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Abstract— Energy demand and production need to be con-
stantly matched in the power grid. The traditional paradigm
to continuously adapt the production to the demand is chal-
lenged by the increasing penetration of more variable and less
predictable energy sources, like solar photovoltaics and wind
power. An alternative approach is the so called direct control
of some inherently flexible electric loads to shape the demand.
Direct control of deferrable loads presents analogies with flow
admission control in telecommunication networks: a request
for network resources (bandwidth or energy) can be delayed
on the basis of the current network status in order to guarantee
some performance metrics. In this paper we go beyond such an
analogy, showing that usual teletraffic tools can be effectively
used to control energy loads. In particular we propose a family
of control schemes which can be easily tuned to achieve the
desired trade-off among resources usage, control overhead and
privacy leakage.

I. INTRODUCTION

Direct Load Control (DLC) allows energy utilities to
control electric loads at the customers’ premises. In the past
DLC was used in critical situations to prevent blackouts by
shutting down these loads. More recently, an extensive use of
DLC has been advocated as a way to shape energy demand
peaks or provide other ancillary services, often by controlling
thermostatic loads [1], [2], such as air conditioners and
heating systems, because they allow a fine-tuning regulation
of power demand. Alternative approaches consider electric
vehicles or other battery-empowered appliances [3], which,
beside acting as adaptive loads, can also reinject energy
in the grid. Multiple load typologies, including interruptile
or deferrable loads such as pool pumps, have been also
considered for responding to different frequency components
of the regulation signal [4].

In this paper we consider a scenario where DLC function-
alities are deployed at a large set of small deferrable energy
loads, like appliances at residential users and we propose
simple control approaches rooted in teletraffic engineering
which intrinsically work better for large scale systems. In-
deed, loads on the electrical grid are multiplexed at different
aggregation levels (distribution transformers, primary station,
prize zone), similarly to traffic from data sources multiplexed
at routers of different hierarchical levels. In particular, we
propose a simple control mechanism that guarantees that the
instantaneous power demand exceeds a given bound with
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Fig. 1. Different trade-offs among efficient resources’ usage, control
overhead and privacy leakage achievable by tuning the parameter q.

probability smaller than ε. Only a stochastic characteriza-
tion of the power demand for each class of appliances is
required. This mechanism combines two different operation
paradigms. In the first one, appliances need to ask a con-
troller the permission to start, and the controller will limit
the number of simultaneously active appliances to n(t). In
the second one, an activation probability function—p(t)—is
broadcast periodically to all the appliances; appliances do
not notify the controller but they start with probability p(t)
and postpone their decision to the time t+T with probability
1−p(t). The first operation paradigm requires more commu-
nication exchanges between the appliances and the controller
and reveals more information about the customers’ habits.
The second paradigm works in an open-loop fashion and,
then, does not disclose any private information. At the same
time the lack of an exact knowledge of the current number
of active appliances causes a lower average utilization of
the resources in order to satisfy the constraint. We simply
combine the two paradigms by means of a probability q:
when an appliance wants to start operating, it will ask the
permission to the controller with probability q, and it will
decide autonomously using the function p(t) with probability
1 − q. The parameter q can then be chosen in order to
achieve the wished trade-off among resources’ usage, control
overhead and privacy leakage. In fact, by increasing q we
gradually i) reduce privacy by exposing more the energy
profile of each user, ii) increase control overhead because
the controller needs to directly interact with a larger number
of appliances, iii) increase the efficiency. Fig. 1 qualitatively
depicts the effect of the parameter q. Our analysis (Sec. III)
and experiments (Sec. V) allow to quantify these trade-offs.

The detailed description of our system is in Sec. II. In
our mechanism, the control policy is determined by the two
functions p(t) and n(t). In Sec. III, we show how techniques
developed for flow admission control in packet networks can
be used to determine a stationary control policy (i.e. p(t) = p
and n(t) = n), when the appliances’ activation rate is
assumed to be time-invariant. Our paper contributes then to



show how teletraffic engineering tools can be advantageously
used also in the context of future smart power grids. In
Sec. IV, we derive time-variant control policies for the more
realistic case when the appliance activation rate i) is time-
varying and ii) needs to be estimated. Some results are in
the companion technical report [5].

Our main goal in the present paper is not to design a full-
fledged solution for DLC, but rather to show how teletraffic
tools (such as those used for Call Admission Control in
telecommunication networks) can be effectively used to
achieve a large scale deployment of DLC to shape energy
demand peaks. The use of teletraffic tools is not completely
novel. Network calculus has been recently exploited to size
energy batteries [6] and transformers [7]. Queuing theory is
also used in [8] for sizing the population of customers sub-
scribing a DLC program under a given maximum tolerable
delay for activating the controlled appliances.

II. SYSTEM DESCRIPTION

We consider the problem of peak shaving for an energy
supplier, which wants to reduce its customers’ consumption
during the time of the day when energy costs are higher. To
achieve these goals, the energy suppliers may interact with
the distribution system operators (DSO), and/or with novel
intermediate figures called load aggregators. Our solution can
operate in both the scenarios, so we will talk generically
about the load controller to denote the entity which drives
the appliances.

The energy supplier specifies a high-level constraint for
the controller in terms of the maximum tolerable probability
to exceed a given power demand in the controlled area. The
load controller is responsible to meet this requirement by
deciding about the activation of deferrable loads at house-
holds, such as dish-washers and laundry-machines. On the
basis of the demand prediction, the requirements are mapped
into a control signal that is broadcast to all the controlled
households for deciding about the admission or the deferral
of load activation requests. Each household is equipped
with a gateway able to receive the control signal from the
controller and to interact with the domestic appliances by
means of local area technologies (such as WiFi, ZigBee
or PLC). Smart appliances can be natively equipped with
a programmable interface able to communicate with the
gateway, while dumb appliances can be controlled by means
of smart plugs to be inserted between the appliances’ plugs
and the power sockets.

In our control system, the signal broadcast by the load
controller is the probability p(t) to accept or defer a load
activation request at time t (a similar control mechanism
was considered in [9]). At each household, the gateway can
autonomously process a novel activation request from an
appliance on the basis of this function: the activation request
is accepted with probability p(t) and deferred of a fixed time
interval T with probability 1 − p(t). This operation applies
to a fraction 1− q of all the requests. The others are directly
forwarded to the load controller and the gateway waits for
an ACK from it in order to accept the request. The controller

  

query
ON

Start 
attempt Start

Coin
 toss

Rx ON

p(t)
1−q

q

1−p(t)
t=t+T

Fig. 2. Household control model in terms of activation probability p(t)
and ratio of forwarded queries q.

maintains a cap n(t) on the number of appliances it allows
to be active at a given time instant. The ACK can then be
delayed until some previously activated appliance does not
stop operating. This mechanism allows the load controller to
actually estimate the time-varying power demand, but also
to have a tighter control on the aggregate power demand and
then to achieve a more effective resource utilization in the
controlled area.

Fig. 2 summarizes the actuator model at the household:
different control operations can be programmed by the load
controller by specifying q and p(t). For example, when q is
set to 1, all the activation requests are forwarded to the load
controller by means of unicast transmissions. This implies a
better control on the aggregated power demand, because the
number of active appliances is known and the only source of
randomness is due to appliances’ power consumption. On the
contrary, when q is very small, most of the communications
are unidirectional (the signal p(t) transmitted from the load
controller to the households), while decisions can be taken
locally with minimal delays. However, the aggregate power
consumption is affected by two sources of randomness (the
one related to the number of active appliances, and the other
one related to appliances’ consumption) which require a
lower admission rate for not exceeding the power constraint.

III. CONTROL IN A STATIONARY SETTING

Our goal is to design a direct load control system able
to impose a certain threshold on the overall power absorbed
from a set of appliances with known statistical properties.
In the following, we will consider that the instantaneous
power consumption of an appliance is a stationary stochastic
process X(t).

Let m(t) be the number of active appliances at time t, then
the total absorbed power is P (t) =

∑m(t)
i=1 Xi . We consider

that the energy supplier wants to guarantee that P (t) does
not exceed the threshold P̄ with probability larger than ε,1

i.e.:

Pr

m(t)∑
i=1

Xi > P̄

 < ε. (1)

1The interested reader can refer to [5] for a broad dissertation on
how similar results can be derived for a different type of constraints on
P (t), dealing as well with teletraffic tools inspired by the token bucket
traditionally used to shape data traffic.



A. Classic large deviation results for q = 1

If q = 1, i.e. if all the queries are forwarded to the
controller, our problem is to determine the maximum value
n, such that Pr

(∑n
i=1Xi > P̄

)
< ε. The same problem

has been considered in the context of call admission control
in telecommunication networks [10]. The interpretation of
the quantities is different: the purpose is to determine the
maximum number n of homogeneous data flows, each with
instantaneous rate Xi in order to guarantee that the aggregate
rate on a link exceeds the value P̄ (e.g. the link capacity)
with probability at most ε.

Different approaches have been proposed to determine
n. Here, we introduce a simple one based on basic large
deviation results (see e.g. [11, Ch. 6]), but more sophisticated
ones could also be applied.

Let MX(s) = lnE[esX ] be the cumulant generating
function of X(t). When n is large, Cramer’s theorem can
be used to approximate the probability that the sum of n
independent random variables exceeds a bound (P̄ in our
case) as follows:

ln Pr(X1 + ...+Xn > P̄ ) ≈ inf
s≥0

[nMX(s)− sP̄ ],

and then n can be determined as the largest integer such
that

(
infs≥0[nMX(s)− sP̄ ]

)
< ln ε. The set of values

{0, 1, . . . , n} is called the acceptance region for the admis-
sion controller. The approach can be easily generalized to a
finite number of appliances’ classes.

B. Extension to q < 1

In this section we show how the results above can be
extended to the scenario where a subset of the appliances
do not perform any query to the controller, but start au-
tonomously their operation. For the moment we assume that
appliances would like to activate according to a Poisson
process with constant rate λ and we ignore retrials.Then,
there is a request process with rate qλ to the query-response
system, and a spontaneous activation process of appliances
with rate λc = p(1 − q)λ. Both processes are Poisson
ones. In the following Sec. IV we take into account the
exogeneous time-variant activation process as well as the
retrial mechanism. In order to keep the equations simple,
we assume that all the appliances have the same activation
time equal to D, but the results can be easily extended to
the case when D is a random variable.

Let N be the random number of appliances starting
autonomously. Under the assumptions indicated above, N
is distributed as a Poisson random variable with parameter
E [N ] = Λc = λcD. The condition in Eq. (1), then becomes

Pr

 n∑
i=1

Xi +

n+N∑
j=n+1

Xj > P̄

 < ε, (2)

where (Xi)i∈N is a sequence of independent and identically
distributed random variables.

Large deviation results hold for large systems, for example
when both the number of random variables and the threshold

to be exceeded diverge. In Eq. (2) we need to let both
the addends scale in the same way, otherwise one of them
would become negligible in comparison to the other. We
assume then that the expected number of appliances starting
autonomously (Λc) scales linearly with n: Λc = nΛ0

c =
n(1− q)pDλ0c , where we also took into account λc’s depen-
dence on p and 1− q. We proved the following result:

Proposition 1: Let (Xi)i∈N be a sequence of independent
and identically distributed random variables with cumulant
generating function MX(s), and N be a Poisson random
variable with mean nΛ0

c . We assume that MX(s) is defined
for any s and Pr(X > c) > 0. It holds:

lim
n→∞

1

n
ln Pr

 n∑
i=1

Xi +

n+N∑
j=n+1

Xj > nc


= inf

s≥0

[
MX(s) + Λ0

c

(
eMX(s) − 1

)
− sc

]
.

In a finite-size system, this result is used to approximate
the probability that the total power consumption exceeds the
bound P̄ as follows:

ln Pr

 n∑
i=1

Xi +

n+N∑
j=n+1

Xj > P̄

 ≈
inf
s≥0

[
nMX(s)− λcD

(
eMX(s) − 1

)
− sP̄

]
.

and then the acceptance region is made by all the pairs of
values (p, n) such that:

inf
s≥0

[
nMX(s) + λcD

(
eMX(s) − 1

)
− sP̄

]
≤ ln ε. (3)

C. A numerical example

In order to illustrate the admission control rule determined
by the results above, we consider a toy example where there
is a single class of appliances, which would like to activate
according to a Poisson process with rate λ = 12 appliances
per minute. The appliance is active for D = 90 minutes
and its consumption profile can be modeled as the two-state
Markov process: in the high consumption state it consumes
1.5kW for 10 minutes (on average), in the low consumption
500W for 20 minutes.

For this appliance, the cumulant generating function can
be easily calculated as MX(s) = ln

(
1/3es1.5 + 2/3es0.5

)
.

Then inequality (3) can be used to determine the acceptable
pairs (p, n) with λc = p(1− q)λ.

The term eMX(s) grows very fast for s ≥ 0 and because
of this the point of minimum for the left-hand side of Eq. (3)
is close to 0, specially for larger p(1− q). The frontier can
then be approximated as follows:

inf
s≥0

[
(n+ (1− q)pDλ)MX(s)− sP̄

]
= ln ε,

then, for a given value of q, the frontier is made by pairs
(p, n) such that n+ (1− q)pDλ = constant. To completely
characterize this linear relation, it is enough to observe that
for p = 0 the maximum value for n (let us denote it as
n∗p=0) does not depend on q, i.e. all the frontiers pass by
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Fig. 3. Aggregate activation rate for 30000 washing machines.

the point (0, n∗p=0) and they are described by the following
linear equation parameterized in q:

n+ (1− q)pDλ = n∗p=0. (4)

In particular, if the constraint P̄ is set equal to 80% of
the expected power consumption in absence of any control,
it results n∗p=0 = 800. If there are n appliances activated
through the query-response mechanism, the expected number
of appliances in the system is n+(1−q)pDλ and then the ex-
pected power consumption is E [P ] = (n+(1−q)pDλ)E [X].
This means that, for a given q value, all the points in the
frontier described by Eq. (4) have the same resources’ usage
E [P ] = n∗p=0E [X] while satisfying the constraint. Moreover,
for any value of q we can achieve the same efficiency
by selecting (n, p) on the corresponding frontier. Although
Eq. (4) stems from a linear approximation, it suggests that
the efficiency (in terms of average utilization) of our control
mechanism is not very sensitive to the parameter q. This
is confirmed by our numerical example: we observed less
than 5% reduction of the maximum expected load changing
q from q = 1 to q = 0 despite the fact that for q = 0 the
control needs to deal also with the variability of the number
of appliances admitted. However, the importance of direct
queries in practical applications is not only due to efficiency
reasons, but also to the possibility to accurately estimate the
appliance activation rate as discussed in Sec. IV. In [5] we
further discuss the relation between q and average utilization.

IV. CONTROL IN A TIME-VARIANT SETTING

In this section, we show how the analytical results de-
rived above can be practically used when the appliances’
activation process is not stationary, its rate is unknown, and
probabilistically controlled appliances retry to activate some
time later.

Indeed, the usage of electric appliances exhibits a strong
time-of-the-day effect. For example Fig. 3 shows the activa-
tion rate of washing machines over 15 minutes intervals, as
derived from data in [12]. We need then to take into account
the effect of a time variant λ(t), which is generally unknown
even if historical data may be available.

Because of the time variability of the process to control,
the control policy needs to be time-varying too, i.e. in general
we will have n(t) and p(t). There are different possible
choices on how to jointly adapt the two control actions.
They lead to different performance in terms of resources’
usage (see [5] for the effect of n and p on the efficiency),

  

Decision

+
Probabilistic 

control

+

Query-response

Estimator
Logic

Controller

Plant

Fig. 4. System block diagram.

communication requirements (e.g. if p is constant, it does not
need to be transmitted periodically) and fairness between the
two groups of appliances—those controlled probabilistically
and those controlled through query-response—(e.g. in terms
of delay before the activation). In this paper, we decided
to consider n(t) = const = n and then to compensate for
process changes by dynamically tuning p(t). The control is
time-slotted with time intervals of length Tc. Without loss of
generality we consider that the control starts at time t = 0,
and we denote by pk the value of the control action during
the k-th time slot, i.e. p(t) = pk for t ∈ [(k − 1)Tc, kTc).
For the sake of simplicity we will also assume that the retrial
delay T is equal to Tc and the activation time of the appliance
is a multiple of Tc (D = dTc), even if the three parameters
are in general independent.

Fig. 4 shows the model of the whole system we are going
to describe in the following sections. As it is usual in control
theory, we call plant the combination of the process under
control and the control actuator.

The plant is shown in the lower part of Fig. 4. The input
is the spontaneous activation process with rate λk during the
k-th time slot, i.e. the process of the activation instants in
absence of any form of control (we omit time dependence in
the figure). The control system assumes λ(t) to be constant
during a control slot, while this is not necessarily the case. In
Sec. V we evaluate the effects of such an approximation. We
keep assuming that the point process of all the activation time
instants can be correctly modeled by a (non-homogeneous)
Poisson process with rate λ(t), because it originates from the
superposition of many independent individual choices (users
deciding to turn on their appliances). The initial requests are
randomly split in two independent Poisson processes with
rate respectively qλ(t) and (1−q)λ(t). The rate of appliances
that will consider to activate autonomously in slot k is λeq,k.
It holds:

λeq,k = (1− q)λk + λeq,k−1(1− pk−1), (5)

where the first addend is due to all the appliances that are
considering to activate themselves for the first time during
the k-th time slot, and the second one is due to those
that have already considered this decision in the (k − 1)-
th slot and have postponed it to the current one. The actual



activation rate of probabilistically controlled appliances2 is
λc,k = pkλeq,k. Finally, the actual number of active appli-
ances mpc,k admitted through the probabilistic control and
active at time kTc is equal to those arrived in the interval
[kTc − D, kTc]. This is a Poisson random variable with
expected value E [mpc,k] =

∑k
h=k−d+1 λc,h.

The upper part of Fig. 4 describes the controller. This
directly receives the activation queries with rate qλk and it
manages the activations as in a M/D/n queue by guarantee-
ing that the number of appliances active at a given time does
not exceed n. Let mqr,k denote the number of appliances
controlled through the query-response mechanism and active
at time kTc.

Estimators. The controller does not know the state of the
plant (e.g. how many appliances are taking the decision to
activate autonomously). It needs then to estimate the rates
λ and λeq . An estimate for quantity x is denoted as x̂. In
particular two different set of estimates will be useful: λ̂pk
and λ̂peq,k will estimate the sequences until the current slot
k, while λ̂fk+1 and λ̂feq,k+1 will be used as a prediction
for the slot k + 1 in order to determine pk+1. In this
paper we consider simple estimators for these quantities,
but we show that they work reasonably well in Sec. V.
Given Nr,k the number of queries received during the k-
th slot, the Maximum Likelihood Estimator for λk is simply
λ̂pk = Nr,k/(qTc). Clearly, this estimate could be improved
if some a-priori is available (e.g. from historical data). The
prediction for slot k + 1 is λ̂fk+1 = λ̂pk.

The estimates λ̂peq,k and λ̂feq,k+1 are obtained as a function
respectively of (λ̂pk, λ̂

p
eq,k−1) and of (λ̂fk+1, λ̂

p
eq,k) using

Eq. (5) (see [5] for more details).
Control logic. The controller determines pk+1 on the basis

of the acceptance region derived as described in Sec. III. For
simplicity we consider a linearized frontier:

n+ Λk+1 = const, (6)

where Λk+1 is the expected number of active probabilis-
tically controlled appliances at the end of the (k + 1)-
th slot. The companion report [5] describes how we have
selected the constant on the right hand side and the value
of n. In the stationary case without retrials, it was simply
Λk+1 = λcD = λ(1 − q)pD. Here, we can express Λk+1

as the sum of two terms, one (denoted as Λhist,k+1) due
to all the probabilistically controlled appliances already in
the system at the begin of slot k + 1, the other due to the
estimated number of appliances which will activate during
slot k+1. We can estimate Λhist,k+1 as follows Λ̂hist,k+1 =∑d−2

h=0 pk−hλ̂
p
eq,k−hTc, and then

Λ̂k+1 = Λ̂hist,k+1 + λ̂feq,k+1Tcpk+1. (7)

Finally pk+1 can be iteratively derived from Eq. (6) and
Eq. (7) This may lead to a too prudential strategy, because the
number mqr,k+1 of active appliances in the query-response

2It is possible to show that also the point process of such activations is
a Poisson process.

6 8 12 14

Tc = 15min,q = 0.5

 

 

time t [h]

I
n
s
t
a
n
t
a
n
e
o
u
s
 
P
o
w
e
r
 
D
e
m
a
n
d

P
r
o
b
a
b
i
l
i
t
y
 
p

1

0.6

0.3

without admission control  
with admission control
p(t)

P̄

Tsc
Ts Te

Fig. 5. Instantaneous absorbed power (with and without the applied
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queue can be significantly smaller than n, specially at the
begin of the control period (the queue fills initially with
rate λq) and then the configuration above would lead to a
severe underutilization. A solution is to predict the number
of active appliances in the query-response queue during
the residual control period (i.e. m̂qr,h for h > k). Then,
pk+1 can be calculated replacing n in Eq. (6) with the
most pessimistic forecast until the end of the control period,
i.e. with max{m̂qr,h, h > k} (see [5] for more details). This
is the approach we adopted.

V. NUMERICAL RESULTS

In this section we show the performance of the system
described in Sec. IV in a realistic setting. In particular
we consider 30000 washing machines under control. The
instantaneous power consumption of a washing machine
is assumed to follow the simple model in Sec. III-C and
the activation time is D = 90 minutes. The spontaneous
activation rate λ(t) is derived from experimental data in [12]
and it is shown in [5]. The largest expected power demand
Pmax is at around time 11.00am. We consider that the energy
supplier sets the constraint Pr(P > P̄ = 0.8Pmax) < 0.1
in the interval [Ts, Te] = [10.00am, 11.30am]. We assume
that already active appliances cannot be turned off, then the
control may need to start at Tsc = Ts−D = 8.30am in order
to satisfy the constraint at Ts = 10.00am.

Fig. 5 plots the evolution of the power demand with
and without control for q = 0.5 and Tc = 15 minutes
together with the probability signal p(t). We observe that
the controller does not actually affect the system (p(t) = 1)
until t = 10.00am and that it actually manages to maintain
the absorbed power below P̄ for the whole duration of
the control interval. Observe also how power consumption
significantly increases after Te. This is due to the fact that a
severe constraint has been imposed for a long time interval.
The power increase can be made smooth by gradually
increasing P̄ after Te.

Fig. 6 shows the probability to exceed the bound at time
t = 10.26am estimated over 1000 simulations for different
values of q ∈ [0, 1] and for Tc = 1, 5, 15, 30 minutes. The
time instant of observation falls in the interval where there
is the largest activation rate after a period when the rate has
been almost constantly increasing. It is then a particularly
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critical instant for the control system. All confidence inter-
vals in the figures have 95% confidence level. The upper
plot corresponds to the case when the system has perfect
estimation of the average request rate in the next timeslot,
i.e. λ̂fk+1 = λk+1. We observe that the probability values
are well below ε = 0.1. The curves almost overlap for all
the values of Tc but Tc = 30 minutes. This is due to the
fact that the actual activation request rate is constant over
15 minutes time intervals, then for Tc = 1, 5, 15 minutes, the
knowledge of the average rate in the next slot corresponds
to the knowledge of the actual rate. For Tc = 30 minutes,
the average arrival rate is a bad predictor for the actual
arrival rate. The lower plot in Fig. 6 shows the same metrics
when the simple estimators described in Sec. IV are used.
In this case, we expect an increase of utilization, due to the
fact that the controller will usually underestimate λk+1 for
t < 10.00am (because the arrival rate keeps increasing), so
it selects a too high probability pk+1 allowing the activation
of a number of appliances larger than the correct value. This
error has larger consequences for small q, when a larger
percentage of appliances is activated through the probabilistic
control. In particular for q < 0.1 the constraint is no more
satisfied. For Tc = 30 minutes, the controller uses the
average rate measured in [9.30am, 10.00am] to estimate the
arrival rate during the interval [10.00am, 10.30am] with about
a 20% of relative error. This justifies the bad performance
achieved with this setting. We observe that one could simply
counteract the estimation errors, for example by reducing
pk+1 by a given factor corresponding to the maximum
variability of the arrival rate from a control slot to the
following one.

In the technical report [5], there are also the curves for
the time-average utilization and overload probability over the
whole control interval which show similar behavior. More-
over, we evaluate there how the communication overhead at
the controller depends on the request arrival rate, the control
interval [Tsc, Te] and the parameters q and Tc.

VI. CONCLUSION

In this paper we propose a DLC scheme for smart grids
that can work with a large number of dumb appliances.
The main idea is to control a class of electric appliances
by combining a centralized query-response system with a
probabilistic system (periodically programmed by the central
controller) able to take local decisions. The combination of

the two approaches can be configured for providing the de-
sired trade-off between resource utilization, communication
overhead and privacy. The control policy has been designed
by using well-established teletraffic tools for admission con-
trol, which work well for large scale systems, in order to
provide probabilistic guarantees on the power demand in the
controlled zone.
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