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Abstrat

There has been onsiderable researh on the performane analysis of on-demand ahing replae-

ment poliies like Least-Reently-Used (LRU), First-In-First-Out (FIFO) or Random (RND).

Muh progress has been made on the analysis of a single ahe running these algorithms. How-

ever it has been almost impossible to extend the results to networks of ahes. In this paper, we

introdue a Time-To-Live (TTL) based ahing model, that assigns a timer to eah ontent stored

in the ahe and redraws it every time the ontent is requested (at eah hit/miss). We derive

the performane metris (hit/miss ratio and rate, oupany) of a TTL-based ahe in isolation

fed by stationary and ergodi request proesses with general TTL distributions. Moreover we

propose an iterative proedure to analyze TTL-based ahe networks under the assumptions that

requests are desribed by renewal proesses (that generalize Poisson proesses or the standard

IRM assumption). We validate our theoretial �ndings through event-driven and Monte-Carlo

simulations based on the Fourier Amplitude Sensitivity Test to explore the spae of the input

parameters. We observe that our analyti model predits remarkably well all metris of interest

with relative errors smaller than 1%.
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1. Introdution

Cahes are widely used in networks and distributed systems to improve their performane. They

are integral omponents of the World Wide Web [10℄, the Domain Name System (DNS) [32℄, and

Content Distribution Networks (CDNs) [44℄. More reently there has been a growing emphasis

on Information-Centri Networking (ICN) [1℄ arhitetures�like the Content-Centri Network

(CCN) [28℄�whih support host-to-ontent interations as the ommon ase. Many of these

ontent networks give rise to hierarhial (or more general) ahe topologies. The design, the

on�guration and the analysis of these ahe systems pose signi�ant hallenges.

An abundant literature exists on the performane (e.g. hit probability, searh ost) of a single

ahe running the First-In-First-Out (FIFO) or Random (RND) replaement poliies (see [24℄

for independent and identially distributed or i.i.d. requests), the Least-Reently-Used (LRU)

replaement poliy or, its ompanion, the Move-to-Front (MTF) poliy (see [4, 5, 6, 15, 19,

22, 27, 29, 36℄ for i.i.d. requests and [13, 31, 30℄ for orrelated requests). With few exeptions,

exat models of ahes in isolation are omputationally intratable, resulting in the reliane on

approximations [15, 29℄. Networks of ahes are signi�antly more di�ult to analyze and no

exat solution has been obtained so far for even the simple network of two LRU (or FIFO, RND)

ahes in tandem. Approximations have been proposed for star networks of LRU and RND

ahes by [10, 23℄ and [45℄ respetively. [43℄ is one of the �rst modeling attempt to approximate

the performane of a general network of LRU ahes. However, theses approximate models

su�er from inauraies as reported in [43℄ where the relative error an reah 16%. Despite the

inreasing interest in ICN arhitetures, previous work has mainly foused on global arhiteture

design. An exeption is [9℄, whose authors develop approximations to alulate the stationary

throughput in a CCN network of LRU ahes modeling the interplay of hunk-level ahing and

a reeiver-driven transport protool. In the literature, the 5-Minute Rule by [25℄ is probably

one of the �rst paper to desribe a Time-To-Live (TTL) based algorithm to manage data in

omputer memories. [33℄ onsiders a single TTL-based ahe fed by i.i.d. requests to study the

timer-based expiration poliy of DNS ahes in isolation. Aording to the RFC 6195, eah

missed resoure reord is marked with a timeout whih indiates the maximum duration the

reord an be stored in the DNS ahe. The timeouts are initialized only by an authoritative

DNS server and an eventual hit on a loal DNS ahe does not hange the value of the remaining

timeout. Therefore, DNS ahes are di�erent from our TTL-based systems. [33℄ obtains the hit

rate of a single DNS ahe for a onstant TTL via the solution of a renewal equation.
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In this paper, we fous on a lass of ahes we introdued in our previous work [7℄ and we refer

to as Time-To-Live (TTL)-based ahes. Here TTLs are not used to guarantee the onsisteny

of dynami ontents (as it is the ase of [3, 14, 33, 46℄), but to implement an evition poliy that

deides whih ontents have to be kept in the ahe. Brie�y, when an unahed data is brought

bak into the ahe due to a ahe miss, a loal TTL is set and further redrawn at every ahe

hit.

1

The TTL value an be di�erent for di�erent data, but also for the same data at di�erent

ahes. All requests to that data before the expiration of the TTL are suessful (ahe hits); the

�rst request for that data to arrive after the TTL expiration yields a ahe miss. In this latter

ase, the ahe may forward the request to a higher-level ahe, if any, or to the server. When

loated, the data is routed on the reverse-path and a opy is plaed in eah ahe along the path

(as in CCN [28℄). This paper makes the ase that TTL poliies are interesting alternatives to

poliies suh as LRU or RND for three reasons. First, a TTL poliy is more on�gurable and

in partiular an mimi the behavior of other replaement poliies through a proper hoie of

parameters (see Setion 7.2). Seond, while LRU or RND ahe networks have de�ed aurate

analysis, networks of TTL-based ahes are simpler to study (as we show in Setions 3 and 4).

Finally, the TTL-based model appears as a uni�ed framework for the performane analysis of

heterogeneous ahe networks where the ahes may run di�erent replaement poliies. Preisely,

we develop a set of building bloks for the analysis of hierarhial TTL-based ahe networks,

where (i) exogenous requests at di�erent ahes are modeled as independent renewal proesses,

and (ii) independent TTL values are drawn at eah ahe from arbitrary distributions.

The building bloks are:

1. a model of a single ontent TTL ahe fed by a renewal request stream (or a more general

stationary request proess),

2. a renewal proess approximation of the superposition of independent renewal proesses.

The �rst blok forms the basis to evaluate the performane metris and to desribe the output

sequene of requests (the miss proess) of a ahe. Meanwhile, the seond blok is used to

haraterize the resulting proess of the superposition of several independent streams of requests

onsisting of exogenous requests from users and/or missed requests from other ahes if any.

These bloks are applied to assess the performane metris of hierarhial TTL-based ahe

1

This is then di�erent from the timeouts of DNS ahes; and thus, the TTL-based ahe model presented here

is di�erent from the one of [33℄ sine the TTLs are reset at every ahe hit and not initialized by a entral entity.
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networks. We then show how the omputational ost of our approah simpli�es when TTLs and

the inter-arrival times of the exogenous request streams at every ahe are Matrix-Exponentially

Distributed (MED). We refer to this ase in short as a MED ahe network. The lass of Matrix-

Exponential distributions oinides with the lass of distributions having a rational Laplae-

Stieltjes Transform that an be used to �t properties of general proesses [17, 26, 34, 41℄. Event-

driven and Monte-Carlo simulations on instanes of MED ahe networks reveal that the relative

errors between the simulated networks and our model preditions are extremely small and less

than 10−2
for all metris of interest.

The ontributions of the paper are:

• the proposal of TTL-based replaement poliies for ontent-routers of ICN arhitetures,

• an analyti tool to assess the performane of hierarhial TTL-based ahe networks.

This paper extends our previous work [7℄ as follows.

The performane metris of single ahe derived in [7℄ when requests were desribed by renewal

proesses are now extended (see Setion 3, Propositions 3.1 and 3.2) to the ase when requests

are desribed by stationary and ergodi proesses. We also provide physial and/or probabilisti

interpretations of several quantities. This paper lari�es the sope of appliation of our theoreti

results and points out our ontribution with respet to several reent papers [1, 10, 11℄ devoted

to the analysis of lassial replaement poliies suh as LRU or RND as speial ase of TTL-

based ahes. A new result on the optimal TTL on�guration of ahes in isolation is added

in Setion 3, Proposition 3.4 and the proof is provided in Appendix. The reursive proedure

presented in [7℄ for lass N networks (i.e. aterpillar networks of exponentially distributed TTL-

based ahes fed by hyper-exponential renewal proesses) is generalized by the lass of MED ahe

networks in three orthogonal diretions: (i) network topology onsidered is now an arbitrary tree

of ahes, (ii) requests are now desribed by a versatile lass of renewal proesses where inter-

arrival times of requests are matrix-exponentially distributed , and (iii) the TTLs are drawn

from matrix-exponential distribution.

The model validation in Setion 5 provides additional insights on the auray of our assumptions

and approximations, and also the e�ieny of our approah in terms of omputational time under

various onditions. Preisely, we add results for larger networks with up to forty ahes, di�erent

network topologies, two di�erent workload models (requests desribed by Poisson and Interrupted

Poisson proesses), hyper-exponential and hypo-exponential TTL distributions.
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The paper is organized as follows. In Setion 2, we introdue the notation and the model

assumptions. Setion 3 ontains our model of a single TTL-based ahe and provides the exat

haraterization of the performane metris and the miss proess. We desribe in Setion 4

a general proedure to study any hierarhial TTL-based ahe network. The key point in

this setion is how we model the ombined exogenous and miss requests streams as a renewal

point proess thanks to a result from [40, Eq.(4.1)℄, [2, Eq.(1.4.6)℄ regarding the omputation

of the marginal inter-arrival distribution for a superposition of independent renewal proesses.

A simpli�ed proedure is then derived for MED ahe networks. The auray of the general

and of the simpli�ed proedures is evaluated in Setion 5 and a disussion of the omputational

omplexity of our analyti approah an be found in Setion 6. Setion 7 disusses how our TTL-

based model an be implemented under �nite apaity onstraints, and how the TTL poliy an

mimi di�erent poliies like LRU or RND. Conlusions are found in Setion 8.

2. Single TTL ahe: model and notation

For the sake of readability, we �rst introdue our main assumptions and our notation for the

simple arhiteture of a single TTL-based ahe and a server onneted in tandem, as shown

in Figure 1. The terminology and the formalism introdued here will be extended later to

hierarhial TTL-based ahe networks (see Setion 4). From now on the words �ahe� and

�node� will be used interhangeably. Also, a ahe will always be a TTL-based ahe unless

otherwise spei�ed.

Server

MissesExo. Requests

Retrieval

1

Cache

Figure 1: Single ahe and server of two �les blue and green.

We now introdue a key assumption for our approah:

Assumption 2.1 (In�nite Capaity). The TTL-based ahe has an in�nite apaity.

A onsequene is that ontent items are evited from the ahe only when their TTL expires and

not beause spae is needed to alloate other ontents. Assumption 2.1 allows us to deouple
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the management of the di�erent ontent items and study eah of them separately as illustrated

in Figure 2. For this reason, in what follows we will refer to a single ontent item or data. The

e�et of apaity onstraint is onsidered in Setion 7.1.

Server

MissesExo. Requests

Retrieval

1

Cache

TTL

TTL

Cache Server

1

Figure 2: In�nite ahe apaity and TTL deoupling e�et.

In order to keep the model as simple as possible we also assume that data proessing and transfer

times are negligible:

Assumption 2.2 (Zero delay). There is a zero proessing time at eah node and a zero trans-

mission delay between nodes inluding the server.

In fat, the model presented in this paper an be easily extended to onsider non-zero proessing

time and/or delay. This latter ase will be investigated in a future work.

Requests for a spei� data are generated at times {tk, k ∈ ZZ} suh that . . . < t−1 < t0 ≤ 0 <

t1 < . . . by onvention, where ZZ denotes the set of all integers. Let X(k) = tk+1 − tk be the

inter-arrival time between requests k and k + 1. Also, let T (k)
(k ∈ Z) being the TTL duration

generated for the ontent after the arrival of the request at time tk.

Consider the request submitted at time t0 (the proess for requests submitted at times tk with

k 6= 0 is the same). There is a ahe hit (resp. ahe miss) at time t0 if the data is present (resp.

is not present) in the ahe at this time, whih orresponds to the situation where t0 ≤ t−1+T
(−1)

(resp. t0 > t−1 + T (−1)
). In the ase of a ahe miss the request is instantaneously (beause

of Assumption 2.2) forwarded to the server at time m0 = t0 and the data is retrieved from the

server. By onvention, the data is permanently store in the server. One the data is fethed from

the server, a opy of it is instantaneously transmitted to the ahe and the request is resolved at

time t0, while a opy is kept at the ahe. At time t0 the TTL of the data is set to T (0)
both for

a ahe hit and for a ahe miss. The next ahe miss after time m0 will our at time m1 = tj
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hit miss

t0
timetk

m1

X
(k)

data in cache

tk+1. . .t1
X

(0)

T
(0) T

(1)

T
(k)

inter-miss time Y
(0)

m0

Figure 3: Requests, ahing durations and inter-miss times.

with j = min{l > 0 : tl > tl−1 + T (l−1)} � see Figure 3 where j = l + 1.

Our hoie to reset the TTL after eah ahe hit makes also our single-ahe senario di�erent

from the one studied in [33℄. Resetting the TTL tends to inrease the sojourn time and the hit

probability on the ahe speially for the most popular ontents. This orresponds to the general

ICN paradigm [1℄ to move popular douments as lose as possible to the users. For the time

being we assume the following minimal assumptions:

Assumption 2.3 (Stationary arrivals and TTLs). The point proess {tn, n ∈ ZZ} is simple

(i.e. there are no simultaneous requests) and stationary (i.e. {X(k), k ∈ ZZ} is a stationary

sequene) and independent of the sequene of TTLs {T (k), k ∈ ZZ} whih is also assumed to be

stationary. Furthermore, the intensity λ := 1/E[X(k)]of the point proess {tn, n ∈ ZZ} is non-zero
and �nite and 0 < 1/µ := E[T (k)] <∞.

Under Assumption 2.3 the ahe is in steady-state (in partiular) at time t = 0 and from now

on we will only observe its behavior at times t ≥ 0. We denote by X(t) = P(X(k) < t) and

T (t) = P(T (k) < t) the Cumulative Distribution Funtion (CDF) of X(k)
and T (k)

, respetively.

We all the miss proess the sequene of suessive time instants 0 ≤ m0 < m1 < · · · at whih
misses our in [0,∞), whih are also the times at whih the server forwards a opy of the data to

the ahe. We denote by Y (k) = mk+1−mk the time interval between the k-th and the (k+1)-st

misses for k ≥ 0 and Y (t) = P(Y (k) < t) the CDF of Y (k)
. Stronger statistial assumptions

on the sequenes {X(k), k ∈ ZZ} and {T (k), k ∈ ZZ} will quikly beome neessary only for the

purpose of haraterizing the miss proess of the ahe � see Assumption 3.1.

We will study the ahe networks in their steady-state regime, and we will alulate the following
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performane metris for eah ahe:

1. the hit probability HP is the stationary probability that the ontent is in the ahe

when a new request arrives. The miss probability MP is the omplementary probability

1−HP ;

2. the oupany probability OP is the stationary probability that the ontent is in the

ahe at a random time instant;

3. the miss rate MR is the rate at whih the ahe forwards requests to the server.

The hit probability is learly a fundamental performane metri for a ahing system. The

oupany probability is equal to the fration of time that a ontent spends in the ahe and

then it an be used to haraterize the instantaneous bu�er distribution. Finally, for a single

ahe network the miss rate quanti�es the load on the server, but for a hierarhial ahe network

a miss at one ahe auses the request to be forwarded to higher-level ahes. Hene, we need

to haraterize the miss proess to be able to evaluate the hit probability at higher-level ahes.

Before moving to the analysis of the single ahe network, we need to introdue some more

notation. For any non-negative random variable (rv) ξ with a CDF F (t) = P(ξ < t) (∀ t ≥ 0),

we denote by

F ∗(s) = E[e−sξ] =

∫ ∞

0
e−stF (dt), s ≥ 0

the Laplae-Stieltjes Transform (LST) of ξ. The notation F (dt) is used beause the Probability

Density Funtion f(t) of the rv ξ may not exist; otherwise, F (dt) = f(t)dt as ommonly seen.

For any number a ∈ [0, 1], ā := 1−a by de�nition. In partiular, if F (t) is a CDF, F̄ (t) = 1−F (t)

is the orresponding Complementary Cumulative Distribution Funtion (CCDF).

From now on we assume that eah ahe satis�es Assumptions 2.1, 2.2 and 2.3.

3. Single TTL Cahe: Analysis

De�ne L(t) := P(X(k) < t,X(k) < T (k)) the stationary probability that the inter-arrival time

between two suessive requests is smaller than t and smaller than the TTL assoiated with the

former request. Beause arrivals and TTLs are independent we have

L(t) =

∫ t

0
(1− T (x))X(dx), t ≥ 0. (1)
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λ Arrival rate (single ahe)

1/µ Expeted TTL (single ahe)

X(t) CDF exogenous arrivals (single ahe)

Y (t) CDF inter-miss times (single ahe)

T (t) CDF TTL duration (single ahe)

Z∗(s) LST of CDF Z(t)
HP ,MP Hit, miss probability resp. (single ahe)

HR,MR Hit, miss rate resp. (single ahe)

OP Oupany probability (single ahe)

Table 1: Notation for a single-ahe network

Using the notation in Table 1, the following proposition provides exat formulas for two of the

performane metris of interest.

Proposition 3.1 (Hit probability and miss rate). Under Assumption 2.3 the (stationary) hit

probability HP and the (stationary) miss rate MR, are respetively given by

HP =

∫ ∞

0
(1− T (x))X(dx) = L(∞), (2)

MR = λ(1−HP ) (3)

where we reall that λ = 1/E[X] is the request arrival rate.

Proof. The stationary hit probability HP is de�ned as the probability that an arriving request

�nds the data in the ahe, i.e. the TTL has not expired yet, namely,

HP = P(X(k) ≤ T (k)) =

∫ ∞

0
P(x ≤ T (k))X(dx) =

∫ ∞

0
(1− T (x))X(dx).

The stationary miss probability is MP = 1−HP so that the miss rate is given by (3). ⋄
Proposition 3.2 provides the ahe oupany (OP ) de�ned as the stationary probability that the

data is stored at the ahe at a random time instant.

Proposition 3.2 (Oupany probability). Under Assumption 2.3 the stationary ahe ou-

pany OP is given by

OP = λ

∫ ∞

0
(1− T (t))(1 −X(t))dt. (4)
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Proof. Let χ(t) ∈ {0, 1} be the ahe oupany at time t with χ(t) = 1 if the data is in the

ahe at time t and χ(t) = 0 otherwise. Sine under Assumption 2.3 the ahe is in steady-state

at time t = 0 we have OP = E[χ(0)] = P(χ(0) = 1).

Letting Z(t) = χ(t), T1 = X(0)
and g(z) = 1(z > 0) in [2, Formula (1.3.2), p. 21℄ yields

OP = λE
0

[

∫ X(0)

0
χ(t)dt

]

with E
0
the expetation operator under the Palm probability P

0
of the stationary point proess

{tn, n ∈ ZZ} with assoiated marks {T (k), k ∈ ZZ}. P
0
has the property that P

0(t0 = 0) = 1 (see

[2, De�nition (1.2.1), p. 14℄) whih implies χ(t) = 1(t < T (0)) for t ∈ [0,X(0)] under P
0
. Hene,

OP = λE
0

[

∫ X(0)

0
1(T (0) > t)dt

]

= λ

∫ ∞

0
E

0

[∫ x

0
1(T (0) > t)dt

]

X(dx) (5)

= λ

∫ ∞

0

(
∫ x

0
(1− T (t))dt

)

X(dx)

= λ

∫ ∞

0
(1− T (t))

(∫ ∞

t

X(dx)

)

dt

= λ

∫ ∞

0
(1− T (t))(1−X(t))dt

where (5) is obtained by onditioning on the rv X(0)
with CDF X(t) and by using the indepen-

dene of the rvs X(0)
and T (0)

. This ompletes the proof. ⋄

Notie that the hit probability HP and the oupany probability OP di�er in general. They are

equal if the arrival proess {tn, n ∈ ZZ} is a Poisson proess thanks to the PASTA property.

To state the next results we need to strengthen the statistial assumptions made on the sequenes

{X(k), k ∈ ZZ} and {T (k), k ∈ ZZ}.

Assumption 3.1 (Renewal arrivals and TTLs). Both sequenes {X(k), k ∈ ZZ} and {T (k), k ∈ ZZ}
are mutually independent renewal sequenes.

Assumption 3.1 is general enough to over a broad range of appliations. In his earlier work,

Whitt [47℄ developed two basi methods to approximate a point proess with a renewal proess,
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and he showed in a joint work with Feldmann [17℄ that the long-tailed distributions whih are

generally observed in network performane analysis an be �tted by a renewal proess with a

hyper-exponential inter-arrival distribution. Also, Jung et al. [32℄ used renewal proesses with

Weibull and Pareto CDFs to �t the traes of DNS servers at the MIT Computer Siene and Arti-

�ial Intelligene Laboratory and the Korea Advaned Institute of Siene and Tehnology. More

reently, Nelson and Gerhardt [41℄ have surveyed di�erent methods used to �t a general point

proess to a speial Phase-Type renewal proess via Moment Mathing tehniques. In ontrast

to many existing works where it is assumed that the arrival proess obeys to the Independent

Referene Model (IRM) (or equivalently [20℄ that the arrival proess is a Poisson proess), our

renewal assumption 3.1 is less restritive.

We now evaluate the CDF Y (t) of the miss proess whih will be needed to extend the analysis

to a network of ahes sine a ahe may reeive requests due to misses at lower-level ahes.

Proposition 3.3 (CDF of the miss proess). Under Assumption 3.1 the miss proess of a single

ahe is a renewal proess. The CDF Y (t) of the inter-miss times is the solution of the integral

equation

Y (t) = X(t)− L(t) +

∫ t

0
Y (t− x)dL(x) (6)

or, in ompat form, Y = X −L+L ⋆ Y with ⋆ denoting the onvolution operator. The renewal

equation (6) has one and only one bounded solution given by Y = R ⋆ (X − L) where R =
∑

n≥0 L
(n)

and L(n)
denotes the nth-fold onvolution of the funtion L with itself (by onvention

L(0) ≡ 1).

The LST Y ∗(s) of the inter-miss times is given by

Y ∗(s) =
X∗(s)− L∗(s)

1− L∗(s)
. (7)

Proof.

Without loss of generality, assume that the �rst request arrives at time t0 = 0 and �nds an empty

ahe. Sine a miss triggers a new TTL, miss times are regeneration points for the state of the

ahe under Assumption 3.1. This implies that miss instants form a renewal proess whih is

fully haraterized by the CDF Y (t) of the generi inter-miss time denoted by Y .

The rest of the proof is an adaptation of a lassial argument in renewal theory (see [12, Chapter
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9℄). Reall that X(0)
(resp. Y (0)

, T (0)
) denotes the �rst inter-arrival time (resp. inter-miss time,

TTL value) after t0 = 0 as shown in Fig. 3. Sine Y (0) ≥ X(0)
the event {Y (0) < t} may only

our if X(0) < t. Therefore,

Y (t) = P(Y (0) < t, T (0) < X(0) < t) + P(Y (0) < t, T (0) > X(0),X(0) < t)

= P(T (0) < X(0) < t) + E

[

Y (t−X(0))1(T (0) > X(0),X(0) < t)
]

= P(X(0) < t)− P(X(0) < t,X(0) < T (0)) +

∫ t

0
Y (t− x)P(T (0) > x)X(dx) (8)

where we have used the independene of X(0)
and T (0)

to establish (8). Then it follows from

equation (1) that

Y (t) = X(t)− L(t) +

∫ t

0
Y (t− x)(1− T (x))X(dx)

= X(t)− L(t) +

∫ t

0
Y (t− x)dL(x) (9)

The renewal equation (9) also writes Y = X−L+L⋆Y . It is well known that its solution exists

and is unique and is given by Y = R ⋆ (X −L) where R =
∑

n≥0 L
(n)

[12, Theorem 2.3, p. 294℄.

From the identity Y = X − L+ L ⋆ Y we readily get (7), whih onludes the proof. ⋄

Approximation for LRU ahes. Che et al. [10℄ have experimentally shown that LRU ahes

fed with requests desribed by Poisson proesses an be aurately modeled as deterministi

TTL-based ahe in isolation. In a 2013 paper, Martina and o-authors [11℄ have extended these

experimental results [10℄ to the ase of renewal request proesses. The onstant TTL value D is

referred in [10, 11℄ as the harateristi time of the LRU ahe, and it is obtained by solving a

�xed-point equation. A similar �xed-point equation is derived when Assumption 2.1 is removed

i.e. in the ase of �nite ahe apaity as shown in Setion 7.2. Given a deterministi TTL value

D, we have T (t) = 1(t > D) and Equations (2), (3), (4) and (6) beome

Corollary 3.1 (Deterministi TLLs).

HP = X(D) , MR = λ(1−X(D)) , OP = λ

∫ D

0
(1−X(x))dx (10)
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Y (t) = 1(t > D)

(

X(t)−X(D) +

∫ D

0
Y (t− x)X(dx)

)

(11)

Remark 3.1 (Counters of Partiles). A single ahe with a deterministi TTL is alled a Geiger

ounter of type II in [12, Example (1.34), p. 292℄.

Approximation for RND ahes. It was experimentally shown in [11℄ that RND ahes an be

studied as memoryless TTL-babsed ahes with exponentially distributed TTLs. Also in this

ase, the expeted TTL value µ−1
is solution of a �xed point equation as derived in Setion 7.1.

In this ase T (t) = 1 − e−µt
, L∗(s) = X∗(s + µ), the metris of interest and the miss proess

haraterization follow diretly from Equations (2), (3), (4) and (7).

Corollary 3.2 (Exponential TLLs).

HP = X∗(µ) , MR = λ(1−X∗(µ)) , OP =
λ(1−X∗(µ))

µ
(12)

Y ∗(s) =
X∗(s)−X∗(s + µ)

1−X∗(s + µ)
. (13)

Applying standard results about onvex ordering and the formulas above, we obtain the following

interesting property for a deterministi TTL ahe, that is proven in the Appendix.

Proposition 3.4. Given the expeted TTL value D = E[T ] and the CDF X(t) of inter-arrival

times, the oupany OP is maximized when the TTL is deterministi and equal to D. Moreover,

if X(t) is a onave funtion then the hit probability HP is maximized too.

Proposition 3.4 theoretially explains the optimality, in terms of hit and oupany probabilities,

of LRU ahes over RND ahes (given that D = µ−1
) when they are fed by IRM tra� (or

Poisson proesses [20℄) or traes in [17, 32, 33℄ �tted by renewal proesses. We an easily hek

that the CDFs F (t) of inter-arrival times in these experiments are onave funtions.

4. Hierarhial TTL-based Cahe networks

In this setion, we onsider TTL-based ahe networks fed by exogenous renewal request pro-

esses. We maintain Assumptions 2.1 and 2.2, i.e. we assume eah ahe has an in�nite bu�er

and proessing and transmission delays in the network are negligible. Hene, �les at eah ahe
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Figure 4: Requests for the green �le are routed on as polytree, while those for the blue �le are

routed as tree.

are deoupled and an be separately studied. Therefore, we fous on a single �le whose requests

are propagated along a tree, but it is easy to generalize to polytree. We draw the attention of the

reader to the fat the ahe network topology has to be a tree (or a polytree); in fat, it an be

general beause �les are deoupled and requests an be independently routed (see the example

in Figure 4).

We onsider then a tree of ahes: the root is onneted to the ontent server, eah other ahe

has a parent ahe to whih it forwards all the requests whih annot be satis�ed loally. One

loated, the data is routed on the reverse-path and a opy is plaed in eah ahe. Eah ahe

operates exatly as desribed in the previous setion, by setting a TTL for eah new data stored

and redrawing the TTL at eah ahe hit. We denote by C(n) the set of hildren of ahe n. The

following assumption holds:

Assumption 4.1 (TTL Values). TTL values extrated at eah ahe are i.i.d. values. We denote

by Tn(t) the CDF of TTL values at ahe n. TTL values at di�erent ahes are independent and

they are also independent from the request arrival proesses.

The ICN ontent-routers [1℄ are examples of ahes that behave independently of other ahes

and of the requests they reeive. They also deide loally what ontent to store or disard at

least as desribed in the paper of Van Jaobson et al. [28℄.

Eah ahe, say it ahe n, reeives two �ows of requests: users' requests arriving diretly at a

ahe are alled exogenous and form the exogenous arrival proess, misses at the hildren ahes

in C(n) form the endogenous arrival proess. We generalize Assumption 3.1 as follows:

14



λn Exogenous arrival rate at ahe n
Λn Total arrival rate at ahe n
1/µn Expeted TTL at ahe n
Xn(t) CDF exogenous arrivals at ahe n
Zn(t) CDF overall arrivals at ahe n
Yn(t) CDF inter-miss times at ahe n
Tn(t) CDF TTL duration at ahe n
HP,n,MP,n Hit, miss probability resp. at ahe n
HR,n,MR,n Hit, miss rate resp. at ahe n
OP,n Oupany of ahe n (stationary

probability ontent is in ahe n
C(n) Set of hildren of ahe n
X∗(s) LST of CDF X(t)

Table 2: Glossary of main notation for ahe n

Assumption 4.2 (Exogeneous Request arrivals are Renewal Proesses). The exogeneous arrival

proesses are independent renewal proesses. We denote by Xn(t) the CDF of the inter-arrival

times of exogenous requests at ahe n.

Similarly, we add the subsript n to the quantities de�ned in Setion 3 to denote the same quan-

tities at ahe n (Yn(t), Ln(t), λn, HP,n, MR,n and OP,n). The superposition of the exogenous

and endogenous arrival proesses at ahe n form the aggregated arrival proess. We introdue

Zn(t) and Λn to denote respetively its inter-arrival time CDF and its rate. The notation is

summarized in Table 2.

The exat analysis we arried on in the previous setion an be extended immediately to the

ase of linear-star networks, that we study in the setion below.

4.1. Exat analysis of Linear-star networks

A linear ahe network is a tandem of ahes and one server, where exogeneous requests arrive

only to the ahe farther from the server as illustrated in Figure 5. Sine the arrival proess at

the �rst ahe is a renewal proess (Assumption 3.1) the miss proess of the �rst ahe is also

a renewal proess (Proposition 3.3). Therefore, the seond ahe is fed by a renewal proess.

Reasoning in this way iteratively, we an then show that all the ahes are fed by a renewal
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proess. Moreover, all the metris of interest an be derived suessively at eah ahe from the

results on a single ahe analysis in Setion 3.

2 diskC· · ·1 renewal
exogenous

request process

Figure 5: Linear ahe network.

A star ahe network is a tree with one internal node i.e. the root and leaves (see Figure 6). For

this one-level tree, the metris of interest and the miss proess are easily found at eah leaf from

the single ahe analysis in Setion 3. The miss proesses are also renewal proesses sine the

request proesses at the leaves are renewal proesses. Hene, the root is fed by the aggregated

request proess resulting from the superposition of the (renewal) miss proesses and its exogenous

renewal proess. It is possible to alulate exatly the CDF of the �rst inter-arrival time in the

aggregated arrival proess (see Theorem 4.1 and following remarks), then the metris of interest

are obtained from Propositions 3.1 and 3.2 sine the aggregated proess is a stationary proess.

Our analysis provides exat results on star networks of ahes.

.

.

.

C + 1 disk

1

2

C

Figure 6: Star ahe network.

We generalize our exat approah on these two networks topologies by de�ning a lass of net-

works alled Linear-star ahe network illustrated in Figure 7. We an haraterize the exat

performane metris on any network that belongs to this lass as follows: we start from the

leaves and apply our Propositions 3.1, 3.2 and 3.3 (as it was done for the linear network), until

we reah the root where we apply Theorem 4.1 and Propositions 3.1 and 3.2 (as it was desribed

for the star network).

4.2. Approximated methodology for general tree networks

The approah we desribed in Setion 4.1 annot be extended to arbitrary hierarhial networks.

The problem arises from the fat that the aggregated arrival proess is not in general a renewal
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proess (this is not the ase even if the exogenous and endogenous arrival proesses are both

renewal ones). Hene, we annot apply Proposition 3.3 that allows us to haraterize the exat

miss proess. Indeed in the linear-star ahe network we annot extend our analysis beyond

the ahe with more than one hild. Nevertheless, for our analysis we will suppose that the

aggregated request proess is a renewal proess and we make the following approximation:

Approximation 4.1 (Overall Proess). The overall (aggregated) arrival proess at node n is

approximated by a renewal proess with inter-arrival time CDF Zn(t).

Note that the statement above has a di�erent status than the other assumptions in this paper.

While the assumptions an be onsidered approximations for atual ahe networks, they are

internally oherent. On the ontrary the statement in Approximation 4.1 is in general false,

even in the framework of our model. Nevertheless, it makes the analysis possible and leads to

exellent approximations as we are going to show later.

We have shown in Setion 3 that the miss proess of a TTL ahe fed by a renewal proess is

itself a renewal proess, then a orollary of Approximation 4.1 is that eah miss proess an be

onsidered a renewal proess. In this ase, the aggregated arrival proess is the superposition of

independent (due to the tree topology of the network) renewal proesses and the CDF Zn(t) of

inter-arrival times has been alulated by Lawrene [40, Formula (4.1)℄.

Theorem 4.1. The CDF A(t) of the �rst inter-event time of the point proess resulting from

the superposition of K independent renewal proesses is given by

A(t) = 1−
K
∑

k=1

αk
∑K

l=1 αl

(1−Ak(t))

K
∏

j=1,j 6=k

αj

∫ ∞

t

(1−Aj(u)) du,

where Ak(t) and αk > 0 are respetively the inter-event time CDF and the arrival rate of the kth

proess.
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Theorem 4.1 atually holds for the superposition of independent stationary point proesses [2,

Formula (1.4.6), p. 35℄. Note in passing that suh a superposition is itself a stationary proess,

whih allows us to use formulas (2), (3) and (4) to ompute the hit probability, miss rate and

ahe oupany, respetively, of a ahe fed by the superposition of independent stationary

proesses, and then in partiular of renewal ones.

Thanks to Approximation 4.1 and Theorem 4.1, we are ready to study any ahe tree network.

The total request rate Λn at a node n, is

Λn = λn +
∑

i∈C(n)

MR,i (14)

where C(n) is the set of hildren of node n. Sine the exogenous proess (with CDF Xn(t)) and

the miss proess at the i-th hild of node n (with CDF Yi(t)) are renewal proesses, we invoke

Theorem 4.1 to ompute the approximate inter-arrival times CDF Zn(t) of the overall arrival

proess. We get

Zn(t) = 1− λn

Λn
X̄n(t)

∏

i∈C(n)

MR,i

∫ ∞

t

Ȳi(u)du

−
∑

i∈C(n)

MR,i

Λn
Ȳi(t)λn

∫ ∞

t

X̄n(u)du×
∏

j∈C(n)
j 6=i

MR,j

∫ ∞

t

Ȳj(u)du. (15)

The approximate inter-miss times CDF Yn(t) at ahe n is obtained from Proposition 3.3 sine

we approximate the overall request proess by a renewal proess with CDF Zn(t) by Approxi-

mation 4.1.

Yn(t) = Zn(t)− Ln(t) +

∫ t

0
Yn(t− x)dLn(x) (16)

where Ln(t) =
∫ t

0 (1− Tn(x))dZn(x) and Tn(t) is the CDF of the TTL duration at ahe n.

Equations (14), (15) and (16) provide a reursive proedure for alulating, at least numeri-

ally, the request rate Λn and the approximate CDFs Yn(t) and Zn(t) at eah ahe n of an

arbitrary hierarhial network starting from the leaves. The approximate metris of interest are

obtained from Propositions 3.1 and 3.2. Our approah is summarized in the following algorithm:
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Algorithm 1: General Proedure on tree fed by general renewal proesses

input : TreeDepth d, CDFs Xn(t), {Yi(t), i ∈ C(n)} and {Tn(t), n ≥ 1}
output: Metrics of interest Λn, HP,n, OP,n and CDF Yn(t)

1 while d 6= 0 do ; // Cahes are different from the server

2

3 foreah n in the set of caches at depth d do ; // Start from Leaves

4

5 Λn
Eq(14)←−−−− {λn,MR,i, i ∈ C(n)};

6 if C(n) = ∅ then
7 Zn(t)← Xn(t);

8 else

9 Zn(t)
Eq(15)←−−−− {Xn(t), Yi(t), i ∈ C(n)};

10 end

11 HP,n, MR,n
Prop.(3.1)←−−−−−− {Zn(t), Tn(t)};

12 OP,n
Prop.(3.2)←−−−−−− {Zn(t), Tn(t)};

13 Yn(t)
Eq(16)←−−−− {Zn(t), Tn(t)};

14 end

15 d← d− 1;

16 end

While this algorithm allows us to study any ahe tree under any possible exogenous arrival

proesses and TTL distributions, its numerial omplexity an be very high as it requires to

evaluate some integrals over in�nite ranges as in (15) and to solve an integral equation as in (16).

As we are going to show, simpler algorithms exist for more spei� distributions.

4.3. Hierarhial networks with Matrix-Exponential request inter-arrival times and TTL

We onsider a hierarhial ahe network where the inter-arrival times of exogenous requests and

the TTL values are desribed by Matrix-Exponential (ME) distributions, i.e. whose CDFs and

PDFs are de�ned by

Ψ(t) = 1−α eSt
1R , ψ(t) = α eSt (−S1) t ≥ 0 (17)
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respetively [26℄, where α is a 1-by-R vetor, alled the starting vetor, S is an R-by-R matrix,

alled the progress rate matrix, and 1R is an R-by-1 vetor whose elements are all equal to 1. In

general di�erent pairs (α, S) an lead to the same CDF Ψ(t). Here, we onsider a representation

with minimal order R. In [26, Theorem 3.1℄, Ming and Zhang established under whih onditions

R is minimal and they showed that in this ase the matrix S is a Jordan matrix and Ψ an be

written as follows (Karlin's representation [34℄):

Ψ(t) = 1−
K
∑

k=1

Qk(t)e
σkt, t ≥ 0 (18)

where {σk}k are the eigenvalues of S, σi 6= σj if i 6= j, Qk(t) =
∑rk−1

j=0 qk,jt
j
is a polynomial of

degree rk − 1 and

∑K
k=1 rk = R. The relations between α and {qk,j, 1 ≤ k ≤ K, 0 ≤ j ≤ rk − 1}

an be found in [26℄. In what follows we will usually onsider Karlin's representation (18). The

lass of ME distributions is equivalent to the lass of distributions having a rational LST [26℄, it

inludes then also all the phase-type distributions (i.e. any mixture of exponential distributions).

In what follows we are going to all a request renewal proess with ME distributed inter-arrival

times simply an ME renewal proess. Similarly, we are going to use the expression ME TTL to

indiate TTLs that are ME distributed.

The following result guarantees us that if the request arrival proess at a ahe is an ME renewal

proess and TTL are ME distributed, then the miss proess is also a ME renewal proess with

a known representation.

Proposition 4.1 (ME miss proess). If the TTLs and the inter-arrival times of the request re-

newal proess at ahe n are ME distributed, then the miss inter-arrival times are ME distributed.

Proof. We onsider a ahe n where the inter-arrival times and the TTLs are haraterized

by the ME CDFs Xn(t) and Tn(t). Both Xn(t) and Tn(t) admit a Karlin's representation and

a rational LST. From the de�nition (1) also L(t) has a Karlin's representation and its LST is

rational. Thus, the solution Yn(t) in (6) is a CDF with a rational LST Y ∗
n (s) given by

Y ∗
n (s) = 1− 1−X∗

n(s)

1− L∗
n(s)

= 1− N(s)

D(s)

where N(s) and D(s) are the numerator and the denominator of the fration 1 − Y ∗
n (s) after

fatorization and simpli�ation of ommon terms. The CDF Yn(t) is a ME distribution by the
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equivalene between ME distributions and CDFs having rational LST. Moreover, Yn(t) admits a

Karlin's representation:

Yn(t) = 1−
K
∑

k=1

rk−1
∑

j=0

qk,jt
jeσkt, t > 0 (19)

where the exponents {σk}k are the zeros of D(s) and the oe�ients {rk, qk,j}k,j are given by

the relations

qk,rk−i =
1

i!

{

di

dsi
[(1− Y ∗(s))(s − σk)

rk ]

}

s=σk

. (20)

⋄

In general the aggregated request arrival proess at ahe n is the superposition of the miss

proesses at the ahe in C(n) and the exogenous arrival proess. If eah of these proesses

is a ME renewal proess, Approximation 4.1 and Theorem 4.1 allows us to onlude that also

the inter-arrival times of the aggregated request arrival proess are ME distributed. Under the

Approximation 4.1 and Proposition 4.1, all the miss proesses in the network are ME renewal

proesses. We an haraterize them iteratively starting from the leaves as for the general ase.

4.4. Hierarhial networks with Diagonal Matrix-Exponential request inter-arrival times and TTLs

The alulations beome even simpler when the progress rates matries (S) of the ME distri-

butions are diagonal or diagonalizable. In this ase, the distribution is said to be Diagonal

Matrix-Exponential. Without loss of generality, if Ψ(t) is a Diagonal ME distribution, then its

Karlin's representation is:

Ψ(t) = 1−
K
∑

j=1

qje
σjt.

If the request arrival proess at ahe n is a Diagonal ME renewal proess and the TTLs are

Diagonal ME distributed, respetively with CDFs

Xn(t) = 1−
Kn
∑

k=1

an,ke
−σn,kt and Tn(t) = 1−

Jn
∑

j=1

bn,je
−µn,j t,

then the metris of interests at ahe n are obtained from a straightforward alulation by

applying Propositions 3.1 and 3.2.
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Corollary 4.1 (Metris of interests at a Diagonal ME ahe). The request rate λn, the hit

probability HP,n, the miss rate MR,n and the oupany probability OP,n at ahe n are alulated

with the formulas

λn =

Kn
∑

k=1

an,kσn,k, HP,n =
∑Jn

j=1 bn,jX
∗
n(µn,j) (21)

MR,n = λn



1−
Jn
∑

j=1

bn,jX
∗
n(µn,j)



 , OP,n = λn

∑Jn

j=1 bn,j

(

1−X∗
n(µn,j )

µn,j

)

. (22)

Similarly, the miss proess is haraterized by applying Propositions 3.3 and 4.1.

Corollary 4.2 (Miss proess at a Diagonal ME ahe). The LST of inter-miss times CDF is

Y ∗
n (s) = 1− (1−X∗

n(s))



1−
Jn
∑

j=1

bn,jX
∗
n(s+ µn,j)





−1

(23)

whih an be inverted as

Yn(t) = 1−
[

Kn
∑

k=1

an,k

(

1 +

Kn×Jn
∑

i=1

γi

θi − σn,k

)

e−σn,kt +

Kn×Jn
∑

i=1

−γi

θi

(

1 +

Kn
∑

k=1

an,kσn,k

θi − σn,k

)

e−θit

]

(24)

where (θi)1≤i≤Kn×Jn
are solutions of the algebrai equation in z

0 = 1−
Kn×Jn
∑

i=1

δi
ηi − z

, (25)

(γi)1≤i≤Kn×Jn
is the vetor solution of the linear system of algebrai equations:

{

0 = 1 +

Kn×Jn
∑

i=1

γi

θi − ηl

}Kn×Jn

l=1

, (26)

the onstants δi and ηi are given by

δi = an,kbn,jσn,k , ηi = σn,k + µn,j (27)
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and (k, j) is the ith ouple aording to some ordering of the produt set {1, . . . ,Kn}×{1, . . . , Jn}.
Note also that the CDF Yn(t) is a Diagonal ME distribution.

When we superpose Diagonal ME renewal proesses, the inter-arrival times of the superposed

proess are still Diagonal ME distributed. In partiular if Yi is the Diagonal ME miss proess at

ahe i ∈ C(n), with CDF

Yi(t) = 1−
Ki
∑

k=1

ai,ke
−σi,kt.

the overall arrival proess is then haraterized in the following orollary of Proposition 4.1:

Corollary 4.3 (Overall Request Proess at Diagonal ME ahe). Under Assumptions 4.1 and 4.1,

the CDF of inter-arrival times Zn(t) in the overall request proess at ahe n is given by

Zn(t) = 1−
∑

i∈C(n)∪{n}

Ki
∑

k=1

ai,k

Λn



λn ×
∏

j∈C(n)

MR,j



 e−σi,kt
∏

j∈C(n)∪{n}
j 6=i





Kj
∑

k=1

aj,k

σj,k
e−σj,kt





(28)

where MR,i is the miss rate of the i
th

hild node, λn is the rate of exogenous requests, and Λn is

the total request rate at the ahe n.

The Algorithm 1 simpli�es when all the TTLs and the exogeneous request arrival proesses are

Diagonal ME and beomes:
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Algorithm 2: E�ient Proedure on Diagonal MED ahe tree fed by Diagonal ME re-

newal proesses

input : TreeDepth d, CDFs Xn(t), {Yi(t), i ∈ C(n)} and {Tn(t), n ≥ 1}
output: Metrics of interest Λn, HP,n, OP,n and CDF Yn(t)

1 while d 6= 0 do ; // Cahes are different from the server

2

3 foreah n in the set of caches at depth d do ; // Start from Leaves

4

5 Λn
Eq.(14)←−−−− {λn,MR,i, i ∈ C(n)};

6 if C(n) = ∅ then
7 Zn(t)← Xn(t);

8 else

9 Zn(t)
Eq.(28)←−−−− {Xn(t), Yi(t), i ∈ C(n)};

10 end

11 HP,n, MR,n, OP,n
Cor.(4.1)←−−−−− {Zn(t), Tn(t)};

12 Yn(t)
Cor.(4.2)←−−−−− {Zn(t), Tn(t)};

13 end

14 d← d− 1;

15 end

Before onluding our theoretial analysis and move to the validation of our approximations, we

observe that it is possible to adapt the formulas above for Diagonal ME exogeneous proesses

and TTLs to onsider a slightly larger lass of networks�initially introdued in [7℄ and denoted

lass N network�that extends hierarhial Diagonal ME ahe networks as follows: a single

exogeneous request proess is allowed to be a renewal proess with a general CDF (not neessarily

a Diagonal ME distribution) for inter-arrival times. We do not develop the general proedure for

lass N , but we show how the formulas hange for a spei� ase. Consider that the endogeneous

request proess at ahe n is a general renewal proess with CDF Yi(t) and rate MR,i (we

use this notation as the misses were all generated at a hild ahe i), while the exogeneous

request proess at ahe n has Diagonal ME CDF Xn(t) = 1 − ane
−Ant

1Kn and arrival rate

λn = (an(−An)−1
1Kn)−1

. The total request rate at node n is Λn = MR,i + λn. The following

proposition generalizes the CDF of inter-arrival times of the aggregated request proess Zn(t).
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Proposition 4.2 (Approximation for lass N ). The performane metris at ahe n of a lass

N network are obtained from Corollary 4.1, and the overall request proess is haraterized by

the CDF Zn(t) in (15) whose LST Z∗
n(s) is given by

Z∗
n(s) = 1− s λn

Λn

Kn
∑

k=1

an,k

s+ σn,k
− s2λnMR,i

Λn

Kn
∑

k=1

an,k(1− Y ∗
i (s+ σn,k))

(s+ σn,k)2σn,k
(29)

Proof. Applying the (15) to the CDFs Yi(t) and Xn(t) = 1−∑Kn

k=1 an,ke
−σn,kt

, we obtain

Zn(t) = 1− λnMR,i

Λn

Kn
∑

k=1

an,k ×
(

Ȳi(t)

∫ ∞

t

e−σn,kudu+ e−σn,kt

∫ ∞

t

Ȳi(u)du

)

.

We dedue (29) by taking the LST of the latter equation. The metris of interest and the LST

Y ∗
n (s) are obtained by replaing the LST X∗

n(s) by Z∗
n(s) in Corollary 4.1 and Corollary 4.2. ⋄

5. Validation and Numerial Results

In this setion, we investigate the auray of Approximation 4.1 and then of the approximate

results obtained through Algorithms 1 and 2. We reall that Approximation 4.1 onsists in

onsidering that all aggregated request proesses are renewal proesses.

First, we show that in a tandem of two ahes the �rst autoorrelation lag (ACF1) of the aggregated

proess at node 2 is quite small. We alulate it using using the formula in [40, Eq.(6.4)℄. This

autoorrelation lag ACF1 depends on the arrival rates λ1 and λ2 and the timer µ1. We �nd that

for any possible hoie of these parameters 0 > ACF1 > −0.015. Simulation results show that the

autoorrelation is even less signi�ant at larger lags. Therefore, inter-arrival times are weakly

oupled and Approximation 4.1 is indeed aurate in this small network senario.

Seond, we evaluate the approximation quality by simulations in more omplex on�gurations.

We fous on networks of exponentially distributed TTL-based ahes fed by requests generated

aording to Poisson proesses for whih it is possible to arry on an exat analysis; then we

look at a tree of deterministi TTL-based ahes also fed by Poisson requests; and �nally we

investigate the situation where requests are desribed by more general renewal proesses and

TTL distributions.
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(a) Linear network (b) Caterpillar network () Balaned tree network

Figure 8: Simulated Networks

5.1. Poisson tra� and Exponential timers

We start by observing that when the exogenous request proesses are Poisson proesses, it is

possible to model a tree network of N ahes as an irreduible ontinuous time Markov proess,

with state x(t) = (x1(t), . . . , xN (t)) ∈ E = {0, 1}N , where xn(t) = 1 (resp. xn(t) = 0) if the data

is present (resp. missing) at time t at node n. One the steady-state probabilities (π(x), x ∈ E)
have been alulated, exat values of the performane metris of interest are obtained. For exam-

ple, the stationary oupany probability of ahe n is OM
P,n =

∑

x∈E|xn=1 π(x) (the supersript

`M� stands for �Markov�). For a line of ahes, the hit probability and the miss rate at ahe 1

are respetively HM
P,1(1) = π(1, ∗) and MM

R,1 = λ1π(0, ∗), while for ahe 2 it holds

HM
P,2 =

λ1π(0, 1, ∗) + λ2(π(0, 1, ∗) + π(1, 1, ∗))
λ1(π(0, 0, ∗) + π(0, 1, ∗)) + λ2

, MM
R,2 = λ1π(0, 0, ∗) + λ2(π(0, 0, ∗) + π(1, 0, ∗))

where π(i, ∗) =
∑

x2,...,xN∈{0,1} π(i, x2, . . . , xN ) and π(i, j, ∗) :=
∑

x3,...,xN∈{0,1} π(i, j, x3, . . . , xN )

are the stationary probabilities that ahe 1 is in state i ∈ {0, 1} and ahes (1, 2) are in state

(i, j) ∈ {0, 1}2, respetively. Due to spae onstraints we omit the general expressions for these

quantities for a generi tree of ahes. Throughout Setion 5.1, we ompare the results of our

models against the exat ones obtained by studying the Markov proess.

Nine ahes linear network. This network arhiteture is hosen for its depth and its small num-

ber of leaves. We aim at evaluating the quality of Approximation 4.1 when the depth of the

network is large. We onsider the tandem of N = 9 ahes in Figure 8a. At ahe n, exogenous

requests arrive aording to a Poisson proess with rate λn and TTL is exponentially distributed

with mean µ−1
n . We apply Algorithm 2 desribed in Setion 4.4 and ompare its predition to the

exat metris obtained through the analysis of the Markov proess {x(t), t ≥ 0} introdued in the
previous paragraph. We alulate the absolute relative errors at ahe n for the hit probability
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(EHP,n := |HM
P,n−HP,n|/HM

P,n, where H
M
P,n is the hit probability obtained from the Markov pro-

ess analysis), the miss rate (EMR,n), and the oupany probability (EOP,n). One thousand dif-

ferent samples for the exogenous request arrival rates and the TTL ones {(λn, µn), n = 1, . . . , 9}
have been seleted from the intervals [0.001, 10] and [0.1, 2] respetively. We use the Fourier Am-

plitude Sensitivity Test (FAST) method [39℄ to explore the spae [0.001, 10] × [0.1, 2]. Figure 9

shows the CCDFs of the relative errors for ahe 9. We observe that Approximation 4.1 is very

aurate; in 90% of the di�erent parameter settings the relative errors on all metris of interest

are smaller than 10−4
.
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Figure 9: CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig. 8a

We then onsidered a homogeneous senario where all ahes have idential TTL and exogenous

arrival rates, i.e. µn = µ and λn = λ, ∀n. The relative errors are shown in Figure 10 as a

funtion of the normalized load ρ = λ/µ for µ = 0.2. We observe that the largest error (about

2× 10−4
) is obtained when arrival and timer rates are omparable (i.e. ρ ≈ 1).
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Figure 10: EHP,9, EMR,9, EOP,9 for homogeneous network in Fig. 8a (λn = λ = ρµ = ρµn)
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Twelve ahes aterpillar tree. This network onsists of three trees (star networks), eah with 4

ahes, whose roots are onneted as in Figure 8b. We hoose this network arhiteture for its

large number of leaves and its relative small depth in omparison to the previous linear network.

We onsider the leaves of eah root are idential i.e. they have the same average TTL value and

they are fed with Poisson request proesses with an idential rate. Again, Algorithm 2 produes

exat results for all leaves. As previously, exat results are obtained by onsidering the Markov

proess {x(t), t ≥ 0} assoiated to this network. Di�erent request and TTL rates have been

seleted aording to FAST method respetively in the intervals [0.001, 10] and [0.1, 2]. We used

4921 samples for eah rate. The empirial CCDFs of the relative errors EHP,3, EMR,3, and EOP,3

at the higher level ahe are shown in Figure 11.
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Figure 11: CCDFs of EHP,3, EMR,3, EOP,3 for network in Fig. 8b

The results obtained are analogous to those of the linear ahe network in previous paragraph.

The relative errors an be larger in this senario, but they are probably negligible for most of the

appliations (10−2
in 90% of the ases). In this ase too, we have also onsidered the homogenous

senario where at the TTLs at the leaves have the same expeted value as the ones at the internal

nodes. We observed that the relative errors have the same order of magnitude i.e. less than 10−2
.

Nine ahes tree network. We onsider the tree network of nine ahes illustrated in Figure 8

that ombines the properties of the previous network samples (i.e. with both a relative large

depth and number of leaves). Also in this ase, we onsider ahes are fed by exogenous requests

desribed by Poisson proesses and TTLs are exponentially distributed. The request and TTL

rates are seleted (6649 di�erent samples in total) from the intervals [0.05, 10] and [0.1, 2] respe-

tively using FAST method. Figure 12 shows the CCDFs of the relative errors at the higher level

ahe and in 90% of ases they are smaller than 10−2
. Thus, Approximation 4.1 is still aurate.
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Figure 12: CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig.8

5.2. Poisson tra� and Deterministi timers

When timers are deterministi, we resort to the general proedure in Algorithm 1 presented in

Setion 4.2. As term of omparison we onsider simulation results, given that the network is no

longer `Markovian'.

Figure 13: Tree network

Figure 13 shows the settings (topology, request rates and TTL values) of the network.

Algorithm 1 introdues two soures of errors. First, the aggregated request proess at a ahe is

not a renewal proess; however, we use Approximation 4.1 and apply the renewal equation (16).

Seond, (15) and (16) introdue some numerial errors sine we need to ompute the integrals

therein on a �nite support. Two parameters determine the size of the numerial error: 1) the

time interval (τ) from whih the CDF samples are taken, and 2) the time interval between two

onseutive samples (∆). Clearly the larger τ and the smaller ∆ are, the smaller is the numerial

error and the larger is the omputational ost.
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We implemented a MATLAB numerial solver that iteratively determines the CDFs of inter-

arrival times at eah ahe together with the metris of interest. The integrals appearing in (15)

and (16) are approximated by simple sums and for simpliity the same values τ and ∆ have been

onsidered for all the CDFs numerial integrations. These parameters are seleted as follows: we

set the parameter τ to �ve times the largest expeted inter-arrival time in the network; while

the parameter ∆ is set to one thousandth of the minimum of the TTL values and the expeted

inter-arrival times of the exogenous request proesses.

The relative error of the hit probability is evaluated as |HP,n − HS
P,n|/HS

P,n where HP,n is our

estimate and HS
P,n is obtained through simulation. The duration of the simulation is set so that

there is a small inertitude on the performane metris: the 99% on�dene interval [HS
P,n −

ǫ,HS
P,n + ǫ] is suh that the ratio (2ǫ/HS

P,n) is at most 0.6 × 10−4
. For all the performane

metris at all ahes, the relative error of our approah is less than 10−2
.

5.3. Renewal/Non-Poisson tra�

In this setion, we onsider that requests for eah data item are generated aording to Inter-

rupted Poisson Proesses (IPP). IPPs are Renewal proesses whose inter-arrival times have a

two stage hyper-exponential distribution [21℄ (then it is a partiular Diagonal ME distribution).

Figure 14: Binary tree network

We evaluate the auray of our approah on binary tree networks (like the one in Figure 14)

where leaves are fed by request tra� desribed before and TTLs values are deterministi or

drawn from the following Diagonal ME TTL distribution: exponential, hypo-exponential and

hyper-exponential distributions. Also in this ase we onsider simulation results as term of om-

parison. Our model preditions are provided by Algorithms 1 and 2, respetively for deterministi

and (hypo-, hyper-) exponentially distributed TTLs.
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Small binary tree. We onsider the seven ahes binary tree in Figure 14. Relative errors at the

higher level ahe are displayed in Figure 15. For all performane metris at all ahes of this

tree, the relative errors of our approah are less than 2× 10−3
. This result validates Assumption

4.1 and thus our model in the ontext of general networks i.e. with non-Poisson arrivals and

di�erent TTL distributions.
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Figure 15: Relative error EHP,1 and EOP,1 under IPP tra�.

As theoretially proved in Proposition 3.4, Figure 16 on�rms that the deterministi TTL is

the optimal TTL on�guration at the leaves (ahes 4 − 7) i.e. whih maximizes the hit and

oupany probabilities. This observation is not surprising sine IPPs are renewal proesses

with hyper-exponentially distributed inter-arrival times; in fat, it an be easily heked that the

hyper-exponential CDF is onave and the observed results follows from Proposition 3.4.
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Figure 16: Optimality of the Deterministi TTL at leaves fed by IPP arrivals

Large binary tree. We also investigate the quality of our approximation on larger tree networks

(up to 40 ahes) where TTLs are onstants drawn uniformly at random in the interval [0.5; 1.5],

and the exogeneous requests at eah ahe are desribed by an IPP. The expeted value and the
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squared oe�ient of variation of inter-arrival times are uniformly hosen at random in [0.05; 2]

and [1.5; 2] respetively. As shown in Table 3, the relative errors between the event-driven

simulations and our analyti approah are of order of 1%. This result provides good insights on

the robustness and auray of our approah when dealing with large networks.

Type (Degree, Depth, # Cahes) Level l, Cahe n EHP,n(%) EMR,n(%) EOP,n(%)

Binary Tree 1, 1 1.059 0.929 0.021
(2, 5, 31) 2, 3 0.406 0.042 0.117

5, 31 0.075 0.018 0.061

Ternary Tree 1, 1 0.127 0.085 0.134
(3, 4, 40) 2, 3 0.061 0.278 0.124

4, 40 0.006 0.283 0.759

Table 3: Relative Errors on Performane metris for large trees

We have shown that Approximation 4.1 leads to very aurate results when exogenous requests

are desribed by renewal proess (Poisson and Interrupted Poisson proesses) and TTLs have

some matrix-exponential distributions or deterministi ones. This lets us think that the super-

position of the request arrival proesses at every ahe is very `lose' to a renewal proess at least

for all the ases we tested.

6. Computational Cost and Time

In this setion we perform a preliminary analysis of the omputational ost and time of our

approah, and we ompare it to other solutions presented in the previous setion suh as solving

a Markov hain (Setion 5.1) and event-driven simulations (Setions 5.2 and 5.3).

TTLs with Diagonal ME distribution. We �rst address the ase of a hierarhial tree of Diagonal

ME ahes introdued in Setion 4.4. We onsider a tree of N nodes and M internal nodes (i.e.

N −M leaves). Sine the omputational ost for all the metris is roughly the same, we fous

here on the hit probability. In order to alulate the hit probability at one of the nodes labeled

n ∈ {1, . . . , N}, say at ahe n, we need to:

• alulate the CDF Zn(t) of inter-arrival times of the aggregated request proess in (28).
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This requires a number of operations proportional to

(1 + Cn)
∏

i∈C(n)∪{0}

Ki,n = O
(

(1 + Cn)× K̃1+Cn
n

)

, K̃n = max
i∈C(n)∪{0}

Ki,n

where Ki,n is the minimal order of the i-th hild miss proess, K0,n is the minimal order

of the exogenous request proess, and Cn = |C(n)| is the number of hildren of ahe n.

• evaluate the LST Z∗
n(µn,j) in the expression of the hit probability in (21) whih requires

Kn× Jn operations where Kn is the minimal order of the aggregated request proess (and

it is at most equal to K̃1+Cn
n ) and Jn is the minimal order of the TTL distribution.

Then, the total ost is

K = O

(

N
∑

n=1

(1 + Cn + Jn)× K̃1+Cn
n

)

. (30)

For linear networks in Figure 5 (ase of small maximum degree), the number of hildren per

ahe is Cn = 1 and there is no exogenous requests at ahe n > 1. Hene, the total ost is

Kline = O
(

NJ × (K0,1(J + 1))N
)

, J = max
n=1,...,N

Jn (31)

For star networks in Figure 6 (ase of large maximum degree), the number of hildren at the

root is N − 1 and the total ost is

Kstar = O
(

NJK + J (K(J + 1))N−1
)

, J = max
n=1,...,N

Jn, K = max
n=1,...,N

K0,n (32)

TTLs with exponential distribution. The exponential distribution has the minimal order whih

is one. Hene, if we onsider exponential timers and exogenous requests are desribed by Poisson

proesses, we have K0,n = Jn = 1 at eah ahe n. Therefore the osts Kline and Kstar are

respetively equal to O(N × 2N ) and O(N + 2N ).

We showed in Setion 5 that alternative approahes like the Markov hain analysis an provide

exat results when the tree is fed by Poisson tra� and the TTLs are exponentially distributed.

The size of the state spae of the Markov proess {x(t), t ≥ 0} is 2N
where N is the number

of nodes. The ost of determining the steady-state distribution by solving the linear equation

system is O(23N ). This is muh larger than the ost of our method O(N2N ).
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A di�erent approah is to obtain an approximate steady-state distribution of the Markov proess

using an iterative method. This approah takes advantage of the fat that most of the transition

rates are zero. In fat, a state hange is triggered by an exogenous request arrival at a ahe

that does not have the data or by a timer expiration at a ahe with the data, i.e. from a given

state we an only reah other N states. Then the number of non-zero rates is N × 2N
and eah

iteration of the method requires O(N × 2N ) operations. The total ost of the iterative method

is then O(I × N × 2N ), where I is the number of iterations until termination. The quantity

I depends on the spetral gap of the matrix used at eah iteration, and also on the required

preision. In general, we an expet that O(I × N × 2N ) ≪ O(23N ). Having this inequality,

we an say that our method, even in the worst ase, is still more onvenient than solving the

Markov proess on linear/star networks, beause O(N2N ) < O(I ×N × 2N ).

TTLs with deterministi distribution. Let us now onsider the ase of a general tree network with

onstant TTLs (equal to T ). In this ase there is no exat solution to ompare our approah with,

so we onsider simulations as an alternative approah. We perform an asymptoti analysis. A

meaningful omparison of the omputational osts needs to take also into aount the inertitude

of the solution: both the simulations and our method an produe a better result if one is willing

to a�ord a higher number of operations. In order to ombine these two aspets in our analysis, we

onsider as metri the produt preision times number of operations. Intuitively the larger this

produt the more expensive is to get a given preision. For the simulations the omputational

ost is at least proportional to the number of events that are generated, let us denote it by nE .

The inertitude on the �nal result an be estimated by the amplitude of the on�dene interval,

that dereases as 1/
√
nE, then the produt preision times number of operations is proportional

to

√
nE for the simulations. In the ase of our approah, the most expensive operation is the

solution of the renewal equation. If we adopt the same τ and ∆ for all the integrals, we need to

alulate the value of the CDF of the miss rate (Y (t)) in nP = τ/∆ points and then we need to

alulate nP integrals. The integration interval is at most equal to the TTL duration T thanks to

(11), then eah integral requires a number of operations proportional to n′P = T/∆. If the value

of τ is seleted proportionally to T , then the ost of our method is proportional to n2
P . A naive

implementation of the integral as a sum of the funtion values leads to an error proportional to

the amplitude of the time step and inversely proportional to n′P or nP . In onlusion the produt

preision times the number of operations is proportional to nP . Then, for a given preision, our

method would require a number of points muh larger than the number of events to be onsidered
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in the orresponding simulation (at least asymptotially). The omparison would then lead to

prefer the simulations at least when small inertitude is required (then large nE and nP ). In

reality integrals an be alulated in more sophistiated ways, for example if we adopt Romberg's

method, with a slightly larger omputation ost, we an get a preision proportional to n−2
P . In

this ase the produt preision times number of operations is a onstant for our method, that

should be preferred.

Numerial experiments. We performed some experiments to validate our onlusion based on an

asymptoti analysis. First, we onsider linear networks ofN = 1, 2, . . . 9 exponentially distributed

TTL-based ahes as desribed in Figure 8a. We ompare the running time of solving the

orresponding Markov hain (see Setion 5.1) against our Algorithm 2. Figure 17 shows the

ratio of the omputation times TA
and TM

respetively for our Algorithm 2 and for the Markov

hain resolution. Both the solutions have been implemented in MATLAB, in partiular the naive

funtion linsolve has been used to determine the steady-state distribution of the Markov hain

and the Algorithm 2 has been implemented with basi routines. Our algorithm performs faster

than the Markov hain resolution speially when the depth of the linear network is large.
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Figure 17: Computation time omparison on linear networks

Seond, we evaluate the omputational time of the event-driven simulation and our Algorithm 1

on the k-ary trees of Setion 5.2 where the TTLs are onstants and the request proesses are

IPPs. T S
and TA

are respetively the time to ompute all performane metris on these large

tree networks via event-driven simulations and our analyti methodology in Algorithm 1; they

are omputed by using the MATLAB routines ti and to. Table 4 shows that as the number of

ahes N inreases, our analyti solution is learly preferable sine it is the least time onsuming.
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Type Degree Depth # Cahes, N T S TA

Binary Tree 2 5 31 53 88

Ternary Tree 3 4 40 197 129

Table 4: Comparison of omputation time on large trees

7. TTL-based model and other poliies

We reall that the TTL-based model we presented till now assumes in�nite ahe apaities. We

address issues and pratial onerns related to �nite apaity onstraints.

7.1. Pra-TTL ahe: A pratial implementation of a TTL-based ahe

While the TTL-based model allows an arbitrarily large number of ontents in its memory, a real

ahe will have a �nite apaity B. In this setion, we onsider a possible pratial implementa-

tion of our TTL-based model that we all Pra-TTL. The Pra-TTL ahe uses a timer for eah

ontent item in the same way as the TTL-based model, but does not disard a ontent item whose

timer has expired as long as some spae is available in the memory. If a new ontent item needs

to be stored and the ahe is full, the ontent item to be erased is the one whose timer expired

furthest in the past (if any) or the one whose timer will expire soonest. We have ompared the

performane of the Pra-TTL ahe with that of our TTL-based model on a linear network of

N = 5 ahes labeled n = 1, . . . , 5 having the same apaities Bn = 20. The requests for eah

�le f = 1, . . . , F = 200 arrive only at the �rst ahe at rate λ1 = 2.0 i.e. there is no exogeneous

arrival at ahes 2�5. We onsider that requests over the set of �les follow a Zipf popularity

law with parameter α = 1.2: i.e. requests for �le f are desribed by a Poisson proess with rate

λ1,f = λ1 ×
(

1/
∑

g g
−α
)

/fα
. TTLs of �le f at ahe n are exponentially distributed with rate

µn,f = µn suh that the total oupany for the TTL-based model equals the orresponding

ahe apaity Bn. In other words, µn is hosen suh that

∑F
f=1OP,n,f = Bn where OP,n,f is the

oupany probability of �le f at ahe n alulted in Proposition 3.2 (i.e. predited by the model

of an in�nite TTL-based ahe). The hit probability per �le f at eah ahe n is denoted HP,n,f

and the aggregate hit probability at ahe n is denoted HP,n,∗. We ompute theses performane
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Cahe n Pra-TTL TTL-Model

1 0.5590 0.5585

2 0.4216 0.4658

3 0.3030 0.2672

4 0.1941 0.1670

5 0.1380 0.1154

Table 5: Aggregated Hit probability at ahe n, HP,n,∗

metris for both Pra-TTL and TTL-based ahes by using the following expression for HP,n,∗:

HP,n,∗ =





∑

f

Λn,fHP,n,f



 /Λn,∗

where Λn,f is the total request rate of �le f at ahe n and Λn,∗ =
∑

f Λn,f . Then, Λn,f is simply

the miss rate of �le f at ahe n−1 sine the network is linear and there is no exogenous request

arrivals at ahe n (∀ n > 1). Table 5 and Figure 18 show that our model (that assume in�nite

ahe size) well predit the performane metris for Pra-TTL, both those of the aggregate at a

ahe and those of a spei� �le respetively.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File f

H
it
P
ro
b
.:
H

P
,1
,f

 

 

Pra-TTL
TTL-Model

(a) Cahe 1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File f

H
it
P
ro
b
.:
H

P
,2
,f

 

 

Pra-TTL
TTL-Model

(b) Cahe 2

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File f

H
it
P
ro
b
.:
H

P
,3
,f

 

 

Pra-TTL
TTL-Model

() Cahe 3

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File f

H
it
P
ro
b
.:
H

P
,4
,f

 

 

Pra-TTL
TTL-Model

(d) Cahe 4

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File f

H
it
P
ro
b
.:
H

P
,5
,f

 

 

Pra-TTL
TTL-Model

(e) Cahe 5

Figure 18: Hit probability HP,n,f of �le f at eah ahe n: Pra-TTL vs TTL-Model.

These preliminary results suggest that our analysis an be useful to study TTL-based poliies
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under apaity onstraints.

7.2. Relationship with other replaement poliies

In this setion, we establish a link between our TTL-based model and other replaement poliies

at a single ahe. We onsider a single ahe with apaity B serving F �les, where requests

are desribed by independent Poisson proesses with rates λf for f = 1, 2, . . . , F . We tune the

expiration rate µf for eah �le f in order to obtain the same performane metris of ommon

replaement poliies like LRU, FIFO or RND.

We detail the proedure for a single RND ahe, but it an be extended to the other poliies.

Let us denote by πf the stationary probability that �le f is in the RND ahe. This distribution

has been alulated in [5, 36℄. For the exponentially distributed TTL ahe, the stationary

oupany probability of the f -th �le is given by

OP,f = λf

1−X∗
f (µf )

µf
,

where X∗
f (s) =

λf

λf +s
is the LST of inter-arrival times. If we selet µf = λf

(

1
πf
− 1
)

, it holds

OP,f = πf , ∀f , i.e. the two poliies have the same stationary ahe oupany for eah �le.

If we selet the same TTL rate µ for all the �les it is possible to ahieve the same average

oupany at the ahe, i.e.

∑

f πf =
∑

f
λf

λf +µ
= B. For eah �le, the miss proess of obtained

with the exponential TTL-based ahe is an aurate desription of its miss stream on the RND

ahe [11℄. From the equality of the stationary ahe oupany probabilities, the equality of

hit/miss probabilities and rates follows due to the PASTA property sine requests are desribed

by Poisson proesses.

In this sense, the TTL poliy is more general than RND or LRU sine it an mimi their behavior

and reprodue their performane metris. While, the exponential TTL ahe enables easy alu-

lation we an selet other distributions like the deterministi one (see Paragraph Approximation

for LRU ahes in Setion 3) in order to better math the CDF of the inter-miss times of a LRU

ahe as well.
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8. Conlusion

In this paper, we introdued a novel Time-To-Live (TTL) based replaement poliy for ahe

networks in general and the ontent-routers of ICN arhitetures in partiular. We developed

a set of building bloks for the performane evaluation of theses TTL-based ahe networks

through renewal arguments. We haraterized a lass of networks for whih we provided the

exat performane metris: this lass ontains linear and star tree networks. We also provided

a reursive and approximate proedure to study arbitrary hierarhial networks. We showed

that our theoreti model predits remarkably well the performane metris with relative errors

less than 1%. We formally proved that deterministi TTLs are optimal when the inter-arrival

times have a onave CDF. Our approah is promising sine it appears as a unifying framework

to aurately analyze a riher lass of networks also with heterogeneous poliies deployed at

di�erent ahes. We have also demonstrated that our TTL-based model an be implemented

under apaity onstraints. Ongoing researh is investigating approximate TTL-based model for

�nite apaity ahes running the LRU, FIFO and Random replaement poliies. We also aim

at onsidering the ase of orrelated requests modeled by semi-Markov proesses.
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Appendix

Optimality of a deterministi TTL-ahe

In this appendix, we obtain the TTL distribution that maximizes/minimizes our metris of

interest (i.e. the hit probability HP and the oupany probability OP ) when the mean TTL

value D = E[T ] is known.
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Lemma 8.1 (Convex ordering). If D and T are respetively onstant and random TTLs suh

that E[T ] = D, then the following relation holds

D ≤cx T (33)

where ≤cx is the onvex ordering.

Proof. The de�nition of onvex ordering of random variables T1 and T2 says T1 ≤cx T2 if and

only if E[φ(T1)] ≤ E[φ(T2)] where φ(.) is a onvex funtion. We shall show that this onvex

ordering holds for any random TTL T and onstant TTL D suh that E[T ] = D in order to

prove the lemma. For any random TTL T ≥ 0 and any onvex funtion φ(.), we have thanks to

Jensen's inequality :

E[φ(T )] ≥ φ(E[T ]) = φ(D) = E[φ(D)]

The last equality follows from the fat that φ(D) is a onstant. ⋄

Proposition 8.1 (Optimality of a deterministi TTL ahe). Given the expeted TTL value

D = E[T ] and the CDF X(t) of inter-arrival times, the oupany OP is maximized when the

TTL is deterministi and equal to D. Moreover, if X(t) is a onave funtion then the hit

probability HP is maximized too.

Proof. We assume that the TTLs {Tn}n≥1 are sampled from a general distribution T (t) suh

that E[T ] = D. Observe that the oupany probability OP (T ) and hit probability HP (T ) are

funtions of the timer T and an be written as

OP (T ) = λE [φ(T )] , HP (T ) = E[X(T )]

where X(x) is the CDF of X and φ(t) =
∫ t

0 (1 − X(x))dx. The seond derivative of φ(t) is

φ′′(t) = −X ′(t) ≤ 0 beause X ′(t) is a probability density funtion; hene, φ(t) is a onave

funtion for any X(x). Then by applying Lemma 8.1, it follows that OP (T ) ≤ OP (D) for any

timer T suh that E[T ] = D. Meanwhile, if X(x) is onave (resp. onvex), Lemma 8.1 states

that HP (D) ≥ HP (T ) (resp. HP (D) ≤ HP (T )). ⋄

We note that if the request proess is a Poisson proess, the oupany OP and the hit probability

HP are equals and theses metris are maximized when the TTL is deterministi.
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