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Abstract

In many scenarios network design is not enforced by a central authority, but
arises from the interactions of several self-interested agents. This is the case of
the Internet, where connectivity is due to Autonomous Systems’ choices, but also
of overlay networks, where each user client can decide the set of connections to
establish.

Recent works have used game theory, and in particular the concept of Nash
Equilibrium, to characterize stable networks created by a set of selfish agents. The
majority of these works assume that users are completely non-cooperative, leading,
in most cases, to inefficient equilibria.

To improve efficiency, in this paper we propose two novel socially-aware network
design games. In the first game we incorporate a socially-aware component in the
users’ utility functions, while in the second game we use additionally a Stackelberg
(leader-follower) approach, where a leader (e.g., the network administrator) archi-
tects the desired network buying an appropriate subset of network’s links, driving
in this way the users to overall efficient Nash equilibria.

We provide bounds on the Price of Anarchy and other efficiency measures, and
study the performance of the proposed schemes in several network scenarios, includ-
ing realistic topologies where players build an overlay on top of real Internet Service
Provider networks. Numerical results demonstrate that (1) introducing some incen-
tives to make users more socially-aware is an effective solution to achieve stable and
efficient networks in a distributed way, and (2) the proposed Stackelberg approach
permits to achieve dramatic performance improvements, designing almost always
the socially optimal network.
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1 Introduction

Network design with selfish users has been the focus of several recent works [2, 3, 4, 5, 6, 7],
which have modeled how independent selfish agents can build or maintain a large network
by paying for possible edges. Each user’s goal is to connect a given set of terminals
with the minimum possible cost. Game theory is the natural framework to address the
interaction of such self-interested users (or players). A Nash Equilibrium (NE) is a set of
users choices, such that none of them has an incentive to deviate unilaterally. For this
reason the corresponding networks are said to be stable.

However, Nash equilibria in network design games can be much more expensive than
the optimal, centralized solution. This is mainly due to the lack of cooperation among
network users, which leads to design costly networks.

Actually, the majority of existing works assume that users are completely non-coopera-
tive. However, this assumption could be not entirely realistic, for example when network
design involves long-term decisions (e.g., in the case of Autonomous Systems peering
relations)1. Moreover, incentives could be introduced by some external authority (e.g.,
the overlay administrator) in order to increase the users’ cooperation level.

In this work we overcome this limitation by first proposing a novel network design
game, the Socially-Aware Network Design (SAND) game, where users are characterized
by an objective function that combines both individual and social concerns in a unified
and flexible manner. More specifically, the cost function of each user is a combination of
its own path cost (the selfish component) and the overall network cost, which represents
the social component. A parameter (α) weights the relative importance of the network
cost with respect to the user path cost. Changing the value of α permits to take into
account different levels of social awareness or user cooperation.

We investigate systematically the impact of cooperation among network agents on
the system performance, through the determination of bounds on the Price of Anarchy
(PoA), the Price of Stability (PoS) and the Reachable Price of Anarchy (RPoA) of the
proposed game. They all quantify the loss of efficiency as the ratio between the cost of a
specific stable network and the cost of the optimal network, which could be designed by a
central authority. In particular the PoA, first introduced in [8], considers the worst stable
network (that with the highest cost), while the PoS [2] considers the best stable network
(that with the lowest cost); finally, the RPoA considers only Nash equilibria reachable
via best response dynamics from the empty solution [7]. Hence, PoA and RPoA indicate
the maximum degradation due to distributed users decisions (anarchy), while the PoS
indicates the minimum cost to pay to have a solution robust to unilateral deviations.
Our analytical results show that as α increases, i.e., when users are more sensitive to
the social cost, the PoS converges to 1, i.e., the best stable network is more efficient, as
expected. Surprisingly, an opposite result holds for the worst case. Indeed, for large α
values (highly socially-aware users) the worst stable network can be much more expensive
than the networks designed by purely selfish users.

For this reason, we further propose a Stackelberg approach, the Network Administrator-
Driven SAND game (NAD-SAND), which enables very efficient Nash equilibria, avoiding
worst-case scenarios: a leader (e.g., the network administrator) buys an appropriate sub-
set of the network links (i.e., those belonging to the minimum cost generalized Steiner

1This observation motivates in [5] the study of strong NE, considering coalitions that could take
decisions beneficial to all the members of the group.

2



tree covering all source/destination pairs), inducing the followers (the network users) to
reach an efficient Nash equilibrium.

We measured the performance of the proposed games in several network topologies,
including realistic scenarios where players build an overlay on top of real Internet Ser-
vice Provider networks, and we observed that socially-aware users always generate better
networks. Furthermore, we observed that the proposed Stackelberg approach achieves
dramatic performance improvements in all the considered scenarios, even for small α
values, since it leads most of the times to the optimal (least cost) network. Hence, intro-
ducing some incentives to make users more socially-aware could be an effective solution
to achieve stable and efficient networks in a distributed way.

In summary, the main contributions of this paper are the following:

• the proposition of the Socially-Aware Network Design game, which combines both
individual and social concerns in a unified and flexible manner.

• The determination of bounds on the Price of Anarchy, the Price of Stability and the
Reachable Price of Anarchy of the proposed game.

• The proposition of a Stackelberg game where the network administrator leads the
users to a system-wide efficient equilibrium by buying an appropriate subset of the
network links.

• A thorough numerical evaluation of the proposed games in several realistic network
scenarios, including real ISP topologies.

The paper is organized as follows: Section 2 discusses related work. Section 3 intro-
duces the proposed Socially-Aware Network Design game. Section 4 proposes a greedy
algorithm that implements best response dynamics, which permits to reach a Nash equilib-
rium in the proposed game. Section 5 provides precise bounds on the Price of Anarchy, the
Price of Stability and the Reachable Price of Anarchy for the SAND game. Section 6 de-
scribes the proposed Stackelberg game (the Network Administrator-Driven SAND game),
which enables very efficient Nash equilibria. Section 7 presents numerical results that
demonstrate the effectiveness of the SAND and NAD-SAND games in several realistic
network scenarios. Finally, Section 8 concludes this paper.

2 Related Work

Several recent works focused on network design with selfish users [2, 3, 4, 5, 6, 7].
The so-called Shapley network design game is proposed in [2]. In this game, each of

the k players chooses a path from its source to its destination, and the overall network
cost is shared among the players in the following way: each player pays for each edge a
proportional share of the edge cost, i.e., the edge cost divided by the number of players
that pass through such edge.

Of all the ways to share the social cost among the players, this proportional shar-
ing method enjoys several desirable properties. First, it is budget balanced, in that it
partitions the social cost among the players. Second, it can be derived from the Shap-
ley value, and as a consequence is the unique cost-sharing method satisfying certain
fairness axioms. Third, it admits pure strategy NEs. Specifically, Anshelevich et al.
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showed in [2] that a pure-strategy Nash equilibrium always exists, that PoA = k and
PoS = Hk =

∑k

i=1 1/i = O(ln(k)).
We observe that the Shapley network design game stimulates, to a certain extent, the

cooperation among network users, since there is an incentive for players to share links in
order to reduce their path cost. However, we will demonstrate in the Numerical Results
section that introducing explicitly a socially-aware component in the users’ objective
functions (as we propose in this paper) increases consistently the level of cooperation
among users, thus permitting to design more efficient and stable networks.

The network design model presented in [3] by Anshelevich et al. is general and does
not admit pure Nash equilibria, even for very simple network instances. Briefly, in such
model each player i has a set of terminal nodes that he must connect. A strategy of a
player is a payment function pi, where pi(e) is how much player i is offering to contribute
to the cost of edge e. Any edge e such that

∑
i pi(e) ≥ ce is considered bought (ce being

the link cost). Each player i tries to minimize its total payments,
∑

e∈E pi(e), E being
the edge set.

The authors in [4] have extended the network design model in [2], including weighted
players. But while easy to define, this weighted network design game is challenging to
analyze. In particular, it is shown in [4] that: (1) pure-strategy Nash equilibria exist in
all weighted Shapley network design games with two players, and (2) there are no larger
classes of weighted Shapley network design games that always possess pure-strategy Nash
equilibria.

The works in [5, 6] study the existence of strong Nash equilibria (i.e., equilibria where
no coalition can improve the cost of each of its members) in network design games under
different cost sharing mechanisms. Strong Nash equilibria ensure stability against devia-
tions by every conceivable coalition of agents. More specifically, the authors in [5] show
that there are graphs that do not admit strong Nash equilibria, and then give sufficient
conditions on the existence of approximate strong Nash equilibria.

Furthermore, the problem of designing a protocol that optimizes the equilibrium be-
havior of the induced network game is investigated in [7]. The authors study the design
of optimal cost-sharing protocols for undirected and directed graphs, single-sink and mul-
ticommodity networks, different classes of cost-sharing methods, and different measures
of the inefficiency of equilibria. Moreover, they provide upper and lower bounds on the
best possible performance of non-uniform cost-sharing protocols.

Few works have considered individual and social concerns of user agents while dealing
with different types of networking problems [9, 10].

A proposition that takes into account individual and social benefits has been con-
sidered in [9] in the general context of multi-agent systems, where individual and social
concerns can conflict, leading to inefficient system performance. To address such problem,
the authors have proposed a formal decision making framework, based on social welfare
functions, that combines both social and individual perspectives.

An experimental investigation of the impact of cooperation in the context of routing
games is conducted in [10]. The game is studied considering particular network topologies
(i.e., parallel links and load balancing networks), shared by several users. Each user seeks
to optimize either its own performance or some combination between its own performance
and that of other users, by controlling the routing of its given flow demand.

However, unlike our work, none of the above papers [9, 10] applies these concepts
to the network design game, nor provides a theoretical analysis of the efficiency of the
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achieved Nash equilibria.

3 The Socially-Aware Network Design Game

In this section we illustrate the proposed Socially-Aware Network Design (SAND) game,
motivating the reason to introduce such model.

The SAND game occurs in a directed graph G = (V,E), with vertex set V and
directed edge set E, where each edge e has a nonnegative cost ce, and each player i ∈ I =
{1, 2, . . . , k} is identified with a source/sink pair (si, ti). Every player i picks a path Si

from its source to its destination, thereby creating the network (V,∪iSi) with total cost
equal to

∑
e∈∪iSi

ce, which will be referred to as social cost. We will refer to the path Si

also as the strategy chosen by player i.
This social cost is assumed to be shared among the players in the following way: let xe

denote the number of paths that go through link e; if edge e lies in xe of the chosen paths,
then each player choosing such an edge pays a proportional share πe =

ce
xe

of the cost.

The objective function J i that user i wants to minimize is therefore given by:

J i =
∑

e∈Si

πe + α
∑

e∈∪jSj

ce. (1)

The first term takes into account the selfish nature of each player, since it is the cost
for user i to buy the edges belonging to the chosen path, Si; on the other hand, the second
term represents the total network cost (i.e., the social cost), α being a parameter that
permits to give more weight to one component with respect to the other.

An alternative interpretation of objective function (1) is also possible: we can think
that users are completely selfish, but the social-aware term in cost function (1), α

∑
e∈∪jSj

ce,
is imposed by the network operator. The advantage of such approach is that the operator
does not need to solve a large-scale Integer Linear Programming (ILP) problem in order to
optimize the routing choices for every change in the network (either in the topology, link
costs, player locations etc . . . ), but can let the users solve the problem in a distributed
way, converging to a good and stable solution. The social-aware cost can therefore be
imposed, in practice, by the network administrator in order to stimulate the creation of
cheaper networks, as we will detail in the application scenarios illustrated in Section 3.2.

Note that for α = 0 objective function (1) corresponds to that of the Shapley network
design game proposed in [2], which represents a particular case of our proposed game.
Furthermore, in our game, users need only a limited amount of information, which is
exactly equal to that of the Shapley network design game.

The SAND game belongs to the class of potential games, which has been identified
in [11]. Such games are characterized by a real-valued function, Φ, on the strategy vec-
tor (S) which measures exactly the difference in the cost that any player saves if he is the
only player to deviate. Mathematically, if we define:

• S = (S1, S2, . . . , Sk) the vector of players’ strategies,

• S ′
i 6= Si an alternate strategy for some player i,

• S−i the strategy played by all other players than i, and
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• S ′ = (S ′
i, S−i) the vector of players’ strategies where player i switches to alternate

strategy S ′
i, while all other players do not change their strategies S−i,

then a potential game with k players is characterized by a potential function, Φ(S), such
that for any user i we have Φ(S)− Φ(S ′) = J i(S)− J i(S ′).

Potential games have nice properties, such as existence of at least one pure Nash
equilibrium, namely the strategy S that minimizes Φ(S) [12]. Furthermore, in such games,
best response dynamics always converge to a Nash equilibrium.

It is easy to verify that the SAND game is characterized by the following potential
function:

Φ(S) =
∑

e∈E

xe∑

x=1

ce
x
+ α

∑

e∈∪jSj

ce. (2)

We observe that the SAND game is a potential game without being at the same time a
congestion game on the given graph G [13]. In fact, the cost incurred by player i, J i, is not
simply the sum of the costs incurred by such player from each link in the chosen path Si,
but it includes a further term, the total network cost (multiplied by the parameter α.)

Since we have introduced a term proportional to the network cost in the objective
function of each player, we expect that players should design better networks, even though
Section 5 shows that this is not necessarily the case. Before addressing this issue, we
present in the following section a possible asynchronous users operation that implements
best response dynamics and hence converges to a Nash equilibrium.

3.1 Comments

The SAND game can be easily extended to take into account performance metrics com-
monly used in routing problems in communication networks. For example, we can imagine
that users are sensitive not only to link costs but also to the congestion level on each link e,
which we can assume is directly proportional to the number of users (xe) that pass through
such link (like in congestion games [13]).

The extension can be performed adding a third term (a congestion cost) to cost func-
tion (1), which becomes as follows:

Ĵ i =
∑

e∈Si

πe + α
∑

e∈∪jSj

ce + γ
∑

e∈Si

xe

re
(3)

where re is the maximum transmission rate of link e (i.e., the link’s capacity), and γ
is a weight that expresses the user’s sensitivity to congestion costs. The rationale of
adding γ

∑
e∈Si

xe

re
to the cost function is that the congestion cost of using link e increases

with the number of players that choose such link, since the allocated rate ( re
xe
) decreases

accordingly. Each player will therefore minimize its cost function (3), thus trying to avoid
congested links.

The extended SAND game is still a potential game, with the following potential func-
tion:

Φ̂(S) =
∑

e∈E

xe∑

x=1

(
ce
x

+ γ
x

re

)
+ α

∑

e∈∪jSj

ce. (4)
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Therefore, the existence of pure Nash equilibria is guaranteed, as well as the convergence
of best response dynamics.

We note that the best response algorithm illustrated in Section 4 can be extended
straightforwardly to take into account the newly added congestion cost.

Finally, we observe that a natural extension of cost function (3) would be to consider
users with different bandwidth demands (i.e., a sort of weighted game where players can
have different requirements). However, it has been demonstrated in [14, 15] that with
such extension the game is no longer a potential game, and as a consequence pure Nash
equilibria may not exist. Indeed, in [14] the authors illustrate simple scenarios where no
pure Nash equilibrium exists even with very few players and simple network topologies.

3.2 Application Scenarios

This section illustrates some notable application scenarios that can be envisaged for our
proposed game. First of all, we underline that the cost sharing model proposed in the
SAND game is general, and has received a significant attention in the networking commu-
nity [2, 3, 4, 5, 6, 7]; as discussed in the Related Work section, these works have considered
the specific cost sharing function also used in this paper.

Furthermore, our model directly applies to Service Overlay Networks (SONs) [16, 17,
18], which are application-layer networks built on top of the traditional IP-layer networks.
In general, the SON is operated by a third-party overlay network operator that owns a set
of overlay nodes residing in the underlying Internet Service Provider (ISP) domains. The
SON operator must establish overlay links, purchasing them from the underlying ISPs.

In these networks, overlay operators provide a service to users through the creation
of an overlay. A specific application, which will be detailed in the following, is selling
connectivity with some specific guarantees.

In such scenario the overlay operator would buy bandwidth from the underlying ISPs
and sell it to the users (e.g., companies) to connect their sites (for example, creating
Virtual Private Networks). Then, the costs considered in the first term of cost function (1)
are mainly the costs required for reserving some bandwidth from the underlying ISPs,
increased by a given percentage to provide the overlay operator some revenues.

We can expect that negotiating with the underlying ISPs would have some serious
constraints in terms of a) granularity of the purchased bandwidth [17] and b) the possi-
bility to re-negotiate the contract on short time scales. Therefore, the overlay operator
has interest to let the users share as much as possible the same overlay links in order to:

1. reduce the number of contracts it has to manage with the underlying ISPs, and
hence the management costs,

2. take advantage of the multiplexing gain.

Therefore, instead of setting a fixed price for the connectivity service, the overlay
operator could let users choose among different opportunities by making them pay a
specific price that takes into account the real cost of the connection. A possibility is to
make each user pay for each overlay link a share inversely proportional to the number of
users that pass through such link. The interactions among selfish users in such scenario
are captured by the Shapley network design game [2], which is the starting point of our
work.
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As we show in the Numerical Results section, however, the Shapley network design
game can lead to relatively poor performance. Hence the overlay operator cannot find
convenient to set prices according to this kind of allocation, but it can determine the
price for each user including a given percentage (α) of the total network cost. This new
pricing scheme is adopted in our game, whose formulation can correspond to partially
socially-aware players (as the title of our paper suggests) or to selfish players that are
trying to minimize a cost decided by the overlay operator as described above.

Note that the basic formulation of the Shapley network design game proposed in [2]
(and also of our model that is built on it) does not capture a characteristic of the scenario
we are considering. First, the cost of the overlay link is assumed to be constant, inde-
pendently of the number of users, while probably the overlay operator should buy more
bandwidth from the ISP the larger the number of users. However, due to the granularity
issue we mentioned above, the overlay link cost is likely an increasing concave step func-
tion of the number of users. Hence, when a new user joins the system, it would probably
not cause any cost increase if it uses existing links. Clearly, it would be nice to explicitly
have in the model such a cost function, but this would make the general analysis more
complex without bringing more insights in the basic problem.

We observe that we implicitly assumed that users are homogeneous in that they require
the same bandwidth. This is not a real limitation: in fact, in a realistic scenario, also
the overlay operator will provide the bandwidth with a given granularity (e.g., multiple
of Mbps), even if much finer than the underlying ISPs. Hence, as a first approximation,
a user requiring n Mbps can be considered as n users that independently try to choose
n paths. In a large deployed system (with already N ≫ n users), there is not much
difference in the decision of n users requiring 1 Mbps and one user requiring n Mbps.

Other application scenarios of our proposed model include large computer networks,
like the Internet, which are built, operated and used by a large number of diverse and
competitive entities. In this context, several independent service providers (Autonomous
Systems or Internet Service Providers) seek to selfishly optimize the quality and cost of
their own operation. Our work can provide a game theoretic framework for modeling such
interests and the networks they generate, even when some sort of incentives to cooperation
are introduced by external authorities (network administrators, governments etc . . . ).

Finally, note that the congestion component in equation (3), γ
∑

e∈Si

xe

re
, enables our

extended SAND game to model independent routing decisions performed by selfish enti-
ties, which is an important aspect in large telecommunications networks (like the Internet)
with no central authority.

4 Best Response Algorithm

We now describe a simple algorithm that implements best response dynamics, allowing
each user to improve its cost function in the proposed SAND game. Such algorithm,
detailed in the following, is the best response strategy for a user minimizing objective
function (1), assuming other users are not changing their strategies.

We still consider a directed graph G = (V,E), where each edge e has a nonnegative
cost ce. Let S = (S1, S2, . . . , Sk) be a vector of players’ strategies, where Si ⊂ E is a
set of edges that connect the source/sink pair (si, ti). Let us denote by L−i = ∪j 6=iSj

the set of edges used by all players except player i; as a consequence, the set E − L−i
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contains all links that are not used by the set of all players except i. Finally, let ke denote
the number of times that edge e lies in the paths chosen by such players (i.e., all players
except player i).

Algorithm 1 allows user i to determine the best response to all other users’ strategies.
The rationale behind such algorithm is very simple: the link weights are set equal to the
cost incurred by user i to choose them, according to objective function (1).

More specifically, if link e has already been selected by ke players other than i (i.e.,
e ∈ L−i, using the above notation), then the additional cost incurred by player i in using
such link will be equal to Cost(e) = ce

ke+1
, since now there will be ke + 1 players that

pass through such link, and therefore player i will be charged ce
ke+1

for using it. Since
in this case link e is already selected by ke other players, the choice of such link does
not contribute to increase the second term of the cost perceived by user i (α

∑
e∈∪jSj

ce),
which remains the same.

On the other hand, if link e is not selected by any player (i.e., e /∈ L−i), then if user i
chooses such link, it will incur an additional cost equal to ce

1
+ αce = ce · (1 + α), since it

will be the only player using link e, and hence it will pay for its whole cost ce; furthermore,
it will increase the overall network cost by ce (and hence its perceived social cost by αce),
since now such link will be included in the formed network.

Then, the shortest path computed in step 6 corresponds to the choice that minimizes
the user’s cost, and it represents therefore its best response. Note that, if multiple shortest
paths exist with the same cost, the player chooses one of them randomly.

Algorithm 1 Pseudo-code specification for the best response dynamics for the SAND
game

1: if e ∈ L−i then

2: Set Cost(e) = ce
ke+1

3: else

4: Set Cost(e) = ce · (1 + α)
5: end if

6: Compute the least-cost path (using for example the Dijkstra algorithm) with link
costs Cost(e)

7: Set Si equal to the set of links contained in the least-cost path

5 Bounds on the Price of Anarchy, Price of Stabil-

ity and Reachable Price of Anarchy for the SAND

game

In this section, we derive bounds on the Price of Anarchy (PoA), the Price of Stability
(PoS) and the so-called Reachable Price of Anarchy (RPoA) for the Socially-Aware Net-
work Design game, and compare them with the results presented in [2] for the Shapley
network design game. This allows us to determine the worst and best case performance
of our proposed game.
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5.1 Bound on the Price of Anarchy

We now establish a lower bound on the Price of Anarchy for the SAND game, which is
defined as the ratio between the cost of the worst stable network (that with the highest
cost), and the cost of the optimal network.

Proposition 1. In the SAND game, a lower bound on the Price of Anarchy (PoA) is
given by the following expression:

PoA ≥ k(1 + α). (5)

Proof: Let us consider the simple network scenario of Figure 1 with two parallel links,
one of cost equal to 1, the other with an arbitrarily high cost equal to C. Each of the k
players must connect the common source node s to the common destination node t. In
the optimal outcome, each player chooses the lower link, with cost 1, and the cost of the
formed network is obviously 1.

ts

1

C

Figure 1: Two-link network topology: k players must connect the common source node s
to destination node t.

However, this is not the only Nash equilibrium for the SAND game. Let us suppose
that the initial network configuration sees all k users routed over the upper link, with
cost C. It is easy to show that if α ≥ C

k
− 1, no user has a gain to deviate and choose

the link with cost equal to 1. Then, the cost of the network is C. Now if C = k(1 + α),
the above inequality is satisfied, and we obtain that the Price of Anarchy is at least
C
1
= k(1 + α).

5.2 Bound on the Price of Stability

In the following we compute an upper bound on the Price of Stability for the SAND game,
which is defined as the ratio between the cost of the best stable network (that with the
lowest cost), and the cost of the optimal network.

Proposition 2. In the SAND game, the Price of Stability (PoS) is upper bounded by the
following expression:

PoS ≤
Hk + α

1 + α
. (6)

Proof: It is shown in [2, 12] that the function Ψ(S) =
∑

e∈E

∑xe

x=1
ce
x
is an exact potential

function for the Shapley network design game revised in Section 2. Furthermore, it is
shown in [12] that such function satisfies the following inequalities:
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cost(S) ≤ Ψ(S) ≤ Hkcost(S) (7)

where cost(S) =
∑

e∈∪jSj
ce and Hk =

∑k

i=1 1/i is the kth harmonic number.

The potential function of the SAND game, Φ(S), is directly related to that of the
Shapley network design game, Ψ(S). In fact, from expression (2) it can be easily seen
that Φ(S) = Ψ(S) + α · cost(S). Hence, if we replace Ψ(S) = Φ(S) − α · cost(S) in
expression (7), it follows that:

(1 + α)cost(S) ≤ Φ(S) ≤ (Hk + α)cost(S). (8)

Finally, Theorem 19.13 in [12] states that if a potential game with potential func-
tion Φ(S) satisfies the following inequality:

cost(S)

A
≤ Φ(S) ≤ Bcost(S) (9)

with A and B positive constants, then the Price of Stability (PoS) is at most AB.
Therefore, in our problem, we obtain that the Price of Stability is at most Hk+α

1+α
.

5.3 Bound on the Reachable Price of Anarchy

We now derive a bound on the so-called Reachable Price of Anarchy (RPoA), a quantity
defined in [7]. The denominator of this ratio is the cost of the socially optimal network,
which we denote by Copt; the numerator is the largest cost of an equilibrium reachable via
the following process: the k players enter the game one-by-one in an arbitrary order, and
each picks a path of minimum cost (according to objective function (1)), given the choices
of previous players. After all players have entered, the game proceeds exactly as for the
SAND game, with each player re-optimizing its path, given the current strategies of all
other players (using for example the best response algorithm illustrated in the previous
section). When the process reaches a Nash equilibrium (as it must, since it is a potential
game), it stops.

Proposition 3. In the SAND game, the Reachable Price of Anarchy (RPoA) is upper
bounded by the following expression:

RPoA < k
α + 1

α + 1
k

. (10)

Proof: Let Sopt
i define the path from source node si to destination node ti for player i

in the optimal outcome (the least cost network), and let Si denote the path chosen by
player i in its first move in the game. Let C(Sopt

i ) =
∑

e∈S
opt
i

ce and C(Si) =
∑

e∈Si
ce

denote the costs of such two paths.
For the first player that enters the network, the following inequality holds:

∑

e∈S1

πe + α
∑

e∈S1

ce = (1 + α)C(S1) < (1 + α)C(Sopt
1 ).

For the second player, the following inequality holds:
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∑

e∈S2

πe + αC(S1 ∪ S2) <
∑

e∈S
opt
2

πe + αC(S1 ∪ Sopt
2 )

which can also be expressed as follows, observing that C(S1 ∪ Sopt
2 ) < C(S1) + C(Sopt

2 ),
and that

∑
e∈S

opt
2

πe ≤ C(Sopt
2 )

∑

e∈S2

πe + αC(S1 ∪ S2) < (1 + α)C(Sopt
2 ) + αC(Sopt

1 ).

It can be further observed that:

∑

e∈Si

πe ≥
1

k
C(Si),

since in the best outcome, each of the links belonging to the path chosen by player i is
shared by all k players.

If we proceed iteratively, we finally obtain the following inequality:

(α+
1

k
)C(

k⋃

i=1

Si) < (1 + α)
k∑

i=1

C(Sopt
i )

which can be rewritten as follows, observing that
∑k

i=1C(Sopt
i ) ≤ kCopt :

(α +
1

k
)C(

k⋃

i=1

Si) < (1 + α)kCopt.

This allows us to obtain the following result:

C(
⋃k

i=1 Si)

Copt
< k

α+ 1

α+ 1
k

. (11)

Hence, the cost of the network reached after the first move of each of the k players,
C(

⋃k

i=1 Si), is no more than k α+1
α+ 1

k

times the optimal cost, Copt. Since subsequent best

response moves performed by players decrease the potential function value Φ(S) given
by expression (2) (simulating a local search on it), the players will converge to a Nash
equilibrium whose cost is still within k α+1

α+ 1

k

times the optimum.

Therefore, we can conclude that the Reachable Price of Anarchy is at most k α+1
α+ 1

k

.

5.4 Comments

For α = 0 the SAND game is equivalent to the original Shapley network design game.
Indeed, expressions (5) and (6) confirm the results already demonstrated in [2] : PoA = k
and PoS = Hk. In the SAND game, for increasing α values, the upper bound on the PoS
decreases, and tends to 1 for α → ∞ (then also PoS → 1). This can be easily explained
since for α → ∞ the social component of objective function (1) is predominant. In this
limiting behavior, all users share the same utility function, which is the second term of
expression (1); in such a situation, the social network optimum (i.e., the network with the
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minimum total cost) is obviously also a Nash equilibrium, since the objective function of
each single player coincides with the social network cost (multiplied by α).

On the other hand, our lower bound on the PoA increases when α increases. This
corresponds to the (quite counter-intuitive) fact that, in some cases, more socially-aware
users can design less efficient networks. This happens for example in the simple instance
of Figure 1. Such inefficiency is due to the myopic decision criterion: each player only
considers the effect of its own choice (i.e., changing the selected path), without considering
eventual future decisions from the other players.

However, it can be observed from expression (10) that the RPoA of the SAND game
strictly decreases for increasing α values. For large α values (notably, for α → ∞), the
RPoA is less than k. Therefore, if the SAND game is played starting from an empty
network, worst-case scenarios like that illustrated in Figure 1 are eliminated.

Finally, our simulations show that the Nash equilibria reached in the SAND game are,
in average, consistently better than those achieved by the Shapley game, as we will show
in Section 7.

6 The Network Administrator-Driven Socially-Aware

Network Design game

We now illustrate a variation of the SAND game, named the Network Administrator-
Driven SAND (NAD-SAND) game, where a network administrator plays before the users,
and his aim is to drive them to the best Nash equilibrium possible. This is the typical
scenario of a Stackelberg game [19, 20] where the network administrator acts as a leader,
which imposes his strategy on the self-optimizing users that behave as followers.

The NAD-SAND game occurs in the same scenario illustrated in Section 3 for the
SAND game, i.e. in a directed graph G = (V,E), with vertex set V and directed edge
set E, where each edge e has a nonnegative cost ce, and each player i ∈ I = {1, 2, . . . , k}
is identified with a source/sink pair (si, ti).

In the NAD-SAND game, the Network Administrator plays first, choosing a subset of
network links (referred to as Eopt ⊆ E) for which he pays an equal share of their cost,
thus providing an incentive for all other “ordinary” players to choose them. The goal is
to stimulate all other players to build an efficient and stable network.

Then, each player plays exactly the SAND game as described in Section 3, picking a
path from its source node si to its destination ti, minimizing its objective function J i,
given in expression (1).

Since computing the optimal Stackelberg strategy for the Network Administrator is
NP-hard, we present in this paper a simple strategy that achieves consistent performance
improvements. Such approach is implemented via the following heuristic:

1. Given the network topology, the network administrator solves a generalized Steiner
Tree problem [21] as detailed below in Section 6.1, determining the minimum-cost
subnetwork such that the source/destination nodes of each player are connected by
a path. Let Eopt be the set of edges belonging to such optimal subnetwork.

2. The network administrator chooses all links belonging to Eopt, thus offering to share
eventually their cost with the other players. Therefore, using the notation intro-
duced in Section 3, after this step we have xe = 1, ∀e ∈ Eopt (that is, the network
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administrator has already chosen all links that are optimal from a social point of
view).

3. At this point, all the k users play the SAND game exactly as described in Sec-
tion 3, each trying to optimize its own objective function, which is the same of
expression (1).

The rationale behind the proposed NAD-SAND game is the following: the network
administrator tries to motivate all players to use the links that belong to the socially
optimal solution by sharing their cost with network users. We will show in the next
section that such heuristic is very effective, and permits to obtain dramatic performance
improvements with respect to the SAND game.

We observe that the first step of the NAD-SAND game involves solving an NP-
Complete problem, i.e. finding the least-cost network topology that connects all source/
destination pairs (si, ti). However, several efficient heuristics and approximation algo-
rithms have been proposed to solve such problem in a reasonable computation time [21,
22, 23]. In the numerical results presented in the next section we were able to compute ex-
actly the minimum cost generalized Steiner tree using a simple ILP formulation illustrated
in Section 6.1, and solving it with the CPLEX 11 solver [24].

Finally, we observe that as α → ∞, the NAD-SAND game always reaches the minimum
cost network since for each player the cost of choosing any link that does not belong to the
minimum-cost subnetwork (i.e., to Eopt) has an exceedingly large cost. As a consequence,
PoA → 1 as α → ∞.

6.1 Minimum cost generalized Steiner Tree: an exact ILP model

Hereafter we illustrate a simple ILP model that minimizes the total network cost while
assuring full connection of all source/destination pairs (si, ti), ∀i ∈ I.

Let din, i ∈ I, n ∈ V be a parameter denoting source/destination nodes for player i:

din =





+1 if node n is the source node of player i (i.e., n = si)
−1 if node n is the destination node of player i (i.e., n = ti)
0 otherwise

Decision variables of the problem include flow variables xi
nm, i ∈ I, (n,m) ∈ E:

xi
nm =

{
1 if player i chooses link (n,m)
0 otherwise

and link utilization variables ynm, (n,m) ∈ E:

ynm =

{
1 if at least one player passes through link (n,m)
0 otherwise

Finally, let cnm denote the cost of link (n,m).
Given the above definitions, the minimum cost generalized Steiner Tree problem can

be stated as follows:
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min
∑

(n,m)∈E

ynm · cnm (12)

s.t.
∑

m∈V,(n,m)∈E

xi
nm −

∑

m∈V,(m,n)∈E

xi
mn = din ∀n ∈ V, i ∈ I (13)

ynm ≥ xi
nm ∀(n,m) ∈ E, i ∈ I (14)

xi
nm, ynm ∈ {0, 1} ∀i ∈ I, (n,m) ∈ E (15)

The objective function (12) minimizes the total network cost. Constraints (13) impose
the flow conservation in node n for the traffic of each player i; these constraints are the
same as those adopted for classical multicommodity flow problems. Constraints (14) are
coherence constraints imposing that ynm = 1 if at least one player uses link (n,m), i.e. if
at least one of the xi

nm variables is equal to 1. Finally, constraints (15) are the integrality
constraints for the binary decision variables.

6.2 Bound on the Price of Anarchy

We now derive a lower bound on the Price of Anarchy for the NAD-SAND game.

Proposition 4. In the NAD-SAND game, a lower bound on the Price of Anarchy (PoA)
is given by the following expression:

PoA ≥
k

2(1 + α)
(16)

for α ≤ k
2
− 1.

Proof: Let us consider the network scenario illustrated in Figure 2, where each of the k
players must connect the source node si to the common destination node t. Link ν → t
has a cost equal to C, with 2 ≤ C ≤ k.

The minimum cost generalized Steiner Tree is in this case formed by all links si → ν
(with cost zero) and by link ν → t, so that its cost is equal to C. Hence, the network
administrator will choose all these links, which constitute the Eopt set.

In the optimal outcome, each player i chooses the si → ν → t path, and the cost of
the formed network is C.

The NAD-SAND game, however, admits another Nash equilibrium. Let us suppose
that initially all k users are routed over the direct path, si → t, with total cost k. It can
be easily seen that if α ≤ C

2
− 1, no user has a gain to deviate and choose the si → ν → t

path, with cost equal to C.
Then, the cost of the network is k. Now if C = 2(1 + α), the above inequality is

satisfied, and we obtain that the Price of Anarchy is at least k
C
= k

2(1+α)
.

7 Numerical Results

In this section, we report the results obtained by the proposed Socially-Aware Network
Design (SAND) and Network Administrator-Driven SAND (NAD-SAND) games in several
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Figure 2: Parallel link topology: bound on the Price of Anarchy for the NAD-SAND
game.

network scenarios, comparing them both to the Shapley network design game [2] and to
the social optimum. To this end, we consider both randomly generated network instances
and real ISP topologies mapped by the Rocketfuel tool [25, 26]. Random networks are
obtained using a custom generator as well as a degree-based generator (BRITE [27, 28])
to create topologies with a power law distribution of node degrees.

In all cases, we start from the empty network and apply iteratively the best response
algorithm illustrated in Section 4, until a Nash equilibrium is reached.

For each scenario we report the total network cost obtained by the proposed games
for different α values, as well as the optimal network cost (the ILP column), obtained
formulating the generalized Steiner Tree problem [21] with the ILP model illustrated in
Section 6.1, using AMPL [29], and solving it with the CPLEX 11 solver [24].

Solving such problem provides the least-cost network topology that connects all source-
destination pairs, thus representing a term of comparison for the efficiency of the equilibria
reached by our proposed games.

Finally, we evaluated numerically the Price of Anarchy and the Price of Stability
in all our simulation settings, and we found that they are, respectively, always less
than 1.78 and 1.56, hence consistently lower than the bounds provided in Section 5.

7.1 Full-Mesh Topologies

We first consider full-mesh network topologies with 50 nodes randomly distributed on a
1000 × 1000 square area and 20 players (source/destination pairs). The cost of each link
is equal to its length, and the numerical results, averaged over 20 random extractions, are
reported in Table 1. Furthermore, Figure 3 illustrates more precisely the total network
cost achieved by the SAND and NAD-SAND games for α ∈ [0, 10], thus showing in detail
the performance improvements obtained in such range.

The SAND game permits to obtain network equilibria with a cost significantly lower
(approximately 13%) than that obtained with the Shapley network design game (i.e., the
SAND row with α = 0), even though there is still room for improvements, as demonstrated
by the gap existing between the SAND game and the optimal cost (the ILP column).

This gap is filled by the NAD-SAND game, which achieves consistently cheaper Nash
equilibria for all α values (up to more than 30%), including the α = 0 case, thus represent-
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ing a very effective approach also when applied to the original Shapley network design
game. Furthermore, when α is sufficiently large (≥ 5), the NAD-SAND game reaches
exactly the optimum (i.e., the generalized Steiner Tree cost).

We observe that for large α values (i.e., for α ≥ 50) the NAD-SAND game reaches the
optimum, while the SAND game achieves no further cost improvement. This behavior
was observed in all the considered network scenarios, and is due to the fact that for such α
values the selfish component of objective function (1),

∑
e∈Si

πe, becomes negligible with
respect to the socially-aware component, α

∑
e∈∪jSj

ce.

Table 1: Full-Mesh topology with 50 nodes randomly distributed on a 1000 × 1000 area
and 20 players: average network costs for the SAND and the NAD-SAND games. The
optimal network cost is also reported. The cost of each link is set equal to its length.

Game α = 0 α = 1 α = 10 α = 50 α = 100 α = 1000 ILP

SAND 6956.17 6124.62 6037.53 6043.82 6050.94 6046.66
4214.63

NAD-SAND 5718.86 4707.48 4214.63 4214.63 4214.63 4214.63
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Figure 3: Full-Mesh topology with 50 nodes randomly distributed on a 1000 × 1000 area
and 20 players: average network costs for the SAND and the NAD-SAND games (detail
for α ∈ [0, 10]).

7.2 Random Topologies

To generate random network instances, we have implemented a topology generator which
considers a square area with edge equal to 1000, and randomly extracts the position of N
nodes, uniformly distributed on the square area.

As for the network links, which can be bought by players to connect their endpoints,
we consider two alternative choices:

• Random geometric graphs: links exist between any two nodes located within a
range R. The link cost is set equal to its length.
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• Random network model “Uniform”: a given number of links, L, is generated between
randomly extracted couples of nodes. The cost of each link is uniformly distributed
in the 0 to C range (C being the maximum link cost).

Given a random network, 20 random selections of k = 20 source/destination couples
are considered.

Figure 4 shows the networks resulting at the Nash equilibria with the SAND game in a
random geometric graph scenario withN = 50 nodes, rangeR = 500, 20 source/destination
pairs, and two different α values (viz., α = 0 and α = 50).
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(a) α = 0
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(b) α = 50

Figure 4: Nash equilibria obtained by the SAND game in a random geometric network
with 50 nodes, R = 500, 20 source/destination pairs, and different α values (α = 0 and
α = 50).

We observe that for α = 50 the topology is much closer to a tree-like topology than
that obtained by the Shapley network design game (α = 0). This is reflected in the total
network cost, which is equal to 7046.3 for α = 0 and to 5336.2 for α = 50, thus resulting
in a gain of more than 24%.
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Table 2 illustrates the results obtained in the same random network scenario of Fig-
ure 4, with 50 nodes, range R = 500 and 20 source/destination pairs (players). The
results are averaged on 20 source/destination random selections, and also on 5 random
topologies. The table reports the total cost of the network planned by the SAND and
NAD-SAND games, as well as the optimal network cost. Also in this scenario, the SAND
game achieves improved equilibria with respect to the Shapley network design game (up
to 13.2%). The NAD-SAND game outperforms the SAND game, further decreasing the
planned network cost, and reaches, for α ≥ 10, the social optimum.

Figure 5 shows the same numerical results, focusing on the α ∈ [0, 10] range, illustrat-
ing more precisely the performance improvements that occur owing to the socially-aware
component. Also in this scenario it can be observed that the most notable cost reductions
are mainly obtained for α ≤ 5.

Table 3 shows the numerical results obtained using Random network model “Uni-
form” in networks with 100 nodes, L = 2000 links, maximum link cost C = 100 and 20
source/destination pairs. The total network costs are illustrated in the table for both the
SAND and NAD-SAND games, while the ILP column reports the optimal network cost.
Although there is still room for improvement, in this scenario the SAND game approaches
the ILP bound, and consistently improves the quality of network equilibria with respect
to the α = 0 case.

Also in this case, the NAD-SAND game performs better than the SAND game, low-
ering the overall network cost of more than 11%, reaching the socially optimal outcome
for α ≥ 50.
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Figure 5: Random geometric graphs; random networks with 50 nodes, R = 500 and
20 players: average network costs for the SAND and the NAD-SAND games (detail for
α ∈ [0, 10]).
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Table 2: Random geometric graphs; random networks with 50 nodes, R = 500 and 20
players: average network costs for the SAND and the NAD-SAND games. The optimal
network cost is also reported.

Game α = 0 α = 1 α = 10 α = 50 α = 100 α = 1000 ILP

SAND 6567.73 6074.57 5708.95 5724.18 5736.17 5706.09
4213.82

NAD-SAND 5645.44 4675.13 4213.82 4213.82 4213.82 4213.82

Table 3: Random network model “Uniform”; random networks with 100 nodes, 2000 links,
maximum link cost C = 100, 20 players: average network costs for the SAND and the
NAD-SAND games. The optimal network cost is also reported.

Game α = 0 α = 1 α = 10 α = 50 α = 100 α = 1000 ILP

SAND 314.69 294.18 296.38 295.09 295.57 296.48
263.25

NAD-SAND 295.85 274.38 263.70 263.25 263.25 263.25

7.3 Power Law topologies

We further considered BRITE, a degree-based topology generator [27, 28], which was used
to generate power law topologies; the Barabási − Albert model [30] was adopted with
default parameters provided by BRITE.

We generated two different power-law network scenarios: one with 100 nodes and
average node degree equal to 3, which contained about 300 links; the other with 300
nodes and average node degree equal to 5, which contained about 1500 links. The cost of
each link was set equal to its length.

Table 4 reports the corresponding numerical results, including the optimal network
cost obtained solving the ILP model. In this case, the Nash equilibria reached by the
Shapley network design game are already close to the optimum. This is mainly due to
the fact that power law topologies, which result in short characteristic path lengths and
heavy clustering, are the result of social concerns that eventually bring efficiency to the
network design (even though not explicitly expressed in the underlying routing protocols
design).

The SAND and NAD-SAND games, however, permit to improve the efficiency of such
equilibria, finally obtaining the minimum cost network provided by the ILP model.

7.4 Real ISP topologies

Finally, we consider three real ISP topologies mapped using Rocketfuel [25, 26], listed
in Table 5, with an increasing number of nodes and links. Note that Rocketfuel does
not provide link capacities for these topologies, thus preventing the application of the
extended SAND model illustrated in Section 3.1.

Table 6 shows the results obtained in such topologies, that is, the total network costs as
well as the optimal network costs obtained solving the ILP model. The link costs are those
provided by Rocketfuel, and we performed 20 random selections of 20 source/destination
pairs.

In the small-size Telstra topology, the equilibria found by the SAND game (as well as
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Table 4: Power law topologies generated using BRITE: average network costs for the
SAND and the NAD-SAND games. The optimal network cost is also reported.

100 nodes
Game α = 0 α = 1 α = 10 α = 50 α = 100 α = 1000 ILP

SAND 15980.20 15684.28 15596.31 15593.69 15593.43 15602.21
15314.14

NAD-SAND 15479.98 15314.14 15314.14 15314.14 15314.14 15314.14

300 nodes
Game α = 0 α = 1 α = 10 α = 50 α = 100 α = 1000 ILP

SAND 22580.82 22312.27 22224.65 22210.97 22210.55 22210.55
21927.41

NAD-SAND 22052.06 21987.68 21927.41 21927.41 21927.41 21927.41

Table 5: Rocketfuel-inferred ISP topologies: number of network nodes and links.
Network Location Nodes Links
Telstra AU 108 306

Sprintlink US 141 748
Abovenet US 315 1944

those of the Shapley network formation game) are very close to the optimum, which is
reached by the NAD-SAND game for α ≥ 50. As for the other ISP topologies, the SAND
game diminishes the total network costs, and approaches the optimal ILP solution, while
the NAD-SAND game always plans cheaper networks, achieving the optimal outcome
already for relatively small α values.

Table 6: Rocketfuel topologies, 20 source/destination pairs: average network costs for the
SAND and the NAD-SAND games. The optimal network costs are also reported.

Network Game α = 0 α = 1 α = 10 α = 50 α = 100 α = 1000 ILP

Telstra
SAND 165.55 164.55 163.15 163.10 163.10 163.10

157.95
NAD-SAND 163.25 160.70 158.55 157.95 157.95 157.95

Sprintlink
SAND 286.25 282.60 280.90 280.30 280.30 280.30

255.60
NAD-SAND 270.30 263.35 256.85 255.65 255.60 255.60

Abovenet
SAND 301.30 292.65 287.45 287.45 287.05 287.05

261.55
NAD-SAND 282.95 272.50 262.10 261.55 261.55 261.55

A final interesting point that we would like to mention is the resilience of the proposed
network design game solutions to link failures. In particular, for the three ISP scenarios
described above we individuated the most congested link (i.e., the one used by the largest
number of players), dropped it and recomputed new equilibria. It turns out that the
new network costs in all the cases are at most 2% higher than the costs of the original
networks.
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8 Conclusion

In this paper we proposed the Socially-Aware Network Design game, a novel network
formation game where users are characterized by an objective function that combines
both social and individual concerns in a unified and flexible manner.

We studied the efficiency of the Nash equilibria achieved by the proposed game, pro-
viding bounds on the Price of Anarchy, the Price of Stability and the Reachable Price
of Anarchy. Our analytical results show that when users are more sensitive to the social
cost, the best stable network is more efficient. However, an opposite result holds for the
worst case, since highly socially-aware users can design stable networks that are much
more expensive than the networks designed by purely selfish users.

For this reason, we further proposed the Network Administrator-Driven SAND game,
where the network administrator implements a link building strategy that drives users to
the “best” Nash equilibrium in terms of system performance, thus architecting the desired
network.

We measured the performance of our proposed games in several network scenarios,
including real ISP topologies, and we showed how they outperform classical network
formation games (like the Shapley network design game), often obtaining the socially
optimal outcome.

Such results demonstrate that introducing incentives to make users more socially-aware
can be a very effective solution to achieve stable and efficient networks in a distributed
way. Furthermore, if incentives are deployed, the intervention of a network administra-
tor can lead to dramatic performance improvements, as demonstrated by our proposed
Stackelberg game.
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