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Abstract—Clustering of a graph is the task of grouping its
nodes in such a way that the nodes within the same cluster are
well connected, but they are less connected to nodes in different
clusters. In this paper we propose a clustering metric based
on the random walks’ properties to evaluate the quality of a
graph clustering. We also propose a randomized algorithm that
identifies a locally optimal clustering of the graph according to
the metric defined. The algorithm is intrinsically distributed and
asynchronous. If the graph represents an actual network where
nodes have computing capabilities, each node can determine its
own cluster relying only on local communications. We show that
the size of clusters can be adapted to the available processing
capabilities to reduce the algorithm’s complexity.

I. I NTRODUCTION

A community of nodes (or a cluster of nodes) in a network
is a group of vertices that are well connected to each other,
but are less connected with the remaining part of the network.
Detecting clusters in networks has many applications. Commu-
nities in social networks are formed by people having common
interest. Clusters in the web graph can group pages with
similar topics. E-commerce, classification, computer vision,
bioinformatics, and machine learning are only few areas of
application of network clustering.

To Compare different graph clustering outputs, it is nec-
essary to introduce a quality metric, that is also called the
objective function. There is still no consensus on which metric
is the best one. One of the most used metrics is modularity [1]
which gives a score to the cluster by comparing the number of
edges falling inside the clusters with the number of edges ofa
random graph having similar characteristic as the originalone.
One of its drawbacks is that it cannot distinguish small clusters
having links of orderO(

√
m) wherem is the total number of

links [2]. The silhouette index [3] uses distances between the
nodes presented in the cluster and those outside it, its drawback
being its high computational cost as it requires to compute the
shortest path between all node pairs. Another approach [4]
evaluates a clustering score by using the concept of inter-
cluster conductance, but it ignores internal cluster density.
Using this metric, some graph partitioning algorithms based
on PageRank vectors of a graph have been proposed in [5] to
find a cut with a certain conductance in the graph. All these
metrics turn out to be biased toward large communities [6].
Many practical algorithms have been proposed as hierarchical
clustering [7], Markov clustering [8], bisecting K-means,and
spectral clustering [4]. Their drawback is that they are global
clustering methods which require as input the entire graph to

calculate the clustering. Moreover their output is biased toward
equal size clusters (so small communities tend to disappear
using these algorithms). A complete survey of fitness measures
and clustering is given in [9].

In this paper, we introduce a new fitness measure for eval-
uating a clustering algorithm based on random walks’ proper-
ties. Roughly speaking, our fitness index is higher the faster a
random walk constrained to the cluster reaches its stationary
distribution and the slower it escapes from the cluster in the
unconstrained case. Both effects can be quantified considering
the eigenvalues of appropriate matrices. Beside introducing
this new metric, we propose a randomized algorithm for
clustering the network accordingly. The algorithm islocal
because it relies only on a partial view of the entire network. In
particular, if the graph represents the topology of a network
where nodes have computing capabilities, the algorithm can
run in parallel at each node without the need of a central
unit. Being local, clusters can be formed in parallel and the
computation complexity is distributed among clusters. The
algorithm can also find small clusters that are more difficult
to be detected by the global clustering methods.

The organization of the paper is as follows: in Section II we
present the notation used across the paper, in Section III we
introduce our new fitness measure. Section IV describes the
local clustering algorithm. Section V compares its performance
on different networks. Section VI concludes the paper.

II. N OTATION

Let G = (V,E) be an undirected unweighted connected
graph withoug self-loops, whereV = {1, . . . n} is the set of
vertices andE is the set ofm = |E| edges. LetdG(i) = |{j ∈
V such that(j, i) ∈ E}| be the degree of a nodei in G, DG

be a diagonal matrix having on its diagonal the degree of the
nodes inG and letAG be the adjacency matrix of the graph
G whereaij = 1 if (i, j) ∈ E, and aij = 0 otherwise. For
any setS ⊆ V , let DG(S) (resp.AG(S)) be the sub-matrix of
DG (resp.AG) obtained considering only rows and columns
corresponding to the vertices inS. Let G(S) = (S,E(S))
be the subgraph induced byS ⊆ V whereE(S) = {(i, j) ∈
E|i, j ∈ S}. Observe that in generalDG(S) 6= DG(S) because
DG(S) contains the degree of nodes in the original graphG
which are different from their degrees in the induced subgraph
G(S). Conversely,AG(S) = AG(S) as the adjacency matrix
is not changed. IfP is a substochastic matrix (a square matrix
with nonnegative entries so that every row adds up to at most



1), let σ(P ) = |λ1(P )| be the largest eigenvalue in module of
P . WhenP is stochastic, lets(P ) = 1 − |λ2(P )| ∈ [0, 1] be
its spectral gap1 whereλ2(P ) is the second largest eigenvalue
in module ofP . Finally, I is the identity matrix.

A clusteringCG of a graphG is a partition of the vertices
such thatCG = {C1, . . . Ck} whereC1 ∪ ... ∪ Ck = V and
Cu ∩ Cv = φ for all clustersCu and Cv in CG. Let C(i) =
{Cu ∈ CG; i ∈ Cu} be the cluster that contains nodei. Let
f : V → R be a scoring function for the nodes, define a cluster
scoref(Cu) =

∑

i∈Cu
f(i), and a clustering algorithm score

f(CG) =
∑k

u=1 f(Cu) =
∑n

i=1 f(i).

III. T HE RANDOM WALK FITNESS MEASURE

In this section, we introduce a new scoring functionf(.)
that can serve as a quality measure for a clustering algorithm.
A good clustering algorithm identifies clusters that are well
connected internally, but weakly connected with the rest of
the network. Inspired by this intuitive definition, the function
f should have the following properties:

1) A cluster whose induced subgraph is disconnected
should receive the minimum score.

2) A clique graph clustered as a single cluster should have
the highest score among all clusterings for graphs with
the same number of nodes.

3) For a given clustering, adding links within clusters
should increase the score while removing them should
only decrease the score.

4) For a given clustering, adding links between different
clusters should decrease the score while removing them
should increase the score.

5) Within a cluster, the higher the degree of a node, the
more it contributes to the score.

6) Boundary nodes in a cluster that have links to other
clusters have less score than internal nodes.

The new scoring metric we propose satisfies the properties
above. Given a graph clusteringCG = {C1, ..., Ck}, the score
of a vertexi ∈ V is given by

f(i) = αi × sC(i) × σC(i),

wheresC(i) quantifies how fast a random walk onG(C(i))
(and then constrained to the clusterC(i)) reaches its steady
state distribution,σC(i) corresponds to the probability that
a random walk on the whole graphG that starts inside the
cluster C(i) keeps staying inside the cluster at a following
step (see below for a more formal definition), and finally
αi differentiates among different nodes in the same cluster
according to the last two properties. Given this definition of
the scoring function, the score of clusterCu is:

f(Cu) =

(

∑

i∈Cu

αi

)

sCu
σCu

.

Below we define formally the different quantitiesαi, sCu
and

σCu
and show thatf(.) has all the required properties.

1If P is a scalar, we considers(P ) = 1 by convention.

First, we definesCu
as

sCu
, s

(

(DG(Cu) + I)−1(AG(Cu) + I)
)

,

that is the spectral gap of the transition probability matrix of
a simple random walk on the subgraph induced by the cluster
nodesCu adding self-loops [10]. This value ranges between0
for a disconnected graph and1 for a fully connected network
(a clique). Given a random walk starting at time0 from a
node in the cluster, the difference between the probability
distribution of the position of the random walker at timet
and its stationary distribution can be bounded byA(1−sCu

)t,
with A being an appropriate constant. Then the largersCu

, the
faster the distribution converges to its stationary distribution,
i.e. the faster the random walkmixes. The spectral gap of the
transition probability matrix is then also a measure of how well
connected the network within a cluster is. The presence ofsCu

as a multiplicative factor in the scoring function guarantees
that the first two properties are satisfied. Moreover, due to the
interlacing property of eigenvalues [11], adding more links
between the nodes of the same cluster usually increases the
spectral gap while removing links decreases it, which supports
the third property of a good clustering function.

Second, we define

σCu
, σ

(

DG(Cu)−1AG(Cu)
)

.

Given thatDG(Cu) considers the degrees of the nodes2 in the
original graphG, Q = DG(Cu)−1AG(Cu) is a substochastic
matrix. If we consider the transition probability matrix of
a random walk on the whole graphG, Q is the submatrix
obtained by extracting only the rows and the columns cor-
responding to the nodes inCu. Given a random walk on
G starting at a nodei in Cu, and assuming thatQ is a
primitive matrix, it is possible to show [12] that the conditional
probability distribution given that the random walk does not
exit from Cu converges toπ ∈ [0, 1]|Cu| (we consider only
the probabilities for the nodes inCu, for all the other nodes
the probability is clearly 0 under the conditioning event),that
satisfies the following equationπT Q = πT σ(Q). Thenσ(Q)
can be interpreted as the probability that at each step the
random walker does not exit fromCu, given that it has already
spent a long time inCu

3. The termσCu
quantifies then the

effect of outer links connecting the clusterCu to other clusters.
Obviously, it ranges between0 and 1. It is equal to1 when
there is no link between nodes inCu and nodes inV \Cu and
then in particular whenCu = V since the graph is connected.
It is equal to0 if the subgraphG(Cu) has no link. Adding
links between clusters can only decreaseσ while removing
them can only increase it. The factorσCu

guarantees that the
fourth property is satisfied.

2The inverseDG(Cu)−1 always exists becauseDG(Cu) is a diagonal
matrix having strictly positive diagonal values (dG(i) ≥ 1 becauseG is
connected).

3Otherwise if we consider that the random walk initial position in Cu

follows the probability distributionπ, σ(Q) is simply the probability that the
random walker does not exit fromCu at each step.



Finally, αi represents the contribution of a node to the final
score depending on its connectivity to other clusters. To satisfy
the last two properties required for the functionf , the value
αi is chosen as follows:

αi ,
din

i

1 + dout
i

,

where din
i = dG(C(i))(i) is the number of nodes inC(i)

connected toi anddout
i = dG(i)−din

i is the number of nodes
in V \C(i) connected toi.

IV. CLUSTERING ALGORITHM

The function f presented in the previous section gives
a scoring mechanism to evaluate a clustering algorithm. In
particular, the optimal clustering algorithm can be written as
follows:

Argmax
CG={C1,...,Ck}

f(CG) (1)

Let C∗
G be the solution of (1) andf∗ = f(C∗

G) be its value.
Finding the optimal clustering and its value can be very expen-
sive, so we will give first some bounds on the optimal value
f∗ and we will propose a local search clustering algorithm
that can be implemented with an acceptable complexity and
in a distributed way.

A. Bounds onf∗

Proposition 1. For the clustering optimization problem(1),
the following bounds hold for the optimal valuef∗:

2 × m × sV ≤ f∗ ≤ 2 × m, (2)

wheresV is the spectral gap of the simple random walk on
all the graphG (sV = 1 − λ2

(

(D + I)−1(A + I)
)

).

Proof: For any clusteringCG = {C1, ..., Ck} of the graph
G we have,

f(CG) =
∑

i

f(i) =
∑

i

din
i

1 + dout
i

sC(i)σC(i)

≤
∑

i

din
i

1 + dout
i

≤
∑

i

din
i ≤

∑

i

dG(i)

= 2 × m,

wherem is the number of links in the graphG and the first
inequality follows from bothsCu

andσCu
being at most equal

to one. From this upper bound, it follows thatf(C∗
G) ≤ 2×m.

The optimal clustering has a value greater than any possible
clustering. Taking the graph as one clusterCG = {V } is a valid
clustering ofG. Thus, a lower bound on the optimal value can
be derive as follows:

f∗ ≥ f(CG = {V }) =
∑

i

din
i × sV × 1

= 2 × m × sV ,

wheresV is the spectral gap of the simple random walk on
all the graphG (sV = 1 − λ2

(

(D + I)−1(A + I)
)

).

We observe that both the bounds are tight for the fully
connected graph (let us denote itKn). Indeed nodes inKn

are grouped in a single cluster (CG = V ) and f(V ) = 2m
sincedout

i = 0 for any vertexi andsV = σV = 1.
Due to the following proposition, the subgraph induced by

a cluster of the optimal clustering is connected as long as it
has at least an internal link.

Proposition 2. Let C∗
G = {C1, ..., Ck} be an optimal cluster-

ing for a graphG, then for anyCu ∈ C∗
G, if the subgraph

G(Cu) has at least one link, it is connected.

Proof: We sketch a proof of the proposition by contra-
diction. Suppose there exists a graph whose optimal clustering
C∗

G outputs a clusterCu such thatG(Cu) has at least one
link, but it is disconnected. It follows thatf(Cu) = 0 since
sCu

= 0 for disconnected graphs. However, there is a subset of
verticesH ⊂ Cu such that|H| ≥ 2 and G(H) is connected
(because there is at least one link inG(Cu)) and it holds
f(H) > 0. Now if we replaceCu with two clustersH and
Cu − H, the new clustering has a strictly higher value than
C∗

G (contradiction).

B. Local Search Clustering Algorithm

The optimal clustering can be computationally costly be-
cause calculating the spectral gap of a random walks has
complexityO(n3). In this section, we present a local clustering
algorithm that allows the clustering to be done in a distributed
way. In particular clusters can be determined in parallel. The
algorithm applies the generic local search approach. LetX
be the set of all possible clusterings of graphG. We define
two clusterx and y belonging toX to be neighbors if and
only if they differ only for a single vertex that belongs to two
different clusters inx and in y. A local search algorithm for
clustering operates as follows:

1) Let x be some initial clustering;
2) While there is a neighboringG-clusteringy with higher

score value (f(y) > f(x)), setx := y.
3) Return the final (locally optimal) solutionx.
The algorithm is an iterative one. In our local clustering

algorithm we follow the above steps but we add some ran-
domness in choosing the neighbor in step two. In fact, at
every iteration, a cluster, say itCu, is chosen uniformly at
random. This random cluster selects one of the outgoing links
uniformly at random and proposes to the endpoint nodej in
the adjacent cluster, to disconnect from that cluster and to
join Cu. If joining Cu can increase the value of the clustering
thenj will accept the proposal, otherwise it will reject it and
no change in the clustering will take place. In particular, a
detailed description of the local clustering algorithm is given
in Algorithm 1. The algorithm runs at most forTstop iterations,
but it can easily changed so that it stops after a given number
of consecutive iterations without any change of the clustering.

Algorithm 1 presents some interesting features. In fact, at
every iteration, only two clusters are involved in the algorithm,
while the others are idle. It is then simple to distribute
the algorithm among the different clusters that can work



Algorithm 1 Local Clustering Algorithm

1: G = (V,E) whereV = 1...n andE = 1...m.
2: Initial clusteringC0

G = {C1, ..., Cn} whereCi = {i}.
3: E+

Cu
= {(i, j) ∈ E|i ∈ Cu, j /∈ Cu} is the set ofCu’s

outgoing links.
4: for k = 1 : Tstop do
5: Ck

G = Ck−1
G ;

6: let Cu be a cluster chosen uniformly at random from
Ck

G;
7: let (i, j) be a link chosen uniformly at random from

E+
Cu

;
8: let Cv be the cluster containingj (i.e. Cv = C(j));
9: Cu proposes toj to join (if it didn’t yet propose toj

after the last change withinCu occurred) ;
10: if f(Cu) + f(Cv) < f(Cu ∪ {j}) + f(Cv\{j}) then
11: j accepts the proposal;
12: Cu ← Cu ∪ {j};
13: Cv ← Cv\{j};
14: if C(j) = φ then
15: RemoveCv from Ck

G;
16: end if
17: else
18: j rejects the proposal;
19: end if
20: k ← k + 1;
21: If all clusters don’t have any more proposalsbreak;
22: end for
23: return Ck−1

G

asynchronously and in parallel as follows: at any time an
inactive cluster can wake up and can propose to a node from
another inactive cluster to join it, both clusters will become
active until acceptance or rejection of the proposal. It is also
possible that at every time each cluster is matched to another
one and evaluates the possibility to acquire/yield a node toit.
several matching clusters can be active at the same time and
the computations is distributed in a parallel way. Finally,being
the algorithm randomized, it is possible to run it multiple times
and then select the best solution across all the different runs.

Moreover, at every iteration, a cluster can increase by max-
imum one node. The complexity of the algorithm originates
from calculating the functionf which in its turn depends
on the number of nodes in the cluster. So depending on the
available computational power, we can restrict the maximum
number of nodes in a cluster. For example, if the calculationof
the spectral gap is affordable for graphs with only few hundred
nodes, then clusters reaching this limit will stop initiating the
algorithm and proposing to other nodes to join.

In addition, the local clustering algorithm performs well on
clique-like graphs. The following simple lemma will prepare
the result:

Lemma 1. Letg : A → R be a scalar strongly convex function
(g′′(x) > 0), then for anyx andy such thatx, x+1, y, y−1 ∈

A and x ≥ y , we have:

g(x + 1) + g(y − 1) > g(x) + g(y).

Proof: Let h(x) = g(x + 1) − g(x), sinceg is convex,
theng′(x) is strictly increasing, so

x + 1 > x,

⇒ g′(x + 1) > g′(x),

⇒ h′(x) > 0, so h(x) is strictly increasing,

and adding thatx ≥ y we can write:

x > y − 1,

⇒ h(x) > h(y − 1),

⇒ g(x + 1) − g(x) > g(y) − g(y − 1),

and the lemma follows.
Now we show the following proposition:

Proposition 3. The local clustering Algorithm 1 calculates
the optimal clustering for a clique graphKn in a finite
number of iterations almost surely ifTstop is large enough,
i.e. Algorithm 1 onKn outputs a single clusterCG = {V }.

Proof: First note that the optimal clustering on a clique
Kn is C∗

G = {V } sincef(CG = {V }) = 2m that is an upper
bound onf∗. It remains to prove that the local algorithm
terminates with one cluster of all nodes. LetCu be any cluster
in this graph, and letnu = |Cu| be its number of vertices, so
sCu

= 1 since the subgraph induced byCu is also a clique,
and σCu

= nu−1
n−1 since the matrixDG(Cu)−1AG(Cu) has

dimensionsnu×nu and any of its elements has the value1
n−1

except the diagonal elements that are equal to0, therefore

f(Cu) =

(

∑

i∈Cu

din
i

1 + dout
i

)

sCu
σCu

=

(

∑

i∈Cu

nu − 1

1 + n − nu

)

× 1 × nu − 1

n − 1

=
nu(nu − 1)2

(n − 1)(n − nu + 1)
,

and it depends only on the size of the cluster. Letg(nu) =
f(Cu), sinceg(nu) is strongly convex innu whennu ∈ [1, n],
then according to the algorithm and due to Lemma 1, any node
j (that belongs to the clusterCv) receiving a proposal from a
clusterCu will accept this proposal if|Cu| ≥ |Cv| and will
reject otherwise due to the following equation,

f(Cu ∪ {j}) + f(Cv\{j}) = g(|Cu| + 1) + g(|Cv| − 1)
(3)

> g(|Cu|) + g(|Cv|) (4)

= f(Cu) + f(Cv). (5)

The transition from (3) to (4) is due to Lemma 1. Therefore,
any proposal from the cluster with largest number of vertices
to other nodes is accepted (letCk

max be the cluster with
maximum number of vertices at iterationk), |Ck

max| cannot



Fig. 1. The network of social relationship between the membersof the
Karate Club. After the split, the members represented by a square belongs to
one sub-club and the members represented by a circle to the other sub-club
(the image is taken from [1]).

decrease while it can increase by one with a probability larger
than1/n. The algorithm terminates when|Ck

max| = n, so with
probability 1 there is an iterationK such that all the nodes
form a single cluster and the algorithm terminates. It is easy
to check thatE(K) ≤ n2.

V. NUMERICAL EXAMPLES

In this part, we study the performance of our local clustering
algorithm. We consider real world networks whose ground
truth is known. We apply our algorithm on these networks and
compare the algorithm’s results with actual clustering. Our first
example will be the Zachary’s Karate Club [13], it is a social
network of friendships between 34 members of a karate club
at a US university in the 70s. Links in this network represent
social interactions outside of the club itself. Due to a conflict,
the club was split into two sub-clubs in which the members
moved to one of the two new generated groups. Fig. 1 shows
the partition of the karate club.

We apply our local clustering algorithm to the karate club
network and the results are given in Fig. 2. Starting from
34 different clusters as initial input (every node is considered
a cluster) and based on the connection and the spectral gap
of the clusters, our algorithm identifies 3 clusters (one more
than the ground truth). Moreover the two nodes 31 and 9 are
not assigned to the correct cluster. Notice that this is justa
local maximum for the optimization problem. For comparison,
Fig. 3 shows the results of clustering using the modularity
clustering algorithm [14], we see that it identifies even more
clusters than our method (4) and node 10 is not correctly
assigned in comparison to the ground truth.

The other example we consider is the network of American
College football teams in Division I during Fall 2000 regular
season [15]. Division I was made up by 115 teams divided
in 12 conferences. A link in the graph corresponds to a game
played between the two teams. Teams in the same conference
are more likely to play games than teams from different
conferences. Fig. 4 shows the teams grouped according to
the conference they belong to. While most of conferences
have good clustering properties (good connections inside the
clusters and week connections among them), there are some
conferences for which this is not true. For conference 1 for
example there is only one game (one link) among its members,

Fig. 2. Clustering the karate club by applying Algorithm 1.

Fig. 3. Clustering the karate club by applying modularity algorithm.

and the clubs have played most of their games against teams in
different conferences. In those cases we expect the clustering
algorithm to classify the nodes into different clusters.

We applied our local clustering algorithm to this network.
The results are shown in Fig. 5. The local clustering algorithm
gives 14 clusters, and we see that the algorithm was able to
find correctly most of the clusters. In particular, the difference
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Fig. 4. The ground truth of the conferences (clusters) in theAmerican
College football network.



Fig. 5. Clustering the American College football network by applying
Algorithm 1. Nodes with the same color are classified as one cluster (the
algorithm terminates with 14 clusters, 2 more than the ground truth).

between the ground truth and the spectral gap clustering is
as follows: cluster 7 was divided into two clusters, cluster12
was also divided into two clusters. Even though conference 1
is very difficult to identify, our algorithm clustered together
the only two connected nodes and clustered the disconnected
nodes into different clusters. In total there are only 6 nodes
that are not well clustered4(out of the 115 nodes).

We also present the results of clustering using the mod-
ularity algorithm of [14]. This allows us to compare the
performance with other clustering algorithm and to check if
the errors were due to failure of the algorithm or due to the
ground truth graph structure. In the Fig. 6, the modularity
algorithm classified the network into only 10 clusters (2 less
clusters than the ground truth). Cluster 7 nodes were divided
between two already existing clusters. Cluster 1 disappeared.
Note that the same 6 nodes that were miss-classified by our
algorithm were also here miss-classified which suggests that
the errors are due to the structure but not to the algorithm.

VI. CONCLUSION

In this paper we proposed a new clustering metric based
on the spectral gap of a random walk on clusters. We also
proposed a randomized local clustering algorithm that outputs
a locally optimal clustering of the graph. The algorithm canbe
distributed in a network and clusters are iteratively updated on
the basis of local communication and processing. One of the
strengths of our algorithm is its ability to detect small clusters.
The complexity can also be adapted to available processing
capabilities.

4The bad clustered nodes by Algorithm 1 in comparison to the ground truth
are: 3 nodes in cluster 1, 2 nodes in cluster 9, and 1 node in cluster 5 which
gives a total of 6 error nodes (without taken into consideration the split of
the clusters 7 and 12).

Fig. 6. Clustering the American College football network by applying the
modularity algorithm. Nodes with the same color are classified as one cluster
(the algorithm terminates with 10 clusters).
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