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Abstract

This paper studies the weight optimization problem for agerconsensus protocols, by reformu-
lating the problem to a Schatten norm minimization with pagterp. We show that ap approaches
infinity, the optimal solution of the Schatten norm inducedljjem recovers the optimal solution of the
original problem. Large obtains matrices with faster consensus, but requires méoemation at each
step of the algorithm. By tuning the paramepein our proposed minimization, we can simply trade-off
the quality of the solution (i.e., the speed of convergefi@erommunication/computation requirements
(in terms of number of messages exchanged and volume of datagsed). We then propose a distributed
implementation for the Schatten norm minimization and wewslthat this algorithm outperforms the

existing methods.

I. INTRODUCTION

A network is formed of nodes (or agents) and communicatiokslithat allow these nodes
to share information and resources. We consider each nhaudehe network to have a scalar
z;(0) € R called estimate that they can maintain in their local memémerage consensus
protocols are algorithms that by only neighbor to neighbmmmunication can allow nodes to

reach consensus on the average of all initial estima?@%i@). Consensus algorithms are used
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in many applications and distributed control problems fiffiecent and various systems [1], [2],
and [3]. For a complete overview of consensus protocols Viex the reader to [4], [5], [6], [7]
and the references therein.

An iterative algorithm for achieving the average consensubke following: at iteratiork + 1,
node: updates its state value as follows:

zi(k+ 1) = wyai(k) + Y wia;(k), @
JEN;

where; is the set neighbors of nodew;; is the weight selected by noddor the value sent

by its neighborj and w;; is the weight selected by nodefor it own value. We can put the
weights in ann by n matrix W wheren is the number of nodes in the network. Necessary and
sufficient conditions for system (1) to converge startirggrfrany initial condition [8] is to select
W1=1,1"W =17, andu(W) < 1 where1 is the vector of all ones and(1V) is the second
largest eigenvalue dfi” in module.

Xiao and Boyd in [8] formulated a general Fastest Distributégear Averaging (FDLA)
problem as a non-convex optimization to find that guarantees fastest convergence. They
showed that if a symmetric weight matrix is considered, ttiensymmetric FDLA problem can
be formulated as a Semi-Definite Program (SDP) that can hveddly a centralized unit using
interior point methods. Kinet al. in [9] approximate the general FDLA using tlagh-order
spectral norm (2-norm) minimizatioSNM). For a symmetric weight matrix, the solution of
the ¢-SNM is equivalent to that of the symmetric FDLA problem. rhegorithm is centralized
and has a more expensive complexity than the SDP. Therefohang the problem of optimal
weight selection in a distributed way is still an open praohle

In this paper we study distributed techniques to optimalyest the weights of average
consensus protocols. We address the problem of selecengdlghts in a given network in order
to have a fast speed of convergence for these protocols. Wexamate the problem of optimal
weight selection by the minimization of the Schatgenorm of a matrix with some constraints
related to the connectivity of the underlying network. Werthprovide a totally distributed
gradient method to solve the Schatten norm optimizatioblpro. By tuning the parameterin
our proposed minimization, we can simply trade-off the guaif the solution (i.e., the speed
of convergence) for communication/computation requinei®€in terms of number of messages

exchanged and volume of data processed). The theoretictlmdion of this paper is as follows:



we formulate a new optimization problem (the Schatten noimmmzation) for weight selection
problem of average consensus, then we show that the fordufabblem is an approximation
of the optimal weight selection problem, and finally we shdattthe Schatten norm problem
can be implemented in a totally decentralized fashion. &timn results on random graphs and
on real networks show that our approach provides very gooinpeance already for values of
p that only needs limited information exchange.

The paper is organized as follows: In section Il we give th&aton used across the paper.
In section Ill we propose Schattgirnorm minimization as an approximation of the original
problem and in section IV we show how its solution can be caexbin a distributed way and
evaluate its computation and communication costs. Ses#ticompares the performance of our
algorithm and that of other known weight selection algenghon different graph topologies.

Section VI summarizes the paper.

I[I. NOTATION

The network is considered as an undirected graph: (V, E) whereV is the set of nodes
(V =1,...,n), the E is the set of edgesi{( = 1,...,m, and(i,j) € E if nodes: andj are
neighbors and can communicate). We denotesbthe vector of dimensions: x 1, whosel-th
elementw; is the weight associated to link then if i ~ (¢, 7) it holds w; = w;; = w;;. A is
the adjacency matrix of grapy, i.e.,a;; = 1 if (i,j) € E anda;; = 0 otherwise.Cs is the
set of all realn x n matricesM corresponding to graply, i.e., m;; = 0 if (i,j) ¢ E. D is
a diagonal matrix where;; (or simply d;) is the degree of nodé in the graphG. 7 is the
n x m incidence matrix of the graph, such that for edch (i,j) € £ Z;, = +1 andZ;, = —1
and the rest of the elements of the matrix are niliis the laplacian matrix of the graph, so
L = D — A. It can also be seen thdt = ZZ”. Then x n identity matrix is denoted by,,.
Given thatl¥ is real and symmetric, it has real eigenvalues (and then theybe ordered).
We denote by\; the i-th largest eigenvalue df’, and byu the largest eigenvalue in module
non considering\, i.e., u = max{\y, —\, }. o; is the i-th largest singular value of a matrix.
Tr(X) is the trace of the matriX andp(X) is its spectral radiug|X||,, denotes the Schatten
p-norm of matrixX, i.e., [|X||,, = (3, 0F)/?. Finally we use the symbd}: f(X), where f
is a differentiable scalar-valued functigii.X') with matrix argumentX € R™*", to denote the

n X m matrix whose(, j) entry is %ﬁ?.



[11. SCHATTEN NORM MINIMIZATION

The problem of finding the weight matrix that guarantees #seist convergence can be

formalized as follows (see [8]):

Argmin  p(W)
v (2)
subjectto W =W* W1=1 W e,

where the last constraint on the mat#iX is derived from the assumption that nodes can only
communicate with their neighbors and then necessarily= 0 if (i, j) ¢ E. Problem 2 is called
in [8] the “symmetric FDLA problem”.

The above minimization problem is a convex one and the fangt{1V") is non-smooth convex
function. It is convex since whel is a symmetric matrix, we have(W) = p(W — G,) =
[|W — Gi||2 which is a composition between an affine function and the eonwatrix L-2
norm function[10]. The function:(W) = p(W — G,) is non-smooth since the spectral radius
of a matrix is not differentiable at points where the eigémea coalesce [11]. The process of
minimization itself in (2) tends to make them coalesce atsbiletion.

We change the original minimization problem in (2) by comesidg a different cost function
that is a monotonic function of the Schatten Norm. The mination problem we propose is

the following one:

Argmin  f(W) = [[W][7,
W (3)
subjectto W =W7T, W1=1, W € Cq,

wherep is an even positive integer. The following result estaldgsthat (3) is a smooth convex
optimization problem and also it provides an alternativpregsion of the cost function in terms

of the trace ofiV/?. For this reason we refer to our problem alsoTasce Minimization(TM).

Proposition 1. f(W) = [[W][p, = Tr(W?) is a scalar-valued smooth convex function on its

feasible domain whep is an even positive integer.

Proof: We have T(IWV?) = 3" | A’. SincelV is symmetric, its non-zero singular values are

" o?. Therefore,

=11

the absolute values of its non-zero eigenvalues [12].isfeven,y " | XV = >
Tr(W?) = [[W][3,.



The Schatten norrjiV||,,, is a nonnegative convex function. Hentés convex because it is
the composition of a non-decreasing convex function—fonct? wherex is non-negative—and
a convex function [10].

The function is also differentiable and we have

d
P P) — p—1
i TPy = pie (4)

(see [13, p. 411)). [ |
We now illustrate the relation between (3) and the optinmza(2). The following lemmas

will prepare the result:

Lemma 1. For any symmetric weight matri¥” whose rows (and columns) sum tand with
eigevalues\; (W) > Ao (W) > --- > X\, (W), there exist two integer&; € {1,2,...n—1}, K, €
{0,1,2,...n — 1} and a positive constant < 1 such that for any positive integefsand ¢

wherep = 2q we have:

1+ 7(W)PKy < Tr(W?) <1+ 7(W)P(K; + KeaP), (5)
where
) = p(W) = max{\ (W), A (W)} if p(W) > 1, ©)
p(W) = max{ A (W), =A.(W)} if p(W) < 1.
Proof: Due to space limits the proof is presented in [14]. [ |

We now show that the the Schattgreptimization problem (3) gives a stable matrix.

Lemma 2. Let us denote byV(,, the solution of the minimization proble(8). If the graph of

the network is strongly connected therQW(p)) < 1 for p sufficiently large.

Proof: Due to space limits the proof is presented in [14]. [ |

We are now ready to state our main results by the followinggstion:

Proposition 2. If the underlying graph is connected, then the solution & 8chatten Norm
minimization problen{3) satisfies the consensus protocol convergence conditionssiafficiently
large. Moreover ag approachesxo, this minimization problem is equivalent to the minimiaati

problem(2) (i.e., to minimize the second largest eigenvalf@’)).

Proof: Due to space limits the proof is presented in [14]. [ ]



Proposition 3. The Schatten Norm minimizati¢B) is an approximation for the original prob-

lem (2) with a guaranteed error bound,

lt(Wisppy) — (W) < w(Wispr)) % €(p),

wheree(p) = (n — 1)¥/? — 1 and whereWspp) and W, are the solutions of(2) and (3)

respectively.

Proof: Due to space limits the proof is presented in [14]. [ |

Remark: Comparing the results of Schatten Norm minimization (3) wiih original problem
(2), we observe that on some graphs the solution of problemalf@ady forp = 2 gives
the optimal solution of the original problem (2); this is fexample the case for complete
graphst However, on some other graphs, it may give a weight matrix de@s not guarantee
the convergence of the consensus protocol because theddacgest eigenvalue is larger than or
equal tol (the other convergence conditions are intrinsically §atly. Nevertheless, a suitable
projection of the matrix on the set of stable matrices can dedn distributed way (see our

technical report [14] for more details).

IV. ADISTRIBUTED ALGORITHM FOR SCHATTEN NORM MINIMIZATION

Given that problem (3) is smooth and convex, it can be solyeidterior point methods which
would be a centralized solution. In this section we are gomghow a distributed gradient-type
algorithm to solve problem (3).

By distributed algorithm we mean an algorithm where each nodlg needs to retrieve
information from a limited neighborhood (possibly largéam V;) in order to calculate the
weights on its incident links. The constraifit = W7 in the optimization requires any two
neighborsi and; to choose the same weight on their common lirk (¢, j) i.e.,w;; = w;; = w;.
The last conditioniV’1 = 1 means that at every nodethe sum of all weights on its incident
links plus its self-weightw;; must be equal to one. This condition is satisfied if nhodes shoo

first weights on links, and then adapt consequently thefrvgeights w;;. Moreover these two

1This can be easily checked. In fact, for any matrix that guaranteegemmence of average consensus protocol, it holds
w(W) >0 and T(W?) > 1 (because is an eigenvalue ofV’). The matrix}¥ = 1/n117 (corresponding to each link having
the same weight /n) has eigenvalue$ and 0 with multiplicity 1 andn — 1 respectively. Them(W) =0 and TI(WQ) =1.

It follows that 1/ minimizes both the cost function of problem (2) and (3).



constraints lead to the possibility to writ&’ as follows:W = I — 7 x diag'w) x ZT, where
w € R™ is the vector of all the weight linksy;, [ = 1...m. It follows that Schatten Norm

minimization (3) is equivalent to the following unconstrad problem:
minimize h(w) = Tr ((I — Z x diaglw) x Z")?).. (7)

We will give a distributed algorithm to solve the Schattenridaninimization (3) by applying
gradient techniques to problem (7). Since the cost fundiiooptimize is smooth and convex
as we proved in Proposition 1, if the gradient technique eayes to a stationary point, then it

converges to the global optimum. The gradient method usesithple iteration:

w* D = ® 068

where 4 is the stepsize at iteratioh and g{*) is the I-th component of the gradient®
of the functionh(w). At every iterationk, starting with a feasible solution for link weights,

wl(k), we calculate the gradierytl(k) for every link, and then we obtain a new weight value

wl('““). There are different conditions on the functibf) and on the stepsize sequence that can
guarantee convergence (see for example [15]). In our casejeaare interested in distributed
implementation of the gradient method, careful selectiboamvergence conditions is required
because the functiol(.) does not satisfy some conditions (e.qg., Lipschitz contynoii a bounded
gradient), or because stepsize calculation would requineesglobal knowledge (e.g., the value
of the functionh(.) or the module of its gradient). We will then add a further ¢aaist, looking

for a solution in a setX, and we will consider the following projected gradient noeth
wktD) = Py (wh) — 4(0g®))

where Px () is the projection on the seX. We will show that by a particular choice of and
~*) the method converges to the solution of the original probleloreover, all the calculations
can be performed in a distributed way on the basis of locaivkedge. In particular, we will
show that:
« nodes incident td are able to Calculatgl(k) using only information they can retrieve from
their (possibly extended) neighborhood;
. the stepsize sequeneé”) is determined a priori and then nodes do not need to evaluate

the functionh or any other global quantity to calculate it;



« the projection on seX can be performed component-wise, and locally at each node;
. the global convergence of the projected gradient methodiasamteed.
We will start by g, and show that it only depends on information local to nodasd j incident
to the link [ ~ (4, 7), then we will discuss the choice of the stepsiz€ and of the projection
setX.

A. Locally Computed Gradient

Consider the linkl ~ (7, j), sincew; = w;; = w;; andw; =1 — ZseN,- w;s, We have:
4

+1 ifs=iandt=j

+1 if s=jandt=1
dwst

do, — ) ! ifs=iandt=i (8)
W

-1 ifs=jandt=

\O else.

The gradienty;, of the functioni(w) for [ ~ (¢, j) can be calculated as follows:
_ di(w)
g = dw;

_df(W)|w=r-zxdiagw)x17
n dwl

. Z 8f dwst
n — Owg dwy

N 8wij dwl 8wji dwl 3w“ d’LUl 8wjj dwl

of L of of  of

J J 17

= p((WP )5+ (WP )y — (WP )i — (WPH)5). ©)

In the last equality we used equation (4).

It is well know from graph theory that if we considé¥ to be the adjacency matrix of a
weighted graph’, then (W?),; is a function of the weights on the edges of the j walks
(i.e., the walks fromy to j) of length exactlys (in particular if the graph is unweightedi’®),;
is the number of distinct — j s-walks [16]). Since for a giverp the gradientg;, [ ~ (i,7),

depends on thdii, j7,i7,7i} terms of the matriX¥?~!, g, can be calculated locally by using



only the weights of links and nodes at mdsthops away fromi or 4.2 Practically speaking,
at each step, nodesand j; need to contact all the nodes up #¢2 hops away in order to
retrieve the current values of the weights on the links os¢heodes and the values of weights
on the nodes themselves. An advantage of our approach ig {havides a trade-off between
locality and optimality. In fact, the larger the parametgthe better the solution of problem (3)
approximates the solution of problem (2), but at the same tine larger is the neighborhood
from which each node needs to retrieve the information. When2, theng, wherel ~ (i, j)
only depends on the weights of subgraph induced by the tweswdnd j. For p = 4, the
gradientg, depends only on the weights found on the subgraph inducethdgdt of vertices

N; UN;, then it is sufficient that nodesand ; exchange the weights of all their incident links.

B. Choice of Stepsize and Projection set

The global convergence of gradient methods (i.e., for amjaircondition) has been proved
under a variety of different hypotheses on the functioto minimize and on the step size
sequencey®), In many cases the step size has to be adaptively selecteleobasis of the
value of the function or of the module of its gradient at therent estimate, but this cannot be
done in a distributed way for the function(w). This leads us to look for convergence results
where the step size sequence can be fixed ahead of time. Mor#ws usual conditions, like
Lipschitzianity or boundness of the gradient, are not Batsby the function.(.) over all the
feasible set. For this reason we add another constraintrtorayinal problem (7) by considering
that the solution has to belong to a given convex and compct sBefore further specifying

how we choose the séet, we state our convergence result.
Proposition 4. Given the following problem
minimize  h(w) = Tr (({ — Z x diag(w) x Z")?) ,
subjectto we X (20)

where X C R™ is a convex and compact set,Nf, 7*) = co and ), (7(’“))2 < o0, then the

2If a link or a node is more thap/2 hops away both from nodieand nodej, then it cannot belong to & j walk of length

p-
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following iterative procedure converges to the minimunhoh X:
Wit = Py (W) — 4 0Igk)) (11)

where Px(.) is the projection operator on the séf and g* is the gradient ofs evaluated in

wk),

Proof: The functionk is continuous on a compact sat, so it has a point of minimum.
Moreover also the gradierg is continuous and then bounded oh The result then follows
from Proposition8.2.6 in [17, pp. 480]. [ ]

For exampleny® = a/(b + k) wherea > 0 andb > 0 satisfies the step size condition in
Proposition 4.

While the convergence is guaranteed for any.Jsetonvex and compact, we have two other
requirements. First, it should be possible to calculatepitmgection Py in a distributed way.
Second, the sek should contain the solution of the optimization problem @&bout the first
issue, we observe that X is the cartesian product of real intervals, i.e. Xf = [a1,b;] X
las, bo] X ... [am,by], then we have that theth component of the projection okl of a vector

y is simply the projection of thé-th component of the vector on the interval, b/, i.e.,

a; Iy < ay,
[Px(Y)l; = Pao)() =y if ay <y < by, (12)
bl if bl < Y.

Then in this case EqQ. (11) can be rewritten component-wise as

k k k
Wi = P (w? — W),

We have shown in the previous section thatan be calculated in a distributed way, then the
iterative procedure can be distributed. About the secosukissince we have from the bound of
matrix norms (see [13])

W oo < p(W), (13)

where ||IV||» = max;; |w;;|. Then we can choos& in such a way that we include in the
feasibility set all the weight matrices with spectral radat mostl.
A consequence of inequality (13) is that if we chodse= [—1,1]" the weight vector of

the matrix solution of problem (2) necessarily belongsXo(the weight matrix satisfies the
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convergence conditions). The same is true for the solutfoprablem (7) forp large enough

because of Proposition 2. The following proposition sunineg our results.

Proposition 5. If the underlying graph is connected, then the following ribsted algorithm

converges to the solution of the Schatten norm minimizgiroblem forp large enough:
wl(kH) = P[_Ll](wl(k) — V(k)gl(k)), Vi=1,...,m, (14)

whereY", 7 = 0o and ¥, (YM)* < .

Remark: If p is larger than twice the diameter of the graph, then eachtageguires the
information of all other agents, and this requirement istrigis/e. But we would directly
implement the centralized version of the Schatten normmigation that is still more scalable
than the (necessarily centralized) solution of the orig8aP problem (only feasible for graphs

of few thousands of links).

C. Complexity of the Algorithm

Our distributed algorithm for Schatten Norm minimizatioaquires to calculate at every
iteration, the stepsize®), the gradienyl(k) for every link, and a projection on the feasible 3ét
Its complexity is determined by the calculation of link giextt ¢;, while the cost of the other op-
erations is negligible. Far = 2, g, = 2x (2W;;—W;;—W;;), so the computational complexity for
nodes is negligible, but the communication complexity imessage carrying a single real value
(wi;) per link, per node and per iteration. FoE= 4, g, = 4((W3);;+ (W3);; — (W3);; — (W3) ),
and as discussed in the previous section, each of the 4 tenmigeccalculated only locally from
the weights within 2-hops from or j. The computational complexity for calculating is in
the worst case)(A®) where A is the largest degree in the network. In order to calculate
locally, the communication complexity would be to send twessages per link per node and
per iteration. The first message carries at mbstalues (the weight vectow;) and the second
message carries one real val@@7¢);;). Due to space limit, we refer the reader to the technical

report [14] for details on both computational and commutcacosts.

V. PERFORMANCEEVALUATION

In this section we evaluate the speed of convergence of neasegrotocols when the weight

matrix W is selected according to our algorithm. We compare with rotligtributed approaches
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(see [18], [8]): max degree weights (MD)u( = m Vi = 1,...,m), local degree
(metropolis) weights (LD) ), = m I~ (i,j) ¥Yl=1,...,m), and optimal constant
weights (OC) (v, = m Vi=1,...,m).

As we have discussed in section lll, this speed is asympibticetermined by the second
largest eigenvalue in absolute valygl’)). The simulations are done on random graphsbErd
Renyi (ER) graphs and Random Geometric Graphs (RGG), givenhbgtare connected. The
random graphs are generated as following :

« For the ER random graphs, we start franmodes fully connected graph, and then every link
is removed from the graph by a probability- ¢ and is left there with a probability. We
have tested the performance for different probabilitiegven that the graph is connected.

« For the RGG random graphs, nodes are thrown uniformly at random on a unit square
area, and any two nodes within a connectivity radiugre connected by a link. We have
tested the performance for different connectivity radiiegi that the graph is connected. It

is known that for a small connectivity radius, the nodes temébrm clusters.

A. Comparison with the optimal solution

We first compare: (W(p)) of the solutionl¥(;,, of the Schatten p-norm (or Trace) minimization
problem (3) with its minimum value obtained solving the syetnit FDLA problem (2). To this
purpose we used théVvX solver ([19]). This allows us also to evaluate how well peshl(3)
approximates problem (2) for finite values of the parametefhe results in Fig. 1 have been
averaged ovet00 random graphs witl20 nodes generated according to the Erdos-Renyi (ER)
model, where each link is included with probabiligye {0.2,0.3,0.4,0.5}. We see from the
results that as we solve the trace minimization for langethe asymptotic convergence speed

of our approach converges to the optimal one as proven inoBitgmn 2.

B. Other distributed approaches: Asymptotic Convergende Ra

We compare now our algorithm for= 2 and p = 4 with other distributed weight selection
approaches. Fig. 2 shows the results on connected RandomeBan@raphs (RGG) with 00
nodes for different values of the connectivity radiusNe provide 95% confidence intervals by
averaging each metric ovéfn0 different samples. We see in Fig. 2 that on RGG jiet 2 and
p = 4 the TM algorithm reaches faster convergence than the oti@wik algorithms even when
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ER n=20 variable q (probability of 2 nodes to be neighbors)

HFDLA
0.8 [Jt™Mp=2

™™ p=4
0.7} ™™ p=8

™™ p=12
0.6r Il ™™ p=20

I
3

I
IS

Second largest eigenvalue in magnitude
of the weight matrix

Fig. 1. Performance comparison between the optimal solution of the FoBlem (labeled FDLA) and the approximated

solutions obtained solving the Schatten Norm minimization for different gabie (labeled TM).

RGG n=100 variable r (connectivity radius)

0.99r

o
©
@
a

o
©
®

o
©
3
3

Second largest eigenvalue in magnitude
of the weight matrix

-=-MD
097f |+ OC
=D
0.965f |—e—TMp=2
=% TM p=4
0.96
0.955

0.1357 0.1517 0.1858 0.2146
r

Fig. 2. Performance comparison between Schatten Norm minimization {@Mb = 2 andp = 4 with other weight selection
algorithms on RGG graphs.

the graph is well connected (large connectivity radius)wehleer, the larger the degrees of nodes,
the higher the complexity of our algorithm. Interestinglyee performing trace minimization for
the smallest valug = 2 nodes are able to achieve faster speed of convergence tleantralized

solution like the OC algorithm.

C. Communication Complexity of Local Algorithms

As the Schatten norm minimization problem itself may takerggltime to converge, whereas
other heuristics can be obtained instantaneously, the lesityp of the optimization algorithm

can affect the overall procedure. We investigate in thisi@e¢he communication complexity for
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Communication Complexity of Local Algorithms
(RGG n=100 r=0.1517)

-B-MD (y=30+1674.12x)
A LD (y=2+1290.24x) ‘
e TM p=2 (y=66.22+1184.12x) A

——TM p=4 (y=1388.28+1014.16x) @

[

o

S O

o o

S &
T T

number of messages per link

o 1 2 3 4 5 6 7 8 9 10 11
Number of consensus rounds

Fig. 3. Communication overhead of local algorithms. The figure shoutstiie Schatten norm algorithrii'{/ p = 4) provides
better communication overhead than other local algorithms for netwadnksevtopology is not changing very often, whilé./

p = 2 provides better communication overhead than other local algorithmseterorks used less than 8 rounds.

optimizing the weights by the Schatten norm algorithm sgtgpkin this paper and other local
weight selection algorithms on RGG witl)0 nodes and connectivity radils1517. For each
algorithm, the weights are calculated before starting thesensus rounds. The communication
overhead of the local algorithms is plotted in Fig. 3. The fegghows the total number of
messages transmitted on a link at each round, consideritigthose needed to calculate the
weights and those needed to determine the average with a greeision. Theél'M algorithms
have high initial communication overhead (due to the sloweogence of the gradient method
for weight calculation), but then the more the consensuadswve have the more the messages
are saved in comparison to the simpler methods. Note thaashmptotic results are reflected
in the slopes of the lines. As the figure shows, if the netwsrkised for less tha® times the
TM p = 2 is recommended, while for networks that have a topology hainging very often
the TM p = 4 should be selected.

VI. CONCLUSION

We have proposed in this paper an approximated solutiomé&FDLA problem by minimizing

the Schattemp-norm of the weight matrix. Our approximated algorithm cemges to the solution
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of the FDLA problem a® approaches infinity, and in comparison to it, has the adganta be

suitable for a distributed implementation. Moreover, damtions on random and real networks

show that the algorithm outperforms other common distaulgorithms for weight selection.
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