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Abstract

There has been considerable research on the performance analysis of on-demand caching replace-
ment policies like Least-Recently-Used (LRU), First-In-First-Out (FIFO) or Random (RND).
Much progress has been made on the analysis of a single cache running these algorithms. How-
ever it has been almost impossible to extend the results to networks of caches. In this paper, we
introduce a Time-To-Live (T'TL) based caching model, that assigns a timer to each content stored
in the cache and redraws it every time the content is requested (at each hit/miss). We derive
the performance metrics (hit/miss ratio and rate, occupancy) of a TTL-based cache in isolation
fed by stationary and ergodic request processes with general TTL distributions. Moreover we
propose an iterative procedure to analyze TTL-based cache networks under the assumptions that
requests are described by renewal processes (that generalize Poisson processes or the standard
IRM assumption). We validate our theoretical findings through event-driven and Monte-Carlo
simulations based on the Fourier Amplitude Sensitivity Test to explore the space of the input
parameters. We observe that our analytic model predicts remarkably well all metrics of interest

with relative errors smaller than 1%.
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1. Introduction

Caches are widely used in networks and distributed systems to improve their performance. They
are integral components of the World Wide Web [10], the Domain Name System (DNS) [32], and
Content Distribution Networks (CDNs) [44]. More recently there has been a growing emphasis
on Information-Centric Networking (ICN) [1] architectures—Ilike the Content-Centric Network
(CCN) [28]—which support host-to-content interactions as the common case. Many of these
content networks give rise to hierarchical (or more general) cache topologies. The design, the

configuration and the analysis of these cache systems pose significant challenges.

An abundant literature exists on the performance (e.g. hit probability, search cost) of a single
cache running the First-In-First-Out (FIFO) or Random (RND) replacement policies (see |24]
for independent and identically distributed or i.i.d. requests), the Least-Recently-Used (LRU)
replacement policy or, its companion, the Move-to-Front (MTF) policy (see [4, 5, 6, 15, 19,
22, 27, 29, 36] for i.i.d. requests and [13, 31, 30] for correlated requests). With few exceptions,
exact models of caches in isolation are computationally intractable, resulting in the reliance on
approximations [15, 29]. Networks of caches are significantly more difficult to analyze and no
exact solution has been obtained so far for even the simple network of two LRU (or FIFO, RND)
caches in tandem. Approximations have been proposed for star networks of LRU and RND
caches by [10, 23| and [45] respectively. [43] is one of the first modeling attempt to approximate
the performance of a general network of LRU caches. However, theses approximate models
suffer from inaccuracies as reported in [43] where the relative error can reach 16%. Despite the
increasing interest in ICN architectures, previous work has mainly focused on global architecture
design. An exception is |9]|, whose authors develop approximations to calculate the stationary
throughput in a CCON network of LRU caches modeling the interplay of chunk-level caching and
a receiver-driven transport protocol. In the literature, the 5-Minute Rule by [25] is probably
one of the first paper to describe a Time-To-Live (TTL) based algorithm to manage data in
computer memories. [33] considers a single TTL-based cache fed by i.i.d. requests to study the
timer-based expiration policy of DNS caches in isolation. According to the RFC 6195, each
missed resource record is marked with a timeout which indicates the maximum duration the
record can be stored in the DNS cache. The timeouts are initialized only by an authoritative
DNS server and an eventual hit on a local DNS cache does not change the value of the remaining
timeout. Therefore, DNS caches are different from our TTL-based systems. [33] obtains the hit

rate of a single DNS cache for a constant TTL via the solution of a renewal equation.



In this paper, we focus on a class of caches we introduced in our previous work |7] and we refer
to as Time-To-Live (TTL)-based caches. Here TTLs are not used to guarantee the consistency
of dynamic contents (as it is the case of [3, 14, 33, 46]), but to implement an eviction policy that
decides which contents have to be kept in the cache. Briefly, when an uncached data is brought
back into the cache due to a cache miss, a local TTL is set and further redrawn at every cache
hit.! The TTL value can be different for different data, but also for the same data at different
caches. All requests to that data before the expiration of the TTL are successful (cache hits); the
first request for that data to arrive after the TTL expiration yields a cache miss. In this latter
case, the cache may forward the request to a higher-level cache, if any, or to the server. When
located, the data is routed on the reverse-path and a copy is placed in each cache along the path
(as in CCN [28]). This paper makes the case that TTL policies are interesting alternatives to
policies such as LRU or RND for three reasons. First, a TTL policy is more configurable and
in particular can mimic the behavior of other replacement policies through a proper choice of
parameters (see Section 7.2). Second, while LRU or RND cache networks have defied accurate
analysis, networks of TTL-based caches are simpler to study (as we show in Sections 3 and 4).
Finally, the TTL-based model appears as a unified framework for the performance analysis of
heterogeneous cache networks where the caches may run different replacement policies. Precisely,
we develop a set of building blocks for the analysis of hierarchical TTL-based cache networks,
where (i) exogenous requests at different caches are modeled as independent renewal processes,
and (i¢) independent TTL values are drawn at each cache from arbitrary distributions.

The building blocks are:

1. a model of a single content TTL cache fed by a renewal request stream (or a more general
stationary request process),

2. a renewal process approximation of the superposition of independent renewal processes.

The first block forms the basis to evaluate the performance metrics and to describe the output
sequence of requests (the miss process) of a cache. Meanwhile, the second block is used to
characterize the resulting process of the superposition of several independent streams of requests
consisting of exogenous requests from users and/or missed requests from other caches if any.

These blocks are applied to assess the performance metrics of hierarchical TTL-based cache

!This is then different from the timeouts of DNS caches; and thus, the TTL-based cache model presented here
is different from the one of [33] since the TTLs are reset at every cache hit and not initialized by a central entity.



networks. We then show how the computational cost of our approach simplifies when T'TLs and
the inter-arrival times of the exogenous request streams at every cache are Matrix-Exponentially
Distributed (MED). We refer to this case in short as a MED cache network. The class of Matrix-
Exponential distributions coincides with the class of distributions having a rational Laplace-
Stieltjes Transform that can be used to fit properties of general processes |17, 26, 34, 41|. Event-
driven and Monte-Carlo simulations on instances of MED cache networks reveal that the relative
errors between the simulated networks and our model predictions are extremely small and less

than 1072 for all metrics of interest.

The contributions of the paper are:

e the proposal of TTL-based replacement policies for content-routers of ICN architectures,

e an analytic tool to assess the performance of hierarchical TTL-based cache networks.

This paper extends our previous work [7] as follows.

The performance metrics of single cache derived in [7] when requests were described by renewal
processes are now extended (see Section 3, Propositions 3.1 and 3.2) to the case when requests
are described by stationary and ergodic processes. We also provide physical and/or probabilistic
interpretations of several quantities. This paper clarifies the scope of application of our theoretic
results and points out our contribution with respect to several recent papers |1, 10, 11] devoted
to the analysis of classical replacement policies such as LRU or RND as special case of TTL-
based caches. A new result on the optimal TTL configuration of caches in isolation is added
in Section 3, Proposition 3.4 and the proof is provided in Appendix. The recursive procedure
presented in |7] for class N networks (i.e. caterpillar networks of exponentially distributed TTL-
based caches fed by hyper-exponential renewal processes) is generalized by the class of MED cache
networks in three orthogonal directions: (i) network topology considered is now an arbitrary tree
of caches, (i7) requests are now described by a versatile class of renewal processes where inter-
arrival times of requests are matrix-exponentially distributed , and (iéi) the TTLs are drawn
from matrix-exponential distribution.

The model validation in Section 5 provides additional insights on the accuracy of our assumptions
and approximations, and also the efficiency of our approach in terms of computational time under
various conditions. Precisely, we add results for larger networks with up to forty caches, different
network topologies, two different workload models (requests described by Poisson and Interrupted

Poisson processes), hyper-exponential and hypo-exponential TTL distributions.



The paper is organized as follows. In Section 2, we introduce the notation and the model
assumptions. Section 3 contains our model of a single TTL-based cache and provides the exact
characterization of the performance metrics and the miss process. We describe in Section 4
a general procedure to study any hierarchical TTL-based cache network. The key point in
this section is how we model the combined exogenous and miss requests streams as a renewal
point process thanks to a result from [40, Eq.(4.1)], [2, Eq.(1.4.6)] regarding the computation
of the marginal inter-arrival distribution for a superposition of independent renewal processes.
A simplified procedure is then derived for MED cache networks. The accuracy of the general
and of the simplified procedures is evaluated in Section 5 and a discussion of the computational
complexity of our analytic approach can be found in Section 6. Section 7 discusses how our TTL-
based model can be implemented under finite capacity constraints, and how the TTL policy can

mimic different policies like LRU or RND. Conclusions are found in Section 8.

2. Single TTL cache: model and notation

For the sake of readability, we first introduce our main assumptions and our notation for the
simple architecture of a single TTL-based cache and a server connected in tandem, as shown
in Figure 1. The terminology and the formalism introduced here will be extended later to
hierarchical TTL-based cache networks (see Section 4). From now on the words “cache” and
“node” will be used interchangeably. Also, a cache will always be a TTL-based cache unless
otherwise specified.
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Figure 1: Single cache and server of two files blue and green.

We now introduce a key assumption for our approach:

Assumption 2.1 (Infinite Capacity). The T'TL-based cache has an infinite capacity.

A consequence is that content items are evicted from the cache only when their TTL expires and

not because space is needed to allocate other contents. Assumption 2.1 allows us to decouple



the management of the different content items and study each of them separately as illustrated
in Figure 2. For this reason, in what follows we will refer to a single content item or data. The

effect of capacity constraint is considered in Section 7.1.
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Figure 2: Infinite cache capacity and TTL decoupling effect.

In order to keep the model as simple as possible we also assume that data processing and transfer

times are negligible:

Assumption 2.2 (Zero delay). There is a zero processing time at each node and a zero trans-

mission delay between nodes including the server.

In fact, the model presented in this paper can be easily extended to consider non-zero processing

time and/or delay. This latter case will be investigated in a future work.

Requests for a specific data are generated at times {tx,k € Z} such that ... <t_; <tr <0<
t;1 < ... by convention, where Z denotes the set of all integers. Let X k) — tk+1 — tr be the
inter-arrival time between requests k and k + 1. Also, let T") (k € Z) being the TTL duration

generated for the content after the arrival of the request at time tj.

Consider the request submitted at time to (the process for requests submitted at times t; with
k # 0 is the same). There is a cache hit (resp. cache miss) at time tq if the data is present (resp.
is not present) in the cache at this time, which corresponds to the situation where ¢ty < ¢_; +7D
(resp. tg > t_1 + T1). In the case of a cache miss the request is instantaneously (because
of Assumption 2.2) forwarded to the server at time mgy = to and the data is retrieved from the
server. By convention, the data is permanently store in the server. Once the data is fetched from
the server, a copy of it is instantaneously transmitted to the cache and the request is resolved at
time to, while a copy is kept at the cache. At time ¢y the TTL of the data is set to T both for

a cache hit and for a cache miss. The next cache miss after time mg will occur at time my = ¢;
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Figure 3: Requests, caching durations and inter-miss times.

with j = min{l > 0:¢; > t;_; + T¢~D} — see Figure 3 where j =1 + 1.

Our choice to reset the TTL after each cache hit makes also our single-cache scenario different
from the one studied in [33]. Resetting the TTL tends to increase the sojourn time and the hit
probability on the cache specially for the most popular contents. This corresponds to the general
ICN paradigm [1] to move popular documents as close as possible to the users. For the time

being we assume the following minimal assumptions:

Assumption 2.3 (Stationary arrivals and TTLs). The point process {t,,n € Z} is simple
(i.e. there are no simultaneous requests) and stationary (i.e. {X®) k € Z} is a stationary
sequence) and independent of the sequence of TTLs {T(k),k‘ € Z} which is also assumed to be
stationary. Furthermore, the intensity X := 1/E[X®)]of the point process {t,,n € Z} is non-zero
and finite and 0 < 1/p = E[T®)] < oo.

Under Assumption 2.3 the cache is in steady-state (in particular) at time ¢ = 0 and from now
on we will only observe its behavior at times ¢t > 0. We denote by X(t) = P(X®*) < #) and
T(t) = P(T™) < t) the Cumulative Distribution Function (CDF) of X*) and T®) respectively.

We call the miss process the sequence of successive time instants 0 < mg < mq < --- at which
misses occur in [0, 00), which are also the times at which the server forwards a copy of the data to
the cache. We denote by Y*) = my; | —my, the time interval between the k-th and the (k+1)-st
misses for k > 0 and Y (t) = P(Y(®) < t) the CDF of Y*). Stronger statistical assumptions
on the sequences {X®) k € Z} and {T™) k € Z} will quickly become necessary only for the

purpose of characterizing the miss process of the cache — see Assumption 3.1.

We will study the cache networks in their steady-state regime, and we will calculate the following



performance metrics for each cache:

1. the hit probability Hp is the stationary probability that the content is in the cache
when a new request arrives. The miss probability Mp is the complementary probability
1— Hp;

2. the occupancy probability Op is the stationary probability that the content is in the
cache at a random time instant;

3. the miss rate Mp is the rate at which the cache forwards requests to the server.

The hit probability is clearly a fundamental performance metric for a caching system. The
occupancy probability is equal to the fraction of time that a content spends in the cache and
then it can be used to characterize the instantaneous buffer distribution. Finally, for a single
cache network the miss rate quantifies the load on the server, but for a hierarchical cache network
a miss at one cache causes the request to be forwarded to higher-level caches. Hence, we need

to characterize the miss process to be able to evaluate the hit probability at higher-level caches.

Before moving to the analysis of the single cache network, we need to introduce some more
notation. For any non-negative random variable (rv) £ with a CDF F(t) = P(§ < t) (V¢ > 0),

we denote by
F*(s) = Bfe=%¢] = / eSR(dE), s> 0
0

the Laplace-Stieltjes Transform (LST) of £. The notation F'(dt) is used because the Probability
Density Function f(¢) of the rv & may not exist; otherwise, F'(dt) = f(¢)dt as commonly seen.
For any number a € [0,1], @ := 1—a by definition. In particular, if F'(t) is a CDF, F(t) = 1—F(t)

is the corresponding Complementary Cumulative Distribution Function (CCDF).

From now on we assume that each cache satisfies Assumptions 2.1, 2.2 and 2.3.

3. Single TTL Cache: Analysis
Define L(t) := P(X®) < t, X*) < T(*)) the stationary probability that the inter-arrival time

between two successive requests is smaller than ¢ and smaller than the TTL associated with the

former request. Because arrivals and TTLs are independent we have
t
L(t) :/ (1—T(2))X(dz), ¢ > 0. (1)
0
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A Arrival rate (single cache)

1/u Expected TTL (single cache)

X(t) CDF exogenous arrivals (single cache)
Y (¢) CDF inter-miss times (single cache)
T(t) CDF TTL duration (single cache)

Z*(s)  LST of CDF Z(t)

Hp, Mp Hit, miss probability resp. (single cache)
Hp, Mp Hit, miss rate resp. (single cache)

Op Occupancy probability (single cache)

Table 1: Notation for a single-cache network

Using the notation in Table 1, the following proposition provides exact formulas for two of the

performance metrics of interest.

Proposition 3.1 (Hit probability and miss rate). Under Assumption 2.3 the (stationary) hit
probability Hp and the (stationary) miss rate Mg, are respectively given by

Hp = [ (0= T@)X (@) = L) @)
0
Mg = A1 — Hp) (3)

where we recall that X\ = 1/E[X] is the request arrival rate.

Proof. The stationary hit probability Hp is defined as the probability that an arriving request
finds the data in the cache, i.e. the TTL has not expired yet, namely,

Hp =P(X® <7k = / P(z < T®) X (dz) = / (1 —T(x))X(dz).
0 0

The stationary miss probability is Mp = 1 — Hp so that the miss rate is given by (3). o

Proposition 3.2 provides the cache occupancy (Op) defined as the stationary probability that the

data is stored at the cache at a random time instant.

Proposition 3.2 (Occupancy probability). Under Assumption 2.3 the stationary cache occu-
pancy Op is given by

Op = A/Ooou _ )1 — X(1))dt. ()



Proof. Let x(t) € {0,1} be the cache occupancy at time t with x(¢) = 1 if the data is in the
cache at time ¢ and x(t) = 0 otherwise. Since under Assumption 2.3 the cache is in steady-state
at time t = 0 we have Op = E[x(0)] = P(x(0) = 1).

Letting Z(t) = x(t), T1 = X© and g(z) = 1(z > 0) in [2, Formula (1.3.2), p. 21| yields

(0)
Op = A\E° [ / : X(t)dt]
0

with EY the expectation operator under the Palm probability P? of the stationary point process
{tn,n € Z} with associated marks {T®) &k € Z}. P has the property that PO(tg = 0) = 1 (see
2, Definition (1.2.1), p. 14]) which implies x(t) = 1(t < T©) for t € [0, X(»] under P°. Hence,

x(0)
Op = ME° [ / 1(T(0)>t)dt]
0

= A /0 T RO [ /0 ' 17 > t)dt] X (dz) (5)

_ A/OO (/xu _ T(t))dt) X (da)
_ A/ (-7 (/ Xd:z:)dt

- /0<1—T<>>1— X(t))dt

where (5) is obtained by conditioning on the rv X(© with CDF X (¢) and by using the indepen-
dence of the rvs X(© and 7). This completes the proof. o

Notice that the hit probability Hp and the occupancy probability Op differ in general. They are
equal if the arrival process {t,,n € Z} is a Poisson process thanks to the PASTA property.

To state the next results we need to strengthen the statistical assumptions made on the sequences
{(X®) k€ Z) and {T®) k € Z}.

Assumption 3.1 (Renewal arrivals and TTLs). Both sequences {X®) k € Z} and {T"®) k € Z}

are mutually independent renewal sequences.

Assumption 3.1 is general enough to cover a broad range of applications. In his earlier work,

Whitt [47] developed two basic methods to approximate a point process with a renewal process,

10



and he showed in a joint work with Feldmann [17] that the long-tailed distributions which are
generally observed in network performance analysis can be fitted by a renewal process with a
hyper-exponential inter-arrival distribution. Also, Jung et al. [32] used renewal processes with
Weibull and Pareto CDFs to fit the traces of DNS servers at the MIT Computer Science and Arti-
ficial Intelligence Laboratory and the Korea Advanced Institute of Science and Technology. More
recently, Nelson and Gerhardt [41] have surveyed different methods used to fit a general point
process to a special Phase-Type renewal process via Moment Matching techniques. In contrast
to many existing works where it is assumed that the arrival process obeys to the Independent
Reference Model (IRM) (or equivalently [20| that the arrival process is a Poisson process), our

renewal assumption 3.1 is less restrictive.

We now evaluate the CDF Y'(¢) of the miss process which will be needed to extend the analysis

to a network of caches since a cache may receive requests due to misses at lower-level caches.

Proposition 3.3 (CDF of the miss process). Under Assumption 3.1 the miss process of a single
cache is a renewal process. The CDF Y (t) of the inter-miss times is the solution of the integral

equation

Y(t) = X(t) — L(t) + /0 t Y (t — z)dL(z) (6)

or, 1 compact form, Y = X — L+ LxY with x denoting the convolution operator. The renewal
equation (6) has one and only one bounded solution given by Y = R x (X — L) where R =
ano L™ and L™ denotes the nth-fold convolution of the function L with itself (by convention
LO =1),

The LST Y*(s) of the inter-miss times is given by

X*(s) — L*(s)

YO =

Proof.

Without loss of generality, assume that the first request arrives at time {3 = 0 and finds an empty
cache. Since a miss triggers a new T'T'L, miss times are regeneration points for the state of the
cache under Assumption 3.1. This implies that miss instants form a renewal process which is
fully characterized by the CDF Y (¢) of the generic inter-miss time denoted by Y.

The rest of the proof is an adaptation of a classical argument in renewal theory (see [12, Chapter

11



9]). Recall that X© (resp. YO, 7)) denotes the first inter-arrival time (resp. inter-miss time,
TTL value) after tg = 0 as shown in Fig. 3. Since Y0 > X© the event {Y(© < ¢} may only
occur if X < ¢. Therefore,

Vi) = PYO <70 <« XO <) 4 Py <, 70 > x© xO) < 4)
= PO <XO <) +E [Y(t — X170 > xO xO <)
t
= P(XO <) = P(XO < ¢, XO <70 4 / Y(t—z)P(T? > 2)X(dz)  (8)
0

where we have used the independence of X(© and T to establish (8). Then it follows from
equation (1) that

t
Y(t) = X(t)— L(t) +/ Y(t—2)(1—-T(x))X(dz)
0
t
= X(t)—L(t) +/ Y (t —x)dL(x) 9)
0
The renewal equation (9) also writes Y = X — L+ LY. It is well known that its solution exists

and is unique and is given by Y = Rx (X — L) where R=3}_, L™ [12, Theorem 2.3, p. 294].

From the identity Y = X — L+ L x Y we readily get (7), which concludes the proof. o

Approzimation for LRU caches. Che et al. [10] have experimentally shown that LRU caches
fed with requests described by Poisson processes can be accurately modeled as deterministic
TTL-based cache in isolation. In a 2013 paper, Martina and co-authors [11] have extended these
experimental results [10] to the case of renewal request processes. The constant TTL value D is
referred in [10, 11] as the characteristic time of the LRU cache, and it is obtained by solving a
fixed-point equation. A similar fixed-point equation is derived when Assumption 2.1 is removed
i.e. in the case of finite cache capacity as shown in Section 7.2. Given a deterministic TTL value
D, we have T'(t) = 1(t > D) and Equations (2), (3), (4) and (6) become

Corollary 3.1 (Deterministic TLLs).

D
Hp = X(D) , Mg =\1-X(D)), Op = A/O (1— X(2))dz (10)

12



D
Y(t) =1(t > D) <X(t) —X(D) + /0 Y(t— x)X(da:)) (11)

Remark 3.1 (Counters of Particles). A single cache with a deterministic TTL is called a Geiger
counter of type Il in [12, Example (1.34), p. 292].

Approzimation for RND caches. It was experimentally shown in [11] that RND caches can be
studied as memoryless TTL-babsed caches with exponentially distributed TTLs. Also in this

case, the expected TTL value p~!

is solution of a fixed point equation as derived in Section 7.1.
In this case T'(t) = 1 — e M L*(s) = X*(s + p), the metrics of interest and the miss process

characterization follow directly from Equations (2), (3), (4) and (7).

Corollary 3.2 (Exponential TLLs).

Hp=X*(n) , Mg =X1-X*"(p)), Op = AL = X)) (12)

0
X*(s) — X*(s + )

Vo) =T %6+

(13)

Applying standard results about convex ordering and the formulas above, we obtain the following

interesting property for a deterministic TTL cache, that is proven in the Appendix.

Proposition 3.4. Given the expected TTL value D = E[T] and the CDF X (t) of inter-arrival
times, the occupancy Op is mazimized when the TTL is deterministic and equal to D. Moreover,

if X(t) is a concave function then the hit probability Hp is mazimized too.

Proposition 3.4 theoretically explains the optimality, in terms of hit and occupancy probabilities,
of LRU caches over RND caches (given that D = p~!) when they are fed by IRM traffic (or
Poisson processes [20]) or traces in [17, 32, 33| fitted by renewal processes. We can easily check

that the CDFs F'(¢) of inter-arrival times in these experiments are concave functions.

4. Hierarchical TTL-based Cache networks

In this section, we consider T'TL-based cache networks fed by exogenous renewal request pro-
cesses. We maintain Assumptions 2.1 and 2.2, i.e. we assume each cache has an infinite buffer

and processing and transmission delays in the network are negligible. Hence, files at each cache

13



Figure 4: Requests for the green file are routed on as polytree, while those for the blue file are
routed as tree.

are decoupled and can be separately studied. Therefore, we focus on a single file whose requests
are propagated along a tree, but it is easy to generalize to polytree. We draw the attention of the
reader to the fact the cache network topology has to be a tree (or a polytree); in fact, it can be
general because files are decoupled and requests can be independently routed (see the example

in Figure 4).

We consider then a tree of caches: the root is connected to the content server, each other cache
has a parent cache to which it forwards all the requests which cannot be satisfied locally. Once
located, the data is routed on the reverse-path and a copy is placed in each cache. Each cache
operates exactly as described in the previous section, by setting a T'TL for each new data stored
and redrawing the TTL at each cache hit. We denote by C(n) the set of children of cache n. The

following assumption holds:

Assumption 4.1 (TTL Values). T'TL values eztracted at each cache are i.i.d. values. We denote
by T,,(t) the CDF of TTL values at cache n. TTL values at different caches are independent and

they are also independent from the request arrival processes.

The ICN content-routers [1] are examples of caches that behave independently of other caches
and of the requests they receive. They also decide locally what content to store or discard at

least as described in the paper of Van Jacobson et al. [28].

Each cache, say it cache n, receives two flows of requests: users’ requests arriving directly at a
cache are called ezogenous and form the exogenous arrival process, misses at the children caches

in C(n) form the endogenous arrival process. We generalize Assumption 3.1 as follows:

14



An Exogenous arrival rate at cache n

A, Total arrival rate at cache n

1/ Expected TTL at cache n

Xn(t) CDF exogenous arrivals at cache n
Zn(t) CDF overall arrivals at cache n

Y, () CDF inter-miss times at cache n
T,(t) CDF TTL duration at cache n

Hp,,Mp, Hit, miss probability resp. at cache n
Hgr,, Mg, Hit, miss rate resp. at cache n

Opn Occupancy of cache n (stationary
probability content is in cache n

C(n) Set of children of cache n

X*(s) LST of CDF X (t)

Table 2: Glossary of main notation for cache n

Assumption 4.2 (Exogeneous Request arrivals are Renewal Processes). The exogeneous arrival
processes are independent renewal processes. We denote by X, (t) the CDF of the inter-arrival

times of exogenous requests at cache n.

Similarly, we add the subscript n to the quantities defined in Section 3 to denote the same quan-
tities at cache n (Y, (t), Ln(t), An, Hpyn, Mg, and Op,,). The superposition of the exogenous
and endogenous arrival processes at cache n form the aggregated arrival process. We introduce
Zn(t) and A, to denote respectively its inter-arrival time CDF and its rate. The notation is

summarized in Table 2.

The exact analysis we carried on in the previous section can be extended immediately to the

case of linear-star networks, that we study in the section below.

4.1. Ezact analysis of Linear-star networks

A linear cache network is a tandem of caches and one server, where exogeneous requests arrive
only to the cache farther from the server as illustrated in Figure 5. Since the arrival process at
the first cache is a renewal process (Assumption 3.1) the miss process of the first cache is also
a renewal process (Proposition 3.3). Therefore, the second cache is fed by a renewal process.

Reasoning in this way iteratively, we can then show that all the caches are fed by a renewal
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process. Moreover, all the metrics of interest can be derived successively at each cache from the

results on a single cache analysis in Section 3.

. exogenous
4‘@—>@—> s @ disk T renewal
request process

Figure 5: Linear cache network.

A star cache network is a tree with one internal node i.e. the root and leaves (see Figure 6). For
this one-level tree, the metrics of interest and the miss process are easily found at each leaf from
the single cache analysis in Section 3. The miss processes are also renewal processes since the
request processes at the leaves are renewal processes. Hence, the root is fed by the aggregated
request process resulting from the superposition of the (renewal) miss processes and its exogenous
renewal process. It is possible to calculate exactly the CDF of the first inter-arrival time in the
aggregated arrival process (see Theorem 4.1 and following remarks), then the metrics of interest
are obtained from Propositions 3.1 and 3.2 since the aggregated process is a stationary process.

Our analysis provides exact results on star networks of caches.

Figure 6: Star cache network.

We generalize our exact approach on these two networks topologies by defining a class of net-
works called Linear-star cache network illustrated in Figure 7. We can characterize the exact
performance metrics on any network that belongs to this class as follows: we start from the
leaves and apply our Propositions 3.1, 3.2 and 3.3 (as it was done for the linear network), until
we reach the root where we apply Theorem 4.1 and Propositions 3.1 and 3.2 (as it was described

for the star network).

4.2. Approximated methodology for general tree networks

The approach we described in Section 4.1 cannot be extended to arbitrary hierarchical networks.

The problem arises from the fact that the aggregated arrival process is not in general a renewal
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Figure 7: Linear-star cache network.

process (this is not the case even if the exogenous and endogenous arrival processes are both
renewal ones). Hence, we cannot apply Proposition 3.3 that allows us to characterize the exact
miss process. Indeed in the linear-star cache network we cannot extend our analysis beyond
the cache with more than one child. Nevertheless, for our analysis we will suppose that the

aggregated request process is a renewal process and we make the following approximation:

Approximation 4.1 (Overall Process). The overall (aggregated) arrival process at node m is

approzimated by a renewal process with inter-arrival time CDF Z,(t).

Note that the statement above has a different status than the other assumptions in this paper.
While the assumptions can be considered approximations for actual cache networks, they are
internally coherent. On the contrary the statement in Approximation 4.1 is in general false,
even in the framework of our model. Nevertheless, it makes the analysis possible and leads to

excellent approximations as we are going to show later.

We have shown in Section 3 that the miss process of a TTL cache fed by a renewal process is
itself a renewal process, then a corollary of Approximation 4.1 is that each miss process can be
considered a renewal process. In this case, the aggregated arrival process is the superposition of
independent (due to the tree topology of the network) renewal processes and the CDF Z,,(t) of

inter-arrival times has been calculated by Lawrence [40, Formula (4.1)].

Theorem 4.1. The CDF A(t) of the first inter-event time of the point process resulting from

the superposition of K independent renewal processes is given by
K

a K o0
A =1-3 =% a0 I o / (1 - Aj(u)) du,

K
=1 D=1 U j=1,j#k

where Ag(t) and oy, > 0 are respectively the inter-event time CDF and the arrival rate of the k*™

process.
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Theorem 4.1 actually holds for the superposition of independent stationary point processes |2,
Formula (1.4.6), p. 35]. Note in passing that such a superposition is itself a stationary process,
which allows us to use formulas (2), (3) and (4) to compute the hit probability, miss rate and
cache occupancy, respectively, of a cache fed by the superposition of independent stationary

processes, and then in particular of renewal ones.

Thanks to Approximation 4.1 and Theorem 4.1, we are ready to study any cache tree network.

The total request rate A,, at a node n, is

A=+ > Mg, (14)
1€C(n)

where C(n) is the set of children of node n. Since the exogenous process (with CDF X, (¢)) and
the miss process at the i-th child of node n (with CDF Y;(¢)) are renewal processes, we invoke
Theorem 4.1 to compute the approximate inter-arrival times CDF Z,(t) of the overall arrival

process. We get

1€C(n)
MR o - % _
- YA [ Xn(u)du x I Me, | Yi(w)du (15)
iec(n) " ! Jecm !
JF

The approximate inter-miss times CDF Y,,(¢) at cache n is obtained from Proposition 3.3 since
we approximate the overall request process by a renewal process with CDF Z,(t) by Approxi-

mation 4.1.
Yolt) = Zn(t) — La(t) + /O Yalt — 2)dLn(x) (16)

where L, (t) = fg(l — Tn(x))dZ,(x) and T),(t) is the CDF of the TTL duration at cache n.

Equations (14), (15) and (16) provide a recursive procedure for calculating, at least numeri-
cally, the request rate A, and the approximate CDFs Y, (t) and Z,(t) at each cache n of an
arbitrary hierarchical network starting from the leaves. The approximate metrics of interest are

obtained from Propositions 3.1 and 3.2. Our approach is summarized in the following algorithm:
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Algorithm 1: General Procedure on tree fed by general renewal processes
input : TreeDepth d, CDFs X, (t), {Yi(t),i € C(n)} and {T,,(t),n > 1}
output: Metrics of interest A,, Hp,, Op, and CDF Y, (t)

1 while d # 0 do ; // Caches are different from the server
2
3 foreach n in the set of caches at depth d do ; // Start from Leaves
4
5 Ay SN, Mg, € )},
6 if C(n ) ) then
7 ‘ Zn(t) — Xp(t);
8 else
0 | 2u(t) 2 (X0, Yilt), i € Cn));
10 end
Prop.(3.1)

1 Hp, Mpn &Y 17 4), To(0));

Prop.(3.2)
12 Opn 2 (7.(1), Tu(t));
18| | Yal) S {Za0), T
14 end
15 d«—d—1;
16 end

While this algorithm allows us to study any cache tree under any possible exogenous arrival
processes and TTL distributions, its numerical complexity can be very high as it requires to
evaluate some integrals over infinite ranges as in (15) and to solve an integral equation as in (16).

As we are going to show, simpler algorithms exist for more specific distributions.

4.3. Hierarchical networks with Matriz-Exponential request inter-arrival times and TTL

We consider a hierarchical cache network where the inter-arrival times of exogenous requests and
the TTL values are described by Matrix-Exponential (ME) distributions, i.e. whose CDFs and
PDFs are defined by

Ut)=1-ae 1z, Y(t) =a e’ (=S1) t>0 (17)
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respectively |26], where a is a 1-by-R vector, called the starting vector, S is an R-by-R matrix,
called the progress rate matrix, and 1g is an R-by-1 vector whose elements are all equal to 1. In
general different pairs (a, .S) can lead to the same CDF W(t). Here, we consider a representation
with minimal order R. In |26, Theorem 3.1|, Ming and Zhang established under which conditions
R is minimal and they showed that in this case the matrix S is a Jordan matrix and W can be

written as follows (Karlin’s representation [34]):
K

U(t) = 1-Y Qut)e™, t>0 (18)
k=1

where {0} are the eigenvalues of S, 0; # o; it i # j, Qx(t) = Z;’;Bl qr.,;’ is a polynomial of
degree r — 1 and Eszl 7, = R. The relations between o and {qx j,1 <k < K,0<j<r,—1}
can be found in [26]. In what follows we will usually consider Karlin’s representation (18). The
class of ME distributions is equivalent to the class of distributions having a rational LST [26], it
includes then also all the phase-type distributions (i.e. any mixture of exponential distributions).
In what follows we are going to call a request renewal process with ME distributed inter-arrival
times simply an ME renewal process. Similarly, we are going to use the expression ME TTL to
indicate TTLs that are ME distributed.

The following result guarantees us that if the request arrival process at a cache is an ME renewal
process and TTL are ME distributed, then the miss process is also a ME renewal process with

a known representation.

Proposition 4.1 (ME miss process). If the TTLs and the inter-arrival times of the request re-

newal process at cache n are ME distributed, then the miss inter-arrival times are ME distributed.

Proof. We consider a cache n where the inter-arrival times and the TTLs are characterized
by the ME CDFs X,,(t) and T,(t). Both X, (¢) and T,,(¢) admit a Karlin’s representation and
a rational LST. From the definition (1) also L(t) has a Karlin’s representation and its LST is
rational. Thus, the solution Y,,(¢) in (6) is a CDF with a rational LST Y,*(s) given by

1— XX(s) N(s)

W= T T D)

where N(s) and D(s) are the numerator and the denominator of the fraction 1 — Y,*(s) after

factorization and simplification of common terms. The CDF Y,,(¢) is a ME distribution by the
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equivalence between ME distributions and CDFs having rational LST. Moreover, Y,,(¢) admits a

Karlin’s representation:
K TE— 1

Yat) =13 > qut/e™, t >0 (19)
k=1 j=0
where the exponents {0y} are the zeros of D(s) and the coefficients {ry, qx ;}x ; are given by

the relations

trei = {060 ] (20

|
(4 S=0g
[

In general the aggregated request arrival process at cache n is the superposition of the miss
processes at the cache in C(n) and the exogenous arrival process. If each of these processes
is a ME renewal process, Approximation 4.1 and Theorem 4.1 allows us to conclude that also
the inter-arrival times of the aggregated request arrival process are ME distributed. Under the
Approximation 4.1 and Proposition 4.1, all the miss processes in the network are ME renewal

processes. We can characterize them iteratively starting from the leaves as for the general case.

4.4. Hierarchical networks with Diagonal Matriz- Exponential request inter-arrival times and TTLs

The calculations become even simpler when the progress rates matrices (S) of the ME distri-
butions are diagonal or diagonalizable. In this case, the distribution is said to be Diagonal
Matriz-Ezponential. Without loss of generality, if ¥(¢) is a Diagonal ME distribution, then its

Karlin’s representation is:

K
U(t)=1- quegjt.
j=1

If the request arrival process at cache n is a Diagonal ME renewal process and the TTLs are
Diagonal ME distributed, respectively with CDFs

Kn Jn
Xn(t) =1- Z an,ke_on’kt and Tn(t) =1 Z bn’je—un,jt7
k=1 j=1

then the metrics of interests at cache n are obtained from a straightforward calculation by

applying Propositions 3.1 and 3.2.
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Corollary 4.1 (Metrics of interests at a Diagonal ME cache). The request rate X\, the hit
probability Hp,, the miss rate Mg, and the occupancy probability Op,, at cache n are calculated

with the formulas

)\n - Z An, k0n,k> HP,n = E;Jil bn,jX:L(:un,j) (21)
Mpn = Ao [ 1= buiXaltng) |+ Opn = An o by (F520) ) (22)

Similarly, the miss process is characterized by applying Propositions 3.3 and 4.1.

Corollary 4.2 (Miss process at a Diagonal ME cache). The LST of inter-miss times CDF is

—1

Jn
Vi(s)=1— (1= X3(5)) | 1= ) bnj Xi(s + fing) (23)
=1
which can be inverted as
KnxJn KnxJn anh L
y=1- el 1 ~nkt 1 ULaal —0it| (24
PO e S LR ol (B oy ]

where (ei)lgigKnxJn are solutions of the algebraic equation in z

KnxJn Y
0=1- Y ——, (25)

(Vi)1<i<k, xg, 18 the vector solution of the linear system of algebraic equations:

KnpxJn - KnxJn
0=1+ . , 26
P S ) 2

=1

the constants 6; and n; are given by

0i = an,kbn,jan,k y 1 = Onk 1 Hn,j (27)
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and (k, 7) is the i*® couple according to some ordering of the product set {1,..., K} x{1,...,J,}.
Note also that the CDF Y, (t) is a Diagonal ME distribution.

When we superpose Diagonal ME renewal processes, the inter-arrival times of the superposed
process are still Diagonal ME distributed. In particular if Y; is the Diagonal ME miss process at
cache 7 € C(n), with CDF

K;
Yi(t) =1 =) ajre 7,
k=1
the overall arrival process is then characterized in the following corollary of Proposition 4.1:

Corollary 4.3 (Overall Request Process at Diagonal ME cache). Under Assumptions 4.1 and 4.1,

the CDF of inter-arrival times Z,(t) in the overall request process at cache n is given by

K K;
@i ot A
Zn(t) =1— A Mg ; Tik ——e 70k 28
w3 S o) e T (S o
ieC(n)U{n} k=1 jeC(n) jeC(mu{n} \ k=1

J#i

where Mp,; is the miss rate of the i*® child node, \, is the rate of ezogenous requests, and A,, is

the total request rate at the cache n.

The Algorithm 1 simplifies when all the TTLs and the exogeneous request arrival processes are

Diagonal ME and becomes:
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Algorithm 2: Efficient Procedure on Diagonal MED cache tree fed by Diagonal ME re-

newal processes
input : TreeDepth d, CDFs X, (t), {Yi(t),i € C(n)} and {T,,(t),n > 1}
output: Metrics of interest A,, Hp,, Op, and CDF Y, (t)

1 while d # 0 do ; // Caches are different from the server
2

3 foreach n in the set of caches at depth d do ; // Start from Leaves
4

5 Ay S 0 Mpgi € Cn))s

6 if C(n ) 0 then

7 | Za(t) — Xa(t);

8 else

: | 2a(6) (X (0), Yile),i € COn)

10 end

11 HP,ny MR,ny OP,n Cor (4:1) {Zn(t)a Tn(t)}a

12 || Yt L2z, Lok

13 end

14 d«—d—1;

15 end

Before concluding our theoretical analysis and move to the validation of our approximations, we
observe that it is possible to adapt the formulas above for Diagonal ME exogeneous processes
and TTLs to consider a slightly larger class of networks—initially introduced in 7] and denoted
class N network—that extends hierarchical Diagonal ME cache networks as follows: a single
exogeneous request process is allowed to be a renewal process with a general CDF (not necessarily
a Diagonal ME distribution) for inter-arrival times. We do not develop the general procedure for
class NV, but we show how the formulas change for a specific case. Consider that the endogeneous
request process at cache n is a general renewal process with CDF Y;(t) and rate Mg, (we
use this notation as the misses were all generated at a child cache i), while the exogeneous
request process at cache n has Diagonal ME CDF X,,(t) = 1 — a,e 4"*1f, and arrival rate
A = (an(—A,) "1k, )~!. The total request rate at node n is A, = Mpi + Ay. The following

proposition generalizes the CDF of inter-arrival times of the aggregated request process Z,(t).
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Proposition 4.2 (Approximation for class N). The performance metrics at cache n of a class
N network are obtained from Corollary 4.1, and the overall request process is characterized by
the CDF Z,(t) in (15) whose LST Z}(s) is given by

K
* )\n = an k 2)‘ MRZ 3+0nk))
ZMs)=1—s— : 29
n( n];3+0'n,k n kz 3+0nk)20nk ( )

Proof. Applying the (15) to the CDFs Y;(¢) and X,,(t) =1 — Zngl an ge”7mkt we obtain

B M ; o 0o _
Zn(t) = Il Zank X ( i(t / e Tnktdy 4+ e‘””»kt/ Yl(u)du>
t t

We deduce (29) by taking the LST of the latter equation. The metrics of interest and the LST
Y,*(s) are obtained by replacing the LST X(s) by Z(s) in Corollary 4.1 and Corollary 4.2. <

5. Validation and Numerical Results

In this section, we investigate the accuracy of Approximation 4.1 and then of the approximate
results obtained through Algorithms 1 and 2. We recall that Approximation 4.1 consists in
considering that all aggregated request processes are renewal processes.

First, we show that in a tandem of two caches the first autocorrelation lag (ACFy) of the aggregated
process at node 2 is quite small. We calculate it using using the formula in [40, Eq.(6.4)]. This
autocorrelation lag ACF; depends on the arrival rates Ay and Ay and the timer ;. We find that
for any possible choice of these parameters 0 > ACF; > —0.015. Simulation results show that the
autocorrelation is even less significant at larger lags. Therefore, inter-arrival times are weakly
coupled and Approximation 4.1 is indeed accurate in this small network scenario.

Second, we evaluate the approximation quality by simulations in more complex configurations.
We focus on networks of exponentially distributed TTL-based caches fed by requests generated
according to Poisson processes for which it is possible to carry on an exact analysis; then we
look at a tree of deterministic TTL-based caches also fed by Poisson requests; and finally we
investigate the situation where requests are described by more general renewal processes and
TTL distributions.
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Figure 8: Simulated Networks

5.1. Poisson traffic and Exponential timers

We start by observing that when the exogenous request processes are Poisson processes, it is
possible to model a tree network of N caches as an irreducible continuous time Markov process,
with state x(t) = (x1(t),...,2n(t)) € € = {0,1}V, where z,,(t) = 1 (resp. x,(t) = 0) if the data
is present (resp. missing) at time ¢ at node n. Once the steady-state probabilities (7(x), x € &)
have been calculated, exact values of the performance metrics of interest are obtained. For exam-
ple, the stationary occupancy probability of cache n is Oﬁf‘n = ergl 2,—1 (%) (the superscript
‘M?” stands for “Markov”). For a line of caches, the hit probability and the miss rate at cache 1
are respectively Hﬁ/‘l(l) = 7(1,*) and M#" #1 = \m(0, ), while for cache 2 it holds

Am(0,1, %) + Ao(7(0, 1, %) + (1,1, %))
)\1(7'('(0, 0, *) =+ 7T(0, 1, *)) + )\2

oy = . MEY = \m(0,0, %) + Aa(m(0,0,%) + m(1,0,%))
where 7 (i, %) = Z:c27..,7:01v€{071} (i, x9,...,xN) and 7(i, j, *) := Zx37..,,z1\76{0,1} (i, 23, ..., TN)
are the stationary probabilities that cache 1 is in state i € {0,1} and caches (1,2) are in state
(i,7) € {0,1}2, respectively. Due to space constraints we omit the general expressions for these
quantities for a generic tree of caches. Throughout Section 5.1, we compare the results of our

models against the exact ones obtained by studying the Markov process.

Nine caches linear network. This network architecture is chosen for its depth and its small num-
ber of leaves. We aim at evaluating the quality of Approximation 4.1 when the depth of the
network is large. We consider the tandem of N = 9 caches in Figure 8a. At cache n, exogenous
requests arrive according to a Poisson process with rate A, and TTL is exponentially distributed
with mean g, !. We apply Algorithm 2 described in Section 4.4 and compare its prediction to the
exact metrics obtained through the analysis of the Markov process {x(t),¢ > 0} introduced in the

previous paragraph. We calculate the absolute relative errors at cache n for the hit probability
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(Eupn = |H I/{ln —Hp,|/H I@jln, where H I/{ln is the hit probability obtained from the Markov pro-
cess analysis), the miss rate (Epg,p), and the occupancy probability (Eop,,). One thousand dif-
ferent samples for the exogenous request arrival rates and the TTL ones {(An, ptn),n = 1,...,9}
have been selected from the intervals [0.001, 10] and [0.1, 2] respectively. We use the Fourier Am-
plitude Sensitivity Test (FAST) method [39] to explore the space [0.001,10] x [0.1,2]. Figure 9
shows the CCDFs of the relative errors for cache 9. We observe that Approximation 4.1 is very

accurate; in 90% of the different parameter settings the relative errors on all metrics of interest
are smaller than 1074,
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Figure 9: CCDFs of Eypg, Enp,9, Eopg for network in Fig. 8a

We then considered a homogeneous scenario where all caches have identical TTL and exogenous
arrival rates, i.e. p, = p and A\, = A, ¥n. The relative errors are shown in Figure 10 as a
function of the normalized load p = A\/u for p = 0.2. We observe that the largest error (about
2 x 107%) is obtained when arrival and timer rates are comparable (i.e. p ~ 1).
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Figure 10: Expg, EMR,9, Fopy for homogeneous network in Fig. 8a
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Twelve caches caterpillar tree. This network consists of three trees (star networks), each with 4
caches, whose roots are connected as in Figure 8b. We choose this network architecture for its
large number of leaves and its relative small depth in comparison to the previous linear network.
We consider the leaves of each root are identical i.e. they have the same average T'T'L value and
they are fed with Poisson request processes with an identical rate. Again, Algorithm 2 produces
exact results for all leaves. As previously, exact results are obtained by considering the Markov
process {x(t),t > 0} associated to this network. Different request and TTL rates have been
selected according to FAST method respectively in the intervals [0.001, 10] and [0.1,2]. We used

4921 samples for each rate. The empirical CCDFs of the relative errors Eyp3, Evr3, and Eop3
at the higher level cache are shown in Figure 11.
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Figure 11: CCDFs of Eyps, Eng3, Fops for network in Fig. 8b

The results obtained are analogous to those of the linear cache network in previous paragraph.
The relative errors can be larger in this scenario, but they are probably negligible for most of the
applications (1072 in 90% of the cases). In this case too, we have also considered the homogenous
scenario where at the TTLs at the leaves have the same expected value as the ones at the internal

nodes. We observed that the relative errors have the same order of magnitude i.e. less than 1072.

Nine caches tree network. We consider the tree network of nine caches illustrated in Figure 8c
that combines the properties of the previous network samples (i.e. with both a relative large
depth and number of leaves). Also in this case, we consider caches are fed by exogenous requests
described by Poisson processes and TTLs are exponentially distributed. The request and TTL
rates are selected (6649 different samples in total) from the intervals [0.05, 10] and [0.1, 2] respec-
tively using FAST method. Figure 12 shows the CCDEFs of the relative errors at the higher level

cache and in 90% of cases they are smaller than 10~2. Thus, Approximation 4.1 is still accurate.
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Figure 12: CCDFs of Eypg, ErmR,9, Eopg for network in Fig.8c

5.2. Poisson traffic and Deterministic timers

When timers are deterministic, we resort to the general procedure in Algorithm 1 presented in

Section 4.2. As term of comparison we consider simulation results, given that the network is no
longer ‘Markovian’.

T, =05

T,= 015/CI|PT 2\
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Figure 13: Tree network

Figure 13 shows the settings (topology, request rates and TTL values) of the network.
Algorithm 1 introduces two sources of errors. First, the aggregated request process at a cache is
not a renewal process; however, we use Approximation 4.1 and apply the renewal equation (16).
Second, (15) and (16) introduce some numerical errors since we need to compute the integrals
therein on a finite support. Two parameters determine the size of the numerical error: 1) the
time interval (7) from which the CDF samples are taken, and 2) the time interval between two

consecutive samples (A). Clearly the larger 7 and the smaller A are, the smaller is the numerical
error and the larger is the computational cost
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We implemented a MATLAB numerical solver that iteratively determines the CDFs of inter-
arrival times at each cache together with the metrics of interest. The integrals appearing in (15)
and (16) are approximated by simple sums and for simplicity the same values 7 and A have been
considered for all the CDFs numerical integrations. These parameters are selected as follows: we
set the parameter 7 to five times the largest expected inter-arrival time in the network; while
the parameter A is set to one thousandth of the minimum of the TTL values and the expected
inter-arrival times of the exogenous request processes.

The relative error of the hit probability is evaluated as |Hp, — H §n| /H}En where Hp,, is our
estimate and H}in is obtained through simulation. The duration of the simulation is set so that
there is a small incertitude on the performance metrics: the 99% confidence interval [H;‘;’n —
e,Hﬁn + €] is such that the ratio (26/H§7n) is at most 0.6 x 107%. For all the performance

metrics at all caches, the relative error of our approach is less than 1072,

5.3. Renewal/Non-Poisson traffic

In this section, we consider that requests for each data item are generated according to Inter-
rupted Poisson Processes (IPP). IPPs are Renewal processes whose inter-arrival times have a

two stage hyper-exponential distribution [21] (then it is a particular Diagonal ME distribution).
/’®'\
o9y

Figure 14: Binary tree network

We evaluate the accuracy of our approach on binary tree networks (like the one in Figure 14)
where leaves are fed by request traffic described before and TTLs values are deterministic or
drawn from the following Diagonal ME TTL distribution: exponential, hypo-exponential and
hyper-exponential distributions. Also in this case we consider simulation results as term of com-
parison. Our model predictions are provided by Algorithms 1 and 2, respectively for deterministic

and (hypo-, hyper-) exponentially distributed TTLs.
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Small binary tree. We consider the seven caches binary tree in Figure 14. Relative errors at the
higher level cache are displayed in Figure 15. For all performance metrics at all caches of this
tree, the relative errors of our approach are less than 2 x 1073, This result validates Assumption
4.1 and thus our model in the context of general networks i.e. with non-Poisson arrivals and
different T'TL distributions.
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Figure 15: Relative error Egp1 and Epp under IPP traffic.

As theoretically proved in Proposition 3.4, Figure 16 confirms that the deterministic TTL is
the optimal TTL configuration at the leaves (caches 4 — 7) i.e. which maximizes the hit and
occupancy probabilities. This observation is not surprising since IPPs are renewal processes
with hyper-exponentially distributed inter-arrival times; in fact, it can be easily checked that the

hyper-exponential CDF is concave and the observed results follows from Proposition 3.4.
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Figure 16: Optimality of the Deterministic TTL at leaves fed by IPP arrivals

Large binary tree. We also investigate the quality of our approximation on larger tree networks
(up to 40 caches) where TTLs are constants drawn uniformly at random in the interval [0.5; 1.5],

and the exogeneous requests at each cache are described by an IPP. The expected value and the
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squared coefficient of variation of inter-arrival times are uniformly chosen at random in [0.05; 2]
and [1.5;2] respectively. As shown in Table 3, the relative errors between the event-driven

simulations and our analytic approach are of order of 1%. This result provides good insights on

the robustness and accuracy of our approach when dealing with large networks.

Type (Degree, Depth, # Caches) | Level [, Cache n | Egpn(%) | Evra(%) | Eopn(%)
Binary Tree 11 1.059 0.929 0.021
(2, 5, 31) 2,3 0.406 0.042 0.117

0, 31 0.075 0.018 0.061
Ternary Tree 1,1 0.127 0.085 0.134
(3, 4, 40) 2.3 0.061 0.278 0.124

4, 40 0.006 0.283 0.759

Table 3: Relative Errors on Performance metrics for large trees

We have shown that Approximation 4.1 leads to very accurate results when exogenous requests
are described by renewal process (Poisson and Interrupted Poisson processes) and TTLs have
some matrix-exponential distributions or deterministic ones. This lets us think that the super-
position of the request arrival processes at every cache is very ‘close’ to a renewal process at least

for all the cases we tested.

6. Computational Cost and Time

In this section we perform a preliminary analysis of the computational cost and time of our
approach, and we compare it to other solutions presented in the previous section such as solving

a Markov chain (Section 5.1) and event-driven simulations (Sections 5.2 and 5.3).

TTLs with Diagonal ME distribution. We first address the case of a hierarchical tree of Diagonal
ME caches introduced in Section 4.4. We consider a tree of N nodes and M internal nodes (i.e.
N — M leaves). Since the computational cost for all the metrics is roughly the same, we focus
here on the hit probability. In order to calculate the hit probability at one of the nodes labeled
n € {1,...,N}, say at cache n, we need to:

e calculate the CDF Z,(t) of inter-arrival times of the aggregated request process in (28).
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This requires a number of operations proportional to

,n

1+C, K,,=0((1+0C, XIN(%"'C” ,f(n: max K;
( )iEC(lz_)IU{O} ’ <( ) ) ieC(n)uU{0}

where K; , is the minimal order of the i-th child miss process, Ko, is the minimal order

of the exogenous request process, and C,, = |C(n)| is the number of children of cache n.

e evaluate the LST Z7 () in the expression of the hit probability in (21) which requires
K, x J, operations where K, is the minimal order of the aggregated request process (and
it is at most equal to f(,%‘m”) and J, is the minimal order of the TTL distribution.

Then, the total cost is

N
K=0 (Z(l + Cp + Jp) X Kﬁcﬂ) . (30)

n=1
For linear networks in Figure 5 (case of small maximum degree), the number of children per

cache is C;, = 1 and there is no exogenous requests at cache n > 1. Hence, the total cost is

Kyine = O (NJ x (Ko (J + 1))N) L= max J, (31)

For star networks in Figure 6 (case of large maximum degree), the number of children at the
root is N — 1 and the total cost is

Kosar = O (NJK Y J(K( + 1))N—1) ,J= max Jo, K= max Ko. (32

n=1,....N n=1,....N

TTLs with exponential distribution. The exponential distribution has the minimal order which
is one. Hence, if we consider exponential timers and exogenous requests are described by Poisson
processes, we have Ko, = J, = 1 at each cache n. Therefore the costs Kiine and Kgiar are
respectively equal to O(N x 2V) and O(N + 2V).

We showed in Section 5 that alternative approaches like the Markov chain analysis can provide
exact results when the tree is fed by Poisson traffic and the TTLs are exponentially distributed.
The size of the state space of the Markov process {x(t),t > 0} is 2 where N is the number
of nodes. The cost of determining the steady-state distribution by solving the linear equation
system is O(23"). This is much larger than the cost of our method O(N2V).
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A different approach is to obtain an approximate steady-state distribution of the Markov process
using an iterative method. This approach takes advantage of the fact that most of the transition
rates are zero. In fact, a state change is triggered by an exogenous request arrival at a cache
that does not have the data or by a timer expiration at a cache with the data, i.e. from a given
state we can only reach other N states. Then the number of non-zero rates is N x 2V and each
iteration of the method requires O(N x 2V) operations. The total cost of the iterative method
is then O(I x N x 2V), where I is the number of iterations until termination. The quantity
I depends on the spectral gap of the matrix used at each iteration, and also on the required
precision. In general, we can expect that O(I x N x 2V) <« O(23V). Having this inequality,
we can say that our method, even in the worst case, is still more convenient than solving the
Markov process on linear /star networks, because O(N2V) < O(I x N x 2V).

TTLs with deterministic distribution. Let us now consider the case of a general tree network with
constant TTLs (equal to T"). In this case there is no exact solution to compare our approach with,
so we consider simulations as an alternative approach. We perform an asymptotic analysis. A
meaningful comparison of the computational costs needs to take also into account the incertitude
of the solution: both the simulations and our method can produce a better result if one is willing
to afford a higher number of operations. In order to combine these two aspects in our analysis, we
consider as metric the product precision times number of operations. Intuitively the larger this
product the more expensive is to get a given precision. For the simulations the computational
cost is at least proportional to the number of events that are generated, let us denote it by ng.
The incertitude on the final result can be estimated by the amplitude of the confidence interval,
that decreases as 1/y/ng, then the product precision times number of operations is proportional
to /ng for the simulations. In the case of our approach, the most expensive operation is the
solution of the renewal equation. If we adopt the same 7 and A for all the integrals, we need to
calculate the value of the CDF of the miss rate (Y (¢)) in np = 7/A points and then we need to
calculate np integrals. The integration interval is at most equal to the TTL duration 7" thanks to
(11), then each integral requires a number of operations proportional to n’, = T'/A. If the value
of 7 is selected proportionally to 7', then the cost of our method is proportional to n%. A naive
implementation of the integral as a sum of the function values leads to an error proportional to
the amplitude of the time step and inversely proportional to n, or np. In conclusion the product
precision times the number of operations is proportional to np. Then, for a given precision, our

method would require a number of points much larger than the number of events to be considered
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in the corresponding simulation (at least asymptotically). The comparison would then lead to
prefer the simulations at least when small incertitude is required (then large ng and np). In
reality integrals can be calculated in more sophisticated ways, for example if we adopt Romberg’s
method, with a slightly larger computation cost, we can get a precision proportional to n;z. In

this case the product precision times number of operations is a constant for our method, that
should be preferred.

Numerical experiments. We performed some experiments to validate our conclusion based on an
asymptotic analysis. First, we consider linear networks of N = 1,2, ...9 exponentially distributed
TTL-based caches as described in Figure 8a. We compare the running time of solving the
corresponding Markov chain (see Section 5.1) against our Algorithm 2. Figure 17 shows the
ratio of the computation times 74 and T™ respectively for our Algorithm 2 and for the Markov
chain resolution. Both the solutions have been implemented in MATLAB, in particular the naive
function linsolve has been used to determine the steady-state distribution of the Markov chain
and the Algorithm 2 has been implemented with basic routines. Our algorithm performs faster

than the Markov chain resolution specially when the depth of the linear network is large.
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Figure 17: Computation time comparison on linear networks

Second, we evaluate the computational time of the event-driven simulation and our Algorithm 1
on the k-ary trees of Section 5.2 where the T'TLs are constants and the request processes are
IPPs. TS and T4 are respectively the time to compute all performance metrics on these large
tree networks via event-driven simulations and our analytic methodology in Algorithm 1; they
are computed by using the MATLAB routines tic and toc. Table 4 shows that as the number of

caches N increases, our analytic solution is clearly preferable since it is the least time consuming.
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Type Degree | Depth | # Caches, N | TS TA
Binary Tree | 2 ) 31 53 | 88
Ternary Tree | 3 4 40 197 | 129

Table 4: Comparison of computation time on large trees

7. TTL-based model and other policies

We recall that the TTL-based model we presented till now assumes infinite cache capacities. We

address issues and practical concerns related to finite capacity constraints.

7.1. Pra-TTL cache: A practical implementation of a TTL-based cache

While the TTL-based model allows an arbitrarily large number of contents in its memory, a real
cache will have a finite capacity B. In this section, we consider a possible practical implementa-
tion of our TTL-based model that we call Pra-T7TL. The Pra-TTL cache uses a timer for each
content item in the same way as the TTL-based model, but does not discard a content item whose
timer has expired as long as some space is available in the memory. If a new content item needs
to be stored and the cache is full, the content item to be erased is the one whose timer expired
furthest in the past (if any) or the one whose timer will expire soonest. We have compared the
performance of the Pra-TTL cache with that of our TTL-based model on a linear network of
N =5 caches labeled n = 1,...,5 having the same capacities B,, = 20. The requests for each
file f =1,...,F = 200 arrive only at the first cache at rate Ay = 2.0 i.e. there is no exogeneous
arrival at caches 2-5. We consider that requests over the set of files follow a Zipf popularity
law with parameter a = 1.2: i.e. requests for file f are described by a Poisson process with rate
A= A1 X (1/ Zg g_o‘) /f%. TTLs of file f at cache n are exponentially distributed with rate
Hn,f = pn such that the total occupancy for the TTL-based model equals the corresponding
cache capacity B,,. In other words, p,, is chosen such that Z?Zl Opn,f = By, where Op,, s is the
occupancy probability of file f at cache n calculted in Proposition 3.2 (i.e. predicted by the model
of an infinite TTL-based cache). The hit probability per file f at each cache n is denoted Hp,, ¢
and the aggregate hit probability at cache n is denoted Hp,, . We compute theses performance
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Cache n | Pra-TTL | TTL-Model
1 0.5590 0.5585
0.4216 0.4658
0.3030 0.2672
0.1941 0.1670
0.1380 0.1154

QU= | W (N

Table 5: Aggregated Hit probability at cache n, Hp,, «

metrics for both Pra-TTL and TTL-based caches by using the following expression for Hp, «:

HP,n,* = Z An,fHP,n,f /An,*
!

where A, ¢ is the total request rate of file f at cache n and Ay, =) f Ay, ¢. Then, A, f is simply
the miss rate of file f at cache n — 1 since the network is linear and there is no exogenous request
arrivals at cache n (V n > 1). Table 5 and Figure 18 show that our model (that assume infinite
cache size) well predict the performance metrics for Pra-TTL, both those of the aggregate at a

cache and those of a specific file respectively.

e Pra-TTL
—TTL-Model

1 2
File f

(c) Cache 3

Hit Prob.: Hpy s

e Pra-TTL
—TTL-Model

10 o' ?
File f File f

(d) Cache 4 (e) Cache 5

Figure 18: Hit probability Hp,, ; of file f at each cache n: Pra-TTL vs TTL-Model.

These preliminary results suggest that our analysis can be useful to study TTL-based policies
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under capacity constraints.

7.2. Relationship with other replacement policies

In this section, we establish a link between our TTL-based model and other replacement policies
at a single cache. We consider a single cache with capacity B serving F' files, where requests
are described by independent Poisson processes with rates Ay for f = 1,2,...,F. We tune the
expiration rate py for each file f in order to obtain the same performance metrics of common
replacement policies like LRU, FIFO or RND.

We detail the procedure for a single RND cache, but it can be extended to the other policies.
Let us denote by 7y the stationary probability that file f is in the RND cache. This distribution
has been calculated in [5, 36]. For the exponentially distributed TTL cache, the stationary
occupancy probability of the f-th file is given by

1— X7 (uy)

Orp=A—p =

)\f—i-s
Opys = m, Vf, i.e. the two policies have the same stationary cache occupancy for each file.

where X}k(s) — 2 s the LST of inter-arrival times. If we select = Ap <% - 1), it holds

If we select the same TTL rate p for all the files it is possible to achieve the same average
occupancy at the cache, i.e. Zf Ty = Zf % = B. For each file, the miss process of obtained
with the exponential T'TL-based cache is an accurate description of its miss stream on the RND
cache [11]. From the equality of the stationary cache occupancy probabilities, the equality of
hit/miss probabilities and rates follows due to the PASTA property since requests are described

by Poisson processes.

In this sense, the TTL policy is more general than RND or LRU since it can mimic their behavior
and reproduce their performance metrics. While, the exponential TTL cache enables easy calcu-
lation we can select other distributions like the deterministic one (see Paragraph Approzimation
for LRU caches in Section 3) in order to better match the CDF of the inter-miss times of a LRU

cache as well.
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8. Conclusion

In this paper, we introduced a novel Time-To-Live (TTL) based replacement policy for cache
networks in general and the content-routers of ICN architectures in particular. We developed
a set of building blocks for the performance evaluation of theses TTL-based cache networks
through renewal arguments. We characterized a class of networks for which we provided the
exact performance metrics: this class contains linear and star tree networks. We also provided
a recursive and approximate procedure to study arbitrary hierarchical networks. We showed
that our theoretic model predicts remarkably well the performance metrics with relative errors
less than 1%. We formally proved that deterministic TTLs are optimal when the inter-arrival
times have a concave CDF. Our approach is promising since it appears as a unifying framework
to accurately analyze a richer class of networks also with heterogeneous policies deployed at
different caches. We have also demonstrated that our TTL-based model can be implemented
under capacity constraints. Ongoing research is investigating approximate T'T'L-based model for
finite capacity caches running the LRU, FIFO and Random replacement policies. We also aim

at considering the case of correlated requests modeled by semi-Markov processes.
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Appendix

Optimality of a determanistic TTL-cache

In this appendix, we obtain the TTL distribution that maximizes/minimizes our metrics of
interest (i.e. the hit probability Hp and the occupancy probability Op) when the mean TTL
value D = E[T] is known.
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Lemma 8.1 (Convex ordering). If D and T are respectively constant and random TTLs such
that E[T] = D, then the following relation holds

D<uT (33)
where <.y 15 the convexr ordering.

Proof. The definition of convex ordering of random variables 77 and T says 11 <¢x 15 if and
only if E[p(T1)] < E[p(T)] where ¢(.) is a convex function. We shall show that this convex
ordering holds for any random TTL T and constant TTL D such that E[T] = D in order to
prove the lemma. For any random TTL 7 > 0 and any convex function ¢(.), we have thanks to
Jensen’s inequality :

E[¢(T)] = ¢(E[T]) = ¢(D) = E[p(D)]
The last equality follows from the fact that ¢(D) is a constant. o

Proposition 8.1 (Optimality of a deterministic TTL cache). Given the expected TTL value
D = E[T] and the CDF X (t) of inter-arrival times, the occupancy Op is mazimized when the
TTL is deterministic and equal to D. Moreover, if X (t) is a concave function then the hit

probability Hp is mazimized too.

Proof. We assume that the TTLs {7}, },>1 are sampled from a general distribution 7'(t) such
that E[T] = D. Observe that the occupancy probability Op(T') and hit probability Hp(T') are

functions of the timer 7" and can be written as
Op(T) = AE[(T)] , Hp(T) = E[X(T)]

where X (x) is the CDF of X and ¢(t) = fg(l — X(z))dz. The second derivative of ¢(t) is
¢"(t) = —X'(t) < 0 because X'(t) is a probability density function; hence, ¢(t) is a concave
function for any X (x). Then by applying Lemma 8.1, it follows that Op(T) < Op(D) for any
timer 7' such that E[T] = D. Meanwhile, if X (z) is concave (resp. convex), Lemma 8.1 states
that Hp(D) > Hp(T) (resp. Hp(D) < Hp(T)). o

We note that if the request process is a Poisson process, the occupancy Op and the hit probability

Hp are equals and theses metrics are maximized when the TTL is deterministic.

40



References

1]

2]

7]

8]

19]

[10]

[11]

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher and B. Ohlman, “A survey
of information-centric networking”, IEEE Communications Magazine, Vol. 50,
No. 7, pp. 26-36, Jul. 2012.

F. Baccelli and P. Brémaud, Elements of Queueing Theory. Palm Martingale
Calculus and Stochastic Recurrences. Applications of Mathematics, Stochastic
Modelling and Applied Probability, Vol. 26, Springer, 2nd Edition, 2003.

O. Bahat and A. M. Makowski, “Measuring consistency in TTL-based caches”,
Performance Evaluation,Vol., 62, Issues 1-4, pp. 439-455, Oct. 2005.

J. R. Bitner, “Heuristics that monotonically organize data structures”, SIAM J.
Computing, 8, pp. 82-110, 1979.

P. J. Burville and J. F. C. Kingman, “On a model for storage and search”, J. of
Applied Probability, 10, pp. 697-701, 1973.

J. Mc Cabe, “On serial files with relocable records”, Operations Research, 13,
pp. 609-618, 1965.

N. Choungmo Fofack, P. Nain, G. Neglia and D. Towsley, “Analysis of TTL-
based cache networks”, Proc. ValueTools 2012, Cargese, France, Oct. 2012.

N. Choungmo Fofack, P. Nain, G. Neglia and D. Towsley, “Analysis of TTL-
based cache networks”, INRIA Research Report RR-7883, 2012.

G. Carofiglio, M. Gallo, L. Muscariello and D. Perino, “Modeling data transfer in
content-centric networking”, Proc. 23rd International Teletraffic Congress (ITC
23), San Francisco, CA, USA, Sep. 6-8, 2011.

H. Che, Y. Tung and Z. Wang, “Hierarchical Web caching systems: modeling,
design and experimental results”, IEEE J. on Selected Areas in Communications,
Vol. 20, No. 7, pp. 1305-1314, Sep. 2002.

V. Martina, M. Garetto and E. Leonardi, “A unified approach to the performance
analysis of caching systems”, http://arziv.org/abs/1307.6702, Sep. 10 2013.

41



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

E. Cinlar, Introduction to Stochastic Processes. Prentice Hall, 1975.

E. G. Coffman Jr. and P. Jelenkovic, “Performance of the move-to-front algo-
rithm with Markov-modulated request sequences”, Operations Research Letters,
25, pp. 109-118, 1999.

E. Cohen, E. Halperin and H. Kaplan, “Performance aspects of distributed caches
using TTL-based consistency”, Theoretical Computer Science, pp 73-96, Feb.
2005.

A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO buffer
replacement schemes”, Proc. ACM Sigmetrics 1990, pp. 143-152, Boulder, CO,
USA, May 22-25, 1990.

R. P. Dobrow and J. A. Fill, “The move-to-front rule for self-organizing lists with
Markov dependent requests”, Discrete Probability and Algorithms, IMA Volumes
in Mathematics and its Applications, D. Aldous, P. Diaconis, J. Spencer, and J.
M. Steele (Eds), 72, pp. 57-80, Springer-Verlag, 1995.

A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-tail dis-
tributions to analyze network performance models”, Proc. IEEE Infocom 1997,
Kobe, Japan, Apr. 7-11, 1997.

W. Feller, An Introduction to Probability Theory and its Applications. Vol. 2.
John Wiley & Sons Ltd, New York, 2nd Edition, 1971.

J. A. Fill, “Limits and rate of convergence for the distribution of search cost
under the move-to-front rule”, Theoretical Computer Science, 176, pp. 185-206,
1996.

J. A. Fill and L. Holst, “On the distribution of search cost for the move-to-front
rule”, Random Structures Algorithms, Vol 8, No 3, pp. 179-186, 1996.

W. Fischer and K. Meier-Hellstern, “The Markov-modulated Poisson process
(MMPP) cookbook”, Performance Evaluation, Vol. 18, pp. 149-171, Jan. 1991.

P. Flajolet, D. Gardy and L. Thimonier, “Birthday paradox, coupon collectors,
caching algorithms and self-organizing search”, Discrete Applied Mathematics,
39, pp. 207-229, 1992.

42



23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

C. Fricker, P. Robert and J. Roberts, “A versatile and accurate approximation
for LRU cache performance”, hitp://arziv.org/abs/1202.3974v1, Feb. 2012.

E. Gelenbe, “A unified approach to the evaluation of a class of replacement
algorithms”, IEEE Trans. on Computers, C-22(6), 1973.

J. Gray and F. Putzolu, “The 5-minute rule for trading memory for disc accesses
and the 5-byte rule for trading memory for CPU time”, Technical Report 86.1,
TandemComputers, PN 87615, May 1985. Available at http://www.hpl.hp.
com/techreports/tandem/TR-86.1.pdf.

Q-M. He and H. Zhang “On matrix exponential distributions”, Adv. in Applied
Probability, 39, pp. 271-292, 2007.

W. J. Hendricks, “The stationary distribution of an interesting Markov chain”,
J. of Applied Probability, 9, pp. 231-233, 1972.

V. Jacobson, D. K. Smetters, J. D. Thorntorn, M. Plass, N. Briggs and R.
L. Braynard, “Networking named content”, Proc. ACM CoNEXT 2009, Rome,
Italy, Dec. 1-4, 2009.

P. Jelenkovic, “Asymptotic approximation of the move-to-front search cost distri-
bution and least-recently used caching fault probabilities”, The Annals of Prob-
ability, Vol. 9, No. 2, pp. 430-464, 1999.

P. Jelenkovic and A. Radovanovi¢, “Least-recently used caching with dependent
requests”, Theoretical Computer Science, 326, pp. 293-327, 2004.

P. Jelenkovic, A. Radovanovi¢ and M. Squillante, “Critical sizing of LRU caches
with dependent requests”, J. of Applied Probability, Vol. 43, No. 4, pp. 1013-1027,
Dec. 2006.

J. Jung, E. Sit, H. Balakrishnan and R. Morris, “DNS performance and the effec-
tiveness of caching”, Proc. ACM Sigcomm Workshop on Internet Measurement
(IMW °01), New York, NY, USA, Nov. 1-2, 2001.

J. Jung, A. W. Berger and H. Balakrishnan, “Modeling TTL-based Internet
caches”, Proc. IEEE Infocom 2003, San Francisco, CA, USA, Mar. 30 - Apr. 3,
2003.

43



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

42]

[43]

[44]

S. Karlin, Total Positivity. Vol. 1, Stanford University Press, 1968.

J. Kawash, “Consistency models for Internet caching”, in Proc. of the Winter
International Symposium on Information and Communication Technology, pp
161-166, Jan. 2004.

W. F. King, “Analysis of demand paging algorithm”, Information Processing,
Vol. 71, pp. 485-490, 1972.

T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules”, Adv.
in Applied Mathematics, Vol. 6, pp.4-22, 1985.

N. Laoutaris, S. Syntila and I. Stavrakakis, “Meta algorithms for hierarchical
Web caches", 23rd IEEE International Performance Computing and Communi-
cations Conference (IPCCC 2004), Phoenix, Arizona, Apr. 15-17, 2004.

I. Lassoued, A. Krifa, C. Barakat and K. Avrachenkov, “Network-wide mon-
itoring through self-configuring adapative system”, Proc. IEEE Infocom 2011,
Shanghai, China, Apr. 10-15, 2011.

A. J. Lawrence, “Dependency of intervals between events in superposition pro-
cesses”, J. of the Royal Statistical Society, Series B, Vol. 35, No. 2, pp. 306-315,
1973.

B. L. Nelson and I. Gerhardt, “On the capturing dependence in point processes:
Matching moments and other techniques”, Working Paper, Jan. 2010.

A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations. CRC
Press, Boca Raton, 1st Edition, 1998.

E. J. Rosensweig, J. Kurose and D. Towsley, “Approximate models for general
cache networks”, Proc. IEEE Infocom 2010, San Diego, CA, USA, Mar. 15-19,
2010.

S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble and M. Levy, “An analysis
of Internet content delivery systems”, SIGOPS Operating System Review, Vol.
36, pp. 315-327, 2002.

44



[45] A. Simonian, M. Gallo, B. Kauffmann, L. Muscariello and C. Tanguy, “Perfor-
mance of the random replacement policy for networks of caches” Proc. of ACM
Sigmetrics/Performance, London, UK, Jun. 11-15, 2012.

[46] X. Tang, J. Xu and W. Lee, “Analysis of TTL-based consistency in unstructured
peer-to-peer networks”, IEEE Trans. on Parallel and Distributed Systems, Vol.
19, No. 12, Dec. 2008.

[47] W. Whitt, “Approximating a point process by a renewal process, I: Two basic
methods”, Operations Research, Vol. 30, No. 1, Jan-Feb. 1982.

45



