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Abstract

This paper studies the weight optimization problem for average consensus protocols, by reformu-

lating the problem to a Schatten norm minimization with parameterp. We show that asp approaches

infinity, the optimal solution of the Schatten norm induced problem recovers the optimal solution of the

original problem. Largep obtains matrices with faster consensus, but requires more information at each

step of the algorithm. By tuning the parameterp in our proposed minimization, we can simply trade-off

the quality of the solution (i.e., the speed of convergence)for communication/computation requirements

(in terms of number of messages exchanged and volume of data processed). We then propose a distributed

implementation for the Schatten norm minimization and we show that this algorithm outperforms the

existing methods.

I. I NTRODUCTION

A network is formed of nodes (or agents) and communication links that allow these nodes

to share information and resources. We consider each nodei in the network to have a scalar

xi(0) ∈ R called estimate that they can maintain in their local memory. Average consensus

protocols are algorithms that by only neighbor to neighbor communication can allow nodes to

reach consensus on the average of all initial estimates (
∑

i xi(0)

n
). Consensus algorithms are used
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in many applications and distributed control problems for different and various systems [1], [2],

and [3]. For a complete overview of consensus protocols we refer the reader to [4], [5], [6], [7]

and the references therein.

An iterative algorithm for achieving the average consensusis the following: at iterationk+1,

nodei updates its state valuexi as follows:

xi(k + 1) = wiixi(k) +
∑

j∈Ni

wijxj(k), (1)

whereNi is the set neighbors of nodei, wij is the weight selected by nodei for the value sent

by its neighborj and wii is the weight selected by nodei for it own value. We can put the

weights in ann by n matrix W wheren is the number of nodes in the network. Necessary and

sufficient conditions for system (1) to converge starting from any initial condition [8] is to select

W1 = 1, 1TW = 1T , andµ(W ) < 1 where1 is the vector of all ones andµ(W ) is the second

largest eigenvalue ofW in module.

Xiao and Boyd in [8] formulated a general Fastest DistributedLinear Averaging (FDLA)

problem as a non-convex optimization to findW that guarantees fastest convergence. They

showed that if a symmetric weight matrix is considered, thenthe symmetric FDLA problem can

be formulated as a Semi-Definite Program (SDP) that can be solved by a centralized unit using

interior point methods. Kimet al. in [9] approximate the general FDLA using theqth-order

spectral norm (2-norm) minimization (q-SNM). For a symmetric weight matrix, the solution of

the q-SNM is equivalent to that of the symmetric FDLA problem. Their algorithm is centralized

and has a more expensive complexity than the SDP. Therefore,solving the problem of optimal

weight selection in a distributed way is still an open problem.

In this paper we study distributed techniques to optimally select the weights of average

consensus protocols. We address the problem of selecting the weights in a given network in order

to have a fast speed of convergence for these protocols. We approximate the problem of optimal

weight selection by the minimization of the Schattenp-norm of a matrix with some constraints

related to the connectivity of the underlying network. We then provide a totally distributed

gradient method to solve the Schatten norm optimization problem. By tuning the parameterp in

our proposed minimization, we can simply trade-off the quality of the solution (i.e., the speed

of convergence) for communication/computation requirements (in terms of number of messages

exchanged and volume of data processed). The theoretical contribution of this paper is as follows:
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we formulate a new optimization problem (the Schatten norm minimization) for weight selection

problem of average consensus, then we show that the formulated problem is an approximation

of the optimal weight selection problem, and finally we show that the Schatten norm problem

can be implemented in a totally decentralized fashion. Simulation results on random graphs and

on real networks show that our approach provides very good performance already for values of

p that only needs limited information exchange.

The paper is organized as follows: In section II we give the notation used across the paper.

In section III we propose Schattenp-norm minimization as an approximation of the original

problem and in section IV we show how its solution can be computed in a distributed way and

evaluate its computation and communication costs. SectionV compares the performance of our

algorithm and that of other known weight selection algorithms on different graph topologies.

Section VI summarizes the paper.

II. N OTATION

The network is considered as an undirected graphG = (V,E) whereV is the set of nodes

(V = 1, . . . , n), theE is the set of edges (E = 1, . . . ,m, and (i, j) ∈ E if nodes i and j are

neighbors and can communicate). We denote byw the vector of dimensionsm× 1, whosel-th

elementwl is the weight associated to linkl, then if l ∼ (i, j) it holds wl = wij = wji. A is

the adjacency matrix of graphG, i.e., aij = 1 if (i, j) ∈ E and aij = 0 otherwise.CG is the

set of all realn × n matricesM corresponding to graphG, i.e., mij = 0 if (i, j) /∈ E. D is

a diagonal matrix wheredii (or simply di) is the degree of nodei in the graphG. I is the

n×m incidence matrix of the graph, such that for eachl ∼ (i, j) ∈ E Iil = +1 andIjl = −1

and the rest of the elements of the matrix are null.L is the laplacian matrix of the graph, so

L = D − A. It can also be seen thatL = IIT . The n × n identity matrix is denoted byIn.

Given thatW is real and symmetric, it has real eigenvalues (and then theycan be ordered).

We denote byλi the i-th largest eigenvalue ofW , and byµ the largest eigenvalue in module

non consideringλ1, i.e., µ = max{λ2,−λn}. σi is the i-th largest singular value of a matrix.

Tr(X) is the trace of the matrixX andρ(X) is its spectral radius.||X||σp denotes the Schatten

p-norm of matrixX, i.e., ||X||σp = (
∑

i σ
p
i )

1/p. Finally we use the symbolddX f(X), wheref

is a differentiable scalar-valued functionf(X) with matrix argumentX ∈ R
m×n, to denote the

n×m matrix whose(i, j) entry is ∂f(X)
∂xji

.
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III. SCHATTEN NORM M INIMIZATION

The problem of finding the weight matrix that guarantees the fastest convergence can be

formalized as follows (see [8]):

Argmin
W

µ(W )

subject to W = W T , W1 = 1, W ∈ CG,

(2)

where the last constraint on the matrixW is derived from the assumption that nodes can only

communicate with their neighbors and then necessarilywij = 0 if (i, j) 6∈ E. Problem 2 is called

in [8] the “symmetric FDLA problem”.

The above minimization problem is a convex one and the functionµ(W ) is non-smooth convex

function. It is convex since whenW is a symmetric matrix, we haveµ(W ) = ρ(W − G1) =

||W − G1||2 which is a composition between an affine function and the convex matrix L-2

norm function[10]. The functionµ(W ) = ρ(W − G1) is non-smooth since the spectral radius

of a matrix is not differentiable at points where the eigenvalues coalesce [11]. The process of

minimization itself in (2) tends to make them coalesce at thesolution.

We change the original minimization problem in (2) by considering a different cost function

that is a monotonic function of the Schatten Norm. The minimization problem we propose is

the following one:

Argmin
W

f(W ) = ||W ||pσp

subject to W = W T , W1 = 1, W ∈ CG,

(3)

wherep is an even positive integer. The following result establishes that (3) is a smooth convex

optimization problem and also it provides an alternative expression of the cost function in terms

of the trace ofW p. For this reason we refer to our problem also asTrace Minimization(TM).

Proposition 1. f(W ) = ||W ||pσp = Tr(W p) is a scalar-valued smooth convex function on its

feasible domain whenp is an even positive integer.

Proof: We have Tr(W p) =
∑n

i=1 λ
p
i . SinceW is symmetric, its non-zero singular values are

the absolute values of its non-zero eigenvalues [12]. Ifp is even,
∑n

i=1 λ
p
i =

∑n
i=1 σ

p
i . Therefore,

Tr(W p) = ||W ||pσp.
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The Schatten norm||W ||σp is a nonnegative convex function. Hencef is convex because it is

the composition of a non-decreasing convex function—function xp wherex is non-negative—and

a convex function [10].

The function is also differentiable and we have

d
dW

Tr(W p) = pW p−1, (4)

(see [13, p. 411]).

We now illustrate the relation between (3) and the optimization (2). The following lemmas

will prepare the result:

Lemma 1. For any symmetric weight matrixW whose rows (and columns) sum to1 and with

eigevaluesλ1(W ) ≥ λ2(W ) ≥ · · · ≥ λn(W ), there exist two integersK1 ∈ {1, 2, . . . n−1}, K2 ∈

{0, 1, 2, . . . n − 1} and a positive constantα < 1 such that for any positive integersp and q

wherep = 2q we have:

1 + τ(W )pK1 ≤ Tr(W p) ≤ 1 + τ(W )p(K1 +K2α
p), (5)

where

τ(W ) =











ρ(W ) = max{λ1(W ),−λn(W )} if ρ(W ) > 1,

µ(W ) = max{λ2(W ),−λn(W )} if ρ(W ) ≤ 1.
(6)

Proof: Due to space limits the proof is presented in [14].

We now show that the the Schatten-p optimization problem (3) gives a stable matrix.

Lemma 2. Let us denote byW(p) the solution of the minimization problem(3). If the graph of

the network is strongly connected thenτ
(

W(p)

)

< 1 for p sufficiently large.

Proof: Due to space limits the proof is presented in [14].

We are now ready to state our main results by the following proposition:

Proposition 2. If the underlying graph is connected, then the solution of the Schatten Norm

minimization problem(3) satisfies the consensus protocol convergence conditions for p sufficiently

large. Moreover asp approaches∞, this minimization problem is equivalent to the minimization

problem(2) (i.e., to minimize the second largest eigenvalueµ(W )).

Proof: Due to space limits the proof is presented in [14].
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Proposition 3. The Schatten Norm minimization(3) is an approximation for the original prob-

lem (2) with a guaranteed error bound,

|µ(W(SDP ))− µ(W(p))| ≤ µ(W(SDP ))× ǫ(p),

where ǫ(p) = (n − 1)1/p − 1 and whereW(SDP ) and W(p) are the solutions of(2) and (3)

respectively.

Proof: Due to space limits the proof is presented in [14].

Remark: Comparing the results of Schatten Norm minimization (3) withthe original problem

(2), we observe that on some graphs the solution of problem (3) already for p = 2 gives

the optimal solution of the original problem (2); this is forexample the case for complete

graphs.1 However, on some other graphs, it may give a weight matrix that does not guarantee

the convergence of the consensus protocol because the second largest eigenvalue is larger than or

equal to1 (the other convergence conditions are intrinsically satisfied). Nevertheless, a suitable

projection of the matrix on the set of stable matrices can be done in distributed way (see our

technical report [14] for more details).

IV. A D ISTRIBUTED ALGORITHM FOR SCHATTEN NORM MINIMIZATION

Given that problem (3) is smooth and convex, it can be solved by interior point methods which

would be a centralized solution. In this section we are goingto show a distributed gradient-type

algorithm to solve problem (3).

By distributed algorithm we mean an algorithm where each nodeonly needs to retrieve

information from a limited neighborhood (possibly larger than Ni) in order to calculate the

weights on its incident links. The constraintW = W T in the optimization requires any two

neighborsi andj to choose the same weight on their common linkl ∼ (i, j) i.e.,wij = wji = wl.

The last conditionW1 = 1 means that at every nodei the sum of all weights on its incident

links plus its self-weightwii must be equal to one. This condition is satisfied if nodes choose

first weights on links, and then adapt consequently their self-weightswii. Moreover these two

1This can be easily checked. In fact, for any matrix that guarantees convergence of average consensus protocol, it holds

µ(W ) ≥ 0 and Tr(W 2) ≥ 1 (because1 is an eigenvalue ofW ). The matrixŴ = 1/n11T (corresponding to each link having

the same weight1/n) has eigenvalues1 and0 with multiplicity 1 andn− 1 respectively. Thenµ(Ŵ ) = 0 and Tr(Ŵ 2) = 1.

It follows that Ŵ minimizes both the cost function of problem (2) and (3).
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constraints lead to the possibility to writeW as follows:W = I − I × diag(w) × IT , where

w ∈ R
m is the vector of all the weight linkswl, l = 1...m. It follows that Schatten Norm

minimization (3) is equivalent to the following unconstrained problem:

minimize h(w) = Tr
(

(I − I × diag(w)× IT )p
)

. (7)

We will give a distributed algorithm to solve the Schatten Norm minimization (3) by applying

gradient techniques to problem (7). Since the cost functionto optimize is smooth and convex

as we proved in Proposition 1, if the gradient technique converges to a stationary point, then it

converges to the global optimum. The gradient method uses the simple iteration:

w
(k+1)
l = w

(k)
l − γ(k)g

(k)
l ∀l = 1...m ,

where γ(k) is the stepsize at iterationk and g
(k)
l is the l-th component of the gradientg(k)

of the functionh(w). At every iterationk, starting with a feasible solution for link weights,

w
(k)
l , we calculate the gradientg(k)l for every link, and then we obtain a new weight value

w
(k+1)
l . There are different conditions on the functionh(.) and on the stepsize sequence that can

guarantee convergence (see for example [15]). In our case, as we are interested in distributed

implementation of the gradient method, careful selection of convergence conditions is required

because the functionh(.) does not satisfy some conditions (e.g., Lipschitz continuity or a bounded

gradient), or because stepsize calculation would require some global knowledge (e.g., the value

of the functionh(.) or the module of its gradient). We will then add a further constraint, looking

for a solution in a setX, and we will consider the following projected gradient method:

w(k+1) = PX

(

w(k) − γ(k)g(k)
)

,

wherePX() is the projection on the setX. We will show that by a particular choice ofX and

γ(k) the method converges to the solution of the original problem. Moreover, all the calculations

can be performed in a distributed way on the basis of local knowledge. In particular, we will

show that:

• nodes incident tol are able to calculateg(k)l using only information they can retrieve from

their (possibly extended) neighborhood;

• the stepsize sequenceγ(k) is determined a priori and then nodes do not need to evaluate

the functionh or any other global quantity to calculate it;



8

• the projection on setX can be performed component-wise, and locally at each node;

• the global convergence of the projected gradient method is guaranteed.

We will start bygl and show that it only depends on information local to nodesi andj incident

to the link l ∼ (i, j), then we will discuss the choice of the stepsizeγ(k) and of the projection

setX.

A. Locally Computed Gradient

Consider the linkl ∼ (i, j), sincewl = wij = wji andwii = 1−
∑

s∈Ni
wis, we have:

dwst

dwl

=



















































+1 if s = i and t = j

+1 if s = j and t = i

−1 if s = i and t = i

−1 if s = j and t = j

0 else.

(8)

The gradientgl of the functionh(w) for l ∼ (i, j) can be calculated as follows:

gl =
dh(w)

dwl

=
df(W )|W=I−I×diag(w)×IT

dwl

=
∑

s,t

∂f

∂wst

dwst

dwl

=
∂f

∂wij

dwij

dwl

+
∂f

∂wji

dwji

dwl

+
∂f

∂wii

dwii

dwl

+
∂f

∂wjj

dwjj

dwl

=
∂f

∂wij

+
∂f

∂wji

−
∂f

∂wii

−
∂f

∂wjj

= p
(

(W p−1)ji + (W p−1)ij − (W p−1)ii − (W p−1)jj
)

. (9)

In the last equality we used equation (4).

It is well know from graph theory that if we considerW to be the adjacency matrix of a

weighted graphG, then (W s)ij is a function of the weights on the edges of thei − j walks

(i.e., the walks fromi to j) of length exactlys (in particular if the graph is unweighted(W s)ij

is the number of distincti − j s-walks [16]). Since for a givenp the gradientgl, l ∼ (i, j),

depends on the{ii, jj, ij, ji} terms of the matrixW p−1, gl can be calculated locally by using
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only the weights of links and nodes at mostp
2

hops away fromi or j.2 Practically speaking,

at each step, nodesi and j need to contact all the nodes up top/2 hops away in order to

retrieve the current values of the weights on the links of these nodes and the values of weights

on the nodes themselves. An advantage of our approach is thatit provides a trade-off between

locality and optimality. In fact, the larger the parameterp, the better the solution of problem (3)

approximates the solution of problem (2), but at the same time the larger is the neighborhood

from which each node needs to retrieve the information. Whenp = 2, thengl wherel ∼ (i, j)

only depends on the weights of subgraph induced by the two nodes i and j. For p = 4, the

gradientgl depends only on the weights found on the subgraph induced by the set of vertices

Ni ∪Nj, then it is sufficient that nodesi andj exchange the weights of all their incident links.

B. Choice of Stepsize and Projection set

The global convergence of gradient methods (i.e., for any initial condition) has been proved

under a variety of different hypotheses on the functionh to minimize and on the step size

sequenceγ(k). In many cases the step size has to be adaptively selected on the basis of the

value of the function or of the module of its gradient at the current estimate, but this cannot be

done in a distributed way for the functionh(w). This leads us to look for convergence results

where the step size sequence can be fixed ahead of time. Moreover the usual conditions, like

Lipschitzianity or boundness of the gradient, are not satisfied by the functionh(.) over all the

feasible set. For this reason we add another constraint to our original problem (7) by considering

that the solution has to belong to a given convex and compact set X. Before further specifying

how we choose the setX, we state our convergence result.

Proposition 4. Given the following problem

minimize h(w) = Tr
(

(I − I × diag(w)× IT )p
)

,

subject to w ∈ X (10)

whereX ⊆ R
m is a convex and compact set, if

∑

k γ
(k) = ∞ and

∑

k

(

γ(k)
)2

< ∞, then the

2If a link or a node is more thanp/2 hops away both from nodei and nodej, then it cannot belong to ai− j walk of length

p.
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following iterative procedure converges to the minimum ofh in X:

w(k+1) = PX

(

w(k) − γ(k)g(k)
)

, (11)

wherePX(.) is the projection operator on the setX and g(k) is the gradient ofh evaluated in

w(k).

Proof: The functionh is continuous on a compact setX, so it has a point of minimum.

Moreover also the gradientg is continuous and then bounded onX. The result then follows

from Proposition8.2.6 in [17, pp. 480].

For example,γ(k) = a/(b + k) wherea > 0 and b ≥ 0 satisfies the step size condition in

Proposition 4.

While the convergence is guaranteed for any setX convex and compact, we have two other

requirements. First, it should be possible to calculate theprojectionPX in a distributed way.

Second, the setX should contain the solution of the optimization problem (7). About the first

issue, we observe that ifX is the cartesian product of real intervals, i.e., ifX = [a1, b1] ×

[a2, b2]× . . . [am, bm], then we have that thel-th component of the projection onX of a vector

y is simply the projection of thel-th component of the vector on the interval[al, bl], i.e.,

[PX(y)]l = P[al,bl](yl) =























al if yl < al,

yl if al ≤ yl ≤ bl,

bl if bl < yl.

(12)

Then in this case Eq. (11) can be rewritten component-wise as

w
(k+1)
l = P[al,bl](w

(k)
l − γ(k)g

(k)
l ).

We have shown in the previous section thatgl can be calculated in a distributed way, then the

iterative procedure can be distributed. About the second issue, since we have from the bound of

matrix norms (see [13])

||W ||∞ ≤ ρ(W ), (13)

where ||W ||∞ = maxi,j |wij|. Then we can chooseX in such a way that we include in the

feasibility set all the weight matrices with spectral radius at most1.

A consequence of inequality (13) is that if we chooseX = [−1, 1]m the weight vector of

the matrix solution of problem (2) necessarily belongs toX (the weight matrix satisfies the



11

convergence conditions). The same is true for the solution of problem (7) forp large enough

because of Proposition 2. The following proposition summarizes our results.

Proposition 5. If the underlying graph is connected, then the following distributed algorithm

converges to the solution of the Schatten norm minimizationproblem forp large enough:

w
(k+1)
l = P[−1,1](w

(k)
l − γ(k)g

(k)
l ), ∀l = 1, . . . ,m, (14)

where
∑

k γ
(k) = ∞ and

∑

k

(

γ(k)
)2

< ∞.

Remark: If p is larger than twice the diameter of the graph, then each agent requires the

information of all other agents, and this requirement is restrictive. But we would directly

implement the centralized version of the Schatten norm minimization that is still more scalable

than the (necessarily centralized) solution of the original SDP problem (only feasible for graphs

of few thousands of links).

C. Complexity of the Algorithm

Our distributed algorithm for Schatten Norm minimization requires to calculate at every

iteration, the stepsizeγ(k), the gradientg(k)l for every link, and a projection on the feasible setX.

Its complexity is determined by the calculation of link gradient gl, while the cost of the other op-

erations is negligible. Forp = 2, gl = 2×(2Wij−Wii−Wjj), so the computational complexity for

nodes is negligible, but the communication complexity is1 message carrying a single real value

(wii) per link, per node and per iteration. Forp = 4, gl = 4
(

(W 3)ij+(W 3)ji−(W 3)ii−(W 3)jj
)

,

and as discussed in the previous section, each of the 4 terms can be calculated only locally from

the weights within 2-hops fromi or j. The computational complexity for calculatinggl is in

the worst caseO(∆3) where∆ is the largest degree in the network. In order to calculategl

locally, the communication complexity would be to send two messages per link per node and

per iteration. The first message carries at most∆ values (the weight vectorWi) and the second

message carries one real value ((W 3)ii). Due to space limit, we refer the reader to the technical

report [14] for details on both computational and communication costs.

V. PERFORMANCEEVALUATION

In this section we evaluate the speed of convergence of consensus protocols when the weight

matrix W is selected according to our algorithm. We compare with other distributed approaches
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(see [18], [8]): max degree weights (MD) (wl = 1
maxi{di}+1

∀l = 1, . . . ,m), local degree

(metropolis) weights (LD) (wl =
1

max{di,dj}+1
l ∼ (i, j) ∀l = 1, . . . ,m), and optimal constant

weights (OC) (wl =
2

λ1(L)+λn−1(L)
∀l = 1, . . . ,m).

As we have discussed in section III, this speed is asymptotically determined by the second

largest eigenvalue in absolute value (µ(W )). The simulations are done on random graphs: Erdös-

Renyi (ER) graphs and Random Geometric Graphs (RGG), given that they are connected. The

random graphs are generated as following :

• For the ER random graphs, we start fromn nodes fully connected graph, and then every link

is removed from the graph by a probability1− q and is left there with a probabilityq. We

have tested the performance for different probabilitiesq given that the graph is connected.

• For the RGG random graphs,n nodes are thrown uniformly at random on a unit square

area, and any two nodes within a connectivity radiusr are connected by a link. We have

tested the performance for different connectivity radii given that the graph is connected. It

is known that for a small connectivity radius, the nodes tendto form clusters.

A. Comparison with the optimal solution

We first compareµ
(

W(p)

)

of the solutionW(p) of the Schatten p-norm (or Trace) minimization

problem (3) with its minimum value obtained solving the symmetric FDLA problem (2). To this

purpose we used theCVX solver ([19]). This allows us also to evaluate how well problem (3)

approximates problem (2) for finite values of the parameterp. The results in Fig. 1 have been

averaged over100 random graphs with20 nodes generated according to the Erdos-Renyi (ER)

model, where each link is included with probabilityq ∈ {0.2, 0.3, 0.4, 0.5}. We see from the

results that as we solve the trace minimization for largerp, the asymptotic convergence speed

of our approach converges to the optimal one as proven in Proposition 2.

B. Other distributed approaches: Asymptotic Convergence Rate

We compare now our algorithm forp = 2 andp = 4 with other distributed weight selection

approaches. Fig. 2 shows the results on connected Random Geometric Graphs (RGG) with100

nodes for different values of the connectivity radiusr. We provide 95% confidence intervals by

averaging each metric over100 different samples. We see in Fig. 2 that on RGG forp = 2 and

p = 4 the TM algorithm reaches faster convergence than the other known algorithms even when
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Fig. 1. Performance comparison between the optimal solution of the FDLAproblem (labeled FDLA) and the approximated

solutions obtained solving the Schatten Norm minimization for different values of p (labeled TM).
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Fig. 2. Performance comparison between Schatten Norm minimization (TM) for p = 2 andp = 4 with other weight selection

algorithms on RGG graphs.

the graph is well connected (large connectivity radius). However, the larger the degrees of nodes,

the higher the complexity of our algorithm. Interestingly even performing trace minimization for

the smallest valuep = 2 nodes are able to achieve faster speed of convergence than a centralized

solution like the OC algorithm.

C. Communication Complexity of Local Algorithms

As the Schatten norm minimization problem itself may take a long time to converge, whereas

other heuristics can be obtained instantaneously, the complexity of the optimization algorithm

can affect the overall procedure. We investigate in this section the communication complexity for
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Fig. 3. Communication overhead of local algorithms. The figure shows that the Schatten norm algorithm (TM p = 4) provides

better communication overhead than other local algorithms for networks whose topology is not changing very often, whileTM

p = 2 provides better communication overhead than other local algorithms for networks used less than 8 rounds.

optimizing the weights by the Schatten norm algorithm suggested in this paper and other local

weight selection algorithms on RGG with100 nodes and connectivity radius0.1517. For each

algorithm, the weights are calculated before starting the consensus rounds. The communication

overhead of the local algorithms is plotted in Fig. 3. The figure shows the total number of

messages transmitted on a link at each round, considering both those needed to calculate the

weights and those needed to determine the average with a given precision. TheTM algorithms

have high initial communication overhead (due to the slow convergence of the gradient method

for weight calculation), but then the more the consensus rounds we have the more the messages

are saved in comparison to the simpler methods. Note that theasymptotic results are reflected

in the slopes of the lines. As the figure shows, if the network is used for less than8 times the

TM p = 2 is recommended, while for networks that have a topology not changing very often

the TM p = 4 should be selected.

VI. CONCLUSION

We have proposed in this paper an approximated solution for the FDLA problem by minimizing

the Schattenp-norm of the weight matrix. Our approximated algorithm converges to the solution



15

of the FDLA problem asp approaches infinity, and in comparison to it, has the advantage to be

suitable for a distributed implementation. Moreover, simulations on random and real networks

show that the algorithm outperforms other common distributed algorithms for weight selection.
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[17] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar,Convex Analysis and Optimization. Athena Scientific, 2003.

[18] L. Xiao, S. Boyd, and S. jean Kim, “Distributed average consensus with least-mean-square deviation,”Journal of Parallel

and Distributed Computing, vol. 67, pp. 33–46, 2005.

[19] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 1.21,” April 2011.


