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Abstract—In this paper, we investigate the problem of deter-
mining the routing that minimizes the maximum/average delivery
time or the maximum/average delivery delay for a set of packets
in a deterministic Delay Tolerant Network, i.e. in a network for
which all the nodes’ transmission opportunities are known in
advance. While the general problem with multiple sources and
multiple destinations is NP-hard, we present a polynomial time
algorithm that can efficiently compute the optimal routing in the
case of a single destination or of a single packet that needs to be
routed to multiple destinations.

I. INTRODUCTION

Deployed in areas with limited infrastructure support, many

vehicular networks ([5], [2], [9]), rely on peer-to-peer con-

nectivity between wireless radios to support data communica-

tion. Due to limited transmission power, fast node mobility,

sparse node density and frequent equipment failures, many

such networks exhibit only intermittent connectivity, and can

be characterized as Disruption Tolerant Network (DTN, or

Delay Tolerant Network). End-to-end communication in DTNs

adopts a so-called “store-carry-forward” paradigm ([16]): a

node receiving a packet buffers and carries the packet as it

moves, passing the packet on to other nodes that it encounters.

The packet is delivered to the destination when the destination

meets a node carrying the packet.

A plethora of works have proposed DTN routing schemes

to operate in the case of zero or partial knowledge about

future transmission opportunities (e.g. [15], [7], [14], [1]):

some explored the trade-off between routing performance and

resource consumption, while others attempted to optimize

routing performance under certain resource constraints. On

the other hand, other works took a different approach and

studied the routing under the assumption of a full knowledge

of network contacts, i.e. in deterministic DTNs. While such

assumption is realistic in some specific scenarios like inter-

planetary networks [3] or transport networks [2], these works

have also a theoretical interest, because they shed light on the

fundamental hardness of the problem [1], and on best case

performances [17], [4], and can be used in the learning phase

of a practical scheme [6].

This paper falls within the second category and studies the

packet routing problem in deterministic DTNs. Given a group

of packets to be routed in such a network, we consider as

performance metric both the delivery time, i.e. the absolute

time at which a packet is delivered to the destination, and the

delivery delay, i.e. the difference between the packet delivery

time and the packet generation time at the source. For both

metrics, we consider as goal both the minimization of the

maximum value across all the packets and the minimization

of the average value. This leads to four different optimization

problems that we study in a common framework.

Our work build upon the seminal work by Hay and Gi-

accone [8], which uses the event-driven graph1 reduction to

map several DTN routing problems to flow problems in static

graph, including the minimum delay path and the maximum

bandwidth routing problems for a single source-destination

pair. As the authors noted, the case of DTN routing with

multiple source/destination pairs can be mapped to multi-

commodity flow problem, which can be solved using linear

programming if fractional flows are allowed. In contrast, in this

paper we focus on the routing of unsplittable packets leading

to integral multi-commodity flow problems which are much

harder problems.

The main contributions of this paper are summarized as

below:

• We extend existing results to prove the NP hardness of

the four optimization problems in the general case with

multiple sources and multiple destinations.

• For the case of a single destination or a single packet

to be delivered to multiple destinations, we show that a

polynomial-time algorithm exists that can provide an op-

timal routing for three of the problems (all but minimizing

the maximum delivery delay).

• We show how our algorithm can be used to efficiently

characterize a real mobility trace collected from Diesel-

Net.

The algorithm presented in this paper was originally devel-

oped in the framework of our research on network coding to

1 The space-time graph [12] is another approach to represent DTNs as
static graphs that also captures both temporal and resource constraints of the
contacts. Even though our discussion is focused on the event-driven graph,
the results and algorithms also apply if space-time graph model is adopted.
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Fig. 1. Graph representations of a DTN contact trace.

calculate the minimum delivery time for a set of packets. For

this reason a sketch of the algorithm appears in our work [18].

In comparison to [18], this paper investigates the complexity

of a general class of problems, presents a more complete

description of the algorithm, showing how it can be used to

determine the actual scheduling that minimizes not only the

maximum delivery time, but also the average delivery time

and the average delivery delay.

The remainder of this paper is structured as follows. In

Sec. II, we introduce the network model and performance

metrics considered in this paper. Sec. III presents the problems

we study, the complexity results for the different cases and

our algorithm. In Sec. IV we show some characteristics

of DieselNet traces obtained through our algorithm. Finally,

Sec. V concludes this paper. Due to space constraints, the

proofs can be found in the companion technical report [13].

II. BACKGROUND

We consider a set of mobile nodes, denoted as V , moving

independently in a closed area. Each node is equipped with a

wireless radio with a common transmission range so that when

two nodes come within transmission range of each other—they

have a contact—they can exchange packets. We refer to the list

of node-to-node contacts, sorted in temporal order, as a DTN

contact trace, denoted as L = l1, l2, l3, .... Each contact, li, is

a tuple (t(li), s(li), r(li), b(li)) where t(li) denotes the time of

the contact, s(li) and r(li) denote respectively the sending and

the receiving node of the contact, and b(li) denotes the number

of packets that can be transmitted during the contact2. We

assume each node can store an unlimited number of packets

destined for itself, but can only carry a limited number of

packets for other nodes. We represent the buffer constraint as

a function, B : V → N where B(u) is the number of relay

packets that node u can carry.

A contact trace can be depicted as a temporal network [10],

a multi-graph T (L) = 〈V, E〉 where each edge in E represents

a contact l ∈ L. The edge is directed and labeled with a pair,

2 Contacts can be directed, if two independent wireless channels are used
for transmissions in the two directions, or undirected, if the same wireless
channel is used for transmissions in both directions and the total capacity can
be arbitrarily divided between them. We focus on the first case in this paper.

(t(l), b(l)), i.e., the time of the contact, and the number of

packets that can be exchanged using the contact. For example,

Fig. 1(a) illustrates the temporal network model for a contact

trace of a DTN with four nodes during the time interval [0, 24].

We use the contact trace in Fig. 1(a) to illustrate the

construction of the event-driven graph [8] G(L,B) given a

contact trace L and buffer constraints B(·) (the graph is shown

in Fig. 1(b)). For each contact l = (t, u, v, b) ∈ L, two nodes

(u, t) and (v, t) are added to the graph G, respectively denoting

the sending and receiving event of the contact. A directed

inter-node edge (depicted as a horizontal line in Fig. 1(b)),

labeled with b, connects node (u, t) to node (v, t), denoting

that up to b packets can be transmitted from node u to v at

time t. If two consecutive contacts involving node u occur at

t1 and t2(> t1), a directed intra-node edge connecting node

(u, t1) to node (u, t2) is added to graph G, with a capacity

equal to B(u), i.e., the maximum number of relay packets

node u can store (this edge is depicted as a vertical line in the

figure).

The following proposition is a restatement of Theorem 4 in

[8]:

Proposition 2.1: There is a feasible routing schedule for

delivering K packets originated at node u immediately before

t1 to node v by time t2(t2 ≥ t1) under contact trace L and

buffer constraint B(·) if and only if there is a flow of value

K from node (u, t1) to node (v, t2) in the event-driven graph

G(L,B).
To see this, we note that the value of a flow on an inter-

node edge equals the number of packets sent during the

corresponding contact whereas the value of a flow on an intra-

node edge corresponds to the number of packets being carried

by the node during the corresponding time interval.

We assume that a set of packets M = {m1,m2, ...,mk}
propagates in the network. Each packet can be denoted as

mi = (si, di, ti), where si, di and ti denote respectively the

source, the destination, and the generation time of packet mi
3.

In this paper, we focus on routing performance in terms of

delivery time or delivery delay. Let the delivery time of packet

mi be Ti for i = 1, 2, . . . k. We consider the following four

3 A node can be source or destination for different packets.
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metrics defined over the whole set of packets:

• The Maximum Delivery Time (MDT) is defined as the

time instant at which the last packet in the set is delivered

to its destination, i.e. TM = max1≤i≤kTi.

• The Maximum Delivery Delay (MDD) is defined as

DM = max1≤i≤k(Ti − ti).
• The Average Delivery Time (ADT) is defined as Ta =∑k

i=1
Ti/k.

• The Average Delivery Delay (ADD) is defined as Da =∑k

i=1
(Ti − ti)/k.

Depending on the specific application one or the other of

these metrics may be more relevant.

III. MINIMAL TIME/DELAY ROUTING IN DTNS

We want to determine the optimal routing for each of

the four metrics defined above. We observe that minimizing

ADT and minimizing ADD are equivalent problems because

the two metrics differ only by a constant value (
∑

i ti/k).

Apart from this, the three optimization problems (min MDT,

min MDD, min ADT/ADD) are different (some examples are

shown in [13]).

We start our study by establishing the NP-hardness of these

problems in the general scenario with different sources and

different destinations.

Proposition 3.1: Given a contact trace L, and a set of

packets M, the following problems are all NP-hard:

1) finding a feasible routing that achieves minimal MDT,

2) finding a feasible routing that achieves minimal

ADT/ADD,

3) finding a feasible routing that achieves minimal MDD.

The NP-hardness of MDT minimization has already been

proven in [1] (Lemma 1). In the companion technical re-

port [13], we use mainly the same technique to prove the

other results.

In what follows we first present a polynomial-time algo-

rithm (Sec. III-A) to determine the routing that minimizes

MDT in the special case where all packets are destined to the

same destination. We then shows in Sec. III-B how this routing

also minimizes ADT (or ADD), even if the two problems are

not equivalent. We conclude this section by discussing a few

extensions in Sec. III-C.

A. MDT Routing Algorithm for Common Destination

Although finding the MDT for a set of packets is generally

a NP-hard problem, this problem is solvable in polynomial

time under the special case where all packets in the set are

destined to the same node. We discuss this special case and

present our algorithm in this section.

1) Preliminary: Under the assumption that every packet

mi ∈M is destined to a common destination, we can denote

packet mi as (si, d, ti), where d is the common destination.

We first discuss how to determine whether the set of packets

M can be delivered given contact trace L and under buffer

constraints B(·) using the event-driven graph model. In order

to answer this question, we extend the event-driven graph
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Fig. 2. Event-driven graph G(L,B, {(1, 4, 0.5), (2, 4, 0.3)}) for calculating
minimum MDT schedule for packets (1, 4, 0.5), (2, 4, 0.3), with B(u) =
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G(L,B) as follows. First, we add a super source node src and

a super destination node dest into the graph. Then, for each

packet mi = (si, d, si) ∈M, a packet generation node (si, ti)
is added into the graph, and connected to node (si, ti,0) using

an intra-node edge, where ti,0 is the time of the first contact

after ti involving node si. Next, we connect node src to each

packet generation node using an intra-node edge with capacity

1, denoting that one packet is generated at each source node4.

We connect all nodes involving node d to node dest with an

intra-node edge with a capacity of k. Finally, we also change

to k the capacity of intra-node edges for the destination node

d, as we assume nodes have sufficient buffer space to store

packets destined for them. We denote the resulting graph as

G(L,B,M). For example, Fig. 2 plots the event-driven graph

for the set of packets {(1, 4, 0.5), (2, 4, 0.3)} for the DTN trace

depicted in Fig. 1.

Based on Proposition 2.1, the set of packets M can be

delivered given contact trace L and buffer constraints B(·) if

and only if there is a flow of value k from src to dest in

G(L,B,M). We therefore have the following proposition:

Proposition 3.2: To determine the minimum MDT for the

set of packets M given contact trace L and buffer constraints

B(·), it suffices to find Lmin, the shortest left subsequence of L
such that the event-driven graph G(Lmin,B,M) can support a

flow of value k from src to dest. The time of the last contact

in Lmin is the minimum MDT, and this flow in G corresponds

to a schedule that achieves the minimum MDT.

2) Algorithm Description: Our minimum MDT routing

algorithm (Alg.1) intertwines the steps of searching for Lmin

with the iterations of the Ford-Fulkerson algorithm for the

maximum-flow problem [11].

Initially, no contact has been added into the event-driven

graph, and Gf = G(∅,B,M) contains a super source node

src, k packet generation nodes (s1, t1), ..., (sk, tk), and a

super destination node dest, with the node src connected

4If within M, there are multiple packets that are generated by the same
source at the same time, we merge the identical packet generation nodes as
one, and sum up the capacity of the corresponding edges.
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to each packet generation node with an edge of capacity 1.

Subsequently, the algorithm iterates the expand graph phase

and the find max-flow phase until the value of the flow reaches

k or all contacts in L have been processed.

In the expand graph phase, the graph Gf is expanded

by considering events from L in time order, until FindPath

(Gf , src, dest) finds a new path with a non-zero residual

capacity5 (via breadth-first search) from node src to node dest.
Here Grow(Gf ,B, l) expands Gf by adding the contact l ∈ L,

following the procedure described in Sec. II.

Once a path is found, the algorithm enters the find max-

flow phase where the flow is augmented until the max-flow

from node src to dest in Gf is determined. The procedure

UpdateResidualGraph (Gf ,f ,P ) implements the following two

steps of the Ford-Fulkerson algorithm: augmenting the flow f
along path P and updating the residual graph Gf . The return

value b is the increment of the flow value due to path P .

While the Ford-Fulkerson algorithm used here is not the most

efficient max-flow algorithm, it allows us to incrementally

augment the flow instead of starting the maximum flow

calculation from scratch every time the graph is expanded.

When the outer while loop terminates, either the flow

value reaches k or all contacts have been processed. The

algorithm calls the procedure ConstructScheduleFromFlow(f)
to construct a packet routing schedule from the flow f , and

determines the MDT as the time of the last contact considered

(if all k packets are delivered). The above two values are

returned, together with the flow value supported (i.e., the

number of packets that can be delivered at the end of the

contact trace).

Let L′ be the subsequence of the contact trace L considered

up to termination, the computational complexity of Alg. 1 is

O(k|L′|) (see [13] for the derivation).

B. Minimum ADD/ADT Routing

In this section we prove that the routing determined by

Alg. 1 also guarantees minimum ADD (or ADT). This is a

consequence of the following result (the proof is in [13]):

Lemma 1: Let F (t) denote the fraction of packets delivered

by time t with the routing returned by Alg. 1. Consider any

other routing and denote as G(t) the corresponding function.

We have F (t) ≥ G(t) for t > 0.

It follows from this lemma that the routing returned by

Alg. 1 also guarantees minimum ADT (or ADD). In fact the

average delivery time can be calculated as
∫∞

0
1 − F (t)dt

and
∫∞

0
1 − G(t)dt respectively for the two routing. As

F (t) ≥ G(t), we have
∫∞

0
(1− F (t))dt ≤

∫∞

0
(1−G(t))dt.

C. Extensions

We briefly mention a few extensions that are detailed

in [13]. First, the same algorithm can be adapted to deal also

with the case where a single packet has to be delivered to

5 The residual capacity of an edge is the difference between its capacity
and its current flow value, i.e. how much the flow can still be increased on
that edge. The residual capacity of a path is defined as the minimum of the
residual capacities of all edges in the path.

Algorithm 1 MIN MDT ROUTING (L,B,M ), find min-

imum MDT routing for the set of packets, M =
{(s1, d, t1), (s2, d, t2), ..., (sk, d, tk)}, under contact trace L
and buffer constraints B(·)

1: Input: L,B,M
2: Output: S, kd, TM // schedule, num. of pkts delivered,

minimum MDT

3: Lr ← L, x← 0, P ← ∅,
4: f(e)← 0 for every edge e in G(∅,B,M)
5: Gf ← G(∅,B,M), // initial residual network

6: while x < k and Lr 6= ∅ do

7: // Expand Graph Phase

8: repeat

9: // Expand graph until a contact to node d is found

10: repeat

11: l←pop(Lr) // extract next contact from Lr

12: Gf ←Grow(Gf , l,B), Gf ← G
′
f

13: until r(l) = d // until the receiving node of contact

l is d
14: P ←FindPath(Gf , src, dest)
15: until P 6= null
16: // Find Max-Flow Phase

17: while P 6= null and x < k do

18: (G′f , f
′, b)← UpdateResidualGraph (Gf , f, P )

19: Gf ← G
′
f , x← x+ b

20: f ← f ′ // update the flow

21: P ←FindPath(Gf , src, dest)
22: end while

23: end while

24: S ← ConstructScheduleFromFlow (f)
25: kd ← x // the number of pkts delivered

26: TM ← t(l) // time of last contact considered

27: return S, kd, TM

multiple destinations. Second, in these specific cases (single

destination or single packet) other different optimization prob-

lems can be formulated on the event-driven graph as integer

programming problems, that can still be solved in polynomial

time through standard linear programming (because the solu-

tion of the relaxed problem can be guaranteed to be integer).

Finally, similar NP-hardness results can be proven for the case

of multiple multicast sessions.

IV. SIMULATION STUDIES

In this section, we demonstrate how our algorithm allows us

to characterize a contact trace. For our case study, we use the

trace collected from the UMass DieselNet [2] 30-bus testbed

in 2006. This trace details for each bus-to-bus contact the time

of the contact, the transmitting bus, the receiving bus, and the

number of bytes transferred. The number of packets that can be

transmitted during the meeting has been obtained by dividing

the total number of bytes by 1400.

We investigate the following question, given a file generated

at a bus and destined to another bus, what is the minimum

delivery time taking advantage of opportunistic transmission

4
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Fig. 3. Delivery time and delay for a set of packets sent from bus 3029 to bus 3038 at different time on 4/4/2006

opportunities among the different buses? We answer this

question by considering the minimal delivery time for a set

of k packets with common source and destination, generated

at the same time instant. Each packet has size 1400 bytes and

the number of packets ranges between 10 and 200. We assume

that the set of packets is not delivered by the end of day (i.e.,

7 pm each day) will be dropped, or delivered by an alternative

way (e.g. when the bus returns to the garage).

In Fig. 3 we plot minimal MDT and ADD for a set of

packets generated at bus 3029 and destined to bus 3038 at

different time instants of the day. Due to the piece-wise linear

property of these metrics in terms of packet generation time6,

we only need to use our MDT-routing algorithm on a finite

number of generation time instants. As expected, the MDT

exhibits a step-curve: later packet generation does not affect

the MDT until a critical contact is lost and the routing has

to change leading to a later delivery. In terms of delay the

curve first decreases (the delivery time does not change but

the packet generation time increases), and then jumps to a

larger value when the routing changes. We observe that no set

of packets generated after 1pm can be delivered by 7pm. The

numerical results show how even optimal routing in DieselNet

testbed exhibits large delays, that vary significantly according

to the generation time.

Our algorithm can also be used to find out the minimal time

to collect sensor data from multiple buses to a single sink. Due

to the page limit, the result is not shown here.

V. CONCLUSIONS

In this paper, we have presented a polynomial time al-

gorithm that can compute optimal routing for a group of

packets in a deterministic Delay Tolerant Network in terms

of maximum delivery time, average delivery time and average

delivery delay. As future work we plan to compare this

algorithm to other possible approaches (like more efficient

maximum flow algorithms coupled with a binary search of

the minimal length contact sequence) and to extend it to more

general performance metrics that take into account also energy

consumption.

6The piece-wise linear property in this case can be proved in a similar way
to the single packet case as shown in [17].
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