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Abstract—The idea of harnessing the inherent flexibility in
demand of many types of electric loads has been largely discussed
in the last years for coping with the need to maintain the energy
demand-supply balance. In particular, the fine tuning of the
operation conditions of different thermostatic loads (such as air-
conditioning, refrigerators, etc.) has appeared as the most natural
solution for load control with minimal user discomfort. In this
paper we focus on an alternative approach: deploying simple
open-loop control strategies for deferrable loads with minimal
communication overhead. The idea is to send a multicast control
message to a group of users, on the basis of the expected and
desired load profiles, for probabilistically enabling or deferring
the activation requests of a specific load type. The control law
and the most important performance metrics can be easily
derived analytically. Despite the simplicity of the approach, which
requires minimal or null investments, our results show that
significant load shifts can be achieved.

I. INTRODUCTION

Load control in modern power grids is becoming more
and more important for maintaining a balance between energy
supply and demand. Traditionally, the demand was much more
variable and less controllable than supply, so that the energy
balance was achieved by adapting dynamically generation
levels to match the consumption. The increasing penetration
of renewable energies has radically changed the scenario, due
to their lower predictability. The possibility to control the load
demand is then becoming more appealing for several actors,
such as the energy utilities (that can better plan the production
as well as control the grid reliability) and the end customers
(that can actively participate to the energy market).

However, despite the many proposals in the literature [1]
discussing different demand response programs, load control
for residential users (which significantly affect the overall
energy load variability [2]) is still limited to pilot projects [3],
[4] with little penetration perspective in the near future. The
reason is that the implementation of these mechanisms requires
investments (for updating user appliances and communication
infrastructures) which are not clearly justified for the end users.

In this paper we focus on a low-cost deployment of
direct load control for deferrable appliances in a large scale
power grid, with very limited infrastructure investments for
communication and appliances’ control. Our mechanism only
requires the controller to periodically send a control message,
specifying the control policy for a given type of appliances to
a group of residential users. The control policy is expressed
in terms of the probability that an appliance activation request
originated at a given time of the day may be satisfied. The

idea is to implement an open-loop probabilistic control on the
expected aggregated load generated by groups of residential
users without requiring bidirectional control messages or high-
frequency metering readings (which may be critical for privacy
issues and communication overhead). Indeed, the activation
probability function can be loaded once a day on the smart
meters (by using the metering communication network), or
on a PC acting as a home energy controller (by using an
independent data network such as the user internet access
network). In turn, the appliances to be controlled need to be
equipped with a simple actuator able to send the activation
requests to the smart meter or home controller and to respond
to the enabling (disenabling) signals by connecting (discon-
necting) the appliance to the electric socket. The cost of similar
actuators is then relatively small (e.g. not exceeding 40$ for
WiFi, 4G or power line network interfaces).

Moreover, the actuator does not require any specific knowl-
edge of the appliance it is controlling, so it can be simply
implemented as a small device to be interposed between
the socket and the appliance itself. Low-cost and appliance
agnosticism are two important features that make our solution
attractive for a large scale deployment of direct load control
also to older “non-smart” appliances and then to target the
residential customers. This would allow the electric utility
to control a significant fraction of the power demand, thus
enabling economies of scale and further reducing the costs.

The counterpart of the absence of a feedback from the
appliances is that our control cannot provide deterministic
guarantees on the total power consumption, but only proba-
bilistic ones. In particular the control signal will be determined
in order to assure a maximum probability to exceed a given
constant bound on the power consumption. As it will become
clearer from the rest of the paper, the better the a priori knowl-
edge of the system (in terms for example of the prediction of
users’ power consumption) the less stringent the control signal
to be implemented, i.e. the smaller the delay the users will
experience.

II. RELATED WORK

Direct load control is a mechanism that allows electric
utilities to turn specific users’ appliances on and off during
peak demand periods and critical events. The problem has been
largely studied in literature with several proposals formulating
the control mechanism under different optimization objectives,
related to the power grid reliability or operation savings. The
usual approach is based on a central controller, working on
the basis of dynamic programming optimization [5], [6], fuzzy



logic-based decisions [7], or other profit maximization schemes
[8]. An admission control mechanism based on the exact
knowledge of the total load generated by the controlled users
has also been proposed in [9].

Recently, some utilities have been involved in pilot projects
enrolling real users in direct load control programs. The
appliances considered in these programs are usually limited
to air conditioners, water heaters and pool pumps [3], [4]. In
[3] the control signal is based on the traditional monitoring
of the power-grid voltage and frequency signals, in order to
detect critical load conditions in terms of variations of the
expected signals. Users appliances were modified to respond to
the underfrequency signals by reducing their energy demand.
Conversely, in [4], an energy management device, connected
to the utility controller, has been provided to the users for
switching on and off traditional (unmodified) appliances. In
both cases, investments have been required for modifying the
appliances or deploying the control network.

The bandwidth requirements of the control network, as
well as the privacy concerns arising in case of continuous
monitoring of users’ loads, have been addressed in some recent
work proposing some simplifications of the optimal control
schemes or distributed controllers. For example, in [10], the
tradeoff between the importance of exact load characterization
(exploration) and control (exploitation) has been analyzed in
a restless bandit framework, according to which loads are
ranked for their relevance to demand-response actions. In [11]
a distributed controller for a pool pump is designed on the
basis of a Markovian Decision Process model with randomized
decisions for avoiding synchronization of pools in the grid.
An aggregated model for a large collection of loads operating
under the same controller is then broadcast by the utility to all
the users for driving the decision process. A similar approach
based on a generalized input signal for a group of users and
distributed control actions is pursued in this paper, but is
applied to deferrable uninterruptible loads.

III. MODEL AND CONTROL

In our scenario the energy utility would like to enforce
a given power consumption level Pg during a time interval
[Ts, Te] for the set of appliances under control. Our solution
provides probabilistic guarantees: the instantaneous power
consumption (Pc(t)) can exceed Pg with probability at most
ε, i.e., Prob{Pc(t) > Pg} ≤ ε.

A. Appliance Model

Our methodology applies to deferrable appliances, whose
activation time can be postponed, such as washing machines
or laundry machines. We can easily take into account different
types of appliances, but, we only consider a single class in this
paper to keep the exposition simple. We assume that every
appliance in this class has the same deterministic operation
time D and its instantaneous power consumption is a random
variable X(t) with known time-invariant probability density
function fX(x). This probabilistic description can easily incor-
porate the incertitude about the characteristic of the appliance.

Some statistical studies [12], [13] have characterized the
percentage of users activating a specific residential appliance
along different intervals of the day. In these studies, the day

Appliance 6 8 10 12 14 16 18 20 22 24
Dishwasher. 3 9 9 3 13 0 16 38 13 3
Laundry m. 16 28 38 19 16 19 16 16 3 6

TABLE I. APPLIANCE ACTIVATION RATES [% OVER 30000 USERS]

is divided into equal size intervals and the percentage of
active users is averaged in each interval. Table I has been
obtained from the data in [12] and shows the percentage
of dishwashers/laundry machines active during 2-hour time
intervals. Assuming that the user population U is large enough
and considering an observation time of one day, we can
model the activation instants of a given appliance as a non-
homogeneous Poisson process with arrival rate λ(t). For our
numerical experiments we used the empirical arrival rate for
the laundry machines with 30 minute granularity.

In the absence of any control, the appliances that are
still active at time t are those turned on during the time
interval [t − D, t]. Their number is then distributed as a
Poisson random variable with parameter equal to the expected
number of arrivals in [t−D, t]. Let Pois(x) denote a Poisson
random variable with parameter x, the instantaneous power
consumption P (t) at time t can then be calculated as

P (t) =

N(t)∑
i=1

Xi(t), where N(t)∼Pois
(∫ t

t−D
λ(τ)dτ

)
. (1)

B. Activation Model under Probabilistic Control

We propose a control mechanism devised to modify the
appliance activation process to a different non-homogeneous
Poisson process with rate λc(t), where λc(t) is determined so
that the corresponding power consumption Pc(t) satisfies the
probabilistic constraint imposed by the utility. Observe that
Pc(t) can be expressed through (1), simply replacing λ(t) with
λc(t). We first describe our control, i.e., how the arrival rate
will be modified from λ(t) to λc(t) and then we calculate how
to set λc(t).

In our framework the utility applies a time-varying activa-
tion control function p(t) during a time interval [Tsc, Te] ⊃
[Ts, Te]. As we are going to discuss later, we consider Tsc =
Ts − D. During this time interval, if the user turns on an
appliance at time t, the appliance will actually start with
probability p(t), and with probability 1 − p(t) the decision
about its activation will be postponed to time t + T . This
simple algorithm can be implemented directly from the smart
appliance, or from a device to be interposed between the plug
and the appliance itself.

The scheme operation is depicted in Fig 1. The first time
axis of the figure shows a sample of the point process (P)
of the time instants at which the user would like to turn
on the appliance. The outcomes of the Bernoulli random
variables drawn for every request determine two different point
processes that are distinguished in the second time axis by two
different marks, corresponding to the requests that are immedi-
ately accepted (point process Pa denoted by the checkmarks)
and those that are deferred (point process Pd denoted by the
crosses). The probability p(t) is determined exogenously and
independently from the given sample of the Poisson process
P , then both Pa and Pd are (non-homogeneous) Poisson
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Fig. 1. Example of activation request point processes. The first time axis
shows the time instants at which requests are first considered (and when
they would be served without the control). The checkmarks in the second,
third and fourth time axis respectively correspond to the requests that are
immediately satisfied, deferred once and deferred twice. The last time axis
shows the aggregate point process of the time instants at which the requests
are satisfied.

processes respectively with rates p(t)λ(t) and (1− p(t))λ(t),
and they are independent from each other [14, ch. 5]. The
decision about the requests arrived in Pd is postponed by T
time units as it is shown in the third time axis in Fig. 1.
The shifted point process is still a Poisson one with rate
(1− p(t− T ))λ(t− T ) and independent from Pd. At its turn,
the shifted point process may be split in two point processes
Pd,a and Pd,d respectively of the requests accepted at the
second trial or further deferred. A similar reasoning leads to
the conclusion that Pd,a and Pd,d are independent Poisson
processes with rates respectively p(t)(1−p(t−T ))λ(t−T ) and
(1−p(t))(1−p(t−T ))λ(t−T ) and they are also independent
from Pa.

A request can be deferred at most Kmax = d(Te−Tsc)/T e
times. We can then build d(Te−Tsc)/T e independent Poisson
processes Pa,Pd,a,Pd,d,a, . . .Pd,...,d,a. Their superposition is
still a Poisson process, whose points are the time instants at
which the appliances become active. We denote by λc(t) its
rate, where:

λc(t) = p(t) ·
Kmax∑
k=0

λ(t− kT )

k∏
i=1

(1− p(t− iT )). (2)

As we anticipated above, the effect of the probabilistic control
is to transform the initial uncontrolled Poisson process P with
rate λ(t) into a Poisson process with rate λc(t). All the requests
arriving in the interval [Tsc, Te + T ] are served in the same
interval, then it follows that

∫ Te+T

Tsc
λ(τ)dτ =

∫ Te+T

Tsc
λc(τ)dτ .

We can also define the point process Peq as the sequence of
time instants of all the requests, independently from them be-
ing accepted or deferred, whose rate is λeq(t) =

∑Kmax

k=0 λ(t−
kT )

∏k
i=1(1−p(t−iT )). The rate of the controlled process can

then be expressed simply as λc(t) = p(t)λeq(t). We observe
that Peq is not in general a Poisson process (because for a
point in t there is a point in t+ T with probability 1− p(t)).
Moreover a request can generate multiple points in Peq , then∫ Te+T

Tsc
λeq(τ)dτ ≥

∫ Te+T

Tsc
λ(τ)dτ .

C. Tuning of the Activation Control Function

We now consider how p(t) can be determined to guar-
antee that Prob{Pc(t) > Pg} ≤ ε. The process Pc(t) is
completely characterized by the knowledge of the controlled
arrival density λc(t) and the power consumption density fX(.)
for a single appliance. The degree of freedom which can be
controlled by selecting p(t) is the expected number nc(t) of
appliances active at time t. It is possible to calculate nc(t)
from Prob{Pc(t) > Pg} ≤ ε and then λc(t) and p(t) can
be determined from nc(t) =

∫ t
t−D λc(τ)dτ . For simplicity we

develop the calculations for the case when nc(t), the expected
number of appliances active at a given time instant, is large
and the aggregated power consumption can be approximated
by a normal distribution. This case is also probably the most
relevant from a practical point of view, given that we are
interested in controlling a large number of appliances. Being
Pc(t) =

∑Nc(t)
i=1 Xi, with Nc(t) ∼ Pois(nc(t)), it holds [15,

ch.1]:

E [Pc(t)] = nc(t)E [X] , and Var (Pc(t)) = nc(t)E
[
X2
]
.

Pc(t) can be approximated as a normal variable when nc(t)
is large.1 Under such approximation Pr{Pc(t) > Pg} is lower
than ε if and only if (Pg−nc(t)E [X])/

√
nc(t)E [X2] ≥ z1−ε,

where z1−ε is the ε percentile of the standard normal distribu-
tion. The power consumption profile is then satisfied if:

nc(t)E [X] + z1−ε
√
nc(t)E [X2] ≤ Pg.

We can determine the maximum value n∗ that satisfies this
inequality, i.e. the solution of n∗E [X]+z1−ε

√
n∗E [X2] = Pg

or equivalently of the quadratic equation

(n∗E [X]− Pg)2 = (1− ε)2n∗E
[
X2
]
.

The control pc(t) has to generate a controlled rate λc(t) such
that nc(t) ≤ n∗ for each t ∈ [Ts, Te]. Note that in general
we need to apply the control also before Ts, because we do
not want to block an already active appliance. By applying the

1Consider Y =
∑N
k=1Xk where N ∼ Pois(n), Xk are i.i.d. random

variables with E [Xk] = µ and E
[
X2
k

]
= ν2. Let ϕX(t) := E [exp(iXkt)]

and ϕY (t) := E [exp(iY )] be respectively the characteristic functions of Xk
and Y . It holds [15, ch.1] ϕY (t) = exp (n · (ϕX(t)− 1)). We want to prove
that

Zn =
(
∑N

k=1Xk)−nµ√
nν2

n→∞−−−−→
d

N (0, 1),

where N (0, 1) denotes the standard normal distribution. We will calculate the
characteristic function of Zn (ϕZn (t)) and show that, when n diverges, this
function converges to that of N (0, 1), i.e. to exp(−t2/2).

ϕZn (t) = E [exp(iZnt)] = E

[
exp

(
it
(
∑N
k=1Xk)− nµ√

nν2

)]

= exp

(
−it

µ
√
n

ν

)
E

[
exp

(
it
(
∑N
k=1Xk)√
nν2

)]

= exp

(
−it

µ
√
n

ν

)
exp

(
n

(
ϕX

(
t

√
nν2

)
− 1

))
,

given that

ϕX

(
t√
nν2

)
= 1 + i t√

nν2
µ− t2

2nν2
ν2 + o

(
t2

nν2

)
then

ϕZn (t) = exp
(
− t

2

2

)
exp
(
n · o( t2

nν2
)
)
−−−−→
n→∞

exp
(
− t

2

2

)
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Fig. 2. Activation request rates and activation probability (a); instantaneous number of active appliances at a given time instant (b).

control starting from Tsc = Ts−D, we can be sure that for any
expected number of active appliances at Tsc, it is possible to
guarantee that nc(Ts) ≤ n∗. While respecting this constraint,
we would like nc(t) =

∫ t
t−D p(τ)λeq(τ)dτ to be as close as

possible to n∗, in order to admit as many requests as possible
and avoid useless delays. Then at time t the control should
i) admit new activation requests if nc(t) < n∗, ii) block them
if nc(t) > n∗, iii) try to admit new requests at the same rate
at which the appliances are terminating their activation period
if nc(t) = n∗. This is implemented by the following control
probability:

p(t) =


0 if nc(t) > n∗

min(1,
p(t−D)λeq(t−D)

λeq(t)
) if nc(t) = n∗

1 if nc(t) < n∗
(3)

for t ∈ [Tsc, Te]. About the second case, we observe that
p(t − D)λeq(t − D) = λc(t − D) is the rate at which new
appliances are activated at t − D and then also the rate at
which appliances terminate D time units later. We would like
p(t)λeq(t) = p(t − D)λeq(t − D) in order to maintain the
expected number of active appliances equal to n∗, but this is
not possible if λeq(t) < p(t−D)λeq(t−D).

Practically speaking, the utility is not going to transmit
a continuous time function to each appliance (or actuator
device), but rather a sequence of probability values. Let us
then consider for simplicity a discrete time version of the
control so that p(k) is the control probability applied during
the time interval [k, k + 1). Moreover, let us assume that the
activation time D corresponds exactly to d time steps, and T
to exactly s time steps, and let Λ(k) ,

∫ k+1

k
λ(τ)dτ . From

λeq(t) =
∑Kmax

k=0 λ(t − kT )
∏k
i=1(1 − p(t − iT )), it follows

that Λeq(k) ,
∫ k+1

k
λeq(τ)dτ =

∑Kmax

h=0 Λ(k−h·s)
∏h
i=1(1−

p(k − i · s)). It holds:

nc(k+1) = nc(k)−p(k−d)Λeq(k−d)+p(k+1)Λeq(k+1).
(4)

As above the control probability sequence p(k+ 1) will try to
get nc(k + 1) = n∗ and can be obtained from the following
compact equation that corresponds to Eq. (3) and can be easily
calculated as p(k + 1) =

max

{
min

{
n∗ − nc(k) + p(k − d)Λeq(k − d)

Λeq(k + 1)
, 1

}
, 0

}
.

(5)

Fig. 2 shows an example of the interplay of the different
arrival rates and the activation control probability. We con-
sidered U = 3000 residential users whose laundry machines
are controlled. We assumed the activation time of a laundry
machine to be D = 90 minutes and its instantaneous power
consumption to be constant2 X = 1.5 kW. The utility would
like to enforce a power consumption Pg = 1.4 MW between
Ts = 11am and Te = 12am that can be exceeded at most with
probability ε = 0.1. The power cap Pg corresponds to a max-
imum expected number of appliances active at the same time
n∗ = 895. The control starts at time Tsc = Ts−D = 9.30am.

Fig. 2(a) shows the activation rates λ(t), λc(t) and λeq(t),
as well as the control probability p(t), while the Fig. 2(b)
shows the instantaneous number of appliances active for one
simulation of the request arrival process. At the beginning of
the control period the expected number of active appliances is
smaller than n∗ so that there is no need to postpone activation
times (p(t) = 1) and the controlled activation rate is equal to
the uncontrolled one and to the equivalent activation request
rate because no request is deferred (λ(t) = λc(t) = λeq), as
it is shown in Fig. 2a. The activation rate λ(t) increases to
11 arrivals per minutes at 10am. Slightly after 10.30am, the
uncontrolled process would exceed the threshold n∗, so that
the probabilistic control becomes effective and reduces λc(t)
to 8 arrivals per minutes, i.e. to the rate at which appliances are
terminating, that is equal to the rate at which appliances were
admitted D = 90 minutes earlier (as indicated in the second
case of Eq. (3)). There are 3(= 11− 8) requests every minute
that are not satisfied and are postponed to T = 5 minutes later,
increasing then λeq(t) to 14 request per minute. Until 11am,
λ(t) and λc(t) do not change, so the backlog of unsatisfied
requests keeps increasing, as it is shown by λeq(t) which
increases of 3 requests per minute every 5 minutes. Due to the
increase of λeq(t), p(t) has to decrease accordingly in order to
keep λc(t) constant. Starting from 11am λc(t) becomes equal
to 10 arrivals per minute, the same value it had 90 minutes
earlier. At the same time λ(t) decreases to 9 arrivals per
minutes. The system is then able to reduce some of the backlog
accumulated and indeed we see that λeq(t) decreases. Similarly
to what happened before, p(t) now increases to maintain a
constant λc(t) with a decreasing λeq(t). At 11.30am there is

2Note that in this case Pc(t) is proportional to a Poisson random variable
with parameter nc(t) and the normal approximation we consider is the usual
normal approximation for a Poisson random variable.



a further increase of λc(t) and a further decrease of λ(t). A
few minutes later the backlog is depleted and then p(t) = 1
and λ(t) = λc(t) = λeq(t).

In the Fig. 2(b) we see how during the whole period
when p(t) < 1 the instantaneous number of active appliances
is smaller than it would have been without any control.
In particular it never exceeds 933 that would generate an
instantaneous power demand above Pg = 1.4 MW (remember
that this can happen but with a probability smaller than 10%).
Fig. 2(b) shows also how the control can have some effects
after Te: the deferred departure of some appliances during the
time interval when p(t) < 1, i.e. roughly between 10.40am
and 11.35am, leads to their deferred end, so that 90minutes
later the number of active appliances is larger in the presence
of the control.

D. Delay Analysis

We calculate now the average delay of the starting time
for an appliance that would like to start in [Tsc, Te]. Let N(t)
be the number of activation requests arrived for the first time
by time t and Nc(t) be the number of appliances started by
time t. Fig. 3 shows a possible evolution of N(t) and Nc(t).
Clearly N(t) = Nc(t) for t ∈ [0, Tsc] and for t > Te + T ,
because no control is applied before Tsc and after Te and all
the requests deferred are finally accepted by Te+T . The total
delay experienced by all the appliances is∫ Te+T

Tsc

(N(τ)−Nc(τ)) dτ,

with expected value
∫ Te+T

Tsc

∫ τ
Tsc

(λ(x)− λc(x)) dxdτ . The
appliances arrived during the interval [Tsc, Te] are N(Te) −
N(Tsc) with expected value

∫ Te

Tsc
λ(x)dx.

  

N (t )

N c (t )

t

N (t )≥N c(t)

T sc T e+TT e

Fig. 3. Total number of activation requests satisfied by time t without control
(N(t)) and with the probabilistic control (Nc(t))

Let us now imagine S samples of the request arrival process
N (i)(t) and the corresponding N (i)

c (t). The average delay can
be defined as∑S

i=1

∫ Te+T

Tsc

(
N (i)(τ)−N (i)

c (τ)
)

dτ∑S
i=1

(
N (i)(Te)−N (i)(Tsc)

) .

The expected average delay is then

E [W ] = lim
S→∞

∑S
i=1

∫ Te+t

Tsc

(
N (i)(τ)−N (i)

c (τ)
)

dτ∑S
i=1

(
N (i)(Te)−N (i)(Tsc)

)
=

∫ Te+T

Tsc

∫ τ
Tsc

(λ(x)− λc(x)) dxdτ∫ Te

Tsc
λ(x)dx

,

because of the renewal theorem. Then the average delay
experienced by a user who would like to start its appliance
in [Tsc, Te] can be obtained dividing the expected total delay
by the expected number of requests in the interval [Tsc, Te].

E. Complexity

The envisioned control scheme has a very limited complex-
ity both at the utility side (for evaluating the admission control
function p(t)) and at the user side (for evaluating the admission
of a novel activation request of the controlled appliance). As
discussed in III-C, for practical reasons the function p(t) has
to be evaluated as a discrete-time function p(k). Being M
the number of discrete time intervals in [Tsc, Te], the utility
controller has to evaluate M times: i) nc(k) by applying
Eq. (4) which requires two multiplications, ii) p(k) by applying
Eq.(5) which requires two comparisons, one multiplication and
one division; iii) Λeq(k), that can be conveniently computed as
Λ(k) + Λeq(k− s)[1−p(k− s)] with one more multiplication.
Without considering partial storing of the results (which can
reduce the number of overall operations), it follows that the
total number of operations is linear in M . With a discrete
time interval of 1 minute and the usual control interval
[9.30am, 12am], such a complexity is of the order of hundreds
of operations (thus resulting really negligible).

By assuming to send a quantized value of b bytes for each
discrete-time probability p(k), it is also necessary to send a
broadcast message of M · b bytes to all the users enrolled
in the control program. Finally, at the user side, when a new
activation request is generated at the discrete time k, during
the control interval it is only required to extract an average
number of random numbers equal to

∑Kmax

i=0 (i + 1)p(k + i ·
s)
∏i−1
h=0(1− p(k + h · s)).

IV. NUMERICAL RESULTS

In order to quantify the impact of the probabilistic con-
trol mechanism on the achievable load reduction and user
discomfort, we applied our model for evaluating the average
activation delay as a function of different tunable parameters
of the scheme.

Fig. 4 shows the average activation delay for various
desired load limits Pg for a population ranging from 2500
to 3500 users. All the other parameters are the same than in
the previous numerical example: the duration of the activation
interval D of each appliance is fixed to 90 min with a fixed
required power equal to X = 1.5 kW, the control mechanism
is applied from Tsc =9.30am to Te =12am, the probability to
violate the power bound is ε = 0.1 and a refused request is
postponed by T =5 minutes. Without any control, we found
that the 0.9 percentile (Pa) of the aggregated power request
during the peak hour is equal to about 1185 kW, 1428 kW,
and 1650 kW respectively for U = 2500, U = 3000, and



U = 3500. From the figure, it is evident that the average
activation delay is negligible (e.g. lower than 10 minutes) for
Pg > Pa − 200 kW.
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Fig. 4. Average activation delay as a function of the power limit Pg .
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Fig. 5. Average activation delay as a function of the deferral interval T .

We also evaluated the impact of the deferral interval T .
Fig. 5 plots the activation delay, obtained when Pg is fixed to
1.4 MW, as a function of T for U = 3000, U = 3500 and
U = 5000. As expected, the delay is generally an increasing
function of T . However, we also observe that tuning T is not
very critical when the control mechanism is operating on a
user population lower than 3500 users (i.e. when the power
limitation is not too far from the power request). For example,
for U = 3500, the activation delay is about the same for T in
the range [4, 20] min.

V. CONCLUSIONS AND FUTURE WORKS

The role of direct load control in modern power grids has
been shown to be beneficial for several applications. However,
in the case of small individual energy loads, these benefits can
be appreciable only if a large number of users are involved
in the control process. The main contribution of this paper
is proposing a load control mechanism whose deployment
requires minimal communication overhead in order to allow
a prompt user penetration. The idea is to work on deferrable
loads whose activation requests are admitted by a local energy
controller on the basis of a probabilistic admission function.
This function is periodically signaled by the energy utility
according to the expected load demand and desired power
limit. Although we evaluate the admission control function for
a fixed power limit, we think it is possible to generalize the

derivation for a time-varying power limit function Pg(t) and
we plan to work on it in the near future. An extension to the
case of a non-deterministic activation time is probably much
more cumbersome analytically, but we do not expect the results
to be strongly dependent on the assumption of a deterministic
activation time. This is also another axis that deserves further
investigation.

In the current scheme, we assume that the expected load
demand is simply characterized by collecting historical data,
quantifying the appliance arrival rate in different intervals of
the day, and assuming that these rates do not change day by
day. An interesting model extension, that we are considering
as a future work, is coupling the proposed control scheme with
a mechanism for estimating the actual time-varying arrival rate
of activation requests from the instantaneous aggregated load.
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