
Newton’s Method for Constrained Norm Minimization

Mahmoud El Chamie1 Giovanni Neglia1

Abstract— Due to increasing computer processing power,
Newton’s method is receiving again increasing interest for
solving optimization problems. In this paper, we provide a
methodology for solving a general norm optimization problem
under some linear constraints using the Newton’s method.
This problem arises in many machine learning and graph
optimization applications. We consider as a case study optimal
weight selection for average consensus protocols for which we
show how Newton’s method significantly outperforms gradient
methods both in terms of convergence speed and in term of
robustness to the step size selection.

I. INTRODUCTION

Solutions of actual optimization problems rarely can be
expressed in a closed-form. More often they can be obtained
through iterative methods, that can be very effective in some
cases (e.g. when the objective function is convex). Among
the iterative approaches, gradient methods converge under
quite general hypotheses, but they suffer from very slow
convergence rates as they are coordinate dependent (scaling
variables in the problem affect the convergence speed). The
Newton’s method converges locally quadratically fast and is
coordinate independent, and in presence of constraints, they
can be addressed by considering KKT conditions [1] with
the drawback that Newton’s method requires the knowledge
of the Hessian of the function that may be computationally
too expensive to calculate. However, with the continuous
increase of computation power and the existence of efficient
algorithms for solving linear equations, Newton’s method is
again the object of an increasing interest (e.g. [2], [3], [4]).

In this paper, we deal with an optimization problem that
appears in many application scenarios. Up to our knowledge,
exact line search Newton method is not yet developed for
constrained schatten p-norm problems and are usually solved
by first order gradient methods. The optimization problem we
are interested in is the following:

minimize
X

||X||σp

subject to φ(X) = y,

X ∈ Rn1,n2 , y ∈ Rc,

(1)

where ||X||σp is the Schatten p-norm of the matrix X which
is the L-p norm of its singular values, i.e. ||X||σp =
(
∑
i σ

p
i)1/p, and φ(X) is a linear function of the elements

of X .
The Schatten p-norm is orthogonally invariant and is

often considered in machine learning for the regularization
problem in applications such as multi-task learning [5],

1INRIA Sophia Antipolis-Méditerranée, 2004 route des Lucioles - BP
93. 06902 Sophia Antipolis Cedex, France. Emails: { mahmoud.el chamie,
giovanni.neglia}@inria.fr

collaborative filtering [6] and multi-class classification [7].
The authors in [8] refer to problem (1) as the minimal
norm interpolation problem. However, the problem is not just
limited to machine learning, and it can also include graph
optimization problems where X is the square weighted adja-
cency matrix. In particular, in what follows we will consider
as a case study the calculation of weights that guarantee fast
convergence of average consensus protocols [9].

The main obstacle to apply Netwon method is the dif-
ficulty to calculate the Hessian and for this reason slower
gradient methods are preferred. However, in this paper, we
show that in problem (1) by exploiting the special structure of
the objective function, constraints linearity, and by carefully
rewriting the Schatten norm problem by stacking the columns
of the matrix to form a long vector, we can easily calculate
explicitly both the gradient and the Hessian. While we still
need to invert the Hessian numerically, this matrix has lower
dimension than the typical KKT matrix used in Newton’s
methods for solving such constrained problems. We then
consider a specific case study in this class of optimization
problems, i.e. determining optimal weights for consensus
protocols, for which we specify an approximate easy-to-
implement line search algorithm. Interestingly, using the
proposed method, we give a closed form solution for the
special case of p = 2. Simulations are carried to show the
advantage of this method over used gradients techniques.

We adopt in this paper the notation that bold small letters
are used for vectors (ex: x is a vector and xl is its l-th
component), and capital letters for matrices (ex: X is a
matrix and xij or Xi,j is the element of row i and column
j in that matrix). Let Tr(.) be the trace of a matrix, vect(.)
denotes the operation that stacks the columns of an n1

by n2 matrix in one vector of dimensions n1n2 × 1, and
diag(.) denotes the operation of changing a vector into a
diagonal matrix by placing its elements on the diagonal.
The paper is organized as follows. In Sec. II we provide
some background on Newton’s methods. Sec. III presents
the general methodology we have developed, while Sec. IV
shows a specific case study.

II. PRELIMINARIES

A. The gradient and Hessian of a scalar function

In this section we provide the notation used across this
paper for the gradient and the Hessian of scalar functions.
The functions of our interest can have as input a vector or a
matrix.

1) Scalar function of a vector: Given a function h :
Rm → R, the gradient of the function h(x) with respect

to the vector x ∈ Rm denoted by ∇xh ∈ Rm is given by:

(∇xh)l =
∂h

∂xl
for l = 1, . . . ,m .

The Hessian of the function h(x) is denoted by the matrix
∇2

xh ∈ Rm,m whose elements are given by the following
equation:(

∇2
xh
)
l,k

=
∂2h

∂xl∂xk
for l, k = 1, . . . ,m .

2) Scalar function of a matrix: Let us consider the func-
tion h : Rn1,n2 → R. We define its gradient and Hessian
considering it as a function of the vector vect(X), obtained
stacking the columns of the matrix Xn1,n2 in one vector of
dimensions n1n2 × 1. With some abuse of notation we will
consider that h(X) = h(vect(X)). We can then define the
gradient as follows:

(∇Xh)(j−1)n1+i
=
(
∇vect(X)h

)
(j−1)n1+i

=
∂h

∂xij
for i = 1, . . . , n1 and j = 1, . . . , n2 .

For simplicity we also denote ∇Xh((j−1)n1+i) as ∇Xh(ij).
Similarly the Hessian of the function h(X) is given by the

matrix ∇2
Xh ∈ Rn1n2,n1n2 whose elements are given by:(

∇2
Xh
)
(j−1)n1+i,(t−1)n1+s =

(
∇2

vect(X)h
)

(j−1)n1+i,(t−1)n1+s

=
∂2h

∂xij∂xst
for i, s = 1, . . . , n1 and j, t = 1, . . . , n2 ,

and we denote ∇2
Xh(j−1)n1+i,(t−1)n1+s also as ∇2

Xh(ij)(st).
Note that when n2 = 1, we reobtain the above definitions
for a scalar function of a vector.

B. Newton’s method

Newton’s method is an iterative technique that finds the
roots of a function. For an unconstrained convex minimiza-
tion problem, the roots of the gradient of the function to min-
imize are the minimizers of the function itself. The Newton’s
method is very popular due to its fast speed of convergence.
Consider the following unconstrained minimization problem:

minimize f(w), (2)

where f : Rm → R is strongly convex and twice contin-
uously differentiable. We suppose that the problem has a
solution f∗ and the solution is obtained at w∗, i.e. f∗ =
f(w∗). Since f is a convex and differentiable function, a
point w∗ is optimal if and only if the gradient of the function
vanishes:

∇wf(w∗) = 0. (3)

Therefore, solving the m equations of m variables in (3)
is equivalent to solving the optimization problem (2). The
Newton’s method (also called damped Newton’s method) is
outlined below (see [1]):

Newton’s Method Algorithm
Given
A starting point w ∈ domf , a tolerance ε > 0.

Repeat
1) Compute Newton’s step and decrement:

∆w := −
(
∇2

wf(w)
)−1∇wf(w),

δ2 := ∇wf(w)T
(
∇2

wf(w)
)−1∇wf(w).

2) Stopping criterion: if δ2/2 ≤ ε exit.
3) Line search: use exact or backtracking line search

to find t.
4) Update:

w := w + t∆w.

III. THE CONSTRAINED NORM MINIMIZATION

In this paper, we deal with the following optimization
problem that appears in a quite large number of applications:

minimize
X

||X||σp

subject to φ(X) = y,

X ∈ Rn1,n2 , y ∈ Rc,

(4)

where ||X||σp = (
∑
i σ

p
i)1/p is the Schatten p-norm of the

matrix X , and φ(X) is a linear function of the elements of
X and then it can be written also as:

φ(X) = A vect(X),

where A ∈ Rc,n1n2 and c is the number of constraints. We
suppose that the problem admits always a solution X∗.

Since we are interested in applying Newton’s method to
solve equation (4), the objective function should be twice
differentiable. Not all the norms satisfy this property, we
limit then our study to the case where p is an even integer
because in this case we show that the problem (4) is
equivalent to a smooth optimization problem. Let p = 2q,
raising the objective function to the power p will not change
the solution set, so we can equivalently consider the objective
function:

h(X) = ||X||pσp = Tr
((
XXT

)q)
.

Since we only have linear constraints (A vect(X) = y), by
taking only the linearly independent equations, and using
Gaussian elimination to have a full row rank matrix, we can
rewrite the constraints as follows:[

Ir B
]
P vect(X) = ŷ,

where Ir is the r-identity matrix, r is the rank of the
matrix A (the number of linearly independent equations),
B ∈ Rr,n1n2−r, P is an n1n2 × n1n2 permutation matrix
of the variables, and ŷ ∈ Rr is a vector. We arrive at the
conclusion that the original problem (4) is equivalent to:

minimize
X

h(X) = Tr
((
XXT

)q)
subject to

[
Ir B

]
P vect(X) = ŷ.

(5)

Before applying Newton’s method to (5), we can further
reduce the problem to an unconstrained minimization prob-
lem. By considering the equality constraints, we can form a
mapping from X ∈ Rn1,n2 to the vector x ∈ Rn1n2−r as
follows:

x =
[

0n1n2−r,r In1n2−r
]
P vect(X), (6)

and X can be obtained from x and ŷ as

X = vect−1

(
P−1

[
ŷ −Bx

x

])
, (7)

where vect−1 : Rn1n2 → Rn1,n2 is the inverse function
of vect(), i.e. vect−1(vect(X)) = X . The unconstrained
minimization problem is then:

minimize
x

f(x), (8)

where f(x) = Tr
((
XXT

)q)
and X is given as in (7).

All three problems (4), (5), and (8) are convex and are
equivalent to each other. We apply Newton’s method to (8)
to find the optimal vector x∗ and then deduce the solution
of the original problem X∗. The main difficulty in most
Newton’s methods is the calculation of the gradient and the
Hessian. In many applications, the Hessian is not known and
for this reason gradient methods are applied rather than the
faster Newton’s methods. However, in this paper, we show
that by exploring the special structure of the function h(X),
we can calculate explicitly both ∇xf and ∇2

xf . To this
purpose, we first calculate the gradient and Hessian of h(X)
by the following theorem and then use the linearity of the
constraints.

Theorem 1. Let h(X) = Tr
((
XXT

)q)
where X ∈ Rn1,n2 ,

then the gradient of h is given by,

∇Xh(ij) = 2q
((
XXT

)q−1
X
)
i,j

for
i = 1, . . . , n1

j = 1, . . . , n2,
(9)

and the Hessian,

∇2
Xh(ij)(st) = 2q

q−2∑
k=0

((
XXT

)k
X
)
i,t

((
XXT

)q−2−k
X
)
s,j

+ 2q
q−1∑
k=0

((
XXT

)k)
i,s

((
XTX

)q−1−k)
t,j
.

(10)

Proof. See Appendix.

We can now apply the chain rule to calculate the gradient
and Hessian of f(x), taking into account the mapping from
x to X in (7).

For the gradient ∇xf , it holds for l = 1, . . . , n1n2 − r:

(∇xf)l =
∂f

∂xl
=
∑
i,j

∇Xh(ij)
∂xij
∂xl

, (11)

where all the partial derivatives ∂xij

∂xl
are constant values

because (7) is a linear transformation1. Applying the chain

1Because of space constraints and for the sake of conciseness we do not
write explicitly the value of these partial derivatives in the general case, but
only for the specific case study we consider in the next section.

rule for the Hessian and considering directly that all the
second order derivatives like ∂2xij

∂xl∂xk
are null (again because

the mapping (7) is a linear transformation), we obtain that
for l, k = 1, . . . , n1n2 − r:(

∇2
xf
)
l,k

=
∂2f

∂xl∂xk

=
∑
i,j,s,t

∇2
Xh(ij)(st)

∂xij
∂xl

∂xst
∂xk

. (12)

Since f(x) is a convex function, then the calculated matrix
∇2

xf is semi-definite positive. We can add to the diagonals
a small positive value γ to guarantee the existence of the
inverse without affecting the convergence. The calculated
Hessian is a square matrix having dimensions d by d where
d = n1n2 − r may be large for some applications, and at
every iteration of the Newton’s method, we need to calculate
the inverse of the Hessian. Efficient algorithms for inverting
large matrices are largely discussed in the literature (see
[10] for example) and are beyond the scope of this paper.
Nevertheless, the given matrix has lower dimension than the
typical KKT matrix2 used in Newton’s method [1]:[

∇2
Xh AT

A 0

]
, (13)

where A is considered here to be a full row rank ma-
trix, so the KKT matrix is a square matrix of dimensions
dKKT by dKKT where dKKT = n1n2 + r. Once we know

the gradient ∇xf and the Hessian ∇2
xf , we just apply the

Newton’s method given in section II-B to find the solution
x∗ and then obtain the solution of the original problem
X∗. In the next section, as a case study, we will apply
the optimization technique we developed here to a graph
optimization problem.

IV. A CASE STUDY: WEIGHTED GRAPH OPTIMIZATION

In average consensus protocols, nodes in a network, each
having an initial estimate (e.g. node i has the estimate
yi(0) ∈ R), perform an iterative procedure where they update
their estimate value by the weighted average of the estimates
in their neighborhood according to the following equation:

yi(k + 1) = wiiyi(k) +
∑
j∈Ni

wijyj(k).

Under some general conditions on the network topology and
the weights, the protocol guarantees that every estimate in the
network converges asymptotically to the average of all initial
estimates. The speed of convergence of average consensus
protocols depends on the weights selected by nodes for
their neighbors [11]. Minimizing the trace of the weighted
adjacency matrix leads to weights that guarantee fast speed
of convergence (see [9]). In what follows, we show that this
problem is a specific case of our general problem (4) and then
apply the methodology presented above to solve it using the
Newton’s method.

2Note that the sparsity of the matrix to invert is preserved by the proposed
method, i.e. if the KKT matrix is sparse due to the sparsity of A and ∇2

Xh,
then ∇2

xf is also sparse.

A. Problem formulation

We consider a directed graph G = (V,E) where the
vertices (also called nodes) V = {1, . . . , n} are ordered and
E is the set of edges (also called links). The graph G satisfies
the following symmetry condition: if there is a link between
two nodes ((ij) ∈ E) then there is also the reverse link
((ji) ∈ E). We also consider the nodes to have self links,
i.e. (ii) ∈ E for every node i. Then the number of links can
be written as 2m + n with m being a positive integer. The
graph is weighted, i.e. a weight wij is associated to each link
(ij) ∈ E. By considering wij = 0 if (ij) /∈ E, we can group
the values in a weight matrix W ∈ Rn×n (i.e. (W)i,j = wij
for i, j = 1, . . . , n). A graph optimization problem is to find
the weights that can minimize a function h(W) that depend
on these weights subject to some constraints. In particular for
average consensus protocols, it is meaningful [9] to consider
the following problem:

minimize
W

Tr(W p)

subject to W = WT ,

W1 = 1,

W ∈ CG,

(14)

where p = 2q is an even positive integer and CG is the
condition imposed by the underlying graph connectivity, i.e.
wij = 0 if (ij) /∈ E. We denote by W(p) the solution
of this optimization problem. The authors in [9] show that
problem (14) well approximates (the larger p, the better
the approximation) the well known fastest distributed linear
averaging problem [11], that guarantees the fastest asymp-
totic convergence rate by maximizing the spectral gap of
the weight matrix. Due to the constraint that the matrix is
symmetric, we can write the objective function as h(W) =
Tr
((
WWT

)q)
. Moreover, we can see that all constraints

are linear equalities. Therefore, the technique derived in the
previous section applies here.

B. The unconstrained minimization

We showed that the general problem (4) is equivalent to an
unconstrained minimization problem (8). This is obviously
true also for the more specific minimization problem (14)
we are considering. It can be easily checked that in this
case the number of independent constraints is equal to r =
n2 −m and then the variables’ vector for the unconstrained
minimization has size m. We denote this vector w. There are
multiple ways to choose the m independent variables. Here
we consider a variable for each pair (i, j) and (j, i) where
j 6= i. We express that the l-th component of the weight
vector w corresponds to the links (i, j) and (j, i) by writing
l ∼ (ij) or l ∼ (ji). This choice of the independent variables
corresponds to consider the undirected graph G′ = (V,E′)
obtained from G by removing self loops and merging links
(i, j) and (j, i) and then determine a weight for each of
the residual m links. Due to space constraints, we do not
write the expression of B, P and ŷ that allow us to map the
weight matrix W to the vector w so defined, but it can be
easily checked that all the weights can be determined from

w as follows: wij = wji = wl for l ∼ (ij) and wii =
1 −

∑
j∈Ni

wij where Ni is the set of neighbors of node
i. This can be expressed in a matrix form as follows: W =
In−Qdiag(w)QT , where In is the n×n identity matrix and
Q is the incidence matrix of graph G′ (the incidence matrix
of a graph having n nodes and m links is defined as the
n×m matrix where for every link l ∼ (ij), the l-th column
of Q is all zeros except for Qil = +1 and Qjl = −1). The
equivalent unconstrained problem is then:

minimize
w

f(w) = Tr((In −Qdiag(w)QT)p). (15)

C. Gradient and Hessian
To apply Newton’s method to minimize the function f ,

we have to calculate first the gradient ∇wf and the Hessian
matrix ∇2

wf . The function f is a composition function
between h(W) = Tr(W p) and the matrix function W =
I −Qdiag(w)QT :

f(w) = Tr(W p)|W=In−Qdiag(w)QT .

From Eq. (11), we have

(∇wf)l =
∑
i,j∈V

∇Wh(ij)
∂wij
∂wl

,

where ∇Wh(ij) = p(W p−1)ij (it follows from (9) and the
fact that W = WT). Due to the conditions mentioned earlier
(wij = wji = wl for all l ∼ (ij) and wij = 0 if (ij) /∈ E
and wii = 1−

∑
j∈Ni

wij), if l ∼ (ab) we have

∂wij
∂wl

=



+1 if i = a and j = b

+1 if i = b and j = a

−1 if i = a and j = a

−1 if i = b and j = b

0 else.

(16)

We can then calculate the gradient ∇wf ∈ Rm. In particular
for l ∼ (ab) we have,

(∇wf)l = ∇Wh(ab) +∇Wh(ba) −∇Wh(aa) −∇Wh(bb) =

= p(W p−1)b,a + p(W p−1)a,b
− p(W p−1)a,a − p(W p−1)b,b. (17)

For the calculation of the Hessian, let l ∼ (ab), k ∼ (cd)
be given links. Only 16 of the n2

1n
2
2 terms in Eq. (12)—

those corresponding to i, j ∈ {a, b} and s, t ∈ {c, d}—are
different from zero because of (16), and they are equal to
1 or to −1. Moreover we can simplify the expression of
∇2
Xh(ij)(st) in (10) by considering that X = W = WT .

Finally after grouping the terms, we obtain the more compact
form: (

∇2
wf
)
l,k

= p

p−2∑
z=0

A(z)B(z) (18)

where

A(z) =
[
(W z)a,c + (W z)b,d − (W z)a,d − (W z)b,c

]
,

B(z) =
[
(WK−z)a,c+(WK−z)b,d−(WK−z)a,d−(WK−z)b,c

]
,

and K = p− 2.

D. Newton’s direction ∆w

Let g ∈ Rm and H ∈ Rm×m such that g = ∇wf(w) as
in equation (17) and H = ∇2

wf(w) as in equation (18). Then
the direction ∆w to update the solution in Newton’s method
can be obtained solving the linear system H∆w = g.

E. Line search

As in the Newton’s method described above, at each
iteration the algorithm calculates a search direction (∆w) and
then decides how far to move along that direction (choosing
a stepsize t) which results in the update equation of line
4 of the algorithm (w := w + t∆w). The procedure of
selecting the stepsize for a given direction is called line
search. Most line search algorithms require ∆w to be a
descent direction (i.e. ∆wTg < 0 which guarantees that
the function decreases along the chosen direction). Newton’s
direction in our problem is a descent direction because it
satisfies this property:

∆wTg = −gTH−1g < 0,

since H is a positive definite matrix (due to the convexity
of the problem).

The Newton’s method uses exact line search if at each
iteration the step size is selected in order to guarantee the
maximum amount of decrease of the function f in the
descent direction, i.e. t is selected as the global minimizer
of the univariate function φ(t):

φ(t) = f(w + t∆w), t > 0.

Usually exact line search is very difficult to implement,
but we benefit from the convexity of our problem to derive
a procedure which gives a high precision estimate of the
optimal choice of the stepsize. Notice that φ(t) can be written
as follows:

φ(t) = f(w + t∆w) = Tr((In −Qdiag(w + t∆w)QT)p) =

= Tr((In −Qdiag(w)QT − tQdiag(∆w)QT)p) =
= Tr((W + tU)p) = h(W + tU)

where U = Qdiag(∆w)QT and is also symmetric.
Since (14) is a smooth convex optimization problem, h() is
smooth and convex also when it is restricted to any line that
intersects its domain. Then φ(t) = h(W + tU) is convex
in t and we can apply a basic Newton method to find the
optimal t:

Let t1 = 1 and t0 = 0, select a tolerance η > 0,
while |tn − tn−1| > η

tn ← tn−1 − φ′(tn−1)
φ′′(tn−1)

;
end while

At the end of this procedure, we select t = tn to be
used as the stepsize of the iteration. Applying the chain
rule to the composition of the function h(Y) = Tr(Y p)

and Y (t) = W + tU (similarly to what we have done for f
in (12)), we can find the first and second derivative:

φ′(t) =
∑
i,j

∂h

∂yij
uij = p

∑
i

(Y p−1U)i,i = pTr(Y p−1U),

φ′′(t) =
dφ′(t)

dt
= p× Tr

(
p−2∑
q=0

Y p−2−qUY qU

)
,

where Y = W + tU and for the second expression we have
used a result in [12].

V. THE ALGORITHM

We summarize the Newton’s method used for the trace
minimization problem (14):

Step 0: Choose a weight matrix W (0) that satisfies the
conditions given in (14) (e.g. In is a feasible starting
weight matrix). Choose a precision ε and set k ← 0.

Step 1: Calculate ∇wf
(k) from equation (17) (call this

gradient g).
Step 2: Calculate ∇2

wf
(k) from equation (18) (since f is

a convex function, we have ∇2
wf

(k) is a semi-definite
positive matrix, let H = ∇2

wf
(k) +γIm where γ can be

chosen to be the machine precision to guarantee that H
is positive definite and thus can have an inverse H−1).

Step 3: Calculate Newton’s direction ∆w(k) = H−1g.
Stop if ||∆w(k)|| ≤ ε.

Step 4: Use Newton procedure to find the exact stepsize
t(k)

Step 5: Update the weight matrix by the following equa-
tion:

W (k+1) = W (k) + t(k)Qdiag(∆w(k))QT .

Step 6: Increment iteration k ← k + 1. Go to Step 1.

VI. CLOSED FORM SOLUTION FOR p = 2
Interestingly, for p = 2 the Newton’s method converges

in 1 iteration. In fact for p = 2, the problem (14) is the
following:

minimize
W

h(W) = Tr(W 2) =
∑
i,j

w2
ij

subject to W = WT ,

W1 = 1,

W ∈ CG.

(19)

Theorem 2. Let W(2) be the solution of the optimization
problem (19), then we have:

W(2) = In −Qdiag
(

(Im +
1
2
QTQ)−11m

)
QT , (20)

where Q is the incidence matrix of the graph G.

Proof. See the appendix.

Moreover, we show in the appendix that on D-regular
graphs, the given optimization problem for p = 2 gives
same results as other famous weight selection algorithms
as metropolis weight selection (local degree) or maximum
degree weight selection (for a survey on weight selection
algorithms see [13] and the references therein).

Tconv ER(n = 100, P r = 0.07)
(number of iterations) p = 2 p = 4 p = 6 p = 10

Newton 1 5 5.7 6.1
E-GD 72.3 230.5 482.7 1500.5

E-Nesterov 130.2 422.8 811.3 1971.2
BT-GD or BT-Nesterov > 5000 > 5000 > 5000 > 5000

TABLE I
CONVERGENCE TIME OF NEWTON’S METHOD FOR PROBLEM (14).

VII. SIMULATIONS

We apply the above optimization technique to solve prob-
lem (14) on Erdos Renyi random networks ER(n, Pr),
where n is the number of nodes and Pr is the probability of
existence of a link. We compare the number of iterations for
convergence with those of first order methods as Nesterov
and Descent Gradient (DG) using either backtracking line
search (referred as BT-methods in the figure) or exact line
search (referred as E-methods in the figure). The Nesterov
first order method as described in [14] usually achieves
faster rate of convergence with respect to traditional first
order methods. The Gradient Descent method follows the
same steps of the Newton’s algorithm, but in Step 2, the
Hessian H is taken as the identity matrix (for Gradient
Descent methods HGD = Im while for Newton’s method
HN = ∇2

wf
(k)). Since at the optimal value w∗ the gradient

vanishes (i.e. ||g(k)|| = 0), we consider the convergence time
Tconv to be:

Tconv = min{k : ||g(k)|| < 10−10}.

Table 1 shows the results for the Newton’s and other first
order methods. The initial condition for the optimization
is given by W (0) = In which is a feasible starting point.
The values are averaged over 100 independent runs for each
of the (n, Pr, p) values. The results show that the average
convergence time of Newton’s is much less than the first
order methods in terms of the number of iterations. As we
can see, when using exact line search, E-Nesterov was slower
than E-DG method, this could be interpreted that the Descent
Gradient does not suffer from the zig-zag problem usually
caused by poorly conditioned convex problems. Moreover,
using backtracking line search for first order methods was
not converging in a reasonable number of iterations because
the function we are considering is not lipschitz continuous
when p > 2 and due to the high precision gradient stopping
condition. Note that, the number of iterations is not the only
factor to take into account, in fact the Newton’s method
requires at each iteration to invert the Hessian matrix, while
GD has lower computational cost. However, the GD is
very sensitive to changing the step size, while Newton’s
method is not. By applying constant or backtracking line
search stepsizes to the GD method, the algorithm was not
converging in a reasonable number of iterations while even
with the simplest Newton’s method (taking always a stepsize
equal to 1) was converging in less than 15 iterations for the
ER(n = 100, P r = 0.07) graphs.

VIII. CONCLUSION

In this paper, we showed how the Newton’s method can be
used for solving the constrained Schatten norm minimization.
As a case study we show how to apply the methodology to
graph optimization problem as consensus protocols.

APPENDIX
PROOF OF THEOREM 1

Let h(X) = Tr
((
XXT

)q)
where X ∈ Rn1,n2 , we first

observe that

Tr
((
XXT

)q)
=

n1∑
u1=1

((
XXT

)q)
u1,u1

=

=
n1∑

u1,u3,...u2q−1=1

(
XXT

)
u1,u3

(
XXT

)
u3,u5

. . .
(
XXT

)
u2q−1,u1

=
n1∑

u1,u3,...u2q−1=1

n2∑
u2,...u2q=1

xu1u2xu3u2 . . . xu2q−1u2q
xu1u2q

Since for any a, b, we have ∂xab

∂xij
= δaiδbj , where δuv is the

Kronecker delta, i.e. δuv = 1 if u = v, δuv = 0 otherwise.
Then the gradient of h(X) is given by:

∇Xh(ij) =
∂Tr

((
XXT

)q)
∂xij

=

=
∑

u1,u2,...u2q

δu1iδu2jxu3u2 . . . xu2q−1u2q
xu1u2q

+

+
∑

u1,u2...u2q

xu1u2δu3iδu2j . . . xu2q−1u2qxu1u2q + . . .

+
∑

u1,u2,...u2q

xu1u2xu3u2 . . . xu2q−1u2qδu1iδu2qj =

= q(XTX . . .XT)j,i + q(XXT . . . X)i,j

= 2q
((
XXT

)q−1
X
)
i,j

for
i = 1 . . . n1

j = 1 . . . n2
. (21)

We can calculate similarly the Hessian of h(X) for i, s =
1 . . . n1 and j, t = 1 . . . n2:

∇2
Xh(ij)(st) =

∂2Tr
((
XXT

)q)
∂xij∂xst

=
∂

∂xst

(
2q
((
XXT

)q−1
X
)
i,j

)
= 2q

∂

∂xst

∑
u1,u2,u3,...,u2q−2

xiu1xu2u1xu2u3 . . . xu2q−2j

= 2q
∑

u1,u2,u3,...,u2q−2

δisδu1txu2u1xu2u3 . . . xu2q−2j+

+ 2q
∑

u1,u2,u3,...,u2q−2

xiu1δu2sδu1txu2u3 . . . xu2q−2j + . . .

+ 2q
∑

u1,u2,u3,...,u2q−2

xiu1xu2u1xu2u3 . . . δu2q−2sδjt

= 2q
q−2∑
k=0

((
XXT

)k
X
)
i,t

((
XXT

)q−2−k
X
)
s,j

+ 2q
q−1∑
k=0

((
XXT

)k)
i,s

((
XTX

)q−1−k)
t,j
. (22)

APPENDIX
PROOF OF THEOREM 2

The optimization function is quadratic in the variables wij ,
so applying Newton’s algorithm to minimize the function
gives convergence in one iteration independent from the
initial starting point W (0). Let W (0) = In which is a feasible
initial starting point. The gradient g can be calculated
according to equation (17):

gl = 2 ((In)i,j + (In)j,i − (In)i,i − (In)j,j)
= 2(0 + 0− 1− 1) = −4 ∀l = 1, . . . ,m,

in vector form:
g = −4× 1m,

where 1m is a vector of all ones of dimension m.
To calculate the Hessian ∇2

W f , we apply equation (18) for
p = 2, we get that for any two links l ∼ (ab) and k ∼ (cd),
we have(
∇2

wf
)
l,k

= 2× ((In)a,c + (In)b,d − (In)a,c − (In)b,d)
2
,

and thus

(
∇2

wf
)
l,k

=


2× (2)2 if l = k

2× (1)2 if l and k share a common vertex,
0 else.

(23)
In matrix form, we can write the Hessian as follows:

∇2
wf = 2× (2Im +QTQ),

where Q is the incidence matrix of the graph given earlier
(in fact, QTQ−2Im is the adjacency matrix of what is called
the line graph of G). Notice that since QTQ is semi-definite
positive all the eigenvalues of the Hessian are larger than 2
and then the Hessian is invertible. The Newton’s direction is
calculated as follows:

∆w = H−1g = −(Im +
1
2
QTQ)−11m.

Thus the optimal solution for the problem for p = 2 is:

W(2) = W (0) +Qdiag(∆w)QT

= In −Qdiag
(

(Im +
1
2
QTQ)−11m

)
QT .

APPENDIX
D-REGULAR GRAPHS

A D-regular graph is a graph where every node has the
same number of neighbors which is D. Examples of D
regular graphs is the cycle graphs (2-regular), the complete
graph (n− 1-regular), and many others.

On these graphs, the sum of any row in the matrix QTQ
is equals to 2D, then 2D is an eigenvalue that corresponds
to the eigenvector 1. Since QTQ is a symmetric matrix, it
has an eigenvalue decomposition form:

QTQ =
∑
k

λkvkvTk ,

where {vk} is an orthonormal set of eigenvectors (without
loss of generality, let v1 = 1√

n
1). Moreover, (Im + 1

2Q
TQ)

is invertible because it is positive definite and have the same
eigenvectors as QTQ. Considering its inverse as a function
of QTQ, we can write:

(Im +
1
2
QTQ)−1 =

∑
k

(1 +
λk
2

)−1vkvTk .

Since 1 is an eigenvector of QTQ and therefore of (Im +
1
2Q

TQ)−1, so it is perpendicular to all the others (vTk 1 = 0
for all k 6= 1). So,

(Im +
1
2
QTQ)−11 = (1 +

λ1

2
)−1v1(

n√
n

) =
1

1 +D
1.

As a result the solution of the optimization in G is given by,

W(2) = In −
1

1 +D
QQT ,

or equivalently the solution in G′ is given by w:

wl =
1

1 +D
∀l = 1, . . . ,m.

Therefore, the solution of the suggested optimization prob-
lem for p = 2 gives the same matrix on D-regular graphs as
other weight selection algorithms for average consensus.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, March 2004.

[2] E. Wei, A. Ozdaglar, A. Eryilmaz, and A. Jadbabaie, “A distributed
newton method for dynamic network utility maximization with deliv-
ery contracts,” in Information Sciences and Systems (CISS), 2012 46th
Annual Conference on, March, pp. 1–6.

[3] J. Liu and H. Sherali, “A distributed newton’s method for joint multi-
hop routing and flow control: Theory and algorithm,” in INFOCOM,
2012 Proceedings IEEE, March, pp. 2489–2497.

[4] H. Attouch, P. Redont, and B. Svaiter, “Global convergence of a
closed-loop regularized newton method for solving monotone inclu-
sions in hilbert spaces,” Journal of Optimization Theory and Applica-
tions, pp. 1–27, 2012.

[5] A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying, “A spectral
regularization framework for multi-task structure learning,” in In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20. MIT Press, 2007.

[6] N. Srebro, J. D. M. Rennie, and T. S. Jaakola, “Maximum-margin
matrix factorization,” in Advances in Neural Information Processing
Systems 17. MIT Press, 2005, pp. 1329–1336.

[7] Y. Amit, M. Fink, N. Srebro, and S. Ullman, “Uncovering shared
structures in multiclass classification,” in Proceedings of the 24th
international conference on Machine learning, ser. ICML ’07. New
York, NY, USA: ACM, 2007, pp. 17–24.

[8] A. Argyriou, C. A. Micchelli, and M. Pontil, “On spectral learning,”
J. Mach. Learn. Res., vol. 11, pp. 935–953, Mar. 2010.

[9] M. El Chamie, G. Neglia, and K. Avrachenkov, “Distributed Weight
Selection in Consensus Protocols by Schatten Norm Minimization,”
INRIA, INRIA Research Report, Oct 2012.

[10] E. Isaacson and H. Keller, Analysis of Numerical Methods, ser. Dover
Books on Mathematics Series. Dover Publ., 1994.

[11] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[12] D. Bernstein, Matrix mathematics: theory, facts, and formulas.
Princeton University Press, 2005.

[13] K. Avrachenkov, M. El Chamie, and G. Neglia, “A local average
consensus algorithm for wireless sensor networks,” in IEEE DCOSS
2011 (Barcelona, Spain June 27-29), Jun 2011, p. 6.

[14] Y. Nesterov, Introductory lectures on convex optimization : a basic
course, ser. Applied optimization. Boston, Dordrecht, London:
Kluwer Academic Publ., 2004.

