (i.e. LOC h for h ≤ k) are deactivated.

10. If the timer of a LOC is not deactivated before its expiration, the EB pro-
cedure is triggered.

In what follows we refer to the k-th LOC and its corresponding EOA as the
k-th LOC-EOA exchange, but note that any later EOA can disactivate the timer
of the k-th LOC. We say that a LOC-EOA exchange is lost if either the LOC or
the EOA does not arrive to destination.

3 Analysis

In this paper we consider that the system is described by a stationary stochastic
process and calculate the steady-state rate at which emergency brakes occur (as



Table 2. Notation and typical values for the variables. In the paper some of the
variables appear with subscripts. A subscript b (r) denotes that the variable refers to
the blue (red) OBM or network. A subscript L (E) denotes that it refers to a LOC (an
EOA).

Symbol Quantity Value
TZC ZC clock period 378 ms
TCC CC clock period 225 ms
TLOC LOC generation period 3TCC

TM validity duration of a LOC 5.5 s
TDCS transmission delay [10, 50] ms
τ positive random component of TDCS [0, 40] ms
φ positive random component of TDCS for first message to arrive [0, 40] ms
O EOA transmission offset [0, TZC ]

ωCC number of CC ticks an EOA waits until CC processes it {0, 1}
pD probability that ωCC is 1 0.01

ωZC time interval between LOC arrival at ZC and next ZC tick
σ time interval between earliest arrival time of a LOC at ZC and next ZC tick
qEB emergency brake probability
rEB emergency brake rate
p packet loss
p̃ probability to lose a LOC-EOA exchange
Tk arrival time of k-th EOA
γk tick at which k-th EOA is processed
Dk event that k-th EOA is late to deactivate the timer of LOC 1
Tk event that k-th LOC experiences a timeout
Lk event of k-th LOC-EOA exchange loss

common to all the related literature but [2]). In particular we consider that the
train is moving according to some stationary mobility model and the algorithm
described above is running all the time, even after the occurrence of an emergency
brake. Ignoring the train stopping time after an EB is a reasonable approximation
because we are estimating rare events.

We denote by Lk the event that the exchange k is lost, Tk the event that
the k-th LOC experiences a timeout and Ā the complement of set A. The k-th
LOC experiences a timeout if the k-th exchange is lost and the later EOAs do
not arrive or arrive too late, then Tk ⊂ Lk6. We observe that a sequence of
consecutive timeouts generates a single EB and then a timeout for a given LOC,
say it LOC 1, is counted as an EB only if the previous LOC 0 does not experience
a timeout. The probability qEB that a random LOC experiences an emergency
break is then qEB = Pr(T̄0∩T1) that does not depend on the specific pair of LOCs
considered because the process is stationary. Moreover, under the condition that
LOC 1 experiences a timeout, LOC 0 experiences a timeout if and only if the
corresponding exchange is lost, because later EOAs are not able to block the

6 In this paper A ⊂ B denotes that A is a subset of B, not necessarily proper.



timer of LOC 1 and a fortiori the timer of LOC 0. Then T̄0 ∩ T1 = L̄0 ∩ T1 and
the rate of emergency brakes is

rEB =
qEB
TLOC

=
Pr(L̄0 ∩ T1)

TLOC
. (1)

3.1 EB Probability

Fig. 3. Different delay components of the k-th LOC-EOA exchange for two different
values of the LOC transmission delay φ′L,k and φ

′′
L,k.

In this section we first derive some simple bounds for qEB . The bounds will
reveal to be too loose to be practically used, but they are nevertheless useful
for the subsequent analysis. We conclude the section with a general formula for
the EB rate, whose terms will be calculated in the following sections. We report
numerical values corresponding to the typical scenario presented in Sec. 2.
Minimum and maximum LOC-EOA round trip times. We calculate the
minimum and the maximum time between the generation of a LOC and the
instant T when the corresponding EOA is available for computation at the CC.
Consider a LOC generated at time 0. Its EOA arrives at the CC at time (see
also Fig. 3):

T = Tmin + φL + φE + ωZC +O, (2)

where Tmin = TCC + 2TDCS,min + TZC = 623 ms, ωZC is the time interval
between the arrival of the LOC at the ZC and the next ZC tick and φL and φE
are the random components of the transmission delays respectively for the first
LOC and the first EOA to arrive at destination.

The earliest arrival time Tmin +O occurs when the LOC and the EOA expe-
rience the minimum travel times on the DCS (i.e. φL = φE = 0) and the LOC is
available for computing at the ZC immediately before a ZC tick (i.e. ωZC = 0).

The latest arrival time Tmax +O occurs when the LOC and the EOA experi-
ence the maximum travel time on the DCS (i.e. φL = φE = TDCS,max−TDCS,min)
and the LOC is available for computing at the ZC immediately after a ZC tick. In
this case the LOC will wait an additional TZC before being processed (i.e. ωZC =
TZC). Hence Tmax = TCC + TDCS,max + TZC + TZC + TDCS,max = 1081ms.



Number of potential LOC-EOA exchanges before a TimeOut. Even if
a LOC or an EOA is lost, the EOAs corresponding to following LOCs could
still deactivate its timer and then the emergency brake would be prevented. In
this section we calculate how many LOC-EOA exchanges can happen between
the generation of a LOC and the expiration of the corresponding timer, i.e. how
many other EOAs can have a chance to block the timer.

Let us consider that the first LOC is generated at time t = 0, then its
timer would expire at time t = TM . The maximum number nmax of LOC-EOA
exchanges can be calculated considering that i) the last potentially useful EOA
arrives in the shortest time possible and ii) it is immediately processed by the
following CC tick, which is the last one before the timer expires.

The last potential useful EOA arrives at (nmax−1)TLOC+Tmin+O and it can
then be processed at TCC d((nmax − 1)TLOC + Tmin +O) /TCCe. The CC tick
just before the timer expires occurs at time TCC bTM/TCCc, We determine nmax

by imposing that
⌈
(nmax−1)TLOC+Tmin+O

TCC

⌉
=
⌊
TM
TCC

⌋
,7 and we can manipulate this

equality as in [4], to obtain:

nmax = 1 +

TM −
⌈
Tmin+O
TCC

⌉
TCC

TLOC

 . (3)

Similarly the minimum number nmin of LOC-EOA exchanges can be calcu-
lated considering that i) the last potentially useful EOA arrives in the longest
time possible and ii) it is processed 2 CC ticks later in correspondence of the
last tick before the timer expires. Then we determine nmin by imposing that⌈
(nmin−1)TLOC+Tmax+O

TCC

⌉
=
⌊
TM
TCC

⌋
− 1, and proceeding as above we obtain:

nmin = 1 +

TM −
(⌈

Tmax+O
TCC

⌉
+ 1
)
TCC

TLOC

 . (4)

The difference between nmax and nmin depends on the timer TM and also on
the offset. For the typical values in Table 2 they differ by at most 2 exchanges,
i.e. nmax ≤ nmin + 2. Figure 4 shows nmin and nmax for different values of the
timer TM and an offset O = 50 ms. It also shows that the difference of two
exchanges is achieved for some values of TM .

The two values nmin and nmax allow us to provide respectively upper and
lower bounds for the EB probability and then for the EB rate, but these bounds
can be too loose for practical uses. We are going to show it in the simple case
when packet losses on the two wireless blue and red channels are independent
Bernoulli random variables with parameter p. In this case a LOC or an EOA

7 This assumes nmax > 1. The first EOA needs to be valid until the end of the CC
clock during which it is processed and then its processing time should start the latest
at the tick number

⌊
TM−TCC

TCC

⌋
.



Fig. 4. Minimum and maximum number of LOC-EOA exchanges for O = 50 ms,
calculated through Eqs. (4) and (3).

message is received with probability 1− p2 and the probability p̃ to lose a LOC-
EOA exchange is then p̃ = 1 − (1 − p2)2. An emergency brake requires that
the exchange 0 is not lost. Moreover the EB will necessarily occur if the nmax

following LOC-EOA exchanges are lost (even if the (nmax + 1)-th EOA arrives,
it will be after the timer expiration) and cannot occur unless nmin exchanges are
lost (the first nmin EOA cannot arrive late even in the worst case). It follows
that

(1− p̃)p̃nmax ≤ qEB ≤ (1− p̃)p̃nmin . (5)

With the values in Table 2 the upper bound can be up to p̃−2 times larger
than the lower bound. A typical value for the packet loss probability is p = 5%,
and then p̃ ≈ 0.5% and the ratio of the two bounds is almost 4 × 104. In this
case, as we are going to show later, the upper bound can be too pessimistic and
practically of no utility to set the parameter TM . For this reason a more refined
analysis is required.

Exact Formula LOC 1 is generated at time t = 0 and then the k-th LOC is
generated at (k− 1)TLOC . The k-th EOA is the EOA corresponding to the k-th
LOC. The timer of LOC 1 would expire at time t = TM . Remember that Lk
denotes the event that the k-th LOC-EOA exchange is lost. Let Dk denote the
event that the k-th EOA arrives too late to deactivate the timer of LOC 1. The
two events are disjoint, i.e. Lk ∩ Dk = ∅. LOC 1 experiences a timeout if and
only if all the following exchanges are lost or their EOAs arrive too late, i.e.

T1 =
∞
∩
k=1

(Lk ∪ Dk) =
nmax∩
k=1

(Lk ∪ Dk) , (6)

where the last equality follows from the fact that only the first nmax exchanges
have a possibility to stop the timer (Pr(Lk ∪ Dk) = 1 for k > nmax).

Due to timing constraints EOAS cannot arrive out of order. A consequence
is that if the k-th EOA arrives too late to deactivate the timer of LOC 1, no



later EOA will be able to deactivate it. In particular later EOAs will be lost or
will arrive too late, i.e. Dk ⊂ Dk′ ∪Lk′ for all k′ ≥ k. This simple relation allows
us to conclude [4] that for any m

m
∩
k=1

(Lk ∪ Dk) =
m
∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(

m
∩
h=1
Lh
)
. (7)

We can now move to calculate qEB . From Eqs. (6) and (7), it follows that

qEB = Pr
(
L̄0 ∩ T1

)
= Pr

(
L̄0 ∩

nmax∩
k=1

(Lk ∪ Dk)

)
= Pr

(
L̄0∩

(
nmax∪
k=1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(
nmax∩
h=1
Lh
)))

. (8)

This expression can be simplified observing that the first nmin− 1 EOAs cannot
arrive late (Pr(Dk) = 0 for k ≤ nmin)

qEB = Pr

(
L̄0∩

(
nmax∪

k=nmin+1

(
Dk ∩

(
k−1
∩
h=1
Lh
))
∪
(
nmax∩
h=1
Lh
)))

(9)

Equation (9) can be read as follows: a timeout occurs if there is a sequence of
nmin, nmin + 1 up to . . . nmax − 1 exchanges lost and the following EOA arrives
late or if all the nmax exchanges are lost. These events are disjoint, because
Dk ∩ Lk = ∅, and then we can conclude:

qEB =

nmax∑
k=nmin+1

Pr

(
Dk ∩

(
L̄0∩

k−1
∩
h=1
Lh
))

+ Pr

(
L̄0∩

nmax∩
h=1
Lh
)

(10)

=

nmax∑
k=nmin+1

Pr

(
Dk
∣∣∣ L̄0∩

k−1
∩
h=1
Lh ∩ L̄k

)
Pr

(
L̄0∩

k−1
∩
h=1
Lh ∩ L̄k

)
+ Pr

(
L̄0∩

nmax∩
h=1
Lh
)
. (11)

The last equality holds because Dk = Dk ∩ L̄k. The reason why we introduce
the additional set L̄k will be clear in the following sections, where we will move
to characterize delays and losses in order to compute the terms appearing in
Eq. (11). We denote this sequence of loss events as SL,k , L̄0∩ ∩k−1h=1 Lh ∩ L̄k.

As observed, for the typical values in Table 2 it is nmax ≤ nmin + 2 and then
there are at most 3 terms in Eq. (11).

3.2 Delay

In this section we characterize the event Dk. In particular, we are interested to
evaluate the probabilities Pr (Dk | SL,k) appearing in Eq. (11). To this purpose
we will study in detail the different components that determine if the k-th EOA
arrives before or after the expiration of the timer of the first LOC.



Again, assume that LOC 1 is generated at time 0. If the k-th exchange LOC-
EOA is not lost, then the arrival time of the k-th EOA is

Tk = Tmin,k + φL,k + φE,k + ωZC,k (12)

where Tmin,k = TCC + 2TDCS,min + TZC + (k − 1)TLOC + O and the random
variables ωZC,k, φL,k, φE,k represent the same quantities as those in Eq. (2),
but are referred to the k-th exchange rather than to the first one. The EOA is
processed at the tick

γk ,

⌈
Tk
TCC

⌉
+ ωCC,k, (13)

where ωCC,k represents the processing delay at the CC expressed in number of
ticks. According to the description in Sec. 2.1 ωCC,k can assume value 0, if the
EOA is going to be processed at the first CC tick after Tk, or value 1, if it is
going to be processed at the following tick. We are going to characterize the
Bernoulli r.v. ωCC,k soon, for the moment we observe that the EOA arrives too
late if γk > TM

TCC
i.e. the EOA starts being processed after the expiration of the

timeout. Then, the event Dk can be expressed as Dk = L̄k ∩
{
γk >

TM
TCC

}
, and

Pr
(
Dk
∣∣∣ SL,k) = Pr

(
γk >

TM

TCC

∣∣∣ SL,k) , (14)

because L̄k ⊂ SL,k. In order to calculate this probability we now move to consider
each source of randomness in γk.

Processing delay at the CC. Observe that ωCC,k is independent of the arrival
time of the k-th EOA Tk, as well as on arrival of any other EOA. In fact the
queuing delay for the k-th EOA depends only on higher-priority traffic and
not on the previous EOAs (that may or not being present in the processing
queue), because only the most recent EOA is processed. It follows that ωCC,k
is independent of the event ∩k−1h=1 Lh and its conditional distribution is equal to
the a priori distribution provided in Sec. 2.1, i.e. ωCC,k in Eq. (14) is a Bernoulli
random variable with parameter pD. While ωCC,k as introduced is defined only
when the k-th exchange is not lost, we can define it for any k as an independent
Bernoulli random variable with parameter pD. It can then be interpreted as the
processing delay experienced by an hypothetical EOA arriving at a given time.
The distribution of ωCC,k does not depend on k and is independent of SL,k.

Processing delay at the ZC. Going back to Eq. (12), the random variable
ωZC,k is dependent on the relative position of the ticks of the two clocks but
also on the value of φL,k. In fact the later the LOC arrives at the ZC (the larger
φL,k) the less the LOC has to wait until the next ZC tick (the smaller ωZC,k),
unless the LOC arrives so late that it misses the first available ZC tick and needs
to wait for the next one. While we cannot get rid completely of this dependence,



it is simpler to reverse it. With reference to Fig. 3, we express Tk with this
equivalent expression:

Tk = Tmin,k + σk + 1φL,k>σk
TZC + φE,k (15)

where σk denotes the time interval between the earliest possible instant at which
the k-th LOC could be received at the ZC and the next ZC tick and 1φL,k>σk

is a Bernoulli random variable indicating if the random component of the com-
munication delay will cause the LOC to miss this ZC tick and then to wait for
the following one. It can be easily verified that σk depends on the specific LOC
we are considering because the two clock periods are different. Then coherently
with the idea that, in order to evaluate qEB , the first LOC is chosen at random,
σk is a random variable. Observe that the variable σk is independent of the loss
processes and in particular of SL,k. Moreover, it is independent of communica-
tion delays (i.e. of the variables φL,k, φE,k) and of processing delay at the ZC
(i.e. of ωCC,k). Our next task is to determine σk’s distribution.

Given the value σ1 = s1 for the first LOC, the values of the other r.v.s σk for
k > 1 are uniquely determined, let σk = sk. Assuming that TZC and TLOC are
commensurable numbers and choosing an opportune unit so that their values
can be expressed as integers, in [4] we show that the possible values for sk are
the values s in [0, TZC) for which the following Diophantine equation in m and
n admits integer solutions:

mTZC − nTLOC = s− s1. (16)

The study of this equation in [4] leads to the conclusions that sk assumes all
and only the values in the set S = {s̃ + iM, i = 0, 1, . . . qZC − 1} where M is
the greatest common divisor of TZC and TLOC , TZC = qZCM and s̃ = s1%M .
For example for the typical values we consider (TZC = 378 ms, TLOC = 675 ms)
it is M = 27, qZC = 14. Moreover, the sequence sn is periodic with period qZC
and then assumes the qZC values in S only once during each period. When we
consider that the first LOC is a LOC selected at random, we conclude then that
the variable σk is a uniform random variable over the set S = {s̃ + kM, k =
0, 1, . . . qZC − 1}.8

Communication delays. In order to completely characterize the probability in
Eq. (14), we need to discuss the two random variables φL,k and φE,k. Remember
that φL,k is the delay experienced by the “fastest” of the two LOC packets
conditional on one of them arriving at the ZC. Let τr,L denote the random
component of the delay experienced by the k-th LOC packet transmitted on the
red network if it is not lost (we omit for simplicity the dependence on k). We
can similarly introduce τb,L, τr,E and τb,E . These delays are independent and
identically distributed random variables with Cumulative Distribution Function
(CDF) Fτ (t). In particular, under the typical values in Sec. 2.1 they have support
[0, 40] ms.
8 The analysis can be easily adapted to take into account the effect of clocks’
frequency-shift [4].



3.3 Independent losses

As an application of Eq. (11) we consider the case when packet losses are in-
dependent and homogeneous and Eq. (11) reduces to an easy-to-calculate exact
formula. The independence allows to write:

Pr
(
Dk
∣∣∣ SL,k) = Pr

(
Dk
∣∣∣ L̄k) = Pr

(
γk >

TM

TCC

)
, d(k), (17)

where γk is a function of the independent r.v.s ωCC,k, σk (already characterized
in the previous section) and φL,k and φE,k, whose CDF Fφ(t) can be easily
derived by conditioning on the number of packets arriving at the ZC/CC:

Fφ(t) =
(1− p)2

1− p2
(

1− (1− Fτ (t))
2
)

+
2(1− p)p

1− p2
Fτ (t) =

Fτ (t) (2− Fτ (t)(1− p))
1 + p

.

Our definition of d(k) stresses that Pr(γk > TM/TCC) is a function of k, but
this happens because of the constant Tmin,k, while the distributions of the r.v.s
ωZC,k, σCC,k, φL,k and φE,k do not depend on k.

Finally, by developing the terms Pr (SL,k) in Eq. (11), we obtain

qEB =

nmax∑
k=nmin+1

d(k)p̃k−1(1− p̃)2 + p̃nmax(1− p̃), (18)

where p̃ = 1− (1− p2)2 is the probability that an exchange is lost.

4 Numerical Experiments

In this section we validate Eq. (18) through discrete-event simulations of the
system, for which we have developed an ad-hoc Python simulator. The scenario
tested by discrete-event simulations matches that described in Sec. 2 and consid-
ered in our analysis. For constant system parameters and the support of random
variables, we have considered the typical values indicated in Table 2.

Figure 5 shows the EB rate versus different values of the packet loss probabil-
ity p for TM = 5.5 s. The red solid curve is obtained through Eq. (18). Simulation
results obtained by the Python simulator for selected values of p are reported
as 95% confidence intervals in blue. About the computational time, Eq. (18)
requires a few seconds on a current commodity PC. On the same machine the
Python simulator is able to simulate roughly 104 hours of train operation in one
hour. It follows a rate of the order of 10−4 EBs per hour requires roughly 100
hours to be estimated with a precision of 1% through the Python simulator. It
is clear that lower EB rates are out of reach for the Python simulator.

Figure 5 also shows the black dashed curves that plot the functions (1 −
p̃)p̃nmin/TLOC and (1 − p̃)p̃nmax/TLOC and that correspond to the upper and
lower bound in Eq. (5) in presence of independent Bernoulli packet losses with
probability p. We observe that the produced bounds are very loose.



Fig. 5. Number of emergency brakes per hour when TM = 5.5 s.

Fig. 6. Rate of emergency brakes when O = 50 ms and p = 0.3.

As a final application of our methodology, Fig. 6 shows the expected number
of emergency brakes per hour for different values of the timer TM , O = 50 ms
and packet loss probability p = 0.3. The theoretical values calculated from
Eqs. (18) and (1) (red dots) are compared with the bounds (black dashed lines).
The figure shows that the simple upper bound can be orders of magnitude larger
than the actual value. We now discuss the discontinuities appearing in the EB
rate curve. From Eq. (18) we observe that the EB probability exhibits discon-
tinuities only if nmin, nmax or the functions d(k) do. The small gaps of the EB
rate correspond indeed to changes in the values nmin or nmax as it is revealed by
the corresponding jumps of the bounds. The other gaps correspond to changes
of the functions d(k). We remember that d(k) = Pr (γk > TM/TCC), where γk
is an integer. Then d(k) does not depend on TM as far as h ≤ TM/TCC < h+1
for some integer h. Indeed, it can be checked that the other discontinuities in
the curve (when neither nmin nor nmax change) correspond to integer values of



TM/TCC . This high sensitivity to the timer value is not only easily revealed by
our numerical method, but well explained by our theoretical analysis.

5 Conclusion

In this paper we study the moving block control to quantify the rate of spurious
EBs. Differently from existing literature, our starting point is not the current
recommendation for the future ETCS level 3, but an actual implementation for
metro. Equation (11) characterizes the EB rate in a general stationary setting,
but it requires to compute the probability to observe specific patterns of packet
losses, that can be a difficult task in general. Nevertheless, in the simple case of
independent and homogeneous packet losses, the equation reduces to a simple
analytical formula whose computational cost does not depend on the loss proba-
bility value. The formula can then be used to quantify extremely rare events (as
emergency brakes should be). We are currently working to study more general
loss scenarios, where losses are strongly correlated and time-variant. Our current
results are in [4] and rely on a Monte Carlo approach to efficiently sample from
the stationary distribution of the system.

This work is partially funded by the Inria-Alstom virtual lab.
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