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Abstract—In this paper we apply distributed sub-gradient meth-
ods to optimize global performance in Delay Tolerant Networks
(DTNs). These methods rely on simple local node operations
and consensus algorithms to average neighbours’ information.
Existing results for convergence to optimal solutions can only
be applied to DTNs in the case of synchronous operation of
the nodes and memory-less random meeting processes. In this
paper we address both these issues. First, we prove convergence
to the optimal solution for a more general class of mobility models.
Second, we show that, under asynchronous operations, a direct
application of the original sub-gradient method would lead to
suboptimal solutions and we propose some adjustments to solve
this problem. Further, at the end of the paper, we illustrate
a possible DTN application to demonstrate the validity of this
optimization approach.

Index Terms—delay tolerant networks, distributed optimization,
consensus, sub-gradient method

I. INTRODUCTION

In this paper we consider that nodes in a Delay Tolerant

Network (DTN) may collaborate to optimize global network

performance, for example tuning the values of some local

parameters. The work in [1], later extended in [2], presents a

distributed solution to this problem when the global optimiza-

tion target f can be expressed as sum of M convex functions

fi and each node i only knows the corresponding function fi,

referred to as the local objective function.

In this framework, nodes optimize their own local objective

functions through a sub-gradient method, and at the same time

they try to reach agreement on their local estimates of the

optimal solution by occasionally exchanging and averaging

them, like in a consensus problem [3], [4]. Within this approach,

referred to as the distributed sub-gradient method, the local

estimate of each node is proven to converge to the optimal

solution under certain assumptions. In a DTN scenario these

assumptions correspond to impose deterministic bounds on the

inter-meeting times among nodes [1] or a memory-less meeting

process [2]. Neither of these conditions is in general satisfied in

a real network. Further, all nodes should update their estimates

at the same time, but synchronicity is difficult to achieve in a

disconnected scenario.

After reviewing the distributed sub-gradient method in Sec. II

and motivating our work in Sec. III, as original contribution

in this paper we relax the above assumptions. In particular,

in Sec. IV we extend the results in [1] and [2] proving that

the distributed sub-gradient method also converges under a

more general Markovian mobility model with memory in the

meeting process. In Sec. V, we study how the presented frame-

work needs to be extended to cope with asynchronous node

operations. Further, in Sec. VI we illustrate a possible DTN

application for the distributed sub-gradient method. Sec. VII

concludes the paper.

An extended version of this paper is available as an INRIA

research report [5].

II. DISTRIBUTED SUB-GRADIENT METHOD’S OVERVIEW

In this section we review the main results in [1], [2] on

convergence and optimality of the distributed sub-gradient

method when a random network scenario is considered.

Let us consider a set of M nodes (agents), that want to

cooperatively solve the following optimization problem:

Problem 1 (Global Optimization Problem). Given M convex

functions fi(x) : R
N → R, determine:

x∗ ∈ argmin
x∈RN

f(x) =
M
∑

i=1

fi(x) .

Clearly, for the above problem we assume that a feasible

solution exists. The difficulty of the task arises from the fact

that agent i, for i = 1, 2, · · ·M , only knows the corresponding

function fi(x), namely its local objective function. A time

slotted system is also assumed, where, at the end of a slot,

each node i communicates its local estimate to a subset of all

the other nodes, and then updates the estimate according to1:

xi(k + 1) =

M
∑

j=1

aij(k)xj(k) − γ(k)di(k) , (1)

where the vector di(k) ∈ R
M is a sub-gradient2 of agent i’s

objective function fi(x) computed at x = xi(k), the scalar

γ(k) > 0 is the step-size of the sub-gradient algorithm at

iteration k, and aij(k) are non-negative weights, such that

aij(k) > 0 if and only if node i has received node j’s estimate

at the step k and
∑M

j=1 aij(k) = 1. We denote by A(k) the

matrix whose elements are the weights, i.e. [A(k)]ij = aij(k).

1In this paper all the real valued vectors are assumed to be column vectors.
2di ∈ RN is a sub-gradient of the function fi at x

i ∈ dom(fi) iif fi(x
i)+

(di)
T

(x − xi) ≤ fi(x) for all x ∈ dom(fi).



We observe that the first addend in the right-hand side of (1)

corresponds to averaging according to a consensus algorithm

[3].

In [1] it is procen that the iterations (1) generate se-

quences converging to a minimum of f under the following

set of conditions: 1) γ(k) is such that
∑∞

k=1 γ(k) = ∞ and
∑∞

k=1 γ(k)2 < ∞; 2) fi is bounded for all i; 3) A(k) is

symmetric (then doubly stochastic) for all k; 4) ∃ η > 0, such
that aii(k) > η and, if aij(k) > 0, then aij(k) > η; 5) the

information of each agent i reaches every other agent j (directly

or indirectly) infinitely often; 6′) there is a deterministic bound

for the intercommunication interval between two nodes. In [2],

condition 6′ is replaced by: 6′′) matrices A(k) are i.i.d. random
matrices. Both papers address also the case when the gradient

step-size is kept constant (γ(k) = γ). In this case, the sequence

of estimates xi does not converge in general to a point of

minimum of f , but it may keep oscillating around one of such

points, in a neighbourhood that shrinks as γ gets smaller.

To illustrate the considered framework, we present now a

simple toy example that we are going to use different times

across this paper. Consider three nodes, labeled as 1, 2 and 3.
Their local objective functions are f1(x) = f2(x) = x(x−1)/2
and f3(x) = 2x2, where x ∈ R. Then the global function is

f(x) =
∑

i fi(x) = 3x2 − x, it has minimum value equal to

−1/12 and a unique point of minimum in x = 1/6. The weight
matrices A(k) are i.i.d. random matrices. At each step A(k)
is equal to one of the following three matrices
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with probability 2/3, 1/6 and 1/6, respectively. Figure 1 shows

the evolution of the estimates at the 3 nodes, when the algorithm

is applied with γ(k) = 1/k. We can see that state’s estimates

tends to couple and then converge to the optimal value. We

obtained similar results with γ(k) = γ ≪ 1.
The proofs of the convergence in [1] and [2] share mainly the

same outline. In detail, under 6′, [1] proves that the backward

matrix product, i.e., A
(k)
(s) = A(k)A(k − 1) · · ·A(s), surely

converges to the matrix J = 1/M11T , and that there are two

positive constants C and β such that ‖A
(k)
(s)−J‖∞ ≤ Cβk−s for

all k ≥ s. Under 6′′, [2] proves almost surely convergence of

A
(k)
(s) to J, and an exponential convergence rate in expectation,

i.e. E[‖A
(k)
(s) − J‖∞] ≤ Cβk−s. Then, similar bounds are

established for the distance between x∗ and the average of all

the estimates y(k) (i.e. y(k)
def
= 1/M

∑

i x
i(k)), and between

xi(k) and y(k). Convergence results (or asymptotic bounds

when γ(k) is constant) follow.

III. APPLICATION TO OPTIMIZATION IN DTNS

DTNs, see e.g., [6] and [7], are sparse and/or highly mobile

wireless ad hoc networks where no continuous connectivity

guarantee can be assumed. This intrinsically leads to the

impossibility of collecting, at low cost and at a single data

processing point, the information needed to solve network

optimization problems in a centralized fashion. For this reason,

in the present paper we advocate the use of the distributed sub-

gradient method presented in Sec. II.

From a general perspective, we can proceed as follows.

Nodes exchange their local estimates every time they meet. thus

originating the weight matrices A(k). We define the contact

matrix C(k), where cij(k) = 1 if node i has met node j
since the last state’s update performed by i , and cij(k) = 0
otherwise. Call C the (finite) set of all possible M×M matrices

describing the contacts among M nodes. At the update time

instants, each node i can calculate its own weights aij(k),
for j = 1, . . . M , from the contacts it had (i.e.! from cij , for

j = 1, . . . M ) in one of these two ways (which build matrix

A(k) as doubly stochastic):

Rule 1 (Updates independent from meetings) For j 6= i, set3

aij(k) = 1/M if cij(k) = 1, otherwise set aij(k) = 0. Set
aii(k) = 1 −

∑

j 6=i aij(k). All the nodes update their estimate

at a given sequence of time instants {tk}k≥1.

Rule 2 (Updates driven by meetings) When node i and node

j meet, they update their estimate. In this case, set aij(k) = a
with 0 < a < 1, aii(k) = 1 − a and aih(k) = 0 for h 6= j, i.
Next, we discuss two key issues that can negatively impact

the convergence of the distributed optimization process in

a DTN scenario. The first one is related to the validity of

assumptions 6′ and 6′′. In fact, condition 6′ is essentially

equivalent to assume that there is a deterministic bound for the

inter-meeting times of two nodes (that meet infinitely often),

and this is not the case for all the random mobility models

usually considered, see e.g., [8]. Condition 6′′ relaxes 6′, but
requires the independence of the meetings among nodes, that

under realistic mobility are instead correlated4. The second

issue is related to the synchronicity of the updates: in [1], [2]

all the nodes update their estimates at the same time instants

as in Rule 1, but this is not always feasible in a disconnected

and distributed scenario like a DTN. Coming back to the toy

example presented in Sec. II, we now show that we cannot

simply ignore the issue of synchronicity. We observe that we

can think our three matrices in (2) as generated according to

Rule 2, when the meeting process has the following characteris-

tics: at each time slot, node 1 and node 2 meet with probability

2/3, node 1 and 3 meet with probability 1/6 and node 2
and 3 meet with probability 1/6. Fig. 2 shows the evolution

of the estimates when the step-size is constant and equal to

25 · 10−4, both for the synchronous case, where all the nodes

update their estimates when a meeting occurs (even the node

that is not involved in the meeting), and for the asynchronous

case, where only the nodes involved in the meeting perform

the update. The curves represents the average estimates over

100 different simulations with different meeting sequences. We

note that in the synchronous case (top graph) all nodes agree

on the optimal value to set x, whereas, in the asynchronous

case (bottom graph) the estimates still converge, but not to the

minimum of the global function f .
We consider more general mobility models in Sec. IV and

address asynchronous operation in Sec. V. These extensions to

3Each node has to know M , i.e., the total number of nodes in the system.
4For example if in the recent past i has met j and j has met h, then i has

a higher probability to meet h in the near future.



the basic framework proposed in [1], [2], while motivated in

this paper by the DTN scenario, are of wide interest for other

possible applications such as mobile wireless ad-hoc and sensor

networks.

IV. EXTENSION TO MORE GENERAL MOBILITY MODELS

In our DTN scenario, we consider that the weights are

determined from the contact matrix through a bijective function.

Then condition 5 and 6′′ of [2], can be expressed as follows: the

contact matrices C(k) are i.i.d. and E[C(k)] is an irreducible

aperiodic matrix. In this section, we extend the convergence

results to the following, more general, mobility model. All the

proofs are in [5].

Assumption 1 (Mobility model). It exists an irreducible,

aperiodic and stationary Markov chain Φ with a finite or

countable set of states S and a function g : S → C, such
that C(k) = g(Φk), for each Φk ∈ S. Moreover, E[C(k)] is
an irreducible aperiodic matrix.

Since there is a bijective correspondence among weight and

contact matrices, we observe that under assumption 1, it also

exists a function ĝ : S → A, such that A(k) = ĝ(Φk). The
case when the contact matrices (and then the weight matrices)

are i.i.d. is a particular case of our mobility model.

Our proof follows the same outline of [1], [2]: the main

issue is to prove the exponential rate of convergence of the

backward product A
(k)
(1) to J = 1/M11T . To this end we need

the following results:

Proposition 1. Given an irreducible aperiodic and stationary

Markov chain Φ with finite or countable states, the shift

operator θ is measure-preserving and ergodic together with

all its powers θk, where k ∈ N.

Lemma 1 (Windowing a Markov chain). Let Φ = {Φn, n ∈ N}
be an irreducible, aperiodic and stationary Markov chain.

Consider the stochastic process Ψ = {Ψn, n ∈ N}, where

Ψn = (Φn,Φn+1, · · · ,Φn+h−1) with h a positive integer. Ψ is

also an irreducible aperiodic stationary Markov chain.

Convergence of A
(k)
(1) to J is then a corollary of results in [9]:

Proposition 2 (Convergence of the backward product). Under

assumption 1 limk→+∞ A
(k)
(1) = J almost surely (a.s.) .

Now we are ready to prove our main result

Proposition 3. Under assumption 1 on the mobility models,

if the matrices are doubly stochastic, then for almost all the

sequences there exist C > 0 and 0 < β < 1 (with C in general

depending of the sequence) such that for k > s
∥

∥

∥
A

(k)
(s) − J

∥

∥

∥

max
≤ Cβk−s .

In [2] a different result it is proven, i.e., that there exist Ĉ

and β̂ such that E
[∥

∥

∥
A

(k)
(s) − J

∥

∥

∥

max

]

≤ Ĉβ̂k−s. Then a series

of inequalities for the expected values of ‖y(k) − xi(k)‖2 are

obtained for all i. Using Fatou’s Lemma, along with the non-

negativeness of distances, it is possible to derive inequalities

that hold with probability 1. Using Proposition 3, instead, it

is possible to obtain the same inequalities directly without the

need to consider the expectation.

V. ASYNCHRONOUS UPDATES

In this section, we study the case when nodes asyn-

chronously update their status. First, we consider the case of

decreasing step-sizes with the sequence {γi(k)}k≥1 satisfying
∑∞

k=1 γi(k) = ∞ and
∑∞

k=1 γi(k)2 < ∞.

We can go over the rationale in [2] and prove similar results

for the new system description, see [5]. In particular, we have

Proposition 4 (Convergence of Agent Estimates). Under

assumption 1, the estimate of each node converges almost

surely to the vector y(k), i.e., limk→+∞ ‖y(k) − xi(k)‖2 =
0 a.s. , for all i .

The following step is to use bounds for the distance be-

tween y(k) and x∗ (a point of minimum of f ) to show that

limk→+∞ y(k) = x∗. In detail in [2] is shown that

0 ≤
∞
∑

s=1

γ(s) [f(y(s)) − f(x∗)] < ∞ a.s. , (3)

from (3), we can conclude that lim infk→∞ f(y(k)) = f(x∗)
a.s., since

∑∞
s=1 γ(s) = ∞, and thus limk→∞ xi(k) = x∗ a.s. .

In [5], a similar derivation is carried on, leading to the

following generalization of (3):
∞
∑

s=1

M
∑

i=1

γi(s) [fi(y(s)) − fi(x
∗)] < ∞ a.s. . (4)

Unfortunately, due to the asynchronous updates, the values of

γi(s) are now different for each i and this does not allow us to

formulate the inequality above in terms of the global function

f as in (3). However, (4) suggests us the following conjecture,

that we support later with some examples:

Conjecture 1. When updates are asynchronous, conver-

gence results to optimality for sub-gradient methods hold if

E[γi(k)] = E[γj(k)] for each i and j.

We can guarantee this condition in different cases. Consider

Rule 2 in Sec. III and γi(k) = 1/ni(k), where ni(k) is the total
number of updates node i has performed until the time instant

tk. If the meeting process follows a Poisson process with total

rate λ and at each instant node i meets another node with prob-

ability pi, we expect that by time k, node i has pik meetings

(and an equal number of updates). Then the expected value of

its step-size is E[γi(k)] = E[1/ni(k)] = pi/(pik) = 1/k, for
all i and we forecast the asynchronous sub-gradient mechanism

to converge to the optimal solution. Fig. 3 (top graph) shows

that this is true for our toy example. The simulations for the

application considered in Sec. VI confirm such convergence.

Let us now revisit the example in Sec. III showing that

the estimates were not converging to a point of minimum

(Fig. 2, bottom graph). Here step-sizes were constant, i.e.

γi(k) = γ. Now, reasoning as above we can conclude that

E[γi(k)] = piγ. Hence the expected values are not equal as far

as node meeting rates (and then update rates) are not equal:

this was the case of our example, where p1 = 5/6, p2 = 5/6
and p3 = 1/3. Intuitively, we expect convergence to be biased
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Fig. 1. Toy example. Top graph: state’s estimates.
Bottom graph: objective function value computed
in the state’s estimates.

0 200 400 600 800 1000 1200
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

number of pair meetings

n
o

d
e

 s
ta

te
 [

x
]

 

 

optimal x
*

biased x
*

x
1

x
2

x
3

0 200 400 600 800 1000 1200
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

number of pair meetings

n
o

d
e

 s
ta

te
 [

x
]

Fig. 2. Toy example, step-size γ = 25 · 10−4.
Top graph: synchronous updates. Bottom graph:
asynchronous updates.
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Fig. 3. Toy example, asynchronous updates. Top
graph: step-size γi(k) = 1/ni(k). Bottom graph:

weighted fixed step-size γi(k) = p−1

i
γ.

towards values closer to the optimum of the local functions of

those nodes that perform the updates more often. Equation (4)

suggests us that the naive asynchronous implementation of

the sub-gradient method is actually minimizing the function
∑

i pifi = (3/2)x2−(5/6)x rather then f =
∑

i fi = 3x2−x.
This is the case, being that the estimates are converging to 5/18
(dot-dashed line in Figs. 2 and 3). If now we want to correct the

bias, it is sufficient to consider that each node selects its step-

size inversely proportional to its meeting rate. Fig. 3 (bottom

graph) shows that this correction leads the estimates to converge

to the correct result.

VI. APPLICATION IN DTNS: A CASE STUDY

In this section we apply the distributed sub-gradient method

to a DTN scenario inspired by the work in [10]. In detail,

we consider a mobile network with M nodes, indexed from

1 to M . All the nodes are interested in the same dynamic

information content that has for them a non-increasing value

in time. They can get information updates directly from the

Service Provider (SP) through a cellular network, but also share

them through opportunistic transmissions whenever they meet.

The SP is supposed to inject fresh information in the network

according to a Poisson process of parameter µ updates/s. The

goal of the SP is to optimize

f(x) =

M
∑

i=1

fi(x) =

M
∑

i=1

Ex[ui] , (5)

where ui is the utility of the content for node i and x ∈ R
M

is the rate vector that indicates how the SP distributes its

bandwidth among all the nodes. Then
∑M

i=1 xi ≤ µ and

xi ≥ 0 for all i. In [10], eq. (5) is proved to be concave

and therefore the optimal x can be obtained by the SP using

standard optimization techniques, see e.g., [11]. In general, a

closed formula for f(x) is not known; thus, the gradient needs

to be estimated as explained in [10]. Being that our interest is

on the distributed sub-gradient method, here we consider the

simple case where updates can travel at most two hops, thus

avoiding to address the gradient estimation’s issue. In fact, in

this case, assuming also that a) for all nodes i, any information

is worthless after τ seconds from its injection into the network

by the SP (i.e. the information expires after τ ) and b) the

meeting process among node pairs is Poisson distributed, we

can compute the local utility function for each node as (see [5])

fi(x) = 1 −





∏

j∈Ni

xje
−λijτ − λije

−xjτ

xj − λij



 e−xiτ , (6)

where λij is the meeting rate between i and j and Ni
def
= {j :

λij > 0}. The global utility function in (5) is then simply

obtained summing (6) over i = 1, 2, . . . ,M .

To optimize f(x) in a distributed fashion we can use the

framework presented in Sec. II. The local gradient function

needed in (1) can be computed directly from (6), where nodes

only need to estimate simple statistics on their own meeting

rates. Clearly, (5) can be optimized also in a centralized fashion

by the SP as in [10]. However, our distributed approach may

reduce the amount of information to exchange between the SP

and the nodes. Moreover, it does not force the nodes to disclose

information about their meetings or their utility function ui.

In detail, when two nodes i and j meet they: i) update xi

and xj as in (1) and, ii) project the result so obtained onto the

feasible set
∑M

l=1 xl ≤ µ and xl ≥ 0 for all l ∈ {1, . . . ,M}.
Eventually all the xi converge to the optimum x∗ of (5).

Henceforth, the SP can retrieve the optimal transmission rates

collecting xi from every node and obtaining the rate allocation

vector as x = (
∑M

i=1 xi)/M .

To test the performance achievable by the distributed sub-

gradient method under traces with memory, we generated a

meeting process that is both stationary and ergodic as explained

in [5]. Nodes have diverse contact rates; in particular node 1 has

the highest contact rate, whilst node 10 the lowest. Given that

nodes have different contact rates and asynchronous updates are

performed, we know that a direct application of the distributed

sub-gradient algorithm may lead to sub-optimal results, see the

toy example in Sec. III.

Figures 4–6 show simulation results for a given mobility

model when τ = 20s and µ varies between 0.1 and 25s−1.

Fig. 4 shows the optimal allocation rate for each user. When the

bandwidth µ available to the SP is very low, the best solution

is that the SP uniquely sends updates to the node that has the
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higher contact rate, i.e., node 1; for large values of µ, instead,
the SP can evenly send updates to all the nodes in the network.

Interestingly, as already observed in [10], for some values of µ
(in our case µ around 100.7 update/sec) the optimal choice for

the SP is to allocate more bandwidth (i.e., a larger fraction of µ)
to the node with the lowest contact rate, namely, node 10. For
these values of µ, in fact, those nodes with a high contact rate

such as node 1 achieve high values for their utility functions

just by collecting information from the large number of nodes

they meet. In Fig. 5 we show the mean trajectory towards the

optimal for two elements in x = (
∑M

i=1 xi)/M , where the

vectors xi have been obtained along a sequence of 5 · 104

meetings considering µ = 10−1.1 update/sec. We note that the

estimates provided through the distributed sub-gradient method

converge5 to the theoretical optimal allocations in Fig. 4.

Finally, in Fig. 6 we draw with a solid-line the maximum

of f(x) corresponding to the optimal rate allocations in Fig. 4,

which was obtained using a centralized solver [11]. For eight

different values of the available bandwidth µ, we plot with

squares the utility function values corresponding to the rate

allocations obtained by the distributed sub-gradient method.

With crosses we show the performance of the method with a

fixed step size, which neglects the asynchronous update issue.

As expected, the latter algorithm achieves worse results. Most

importantly, the solutions achieved with our approach are close

to the actual optimum for all values of µ. This confirms the

validity of this distributed framework.

VII. CONCLUSIONS

In this paper we considered the recent optimization frame-

work based on distributed sub-gradient methods proposed

in [1], and later extended in [2]. We pointed out that existing

convergence results for this framework can be applied to DTNs

only in the case of synchronous node operation and in the

presence of simple random meeting processes without memory.

Therefore, we addressed both these issues: first, we proved

convergence to optimality of the sub-gradient optimization

technique under a more general class of mobility processes

5Concerns about the convergence rate of such estimates are out of the scope
of the present paper and will be addressed in the future research.

and second, we proposed some modifications to the original

sub-gradient algorithm so as to avoid bias problems (i.e.,

convergence towards sub-optimal solutions) when nodes op-

erate asynchronously. Finally, as a case study, we applied the

presented framework to the optimization of dynamic content

dissemination in a DTN. All the provided results confirmed

that the distributed sub-gradient method is an effective and

promising tool for optimization in distributed contexts.
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