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Abstract. The Tit-for-Tat strategy implemented in BitTorrent (BT)
clients is generally considered robust to selfish behaviours. The authors
of [1] support this belief studying how Tit-for-Tat can affect selfish peers
who are able to set their upload bandwidth. They show that there is a
“good” Nash Equilibrium at which each peer uploads at the maximum
rate. In this paper we consider a different game where BT clients can
change the number of connections to open in order to improve their per-
formance. We study this game using the analytical framework of network
formation games [2]. In particular we characterize the set of pairwise sta-
ble networks the peers can form and how the peers can dynamically reach
such configurations. We also evaluate the loss of efficiency peers experi-
ence because of their lack of coordination: we find that the loss of effi-
ciency is in general unbounded despite the utilization of the Tit-for-Tat
strategy.

1 Introduction

Recently peer-to-peer applications (e.g., BitTorrent [3], Kazaa, eDonkey, and
Gnutella [4]) have become very popular. CacheLogic [5] estimates that peer-to-
peer generated 60% of all US Internet traffic at the end of 2004 and in particular
BitTorrent (BT in what follows), constituted about 30% of Internet backbone
traffic in June 2004.

One of the reason of BT success is its ability to enforce cooperation among
the peers contrasting the well know problem of free-ride. In fact all the peers
interested in a specific file have to announce themselves to a central server,
called tracker. The tracker maintains the set of active peers, also called the
swarm, interested in that content and communicates a small random subset of
peers from the swarm to each new peer. Peers use this subset to connect to
other peers and exchange missing pieces of the file. In general a peer receives
many requests for different pieces. In order to decide which requests should be
satisfied, the peer uses the Tit-for-Tat strategy: it uploads to the nu peers (the
default value is 4) from which it can download at the highest rate, i.e., its best



uploaders. This strategy is clearly intended to benefit the peers who contribute
more to the system.

Tit-for-Tat is generally considered robust to selfish behaviour. To the best of
our knowledge, the only analytical support to this belief is in [1]. The authors
of [1] study how Tit-for-Tat can affect selfish peers who can change their upload
bandwidth in order to try to maximize their downloading rate. We refer to their
model as the rate game. Under several assumptions, they show that there is a
good NE at which each peer uploads at the maximum rate (their model and their
results are discussed in more detail in Section 2). However, we observe that BT
clients can also change the number of connections to open in order to improve
their performance and achieve better performance.

In order to study this aspect we have introduced a new model, which we refer
to as the connection game. This model captures Tit-for-Tat reciprocation feature
by considering that two peers set up a connection between themselves only when
they both find it beneficial. We study this game using the analytical framework
of network formation games [2]. In Section 3 we characterize the topologies of
some pairwise stable networks peers can form both in homogeneous scenarios
and in heterogenous scenarios (i.e. respectively when all the links have the same
or different capacity values). In Section 4 we evaluate the loss of efficiency peers
experience because of their lack of coordination: we find that the loss of efficiency
is in general unbounded despite the utilization of the Tit-for-Tat strategy. Fi-
nally in Section 5 we propose a simple dynamics for this game. We prove that
when connection costs are linear functions of the number of links, this dynamics
converges to a pairwise stable network. We also quantify by simulations the con-
vergence time and show that as the network size increases the dynamics leads
to networks near to the equilibria described in Section 3.

The results about pairwise stable networks in the homogeneous scenario have
already been presented in [6]. This paper presents a new result about the het-
erogeneous scenario and illustrates extensively the results about the dynamics
which were just listed in [6]. To the best of our knowledge only three other
papers [7–9] use game theory to study the overlay structure arising from the
interaction among selfish peers . In these papers peers build an overlay to pro-
vide connectivity. The cost of each peer is the sum of the lengths of the shortest
paths to all the other peers plus the cost of the links created to connect to the
neighbours.

Due to space constraints, proofs are in [10].

2 The Rate Game

Before illustrating the results about Tit-for-Tat we describe in detail the network
model considered in [1], because we adopt the same. According to this model
every peer has two asymmetric access links to the Internet: one downstream link
and one upstream link. Besides it is assumed that bottlenecks can occur only at
upstream links. These assumptions are supported by measurement studies (e.g.
[11]): most peers in current peer-to-peer networks use cable modem or ADSL
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Fig. 1. An example of star network topology.

to get connected to the Internet and usually the data throughput is limited by
the “last mile” and the downstream link has higher capacity than the upstream
link [11]. Thus, in the star network shown in Figure 1, the Internet cloud can be
represented simply as a central node.

A peer r uses its downstream link to get data from other peers. The down-
stream link of peer r is a “private” link in the sense that this link is only used
by peer r itself. On the other hand, the upstream link of peer r is equally shared
by all other peers that are downloading files from peer r. We can think of the
upstream link of peer r as a “public” link from the point of view of peer r.
The model ignore the content dynamics, because it assumes that every peer has
potentially interesting data for every other peer and all possible connections can
be established.

The authors of [1] study how Tit-for-Tat can affect selfish peers who are
able to set their uploading bandwidth in a BT network. Due to Tit-for-Tat
reciprocation mechanism, the downloading rate each peer gets is an increasing
function of its uploading bandwidth. The authors assume that each peer sets its
uploading bandwidth at the minimum level which guarantees them the maximum
downloading rate they can achieve, i.e., the downloading rate they would get by
uploading at their physical uploading bandwidth5. They also assume that the
network has a finite number of groups of peers, each of them characterized by
a different physical uploading bandwidth and with at least nu + 2 peers. Under
these assumptions the authors show that there is a single good Nash equilibrium
point at which each peer uploads at the maximum rate. Note that in [1], for a
given peer, the total number of other peers to set up a connection with is fixed.
However, we observe that BT clients can benefit from changing their number of
connections (an example is shown in [6]).

5 In reality they need to assume that each peer sets its bandwidth to a value slightly
larger than such minimum, otherwise there would be multiple Nash equilibria.



3 The Connection Game

In this section, we first formally introduce our game then we study the net-
work equilibria arising in this game using the analytical framework of network
formation games [2].

Assumptions are detailed in the previous section. We refer to peers as players
and to connections as links. Let R = {1, 2, · · · , R} denote the set of players. The
strategy of a player i is the set of intended connections player i wants to establish,
which is denoted by si = {si,j | j ∈ R\{i}}, where si,j = 1 means that player i
intends to create a link (open a connection) with player j and si,j = 0 means that
player i does not intend to create such a link. With the Tit-for-Tat strategy, both
players have to agree in order to create a link, hence a link between players i and
j is formed if and only if si,j = sj,i = 1. A strategy profile s = {s1, s2, · · · , sR}
therefore induces a network g(s) = {gi,j , i, j ∈ R}, where gi,j = 1 denotes the
existence of link (i, j) and gi,j = 0 denotes the absence of link (i, j). Given a
network g, we use g+gi,j or g−gi,j to denote the network obtained by adding or
severing the link (i, j). We also let Ni(g) = {j ∈ R : j 6= i, gi,j = 1} be the set of
player i’s neighbors in graph g, and let ni(g) = |Ni(g)|. A network is symmetric
if ni(g) = n,∀i ∈ R, i.e. its topology is a regular graph (all players have the
same number of connections).

The payoff or benefit of player i is given by its download rate minus the cost
of opening connections: Bi = Gi − Φi(ni) =

∑
j∈Ni(g) Cj/nj − Φi(ni), where Cj

is the uploading capacity of peer j. We assume that Φi is a convex function of
ni (a linear function is a particular case). The marginal benefit for player i to
open a new connection with player j is:

bi(ni(g), nj(g)) = Bi(g + gi,j)−Bi(g) =
Cj

nj(g) + 1
− Φi(ni(g) + 1) + Φi(ni(g)).

A connection between two players can be set up only when both of them find
this connection beneficial. This coordination requirement makes the concept of
Nash equilibrium (NE) partially inadequate. To address this issue, the idea of NE
has been supplemented with the requirement of pairwise stability [12], described
below.

Definition 1. A network g is a pairwise equilibrium network (PEN) if the fol-
lowing conditions hold: 1) there is a NE strategy profile which supports g; 2) for
gi,j = 0, Bi(g + gi,j) > Bi(g) ⇒ Bj(g + gi,j) < Bj(g).

3.1 Equilibria in Homogeneous Networks

In this section we consider homogeneous networks in which all peers have the
same upload capacity and payoff function.

Based on the previous assumptions, our game is the local spillovers game
with strategic substitutes properties studied in [13]. Some of the following results
(Theorems 1, 2 and 4) can be derived from [13]. Please see Appendix IV in [10]
for details.



Theorem 1. If the number of players is even, a symmetric PEN always exists.
Specifically, if b(0, 0) ≤ 0, the empty network is a PEN; if b(r − 2, r − 2) ≥ 0,
the complete network is a PEN; if b(k, k) ≤ 0 ≤ b(k−1, k−1), the regular graph
with degree k is a PEN. When the previous inequalities are strict, the degree of
the PEN is unique.

Remark. Even when a symmetric network can arise from player interaction
according to Theorem 1, the degree of the network is in general different from the
default value used in current BitTorrent implementation (nu = 4). This means
that the symmetric network created by compliant peers in BitTorrent networks
is not in general a PEN for our overlay formation game.

Besides symmetric PENs discussed in the above, we have the following the-
orem addressing asymmetric PENs.

Theorem 2. There can be at most one player not connected to any other players
in a PEN and the rest of the network is a symmetric network of a unique degree.
In asymmetric networks with a single component, if two players with the same
number of connections k (i.e. two nodes with the same degree k) are connected
to each other, then any two players with fewer number of links than k (or two
nodes with lower degrees than k) must be mutually connected.

Theorem 3. In a scenario where a unique degree -h- is possible for the sym-
metric PENs, there can be at most h players with degree smaller than h. Say l
the number of players with degree smaller than h, there can be at most (h − l)l
players with degree bigger than h, each of them with degree at most h + l. If the
cost function is linear then there are no players with degree bigger than h.

Remarks. The two theorems above rule out many possible asymmetric net-
works, like those with two or more isolated players or interlinked stars6. Note
that the degree of symmetric PENs h depends only on the cost function Φ() and
the capacity C, and is independent from the number of players R. Because of
these theorems the distance between a PEN and a symmetric PEN is bounded
and becomes less significant as the number of players R increases. Formally:

lim
R→∞

1
R

E

{
R∑

i=1

|ni(gPEN )− h|
}

= 0.

Similarly the average payoff per player in a PEN converges to that of a symmetric
PEN.

The following result shows that players having more connections gain higher
payoffs than other players.

Theorem 4. Let g be a pairwise equilibrium network in which ni(g) < nj(g). If
∀u ∈ Ni(g), ∃v ∈ Nj(g) s.t. nu = nv, then Bi(g) < Bj(g).
6 An interlinked star network has a maximally connected group and a minimally con-

nected group of players. In addition, the maximally connected players are connected
to all players while the minimally connected group has links only with the players
in the maximally connected set.



Note that if player i’s neighborhood is included in player j’s neighborhood (Ni ⊂
Nj), the condition “∀u ∈ Ni(g), ∃v ∈ Nj(g), s.t. nu = nv” is satisfied.

3.2 Equilibria in Heterogeneous Networks

In this section we consider that peers can have different uploading capacities.
Given Ci the capacity of node i, let us indicate ki a possible node degree in a
symmetric PEN when all players have capacity Ci. The following result holds.

Theorem 5. Under linear costs (Φ(ni) = αni) if in network g each player i has
degree ki, then the network is a PEN.

Sketch of the proof. We only consider the case 0 < ki < R−1. Let us consider
gi,j . If gi,j = 1 then both bi(ki− 1, kj − 1) ≥ 0 and bj(kj − 1, ki− 1) ≥ 0 have to
be satisfied in order to g be a PEN. bi(ki − 1, kj − 1) = Cj/kj − α ≥ 0 because
kj is the degree of a symmetric PEN when all the peers have capacity Ci (see
Theorem 1), similarly for bj(kj − 1, ki − 1). If gi,j = 0 then we just observe that
no player wants to create the link. For example bj(kj , ki) ≤ 0 again because of
the result in Theorem 1.
Remarks. First, note that this theorem, differently from Theorem 1 does not
state the existence of a PEN. Depending on the values of the capacities, it could
be impossible to create a network where all the players open ki connections (for
example if the number of players and the values ki are odd). Second, the result
does not hold in general under different cost functions (it is possible to show
examples), here it is fundamental that the marginal benefit depends only on the
number of connections of the other player. Third, in this PEN the distribution
of the number of connections in the network mainly reflects the distribution of
the capacities. In Section 5 we will show how the PEN selected by the dynamic
process we will introduce is “near” to the PEN described in this theorem, and
hence the distribution of the number of links resembles the distribution of the
capacities in the network.

4 Loss of Efficiency of Symmetric Equilibria

In our game, given the number of players, the number of possible overlays players
can create is finite. Hence there is one network gopt with the highest total payoff∑

i∈R Bi(gopt). We define the efficiency loss of a PEN g as the ratio of the highest
total payoff over the total payoff of the PEN:

Leff (r, C, Φ) =
∑

i∈R Bi(gopt)∑
i∈R Bi(g)

.

We note that Leff depends in general on the number of players, and the upload
capacities and cost functions of those players. The following theorem states that
Leff is unbounded even for the class of linear connection cost functions (Φ(n) =



αn). Therefore, the price of anarchy (the worst efficiency loss of all NEs) is
infinite7. Please see Appendix VI in [10] for a detailed proof.

Theorem 6. For the class of linear connection cost functions, the loss of effi-
ciency is unbounded: given an even number of players and an upload capacity C,
∀M ∈ R,∃α∗ ∈ R+ s.t. Leff (r, C, Φ∗) > M , where Φ∗(n) = α∗n.

5 Dynamic Models

We investigate in this section how peers can dynamically reach a PEN. Here we
consider linear costs (Φ(ni) = αni). We consider the following dynamic discrete-
time process. Starting from an empty network, at each time a player pair (i,j) is
randomly chosen. Link (i, j) is created (or kept) if both players find it beneficial.
An existing link is removed if at least one of the two players of that link does not
find it useful. We are going to show that this dynamic process always reaches a
PEN.

Let us introduce some terminology according to [2]. A network g′ is adjacent
to a network g if g′ = g + gi,j or g′ = g − gi,j for some pair (i, j). A network
g′ defeats another network g if either g′ = g − gi,j and Bi(g′) > Bi(g), or
g′ = g+gi,j with Bi(g′) ≥ Bi(g) and Bj(g′) ≥ Bj(g) with at least one inequality
holding strictly. A network game exhibits no indifference if for any two adjacent
networks, one defeats the other.

According to this terminology in the dynamic process we described above,
the current network is altered if and only if the addition or deletion of a link
would defeat the current network. The process leads to an improving path, i.e.
a sequence of networks g1, g2, ..., gK where each network gk is defeated by the
subsequent (adjacent) network gk+1. There are two kind of improving paths:
those exhibiting cycles (which have infinite length) and those terminating with a
PEN (called stable state). The following lemma (a theorem in [15]) characterizes
when there are no cycles and pairwise stable networks exist.

Lemma 1. Given G the set of all the possible networks g, if there exists a real
valued function w : G → R such that “g′ defeats g” if and only if “w(g′) > w(g)
and g′ and g are adjacent”, then there are no cycles. Conversely, if the network
game exhibits no indifference, then there are no cycles only if there exists a
function w : G → R such that “g′ defeats g” if and only if “w(g′) > w(g) and g′

and g are adjacent”.

Based on this lemma, we have the following result.

Theorem 7. If the connection cost function is a linear function Φ(n) = αn, the
dynamic process introduced in this section always reaches a PEN.

7 This is different from what happens for selfish routing, where the price of anarchy
is finite, and independent from the network topology for networks in which edge
latency does not depend in a highly nonlinear fashion on the edge congestion [14].
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Fig. 2. Average node degree.
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Fig. 3. Total benefit.

Sketch of the proof. If h ∈ {0, 1, · · · , R − 1} is the degree of a symmetric
equilibrium according to Theorem 1 and b(h, h) < 0 for h 6= R− 1, the following
function w : G → R, w(g) = −∑R

i=1 f(ni), where f(ni) = h−ni, if h ≥ ni, and
f(ni) = R(ni − h) otherwise, satisfies the relation in Lemma 1 for our overlay
formation game, hence the dynamic process always reaches a PEN. If h 6= R− 1
and b(h, h) = 0, it is possible to define another function satisfying the relation
in Lemma 1. The details of the proof are in Appendix VIII in [10].

5.1 Simulation Results

We present some simulation results. We considered a number of players ranging
from 100 to 10000, having the same capacity, and α = 0.245, for which the degree
of a symmetric PEN is 4. For each setting we simulated 5000 runs of the above
dynamic process. Each run terminates with a PEN. For this PEN we denote the
average degree over all players as davg.

Figure 2 shows the minimum and the mean of davg over all the runs. We see
that as R increases both the mean and the minimum converge to 4. This result
confirms Theorem 3: as R increases the PENs converge to a symmetric one.

In Figure 3, the mean and the minimum of the total benefit are compared
with the highest total benefit, which can be directly evaluated from the results
in Appendix VII of [10]. This figure shows also the convergence of the payoffs of
all PENs to the payoff of the symmetric PEN when R increases.
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Fig. 4. Number of iterations per peer.
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In addition, we present the number of iterations per peer in Figure 4. We
observe that the average number of iterations to reach a PEN is of the order
of R2 and hence the number of iteration per peer is of the order of R. Let us
consider this number of iterations in the context of BitTorrent (BT) [3]. Each
peer in a BT network tries to replace an existing connection with a new, bet-
ter connection every 10 seconds. All peers do such replacement simultaneously,
unlike the sequential replacement in our simulations. So R2 iterations in our
simulations corresponds to 10R seconds in a BT network. For a population of
100 peers, the time needed to reach a PEN is of the order of 17 minutes, which
is faster than the typical average time between changes in the population of
peers (due to arrivals or departures). Figure 5 shows how the average and the
minimum degrees change during two simulation runs respectively for R = 100
and for R = 1000. The initial values are equal to 0 and converge to 4. The time
scale represents time in a BT network; namely, R iterations are represented by
10s. We can observe that: 1) with this time scale the evolution of the average
degree seems independent from the number of players; 2) the network converges
quite rapidly to the PEN. In particular, the average degree reaches 3.8, i.e. 95%
of the final value, after less than 80 seconds in both cases, or, equivalently, after
less than 800 iterations for R = 100 and less than 8000 for R = 1000. Figure 6
shows the time evolution of the process as regards the total benefit. We note
that for both runs, as the process begins the total benefit grows because of the
high benefit of the initial connections, while it falls down to the expected value
when the network approaches the equilibrium.

Finally, we considered heterogeneous scenarios where players have different
upload capacities. The simulations show that at the final equilibrium almost all
the players open a number of connections equal to that indicated by Theorem 5.
For example we considered a network with 1000 players and α = 0.245, where
50% of the nodes have capacity equal to 1, 30% have capacity equal to 2, and
20% have capacity equal to 4. The corresponding degrees in symmetric networks
(ki in Section 3.2) are respectively 4, 8, 16. In the PEN the fraction of nodes
having a degree smaller than the corresponding ki is on average equal to 0.15%
of the total number of nodes, hence the degree distribution closely resembles the
capacity distribution.



6 Conclusions

We studied the Tit-for-Tat strategy (built in BitTorrent [3]) through network
formation games framework. We proved the existence of equilibrium overlays,
and demonstrated the convergence of a simple game dynamics. Although the
general belief is that the Tit-for-Tat can prevent selfish behavior, we showed
that it can still lead to an unbounded loss of efficiency.
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