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Abstra
t

There has been 
onsiderable resear
h on the performan
e analysis of on-demand 
a
hing repla
e-

ment poli
ies like Least-Re
ently-Used (LRU), First-In-First-Out (FIFO) or Random (RND).

Mu
h progress has been made on the analysis of a single 
a
he running these algorithms. How-

ever it has been almost impossible to extend the results to networks of 
a
hes. In this paper, we

introdu
e a Time-To-Live (TTL) based 
a
hing model, that assigns a timer to ea
h 
ontent stored

in the 
a
he and redraws it every time the 
ontent is requested (at ea
h hit/miss). We derive

the performan
e metri
s (hit/miss ratio and rate, o

upan
y) of a TTL-based 
a
he in isolation

fed by stationary and ergodi
 request pro
esses with general TTL distributions. Moreover we

propose an iterative pro
edure to analyze TTL-based 
a
he networks under the assumptions that

requests are des
ribed by renewal pro
esses (that generalize Poisson pro
esses or the standard

IRM assumption). We validate our theoreti
al �ndings through event-driven and Monte-Carlo

simulations based on the Fourier Amplitude Sensitivity Test to explore the spa
e of the input

parameters. We observe that our analyti
 model predi
ts remarkably well all metri
s of interest

with relative errors smaller than 1%.
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1. Introdu
tion

Ca
hes are widely used in networks and distributed systems to improve their performan
e. They

are integral 
omponents of the World Wide Web [10℄, the Domain Name System (DNS) [32℄, and

Content Distribution Networks (CDNs) [44℄. More re
ently there has been a growing emphasis

on Information-Centri
 Networking (ICN) [1℄ ar
hite
tures�like the Content-Centri
 Network

(CCN) [28℄�whi
h support host-to-
ontent intera
tions as the 
ommon 
ase. Many of these


ontent networks give rise to hierar
hi
al (or more general) 
a
he topologies. The design, the


on�guration and the analysis of these 
a
he systems pose signi�
ant 
hallenges.

An abundant literature exists on the performan
e (e.g. hit probability, sear
h 
ost) of a single


a
he running the First-In-First-Out (FIFO) or Random (RND) repla
ement poli
ies (see [24℄

for independent and identi
ally distributed or i.i.d. requests), the Least-Re
ently-Used (LRU)

repla
ement poli
y or, its 
ompanion, the Move-to-Front (MTF) poli
y (see [4, 5, 6, 15, 19,

22, 27, 29, 36℄ for i.i.d. requests and [13, 31, 30℄ for 
orrelated requests). With few ex
eptions,

exa
t models of 
a
hes in isolation are 
omputationally intra
table, resulting in the relian
e on

approximations [15, 29℄. Networks of 
a
hes are signi�
antly more di�
ult to analyze and no

exa
t solution has been obtained so far for even the simple network of two LRU (or FIFO, RND)


a
hes in tandem. Approximations have been proposed for star networks of LRU and RND


a
hes by [10, 23℄ and [45℄ respe
tively. [43℄ is one of the �rst modeling attempt to approximate

the performan
e of a general network of LRU 
a
hes. However, theses approximate models

su�er from ina

ura
ies as reported in [43℄ where the relative error 
an rea
h 16%. Despite the

in
reasing interest in ICN ar
hite
tures, previous work has mainly fo
used on global ar
hite
ture

design. An ex
eption is [9℄, whose authors develop approximations to 
al
ulate the stationary

throughput in a CCN network of LRU 
a
hes modeling the interplay of 
hunk-level 
a
hing and

a re
eiver-driven transport proto
ol. In the literature, the 5-Minute Rule by [25℄ is probably

one of the �rst paper to des
ribe a Time-To-Live (TTL) based algorithm to manage data in


omputer memories. [33℄ 
onsiders a single TTL-based 
a
he fed by i.i.d. requests to study the

timer-based expiration poli
y of DNS 
a
hes in isolation. A

ording to the RFC 6195, ea
h

missed resour
e re
ord is marked with a timeout whi
h indi
ates the maximum duration the

re
ord 
an be stored in the DNS 
a
he. The timeouts are initialized only by an authoritative

DNS server and an eventual hit on a lo
al DNS 
a
he does not 
hange the value of the remaining

timeout. Therefore, DNS 
a
hes are di�erent from our TTL-based systems. [33℄ obtains the hit

rate of a single DNS 
a
he for a 
onstant TTL via the solution of a renewal equation.
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In this paper, we fo
us on a 
lass of 
a
hes we introdu
ed in our previous work [7℄ and we refer

to as Time-To-Live (TTL)-based 
a
hes. Here TTLs are not used to guarantee the 
onsisten
y

of dynami
 
ontents (as it is the 
ase of [3, 14, 33, 46℄), but to implement an evi
tion poli
y that

de
ides whi
h 
ontents have to be kept in the 
a
he. Brie�y, when an un
a
hed data is brought

ba
k into the 
a
he due to a 
a
he miss, a lo
al TTL is set and further redrawn at every 
a
he

hit.

1

The TTL value 
an be di�erent for di�erent data, but also for the same data at di�erent


a
hes. All requests to that data before the expiration of the TTL are su

essful (
a
he hits); the

�rst request for that data to arrive after the TTL expiration yields a 
a
he miss. In this latter


ase, the 
a
he may forward the request to a higher-level 
a
he, if any, or to the server. When

lo
ated, the data is routed on the reverse-path and a 
opy is pla
ed in ea
h 
a
he along the path

(as in CCN [28℄). This paper makes the 
ase that TTL poli
ies are interesting alternatives to

poli
ies su
h as LRU or RND for three reasons. First, a TTL poli
y is more 
on�gurable and

in parti
ular 
an mimi
 the behavior of other repla
ement poli
ies through a proper 
hoi
e of

parameters (see Se
tion 7.2). Se
ond, while LRU or RND 
a
he networks have de�ed a

urate

analysis, networks of TTL-based 
a
hes are simpler to study (as we show in Se
tions 3 and 4).

Finally, the TTL-based model appears as a uni�ed framework for the performan
e analysis of

heterogeneous 
a
he networks where the 
a
hes may run di�erent repla
ement poli
ies. Pre
isely,

we develop a set of building blo
ks for the analysis of hierar
hi
al TTL-based 
a
he networks,

where (i) exogenous requests at di�erent 
a
hes are modeled as independent renewal pro
esses,

and (ii) independent TTL values are drawn at ea
h 
a
he from arbitrary distributions.

The building blo
ks are:

1. a model of a single 
ontent TTL 
a
he fed by a renewal request stream (or a more general

stationary request pro
ess),

2. a renewal pro
ess approximation of the superposition of independent renewal pro
esses.

The �rst blo
k forms the basis to evaluate the performan
e metri
s and to des
ribe the output

sequen
e of requests (the miss pro
ess) of a 
a
he. Meanwhile, the se
ond blo
k is used to


hara
terize the resulting pro
ess of the superposition of several independent streams of requests


onsisting of exogenous requests from users and/or missed requests from other 
a
hes if any.

These blo
ks are applied to assess the performan
e metri
s of hierar
hi
al TTL-based 
a
he

1

This is then di�erent from the timeouts of DNS 
a
hes; and thus, the TTL-based 
a
he model presented here

is di�erent from the one of [33℄ sin
e the TTLs are reset at every 
a
he hit and not initialized by a 
entral entity.
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networks. We then show how the 
omputational 
ost of our approa
h simpli�es when TTLs and

the inter-arrival times of the exogenous request streams at every 
a
he are Matrix-Exponentially

Distributed (MED). We refer to this 
ase in short as a MED 
a
he network. The 
lass of Matrix-

Exponential distributions 
oin
ides with the 
lass of distributions having a rational Lapla
e-

Stieltjes Transform that 
an be used to �t properties of general pro
esses [17, 26, 34, 41℄. Event-

driven and Monte-Carlo simulations on instan
es of MED 
a
he networks reveal that the relative

errors between the simulated networks and our model predi
tions are extremely small and less

than 10−2
for all metri
s of interest.

The 
ontributions of the paper are:

• the proposal of TTL-based repla
ement poli
ies for 
ontent-routers of ICN ar
hite
tures,

• an analyti
 tool to assess the performan
e of hierar
hi
al TTL-based 
a
he networks.

This paper extends our previous work [7℄ as follows.

The performan
e metri
s of single 
a
he derived in [7℄ when requests were des
ribed by renewal

pro
esses are now extended (see Se
tion 3, Propositions 3.1 and 3.2) to the 
ase when requests

are des
ribed by stationary and ergodi
 pro
esses. We also provide physi
al and/or probabilisti


interpretations of several quantities. This paper 
lari�es the s
ope of appli
ation of our theoreti


results and points out our 
ontribution with respe
t to several re
ent papers [1, 10, 11℄ devoted

to the analysis of 
lassi
al repla
ement poli
ies su
h as LRU or RND as spe
ial 
ase of TTL-

based 
a
hes. A new result on the optimal TTL 
on�guration of 
a
hes in isolation is added

in Se
tion 3, Proposition 3.4 and the proof is provided in Appendix. The re
ursive pro
edure

presented in [7℄ for 
lass N networks (i.e. 
aterpillar networks of exponentially distributed TTL-

based 
a
hes fed by hyper-exponential renewal pro
esses) is generalized by the 
lass of MED 
a
he

networks in three orthogonal dire
tions: (i) network topology 
onsidered is now an arbitrary tree

of 
a
hes, (ii) requests are now des
ribed by a versatile 
lass of renewal pro
esses where inter-

arrival times of requests are matrix-exponentially distributed , and (iii) the TTLs are drawn

from matrix-exponential distribution.

The model validation in Se
tion 5 provides additional insights on the a

ura
y of our assumptions

and approximations, and also the e�
ien
y of our approa
h in terms of 
omputational time under

various 
onditions. Pre
isely, we add results for larger networks with up to forty 
a
hes, di�erent

network topologies, two di�erent workload models (requests des
ribed by Poisson and Interrupted

Poisson pro
esses), hyper-exponential and hypo-exponential TTL distributions.
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The paper is organized as follows. In Se
tion 2, we introdu
e the notation and the model

assumptions. Se
tion 3 
ontains our model of a single TTL-based 
a
he and provides the exa
t


hara
terization of the performan
e metri
s and the miss pro
ess. We des
ribe in Se
tion 4

a general pro
edure to study any hierar
hi
al TTL-based 
a
he network. The key point in

this se
tion is how we model the 
ombined exogenous and miss requests streams as a renewal

point pro
ess thanks to a result from [40, Eq.(4.1)℄, [2, Eq.(1.4.6)℄ regarding the 
omputation

of the marginal inter-arrival distribution for a superposition of independent renewal pro
esses.

A simpli�ed pro
edure is then derived for MED 
a
he networks. The a

ura
y of the general

and of the simpli�ed pro
edures is evaluated in Se
tion 5 and a dis
ussion of the 
omputational


omplexity of our analyti
 approa
h 
an be found in Se
tion 6. Se
tion 7 dis
usses how our TTL-

based model 
an be implemented under �nite 
apa
ity 
onstraints, and how the TTL poli
y 
an

mimi
 di�erent poli
ies like LRU or RND. Con
lusions are found in Se
tion 8.

2. Single TTL 
a
he: model and notation

For the sake of readability, we �rst introdu
e our main assumptions and our notation for the

simple ar
hite
ture of a single TTL-based 
a
he and a server 
onne
ted in tandem, as shown

in Figure 1. The terminology and the formalism introdu
ed here will be extended later to

hierar
hi
al TTL-based 
a
he networks (see Se
tion 4). From now on the words �
a
he� and

�node� will be used inter
hangeably. Also, a 
a
he will always be a TTL-based 
a
he unless

otherwise spe
i�ed.

Server

MissesExo. Requests

Retrieval

1

Cache

Figure 1: Single 
a
he and server of two �les blue and green.

We now introdu
e a key assumption for our approa
h:

Assumption 2.1 (In�nite Capa
ity). The TTL-based 
a
he has an in�nite 
apa
ity.

A 
onsequen
e is that 
ontent items are evi
ted from the 
a
he only when their TTL expires and

not be
ause spa
e is needed to allo
ate other 
ontents. Assumption 2.1 allows us to de
ouple

5



the management of the di�erent 
ontent items and study ea
h of them separately as illustrated

in Figure 2. For this reason, in what follows we will refer to a single 
ontent item or data. The

e�e
t of 
apa
ity 
onstraint is 
onsidered in Se
tion 7.1.

Server

MissesExo. Requests

Retrieval

1

Cache

TTL

TTL

Cache Server

1

Figure 2: In�nite 
a
he 
apa
ity and TTL de
oupling e�e
t.

In order to keep the model as simple as possible we also assume that data pro
essing and transfer

times are negligible:

Assumption 2.2 (Zero delay). There is a zero pro
essing time at ea
h node and a zero trans-

mission delay between nodes in
luding the server.

In fa
t, the model presented in this paper 
an be easily extended to 
onsider non-zero pro
essing

time and/or delay. This latter 
ase will be investigated in a future work.

Requests for a spe
i�
 data are generated at times {tk, k ∈ ZZ} su
h that . . . < t−1 < t0 ≤ 0 <

t1 < . . . by 
onvention, where ZZ denotes the set of all integers. Let X(k) = tk+1 − tk be the

inter-arrival time between requests k and k + 1. Also, let T (k)
(k ∈ Z) being the TTL duration

generated for the 
ontent after the arrival of the request at time tk.

Consider the request submitted at time t0 (the pro
ess for requests submitted at times tk with

k 6= 0 is the same). There is a 
a
he hit (resp. 
a
he miss) at time t0 if the data is present (resp.

is not present) in the 
a
he at this time, whi
h 
orresponds to the situation where t0 ≤ t−1+T
(−1)

(resp. t0 > t−1 + T (−1)
). In the 
ase of a 
a
he miss the request is instantaneously (be
ause

of Assumption 2.2) forwarded to the server at time m0 = t0 and the data is retrieved from the

server. By 
onvention, the data is permanently store in the server. On
e the data is fet
hed from

the server, a 
opy of it is instantaneously transmitted to the 
a
he and the request is resolved at

time t0, while a 
opy is kept at the 
a
he. At time t0 the TTL of the data is set to T (0)
both for

a 
a
he hit and for a 
a
he miss. The next 
a
he miss after time m0 will o

ur at time m1 = tj

6



hit miss

t0
timetk

m1

X
(k)

data in cache

tk+1. . .t1
X

(0)

T
(0) T

(1)

T
(k)

inter-miss time Y
(0)

m0

Figure 3: Requests, 
a
hing durations and inter-miss times.

with j = min{l > 0 : tl > tl−1 + T (l−1)} � see Figure 3 where j = l + 1.

Our 
hoi
e to reset the TTL after ea
h 
a
he hit makes also our single-
a
he s
enario di�erent

from the one studied in [33℄. Resetting the TTL tends to in
rease the sojourn time and the hit

probability on the 
a
he spe
ially for the most popular 
ontents. This 
orresponds to the general

ICN paradigm [1℄ to move popular do
uments as 
lose as possible to the users. For the time

being we assume the following minimal assumptions:

Assumption 2.3 (Stationary arrivals and TTLs). The point pro
ess {tn, n ∈ ZZ} is simple

(i.e. there are no simultaneous requests) and stationary (i.e. {X(k), k ∈ ZZ} is a stationary

sequen
e) and independent of the sequen
e of TTLs {T (k), k ∈ ZZ} whi
h is also assumed to be

stationary. Furthermore, the intensity λ := 1/E[X(k)]of the point pro
ess {tn, n ∈ ZZ} is non-zero
and �nite and 0 < 1/µ := E[T (k)] <∞.

Under Assumption 2.3 the 
a
he is in steady-state (in parti
ular) at time t = 0 and from now

on we will only observe its behavior at times t ≥ 0. We denote by X(t) = P(X(k) < t) and

T (t) = P(T (k) < t) the Cumulative Distribution Fun
tion (CDF) of X(k)
and T (k)

, respe
tively.

We 
all the miss pro
ess the sequen
e of su

essive time instants 0 ≤ m0 < m1 < · · · at whi
h
misses o

ur in [0,∞), whi
h are also the times at whi
h the server forwards a 
opy of the data to

the 
a
he. We denote by Y (k) = mk+1−mk the time interval between the k-th and the (k+1)-st

misses for k ≥ 0 and Y (t) = P(Y (k) < t) the CDF of Y (k)
. Stronger statisti
al assumptions

on the sequen
es {X(k), k ∈ ZZ} and {T (k), k ∈ ZZ} will qui
kly be
ome ne
essary only for the

purpose of 
hara
terizing the miss pro
ess of the 
a
he � see Assumption 3.1.

We will study the 
a
he networks in their steady-state regime, and we will 
al
ulate the following
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performan
e metri
s for ea
h 
a
he:

1. the hit probability HP is the stationary probability that the 
ontent is in the 
a
he

when a new request arrives. The miss probability MP is the 
omplementary probability

1−HP ;

2. the o

upan
y probability OP is the stationary probability that the 
ontent is in the


a
he at a random time instant;

3. the miss rate MR is the rate at whi
h the 
a
he forwards requests to the server.

The hit probability is 
learly a fundamental performan
e metri
 for a 
a
hing system. The

o

upan
y probability is equal to the fra
tion of time that a 
ontent spends in the 
a
he and

then it 
an be used to 
hara
terize the instantaneous bu�er distribution. Finally, for a single


a
he network the miss rate quanti�es the load on the server, but for a hierar
hi
al 
a
he network

a miss at one 
a
he 
auses the request to be forwarded to higher-level 
a
hes. Hen
e, we need

to 
hara
terize the miss pro
ess to be able to evaluate the hit probability at higher-level 
a
hes.

Before moving to the analysis of the single 
a
he network, we need to introdu
e some more

notation. For any non-negative random variable (rv) ξ with a CDF F (t) = P(ξ < t) (∀ t ≥ 0),

we denote by

F ∗(s) = E[e−sξ] =

∫ ∞

0
e−stF (dt), s ≥ 0

the Lapla
e-Stieltjes Transform (LST) of ξ. The notation F (dt) is used be
ause the Probability

Density Fun
tion f(t) of the rv ξ may not exist; otherwise, F (dt) = f(t)dt as 
ommonly seen.

For any number a ∈ [0, 1], ā := 1−a by de�nition. In parti
ular, if F (t) is a CDF, F̄ (t) = 1−F (t)

is the 
orresponding Complementary Cumulative Distribution Fun
tion (CCDF).

From now on we assume that ea
h 
a
he satis�es Assumptions 2.1, 2.2 and 2.3.

3. Single TTL Ca
he: Analysis

De�ne L(t) := P(X(k) < t,X(k) < T (k)) the stationary probability that the inter-arrival time

between two su

essive requests is smaller than t and smaller than the TTL asso
iated with the

former request. Be
ause arrivals and TTLs are independent we have

L(t) =

∫ t

0
(1− T (x))X(dx), t ≥ 0. (1)
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λ Arrival rate (single 
a
he)

1/µ Expe
ted TTL (single 
a
he)

X(t) CDF exogenous arrivals (single 
a
he)

Y (t) CDF inter-miss times (single 
a
he)

T (t) CDF TTL duration (single 
a
he)

Z∗(s) LST of CDF Z(t)
HP ,MP Hit, miss probability resp. (single 
a
he)

HR,MR Hit, miss rate resp. (single 
a
he)

OP O

upan
y probability (single 
a
he)

Table 1: Notation for a single-
a
he network

Using the notation in Table 1, the following proposition provides exa
t formulas for two of the

performan
e metri
s of interest.

Proposition 3.1 (Hit probability and miss rate). Under Assumption 2.3 the (stationary) hit

probability HP and the (stationary) miss rate MR, are respe
tively given by

HP =

∫ ∞

0
(1− T (x))X(dx) = L(∞), (2)

MR = λ(1−HP ) (3)

where we re
all that λ = 1/E[X] is the request arrival rate.

Proof. The stationary hit probability HP is de�ned as the probability that an arriving request

�nds the data in the 
a
he, i.e. the TTL has not expired yet, namely,

HP = P(X(k) ≤ T (k)) =

∫ ∞

0
P(x ≤ T (k))X(dx) =

∫ ∞

0
(1− T (x))X(dx).

The stationary miss probability is MP = 1−HP so that the miss rate is given by (3). ⋄
Proposition 3.2 provides the 
a
he o

upan
y (OP ) de�ned as the stationary probability that the

data is stored at the 
a
he at a random time instant.

Proposition 3.2 (O

upan
y probability). Under Assumption 2.3 the stationary 
a
he o

u-

pan
y OP is given by

OP = λ

∫ ∞

0
(1− T (t))(1 −X(t))dt. (4)
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Proof. Let χ(t) ∈ {0, 1} be the 
a
he o

upan
y at time t with χ(t) = 1 if the data is in the


a
he at time t and χ(t) = 0 otherwise. Sin
e under Assumption 2.3 the 
a
he is in steady-state

at time t = 0 we have OP = E[χ(0)] = P(χ(0) = 1).

Letting Z(t) = χ(t), T1 = X(0)
and g(z) = 1(z > 0) in [2, Formula (1.3.2), p. 21℄ yields

OP = λE
0

[

∫ X(0)

0
χ(t)dt

]

with E
0
the expe
tation operator under the Palm probability P

0
of the stationary point pro
ess

{tn, n ∈ ZZ} with asso
iated marks {T (k), k ∈ ZZ}. P
0
has the property that P

0(t0 = 0) = 1 (see

[2, De�nition (1.2.1), p. 14℄) whi
h implies χ(t) = 1(t < T (0)) for t ∈ [0,X(0)] under P
0
. Hen
e,

OP = λE
0

[

∫ X(0)

0
1(T (0) > t)dt

]

= λ

∫ ∞

0
E

0

[∫ x

0
1(T (0) > t)dt

]

X(dx) (5)

= λ

∫ ∞

0

(
∫ x

0
(1− T (t))dt

)

X(dx)

= λ

∫ ∞

0
(1− T (t))

(∫ ∞

t

X(dx)

)

dt

= λ

∫ ∞

0
(1− T (t))(1−X(t))dt

where (5) is obtained by 
onditioning on the rv X(0)
with CDF X(t) and by using the indepen-

den
e of the rvs X(0)
and T (0)

. This 
ompletes the proof. ⋄

Noti
e that the hit probability HP and the o

upan
y probability OP di�er in general. They are

equal if the arrival pro
ess {tn, n ∈ ZZ} is a Poisson pro
ess thanks to the PASTA property.

To state the next results we need to strengthen the statisti
al assumptions made on the sequen
es

{X(k), k ∈ ZZ} and {T (k), k ∈ ZZ}.

Assumption 3.1 (Renewal arrivals and TTLs). Both sequen
es {X(k), k ∈ ZZ} and {T (k), k ∈ ZZ}
are mutually independent renewal sequen
es.

Assumption 3.1 is general enough to 
over a broad range of appli
ations. In his earlier work,

Whitt [47℄ developed two basi
 methods to approximate a point pro
ess with a renewal pro
ess,

10



and he showed in a joint work with Feldmann [17℄ that the long-tailed distributions whi
h are

generally observed in network performan
e analysis 
an be �tted by a renewal pro
ess with a

hyper-exponential inter-arrival distribution. Also, Jung et al. [32℄ used renewal pro
esses with

Weibull and Pareto CDFs to �t the tra
es of DNS servers at the MIT Computer S
ien
e and Arti-

�
ial Intelligen
e Laboratory and the Korea Advan
ed Institute of S
ien
e and Te
hnology. More

re
ently, Nelson and Gerhardt [41℄ have surveyed di�erent methods used to �t a general point

pro
ess to a spe
ial Phase-Type renewal pro
ess via Moment Mat
hing te
hniques. In 
ontrast

to many existing works where it is assumed that the arrival pro
ess obeys to the Independent

Referen
e Model (IRM) (or equivalently [20℄ that the arrival pro
ess is a Poisson pro
ess), our

renewal assumption 3.1 is less restri
tive.

We now evaluate the CDF Y (t) of the miss pro
ess whi
h will be needed to extend the analysis

to a network of 
a
hes sin
e a 
a
he may re
eive requests due to misses at lower-level 
a
hes.

Proposition 3.3 (CDF of the miss pro
ess). Under Assumption 3.1 the miss pro
ess of a single


a
he is a renewal pro
ess. The CDF Y (t) of the inter-miss times is the solution of the integral

equation

Y (t) = X(t)− L(t) +

∫ t

0
Y (t− x)dL(x) (6)

or, in 
ompa
t form, Y = X −L+L ⋆ Y with ⋆ denoting the 
onvolution operator. The renewal

equation (6) has one and only one bounded solution given by Y = R ⋆ (X − L) where R =
∑

n≥0 L
(n)

and L(n)
denotes the nth-fold 
onvolution of the fun
tion L with itself (by 
onvention

L(0) ≡ 1).

The LST Y ∗(s) of the inter-miss times is given by

Y ∗(s) =
X∗(s)− L∗(s)

1− L∗(s)
. (7)

Proof.

Without loss of generality, assume that the �rst request arrives at time t0 = 0 and �nds an empty


a
he. Sin
e a miss triggers a new TTL, miss times are regeneration points for the state of the


a
he under Assumption 3.1. This implies that miss instants form a renewal pro
ess whi
h is

fully 
hara
terized by the CDF Y (t) of the generi
 inter-miss time denoted by Y .

The rest of the proof is an adaptation of a 
lassi
al argument in renewal theory (see [12, Chapter

11



9℄). Re
all that X(0)
(resp. Y (0)

, T (0)
) denotes the �rst inter-arrival time (resp. inter-miss time,

TTL value) after t0 = 0 as shown in Fig. 3. Sin
e Y (0) ≥ X(0)
the event {Y (0) < t} may only

o

ur if X(0) < t. Therefore,

Y (t) = P(Y (0) < t, T (0) < X(0) < t) + P(Y (0) < t, T (0) > X(0),X(0) < t)

= P(T (0) < X(0) < t) + E

[

Y (t−X(0))1(T (0) > X(0),X(0) < t)
]

= P(X(0) < t)− P(X(0) < t,X(0) < T (0)) +

∫ t

0
Y (t− x)P(T (0) > x)X(dx) (8)

where we have used the independen
e of X(0)
and T (0)

to establish (8). Then it follows from

equation (1) that

Y (t) = X(t)− L(t) +

∫ t

0
Y (t− x)(1− T (x))X(dx)

= X(t)− L(t) +

∫ t

0
Y (t− x)dL(x) (9)

The renewal equation (9) also writes Y = X−L+L⋆Y . It is well known that its solution exists

and is unique and is given by Y = R ⋆ (X −L) where R =
∑

n≥0 L
(n)

[12, Theorem 2.3, p. 294℄.

From the identity Y = X − L+ L ⋆ Y we readily get (7), whi
h 
on
ludes the proof. ⋄

Approximation for LRU 
a
hes. Che et al. [10℄ have experimentally shown that LRU 
a
hes

fed with requests des
ribed by Poisson pro
esses 
an be a

urately modeled as deterministi


TTL-based 
a
he in isolation. In a 2013 paper, Martina and 
o-authors [11℄ have extended these

experimental results [10℄ to the 
ase of renewal request pro
esses. The 
onstant TTL value D is

referred in [10, 11℄ as the 
hara
teristi
 time of the LRU 
a
he, and it is obtained by solving a

�xed-point equation. A similar �xed-point equation is derived when Assumption 2.1 is removed

i.e. in the 
ase of �nite 
a
he 
apa
ity as shown in Se
tion 7.2. Given a deterministi
 TTL value

D, we have T (t) = 1(t > D) and Equations (2), (3), (4) and (6) be
ome

Corollary 3.1 (Deterministi
 TLLs).

HP = X(D) , MR = λ(1−X(D)) , OP = λ

∫ D

0
(1−X(x))dx (10)

12



Y (t) = 1(t > D)

(

X(t)−X(D) +

∫ D

0
Y (t− x)X(dx)

)

(11)

Remark 3.1 (Counters of Parti
les). A single 
a
he with a deterministi
 TTL is 
alled a Geiger


ounter of type II in [12, Example (1.34), p. 292℄.

Approximation for RND 
a
hes. It was experimentally shown in [11℄ that RND 
a
hes 
an be

studied as memoryless TTL-babsed 
a
hes with exponentially distributed TTLs. Also in this


ase, the expe
ted TTL value µ−1
is solution of a �xed point equation as derived in Se
tion 7.1.

In this 
ase T (t) = 1 − e−µt
, L∗(s) = X∗(s + µ), the metri
s of interest and the miss pro
ess


hara
terization follow dire
tly from Equations (2), (3), (4) and (7).

Corollary 3.2 (Exponential TLLs).

HP = X∗(µ) , MR = λ(1−X∗(µ)) , OP =
λ(1−X∗(µ))

µ
(12)

Y ∗(s) =
X∗(s)−X∗(s + µ)

1−X∗(s + µ)
. (13)

Applying standard results about 
onvex ordering and the formulas above, we obtain the following

interesting property for a deterministi
 TTL 
a
he, that is proven in the Appendix.

Proposition 3.4. Given the expe
ted TTL value D = E[T ] and the CDF X(t) of inter-arrival

times, the o

upan
y OP is maximized when the TTL is deterministi
 and equal to D. Moreover,

if X(t) is a 
on
ave fun
tion then the hit probability HP is maximized too.

Proposition 3.4 theoreti
ally explains the optimality, in terms of hit and o

upan
y probabilities,

of LRU 
a
hes over RND 
a
hes (given that D = µ−1
) when they are fed by IRM tra�
 (or

Poisson pro
esses [20℄) or tra
es in [17, 32, 33℄ �tted by renewal pro
esses. We 
an easily 
he
k

that the CDFs F (t) of inter-arrival times in these experiments are 
on
ave fun
tions.

4. Hierar
hi
al TTL-based Ca
he networks

In this se
tion, we 
onsider TTL-based 
a
he networks fed by exogenous renewal request pro-


esses. We maintain Assumptions 2.1 and 2.2, i.e. we assume ea
h 
a
he has an in�nite bu�er

and pro
essing and transmission delays in the network are negligible. Hen
e, �les at ea
h 
a
he

13
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Figure 4: Requests for the green �le are routed on as polytree, while those for the blue �le are

routed as tree.

are de
oupled and 
an be separately studied. Therefore, we fo
us on a single �le whose requests

are propagated along a tree, but it is easy to generalize to polytree. We draw the attention of the

reader to the fa
t the 
a
he network topology has to be a tree (or a polytree); in fa
t, it 
an be

general be
ause �les are de
oupled and requests 
an be independently routed (see the example

in Figure 4).

We 
onsider then a tree of 
a
hes: the root is 
onne
ted to the 
ontent server, ea
h other 
a
he

has a parent 
a
he to whi
h it forwards all the requests whi
h 
annot be satis�ed lo
ally. On
e

lo
ated, the data is routed on the reverse-path and a 
opy is pla
ed in ea
h 
a
he. Ea
h 
a
he

operates exa
tly as des
ribed in the previous se
tion, by setting a TTL for ea
h new data stored

and redrawing the TTL at ea
h 
a
he hit. We denote by C(n) the set of 
hildren of 
a
he n. The

following assumption holds:

Assumption 4.1 (TTL Values). TTL values extra
ted at ea
h 
a
he are i.i.d. values. We denote

by Tn(t) the CDF of TTL values at 
a
he n. TTL values at di�erent 
a
hes are independent and

they are also independent from the request arrival pro
esses.

The ICN 
ontent-routers [1℄ are examples of 
a
hes that behave independently of other 
a
hes

and of the requests they re
eive. They also de
ide lo
ally what 
ontent to store or dis
ard at

least as des
ribed in the paper of Van Ja
obson et al. [28℄.

Ea
h 
a
he, say it 
a
he n, re
eives two �ows of requests: users' requests arriving dire
tly at a


a
he are 
alled exogenous and form the exogenous arrival pro
ess, misses at the 
hildren 
a
hes

in C(n) form the endogenous arrival pro
ess. We generalize Assumption 3.1 as follows:

14



λn Exogenous arrival rate at 
a
he n
Λn Total arrival rate at 
a
he n
1/µn Expe
ted TTL at 
a
he n
Xn(t) CDF exogenous arrivals at 
a
he n
Zn(t) CDF overall arrivals at 
a
he n
Yn(t) CDF inter-miss times at 
a
he n
Tn(t) CDF TTL duration at 
a
he n
HP,n,MP,n Hit, miss probability resp. at 
a
he n
HR,n,MR,n Hit, miss rate resp. at 
a
he n
OP,n O

upan
y of 
a
he n (stationary

probability 
ontent is in 
a
he n
C(n) Set of 
hildren of 
a
he n
X∗(s) LST of CDF X(t)

Table 2: Glossary of main notation for 
a
he n

Assumption 4.2 (Exogeneous Request arrivals are Renewal Pro
esses). The exogeneous arrival

pro
esses are independent renewal pro
esses. We denote by Xn(t) the CDF of the inter-arrival

times of exogenous requests at 
a
he n.

Similarly, we add the subs
ript n to the quantities de�ned in Se
tion 3 to denote the same quan-

tities at 
a
he n (Yn(t), Ln(t), λn, HP,n, MR,n and OP,n). The superposition of the exogenous

and endogenous arrival pro
esses at 
a
he n form the aggregated arrival pro
ess. We introdu
e

Zn(t) and Λn to denote respe
tively its inter-arrival time CDF and its rate. The notation is

summarized in Table 2.

The exa
t analysis we 
arried on in the previous se
tion 
an be extended immediately to the


ase of linear-star networks, that we study in the se
tion below.

4.1. Exa
t analysis of Linear-star networks

A linear 
a
he network is a tandem of 
a
hes and one server, where exogeneous requests arrive

only to the 
a
he farther from the server as illustrated in Figure 5. Sin
e the arrival pro
ess at

the �rst 
a
he is a renewal pro
ess (Assumption 3.1) the miss pro
ess of the �rst 
a
he is also

a renewal pro
ess (Proposition 3.3). Therefore, the se
ond 
a
he is fed by a renewal pro
ess.

Reasoning in this way iteratively, we 
an then show that all the 
a
hes are fed by a renewal

15



pro
ess. Moreover, all the metri
s of interest 
an be derived su

essively at ea
h 
a
he from the

results on a single 
a
he analysis in Se
tion 3.

2 diskC· · ·1 renewal
exogenous

request process

Figure 5: Linear 
a
he network.

A star 
a
he network is a tree with one internal node i.e. the root and leaves (see Figure 6). For

this one-level tree, the metri
s of interest and the miss pro
ess are easily found at ea
h leaf from

the single 
a
he analysis in Se
tion 3. The miss pro
esses are also renewal pro
esses sin
e the

request pro
esses at the leaves are renewal pro
esses. Hen
e, the root is fed by the aggregated

request pro
ess resulting from the superposition of the (renewal) miss pro
esses and its exogenous

renewal pro
ess. It is possible to 
al
ulate exa
tly the CDF of the �rst inter-arrival time in the

aggregated arrival pro
ess (see Theorem 4.1 and following remarks), then the metri
s of interest

are obtained from Propositions 3.1 and 3.2 sin
e the aggregated pro
ess is a stationary pro
ess.

Our analysis provides exa
t results on star networks of 
a
hes.

.

.

.

C + 1 disk

1

2

C

Figure 6: Star 
a
he network.

We generalize our exa
t approa
h on these two networks topologies by de�ning a 
lass of net-

works 
alled Linear-star 
a
he network illustrated in Figure 7. We 
an 
hara
terize the exa
t

performan
e metri
s on any network that belongs to this 
lass as follows: we start from the

leaves and apply our Propositions 3.1, 3.2 and 3.3 (as it was done for the linear network), until

we rea
h the root where we apply Theorem 4.1 and Propositions 3.1 and 3.2 (as it was des
ribed

for the star network).

4.2. Approximated methodology for general tree networks

The approa
h we des
ribed in Se
tion 4.1 
annot be extended to arbitrary hierar
hi
al networks.

The problem arises from the fa
t that the aggregated arrival pro
ess is not in general a renewal
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Figure 7: Linear-star 
a
he network.

pro
ess (this is not the 
ase even if the exogenous and endogenous arrival pro
esses are both

renewal ones). Hen
e, we 
annot apply Proposition 3.3 that allows us to 
hara
terize the exa
t

miss pro
ess. Indeed in the linear-star 
a
he network we 
annot extend our analysis beyond

the 
a
he with more than one 
hild. Nevertheless, for our analysis we will suppose that the

aggregated request pro
ess is a renewal pro
ess and we make the following approximation:

Approximation 4.1 (Overall Pro
ess). The overall (aggregated) arrival pro
ess at node n is

approximated by a renewal pro
ess with inter-arrival time CDF Zn(t).

Note that the statement above has a di�erent status than the other assumptions in this paper.

While the assumptions 
an be 
onsidered approximations for a
tual 
a
he networks, they are

internally 
oherent. On the 
ontrary the statement in Approximation 4.1 is in general false,

even in the framework of our model. Nevertheless, it makes the analysis possible and leads to

ex
ellent approximations as we are going to show later.

We have shown in Se
tion 3 that the miss pro
ess of a TTL 
a
he fed by a renewal pro
ess is

itself a renewal pro
ess, then a 
orollary of Approximation 4.1 is that ea
h miss pro
ess 
an be


onsidered a renewal pro
ess. In this 
ase, the aggregated arrival pro
ess is the superposition of

independent (due to the tree topology of the network) renewal pro
esses and the CDF Zn(t) of

inter-arrival times has been 
al
ulated by Lawren
e [40, Formula (4.1)℄.

Theorem 4.1. The CDF A(t) of the �rst inter-event time of the point pro
ess resulting from

the superposition of K independent renewal pro
esses is given by

A(t) = 1−
K
∑

k=1

αk
∑K

l=1 αl

(1−Ak(t))

K
∏

j=1,j 6=k

αj

∫ ∞

t

(1−Aj(u)) du,

where Ak(t) and αk > 0 are respe
tively the inter-event time CDF and the arrival rate of the kth

pro
ess.
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Theorem 4.1 a
tually holds for the superposition of independent stationary point pro
esses [2,

Formula (1.4.6), p. 35℄. Note in passing that su
h a superposition is itself a stationary pro
ess,

whi
h allows us to use formulas (2), (3) and (4) to 
ompute the hit probability, miss rate and


a
he o

upan
y, respe
tively, of a 
a
he fed by the superposition of independent stationary

pro
esses, and then in parti
ular of renewal ones.

Thanks to Approximation 4.1 and Theorem 4.1, we are ready to study any 
a
he tree network.

The total request rate Λn at a node n, is

Λn = λn +
∑

i∈C(n)

MR,i (14)

where C(n) is the set of 
hildren of node n. Sin
e the exogenous pro
ess (with CDF Xn(t)) and

the miss pro
ess at the i-th 
hild of node n (with CDF Yi(t)) are renewal pro
esses, we invoke

Theorem 4.1 to 
ompute the approximate inter-arrival times CDF Zn(t) of the overall arrival

pro
ess. We get

Zn(t) = 1− λn

Λn
X̄n(t)

∏

i∈C(n)

MR,i

∫ ∞

t

Ȳi(u)du

−
∑

i∈C(n)

MR,i

Λn
Ȳi(t)λn

∫ ∞

t

X̄n(u)du×
∏

j∈C(n)
j 6=i

MR,j

∫ ∞

t

Ȳj(u)du. (15)

The approximate inter-miss times CDF Yn(t) at 
a
he n is obtained from Proposition 3.3 sin
e

we approximate the overall request pro
ess by a renewal pro
ess with CDF Zn(t) by Approxi-

mation 4.1.

Yn(t) = Zn(t)− Ln(t) +

∫ t

0
Yn(t− x)dLn(x) (16)

where Ln(t) =
∫ t

0 (1− Tn(x))dZn(x) and Tn(t) is the CDF of the TTL duration at 
a
he n.

Equations (14), (15) and (16) provide a re
ursive pro
edure for 
al
ulating, at least numeri-


ally, the request rate Λn and the approximate CDFs Yn(t) and Zn(t) at ea
h 
a
he n of an

arbitrary hierar
hi
al network starting from the leaves. The approximate metri
s of interest are

obtained from Propositions 3.1 and 3.2. Our approa
h is summarized in the following algorithm:
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Algorithm 1: General Pro
edure on tree fed by general renewal pro
esses

input : TreeDepth d, CDFs Xn(t), {Yi(t), i ∈ C(n)} and {Tn(t), n ≥ 1}
output: Metrics of interest Λn, HP,n, OP,n and CDF Yn(t)

1 while d 6= 0 do ; // Ca
hes are different from the server

2

3 forea
h n in the set of caches at depth d do ; // Start from Leaves

4

5 Λn
Eq(14)←−−−− {λn,MR,i, i ∈ C(n)};

6 if C(n) = ∅ then
7 Zn(t)← Xn(t);

8 else

9 Zn(t)
Eq(15)←−−−− {Xn(t), Yi(t), i ∈ C(n)};

10 end

11 HP,n, MR,n
Prop.(3.1)←−−−−−− {Zn(t), Tn(t)};

12 OP,n
Prop.(3.2)←−−−−−− {Zn(t), Tn(t)};

13 Yn(t)
Eq(16)←−−−− {Zn(t), Tn(t)};

14 end

15 d← d− 1;

16 end

While this algorithm allows us to study any 
a
he tree under any possible exogenous arrival

pro
esses and TTL distributions, its numeri
al 
omplexity 
an be very high as it requires to

evaluate some integrals over in�nite ranges as in (15) and to solve an integral equation as in (16).

As we are going to show, simpler algorithms exist for more spe
i�
 distributions.

4.3. Hierar
hi
al networks with Matrix-Exponential request inter-arrival times and TTL

We 
onsider a hierar
hi
al 
a
he network where the inter-arrival times of exogenous requests and

the TTL values are des
ribed by Matrix-Exponential (ME) distributions, i.e. whose CDFs and

PDFs are de�ned by

Ψ(t) = 1−α eSt
1R , ψ(t) = α eSt (−S1) t ≥ 0 (17)
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respe
tively [26℄, where α is a 1-by-R ve
tor, 
alled the starting ve
tor, S is an R-by-R matrix,


alled the progress rate matrix, and 1R is an R-by-1 ve
tor whose elements are all equal to 1. In

general di�erent pairs (α, S) 
an lead to the same CDF Ψ(t). Here, we 
onsider a representation

with minimal order R. In [26, Theorem 3.1℄, Ming and Zhang established under whi
h 
onditions

R is minimal and they showed that in this 
ase the matrix S is a Jordan matrix and Ψ 
an be

written as follows (Karlin's representation [34℄):

Ψ(t) = 1−
K
∑

k=1

Qk(t)e
σkt, t ≥ 0 (18)

where {σk}k are the eigenvalues of S, σi 6= σj if i 6= j, Qk(t) =
∑rk−1

j=0 qk,jt
j
is a polynomial of

degree rk − 1 and

∑K
k=1 rk = R. The relations between α and {qk,j, 1 ≤ k ≤ K, 0 ≤ j ≤ rk − 1}


an be found in [26℄. In what follows we will usually 
onsider Karlin's representation (18). The


lass of ME distributions is equivalent to the 
lass of distributions having a rational LST [26℄, it

in
ludes then also all the phase-type distributions (i.e. any mixture of exponential distributions).

In what follows we are going to 
all a request renewal pro
ess with ME distributed inter-arrival

times simply an ME renewal pro
ess. Similarly, we are going to use the expression ME TTL to

indi
ate TTLs that are ME distributed.

The following result guarantees us that if the request arrival pro
ess at a 
a
he is an ME renewal

pro
ess and TTL are ME distributed, then the miss pro
ess is also a ME renewal pro
ess with

a known representation.

Proposition 4.1 (ME miss pro
ess). If the TTLs and the inter-arrival times of the request re-

newal pro
ess at 
a
he n are ME distributed, then the miss inter-arrival times are ME distributed.

Proof. We 
onsider a 
a
he n where the inter-arrival times and the TTLs are 
hara
terized

by the ME CDFs Xn(t) and Tn(t). Both Xn(t) and Tn(t) admit a Karlin's representation and

a rational LST. From the de�nition (1) also L(t) has a Karlin's representation and its LST is

rational. Thus, the solution Yn(t) in (6) is a CDF with a rational LST Y ∗
n (s) given by

Y ∗
n (s) = 1− 1−X∗

n(s)

1− L∗
n(s)

= 1− N(s)

D(s)

where N(s) and D(s) are the numerator and the denominator of the fra
tion 1 − Y ∗
n (s) after

fa
torization and simpli�
ation of 
ommon terms. The CDF Yn(t) is a ME distribution by the
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equivalen
e between ME distributions and CDFs having rational LST. Moreover, Yn(t) admits a

Karlin's representation:

Yn(t) = 1−
K
∑

k=1

rk−1
∑

j=0

qk,jt
jeσkt, t > 0 (19)

where the exponents {σk}k are the zeros of D(s) and the 
oe�
ients {rk, qk,j}k,j are given by

the relations

qk,rk−i =
1

i!

{

di

dsi
[(1− Y ∗(s))(s − σk)

rk ]

}

s=σk

. (20)

⋄

In general the aggregated request arrival pro
ess at 
a
he n is the superposition of the miss

pro
esses at the 
a
he in C(n) and the exogenous arrival pro
ess. If ea
h of these pro
esses

is a ME renewal pro
ess, Approximation 4.1 and Theorem 4.1 allows us to 
on
lude that also

the inter-arrival times of the aggregated request arrival pro
ess are ME distributed. Under the

Approximation 4.1 and Proposition 4.1, all the miss pro
esses in the network are ME renewal

pro
esses. We 
an 
hara
terize them iteratively starting from the leaves as for the general 
ase.

4.4. Hierar
hi
al networks with Diagonal Matrix-Exponential request inter-arrival times and TTLs

The 
al
ulations be
ome even simpler when the progress rates matri
es (S) of the ME distri-

butions are diagonal or diagonalizable. In this 
ase, the distribution is said to be Diagonal

Matrix-Exponential. Without loss of generality, if Ψ(t) is a Diagonal ME distribution, then its

Karlin's representation is:

Ψ(t) = 1−
K
∑

j=1

qje
σjt.

If the request arrival pro
ess at 
a
he n is a Diagonal ME renewal pro
ess and the TTLs are

Diagonal ME distributed, respe
tively with CDFs

Xn(t) = 1−
Kn
∑

k=1

an,ke
−σn,kt and Tn(t) = 1−

Jn
∑

j=1

bn,je
−µn,j t,

then the metri
s of interests at 
a
he n are obtained from a straightforward 
al
ulation by

applying Propositions 3.1 and 3.2.

21



Corollary 4.1 (Metri
s of interests at a Diagonal ME 
a
he). The request rate λn, the hit

probability HP,n, the miss rate MR,n and the o

upan
y probability OP,n at 
a
he n are 
al
ulated

with the formulas

λn =

Kn
∑

k=1

an,kσn,k, HP,n =
∑Jn

j=1 bn,jX
∗
n(µn,j) (21)

MR,n = λn



1−
Jn
∑

j=1

bn,jX
∗
n(µn,j)



 , OP,n = λn

∑Jn

j=1 bn,j

(

1−X∗
n(µn,j )

µn,j

)

. (22)

Similarly, the miss pro
ess is 
hara
terized by applying Propositions 3.3 and 4.1.

Corollary 4.2 (Miss pro
ess at a Diagonal ME 
a
he). The LST of inter-miss times CDF is

Y ∗
n (s) = 1− (1−X∗

n(s))



1−
Jn
∑

j=1

bn,jX
∗
n(s+ µn,j)





−1

(23)

whi
h 
an be inverted as

Yn(t) = 1−
[

Kn
∑

k=1

an,k

(

1 +

Kn×Jn
∑

i=1

γi

θi − σn,k

)

e−σn,kt +

Kn×Jn
∑

i=1

−γi

θi

(

1 +

Kn
∑

k=1

an,kσn,k

θi − σn,k

)

e−θit

]

(24)

where (θi)1≤i≤Kn×Jn
are solutions of the algebrai
 equation in z

0 = 1−
Kn×Jn
∑

i=1

δi
ηi − z

, (25)

(γi)1≤i≤Kn×Jn
is the ve
tor solution of the linear system of algebrai
 equations:

{

0 = 1 +

Kn×Jn
∑

i=1

γi

θi − ηl

}Kn×Jn

l=1

, (26)

the 
onstants δi and ηi are given by

δi = an,kbn,jσn,k , ηi = σn,k + µn,j (27)
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and (k, j) is the ith 
ouple a

ording to some ordering of the produ
t set {1, . . . ,Kn}×{1, . . . , Jn}.
Note also that the CDF Yn(t) is a Diagonal ME distribution.

When we superpose Diagonal ME renewal pro
esses, the inter-arrival times of the superposed

pro
ess are still Diagonal ME distributed. In parti
ular if Yi is the Diagonal ME miss pro
ess at


a
he i ∈ C(n), with CDF

Yi(t) = 1−
Ki
∑

k=1

ai,ke
−σi,kt.

the overall arrival pro
ess is then 
hara
terized in the following 
orollary of Proposition 4.1:

Corollary 4.3 (Overall Request Pro
ess at Diagonal ME 
a
he). Under Assumptions 4.1 and 4.1,

the CDF of inter-arrival times Zn(t) in the overall request pro
ess at 
a
he n is given by

Zn(t) = 1−
∑

i∈C(n)∪{n}

Ki
∑

k=1

ai,k

Λn



λn ×
∏

j∈C(n)

MR,j



 e−σi,kt
∏

j∈C(n)∪{n}
j 6=i





Kj
∑

k=1

aj,k

σj,k
e−σj,kt





(28)

where MR,i is the miss rate of the i
th


hild node, λn is the rate of exogenous requests, and Λn is

the total request rate at the 
a
he n.

The Algorithm 1 simpli�es when all the TTLs and the exogeneous request arrival pro
esses are

Diagonal ME and be
omes:
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Algorithm 2: E�
ient Pro
edure on Diagonal MED 
a
he tree fed by Diagonal ME re-

newal pro
esses

input : TreeDepth d, CDFs Xn(t), {Yi(t), i ∈ C(n)} and {Tn(t), n ≥ 1}
output: Metrics of interest Λn, HP,n, OP,n and CDF Yn(t)

1 while d 6= 0 do ; // Ca
hes are different from the server

2

3 forea
h n in the set of caches at depth d do ; // Start from Leaves

4

5 Λn
Eq.(14)←−−−− {λn,MR,i, i ∈ C(n)};

6 if C(n) = ∅ then
7 Zn(t)← Xn(t);

8 else

9 Zn(t)
Eq.(28)←−−−− {Xn(t), Yi(t), i ∈ C(n)};

10 end

11 HP,n, MR,n, OP,n
Cor.(4.1)←−−−−− {Zn(t), Tn(t)};

12 Yn(t)
Cor.(4.2)←−−−−− {Zn(t), Tn(t)};

13 end

14 d← d− 1;

15 end

Before 
on
luding our theoreti
al analysis and move to the validation of our approximations, we

observe that it is possible to adapt the formulas above for Diagonal ME exogeneous pro
esses

and TTLs to 
onsider a slightly larger 
lass of networks�initially introdu
ed in [7℄ and denoted


lass N network�that extends hierar
hi
al Diagonal ME 
a
he networks as follows: a single

exogeneous request pro
ess is allowed to be a renewal pro
ess with a general CDF (not ne
essarily

a Diagonal ME distribution) for inter-arrival times. We do not develop the general pro
edure for


lass N , but we show how the formulas 
hange for a spe
i�
 
ase. Consider that the endogeneous

request pro
ess at 
a
he n is a general renewal pro
ess with CDF Yi(t) and rate MR,i (we

use this notation as the misses were all generated at a 
hild 
a
he i), while the exogeneous

request pro
ess at 
a
he n has Diagonal ME CDF Xn(t) = 1 − ane
−Ant

1Kn and arrival rate

λn = (an(−An)−1
1Kn)−1

. The total request rate at node n is Λn = MR,i + λn. The following

proposition generalizes the CDF of inter-arrival times of the aggregated request pro
ess Zn(t).
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Proposition 4.2 (Approximation for 
lass N ). The performan
e metri
s at 
a
he n of a 
lass

N network are obtained from Corollary 4.1, and the overall request pro
ess is 
hara
terized by

the CDF Zn(t) in (15) whose LST Z∗
n(s) is given by

Z∗
n(s) = 1− s λn

Λn

Kn
∑

k=1

an,k

s+ σn,k
− s2λnMR,i

Λn

Kn
∑

k=1

an,k(1− Y ∗
i (s+ σn,k))

(s+ σn,k)2σn,k
(29)

Proof. Applying the (15) to the CDFs Yi(t) and Xn(t) = 1−∑Kn

k=1 an,ke
−σn,kt

, we obtain

Zn(t) = 1− λnMR,i

Λn

Kn
∑

k=1

an,k ×
(

Ȳi(t)

∫ ∞

t

e−σn,kudu+ e−σn,kt

∫ ∞

t

Ȳi(u)du

)

.

We dedu
e (29) by taking the LST of the latter equation. The metri
s of interest and the LST

Y ∗
n (s) are obtained by repla
ing the LST X∗

n(s) by Z∗
n(s) in Corollary 4.1 and Corollary 4.2. ⋄

5. Validation and Numeri
al Results

In this se
tion, we investigate the a

ura
y of Approximation 4.1 and then of the approximate

results obtained through Algorithms 1 and 2. We re
all that Approximation 4.1 
onsists in


onsidering that all aggregated request pro
esses are renewal pro
esses.

First, we show that in a tandem of two 
a
hes the �rst auto
orrelation lag (ACF1) of the aggregated

pro
ess at node 2 is quite small. We 
al
ulate it using using the formula in [40, Eq.(6.4)℄. This

auto
orrelation lag ACF1 depends on the arrival rates λ1 and λ2 and the timer µ1. We �nd that

for any possible 
hoi
e of these parameters 0 > ACF1 > −0.015. Simulation results show that the

auto
orrelation is even less signi�
ant at larger lags. Therefore, inter-arrival times are weakly


oupled and Approximation 4.1 is indeed a

urate in this small network s
enario.

Se
ond, we evaluate the approximation quality by simulations in more 
omplex 
on�gurations.

We fo
us on networks of exponentially distributed TTL-based 
a
hes fed by requests generated

a

ording to Poisson pro
esses for whi
h it is possible to 
arry on an exa
t analysis; then we

look at a tree of deterministi
 TTL-based 
a
hes also fed by Poisson requests; and �nally we

investigate the situation where requests are des
ribed by more general renewal pro
esses and

TTL distributions.
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(a) Linear network (b) Caterpillar network (
) Balan
ed tree network

Figure 8: Simulated Networks

5.1. Poisson tra�
 and Exponential timers

We start by observing that when the exogenous request pro
esses are Poisson pro
esses, it is

possible to model a tree network of N 
a
hes as an irredu
ible 
ontinuous time Markov pro
ess,

with state x(t) = (x1(t), . . . , xN (t)) ∈ E = {0, 1}N , where xn(t) = 1 (resp. xn(t) = 0) if the data

is present (resp. missing) at time t at node n. On
e the steady-state probabilities (π(x), x ∈ E)
have been 
al
ulated, exa
t values of the performan
e metri
s of interest are obtained. For exam-

ple, the stationary o

upan
y probability of 
a
he n is OM
P,n =

∑

x∈E|xn=1 π(x) (the supers
ript

`M� stands for �Markov�). For a line of 
a
hes, the hit probability and the miss rate at 
a
he 1

are respe
tively HM
P,1(1) = π(1, ∗) and MM

R,1 = λ1π(0, ∗), while for 
a
he 2 it holds

HM
P,2 =

λ1π(0, 1, ∗) + λ2(π(0, 1, ∗) + π(1, 1, ∗))
λ1(π(0, 0, ∗) + π(0, 1, ∗)) + λ2

, MM
R,2 = λ1π(0, 0, ∗) + λ2(π(0, 0, ∗) + π(1, 0, ∗))

where π(i, ∗) =
∑

x2,...,xN∈{0,1} π(i, x2, . . . , xN ) and π(i, j, ∗) :=
∑

x3,...,xN∈{0,1} π(i, j, x3, . . . , xN )

are the stationary probabilities that 
a
he 1 is in state i ∈ {0, 1} and 
a
hes (1, 2) are in state

(i, j) ∈ {0, 1}2, respe
tively. Due to spa
e 
onstraints we omit the general expressions for these

quantities for a generi
 tree of 
a
hes. Throughout Se
tion 5.1, we 
ompare the results of our

models against the exa
t ones obtained by studying the Markov pro
ess.

Nine 
a
hes linear network. This network ar
hite
ture is 
hosen for its depth and its small num-

ber of leaves. We aim at evaluating the quality of Approximation 4.1 when the depth of the

network is large. We 
onsider the tandem of N = 9 
a
hes in Figure 8a. At 
a
he n, exogenous

requests arrive a

ording to a Poisson pro
ess with rate λn and TTL is exponentially distributed

with mean µ−1
n . We apply Algorithm 2 des
ribed in Se
tion 4.4 and 
ompare its predi
tion to the

exa
t metri
s obtained through the analysis of the Markov pro
ess {x(t), t ≥ 0} introdu
ed in the
previous paragraph. We 
al
ulate the absolute relative errors at 
a
he n for the hit probability
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(EHP,n := |HM
P,n−HP,n|/HM

P,n, where H
M
P,n is the hit probability obtained from the Markov pro-


ess analysis), the miss rate (EMR,n), and the o

upan
y probability (EOP,n). One thousand dif-

ferent samples for the exogenous request arrival rates and the TTL ones {(λn, µn), n = 1, . . . , 9}
have been sele
ted from the intervals [0.001, 10] and [0.1, 2] respe
tively. We use the Fourier Am-

plitude Sensitivity Test (FAST) method [39℄ to explore the spa
e [0.001, 10] × [0.1, 2]. Figure 9

shows the CCDFs of the relative errors for 
a
he 9. We observe that Approximation 4.1 is very

a

urate; in 90% of the di�erent parameter settings the relative errors on all metri
s of interest

are smaller than 10−4
.
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Figure 9: CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig. 8a

We then 
onsidered a homogeneous s
enario where all 
a
hes have identi
al TTL and exogenous

arrival rates, i.e. µn = µ and λn = λ, ∀n. The relative errors are shown in Figure 10 as a

fun
tion of the normalized load ρ = λ/µ for µ = 0.2. We observe that the largest error (about

2× 10−4
) is obtained when arrival and timer rates are 
omparable (i.e. ρ ≈ 1).
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Figure 10: EHP,9, EMR,9, EOP,9 for homogeneous network in Fig. 8a (λn = λ = ρµ = ρµn)
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Twelve 
a
hes 
aterpillar tree. This network 
onsists of three trees (star networks), ea
h with 4


a
hes, whose roots are 
onne
ted as in Figure 8b. We 
hoose this network ar
hite
ture for its

large number of leaves and its relative small depth in 
omparison to the previous linear network.

We 
onsider the leaves of ea
h root are identi
al i.e. they have the same average TTL value and

they are fed with Poisson request pro
esses with an identi
al rate. Again, Algorithm 2 produ
es

exa
t results for all leaves. As previously, exa
t results are obtained by 
onsidering the Markov

pro
ess {x(t), t ≥ 0} asso
iated to this network. Di�erent request and TTL rates have been

sele
ted a

ording to FAST method respe
tively in the intervals [0.001, 10] and [0.1, 2]. We used

4921 samples for ea
h rate. The empiri
al CCDFs of the relative errors EHP,3, EMR,3, and EOP,3

at the higher level 
a
he are shown in Figure 11.
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Figure 11: CCDFs of EHP,3, EMR,3, EOP,3 for network in Fig. 8b

The results obtained are analogous to those of the linear 
a
he network in previous paragraph.

The relative errors 
an be larger in this s
enario, but they are probably negligible for most of the

appli
ations (10−2
in 90% of the 
ases). In this 
ase too, we have also 
onsidered the homogenous

s
enario where at the TTLs at the leaves have the same expe
ted value as the ones at the internal

nodes. We observed that the relative errors have the same order of magnitude i.e. less than 10−2
.

Nine 
a
hes tree network. We 
onsider the tree network of nine 
a
hes illustrated in Figure 8


that 
ombines the properties of the previous network samples (i.e. with both a relative large

depth and number of leaves). Also in this 
ase, we 
onsider 
a
hes are fed by exogenous requests

des
ribed by Poisson pro
esses and TTLs are exponentially distributed. The request and TTL

rates are sele
ted (6649 di�erent samples in total) from the intervals [0.05, 10] and [0.1, 2] respe
-

tively using FAST method. Figure 12 shows the CCDFs of the relative errors at the higher level


a
he and in 90% of 
ases they are smaller than 10−2
. Thus, Approximation 4.1 is still a

urate.
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Figure 12: CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig.8


5.2. Poisson tra�
 and Deterministi
 timers

When timers are deterministi
, we resort to the general pro
edure in Algorithm 1 presented in

Se
tion 4.2. As term of 
omparison we 
onsider simulation results, given that the network is no

longer `Markovian'.

Figure 13: Tree network

Figure 13 shows the settings (topology, request rates and TTL values) of the network.

Algorithm 1 introdu
es two sour
es of errors. First, the aggregated request pro
ess at a 
a
he is

not a renewal pro
ess; however, we use Approximation 4.1 and apply the renewal equation (16).

Se
ond, (15) and (16) introdu
e some numeri
al errors sin
e we need to 
ompute the integrals

therein on a �nite support. Two parameters determine the size of the numeri
al error: 1) the

time interval (τ) from whi
h the CDF samples are taken, and 2) the time interval between two


onse
utive samples (∆). Clearly the larger τ and the smaller ∆ are, the smaller is the numeri
al

error and the larger is the 
omputational 
ost.
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We implemented a MATLAB numeri
al solver that iteratively determines the CDFs of inter-

arrival times at ea
h 
a
he together with the metri
s of interest. The integrals appearing in (15)

and (16) are approximated by simple sums and for simpli
ity the same values τ and ∆ have been


onsidered for all the CDFs numeri
al integrations. These parameters are sele
ted as follows: we

set the parameter τ to �ve times the largest expe
ted inter-arrival time in the network; while

the parameter ∆ is set to one thousandth of the minimum of the TTL values and the expe
ted

inter-arrival times of the exogenous request pro
esses.

The relative error of the hit probability is evaluated as |HP,n − HS
P,n|/HS

P,n where HP,n is our

estimate and HS
P,n is obtained through simulation. The duration of the simulation is set so that

there is a small in
ertitude on the performan
e metri
s: the 99% 
on�den
e interval [HS
P,n −

ǫ,HS
P,n + ǫ] is su
h that the ratio (2ǫ/HS

P,n) is at most 0.6 × 10−4
. For all the performan
e

metri
s at all 
a
hes, the relative error of our approa
h is less than 10−2
.

5.3. Renewal/Non-Poisson tra�


In this se
tion, we 
onsider that requests for ea
h data item are generated a

ording to Inter-

rupted Poisson Pro
esses (IPP). IPPs are Renewal pro
esses whose inter-arrival times have a

two stage hyper-exponential distribution [21℄ (then it is a parti
ular Diagonal ME distribution).

Figure 14: Binary tree network

We evaluate the a

ura
y of our approa
h on binary tree networks (like the one in Figure 14)

where leaves are fed by request tra�
 des
ribed before and TTLs values are deterministi
 or

drawn from the following Diagonal ME TTL distribution: exponential, hypo-exponential and

hyper-exponential distributions. Also in this 
ase we 
onsider simulation results as term of 
om-

parison. Our model predi
tions are provided by Algorithms 1 and 2, respe
tively for deterministi


and (hypo-, hyper-) exponentially distributed TTLs.
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Small binary tree. We 
onsider the seven 
a
hes binary tree in Figure 14. Relative errors at the

higher level 
a
he are displayed in Figure 15. For all performan
e metri
s at all 
a
hes of this

tree, the relative errors of our approa
h are less than 2× 10−3
. This result validates Assumption

4.1 and thus our model in the 
ontext of general networks i.e. with non-Poisson arrivals and

di�erent TTL distributions.
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Figure 15: Relative error EHP,1 and EOP,1 under IPP tra�
.

As theoreti
ally proved in Proposition 3.4, Figure 16 
on�rms that the deterministi
 TTL is

the optimal TTL 
on�guration at the leaves (
a
hes 4 − 7) i.e. whi
h maximizes the hit and

o

upan
y probabilities. This observation is not surprising sin
e IPPs are renewal pro
esses

with hyper-exponentially distributed inter-arrival times; in fa
t, it 
an be easily 
he
ked that the

hyper-exponential CDF is 
on
ave and the observed results follows from Proposition 3.4.
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Figure 16: Optimality of the Deterministi
 TTL at leaves fed by IPP arrivals

Large binary tree. We also investigate the quality of our approximation on larger tree networks

(up to 40 
a
hes) where TTLs are 
onstants drawn uniformly at random in the interval [0.5; 1.5],

and the exogeneous requests at ea
h 
a
he are des
ribed by an IPP. The expe
ted value and the

31



squared 
oe�
ient of variation of inter-arrival times are uniformly 
hosen at random in [0.05; 2]

and [1.5; 2] respe
tively. As shown in Table 3, the relative errors between the event-driven

simulations and our analyti
 approa
h are of order of 1%. This result provides good insights on

the robustness and a

ura
y of our approa
h when dealing with large networks.

Type (Degree, Depth, # Ca
hes) Level l, Ca
he n EHP,n(%) EMR,n(%) EOP,n(%)

Binary Tree 1, 1 1.059 0.929 0.021
(2, 5, 31) 2, 3 0.406 0.042 0.117

5, 31 0.075 0.018 0.061

Ternary Tree 1, 1 0.127 0.085 0.134
(3, 4, 40) 2, 3 0.061 0.278 0.124

4, 40 0.006 0.283 0.759

Table 3: Relative Errors on Performan
e metri
s for large trees

We have shown that Approximation 4.1 leads to very a

urate results when exogenous requests

are des
ribed by renewal pro
ess (Poisson and Interrupted Poisson pro
esses) and TTLs have

some matrix-exponential distributions or deterministi
 ones. This lets us think that the super-

position of the request arrival pro
esses at every 
a
he is very `
lose' to a renewal pro
ess at least

for all the 
ases we tested.

6. Computational Cost and Time

In this se
tion we perform a preliminary analysis of the 
omputational 
ost and time of our

approa
h, and we 
ompare it to other solutions presented in the previous se
tion su
h as solving

a Markov 
hain (Se
tion 5.1) and event-driven simulations (Se
tions 5.2 and 5.3).

TTLs with Diagonal ME distribution. We �rst address the 
ase of a hierar
hi
al tree of Diagonal

ME 
a
hes introdu
ed in Se
tion 4.4. We 
onsider a tree of N nodes and M internal nodes (i.e.

N −M leaves). Sin
e the 
omputational 
ost for all the metri
s is roughly the same, we fo
us

here on the hit probability. In order to 
al
ulate the hit probability at one of the nodes labeled

n ∈ {1, . . . , N}, say at 
a
he n, we need to:

• 
al
ulate the CDF Zn(t) of inter-arrival times of the aggregated request pro
ess in (28).
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This requires a number of operations proportional to

(1 + Cn)
∏

i∈C(n)∪{0}

Ki,n = O
(

(1 + Cn)× K̃1+Cn
n

)

, K̃n = max
i∈C(n)∪{0}

Ki,n

where Ki,n is the minimal order of the i-th 
hild miss pro
ess, K0,n is the minimal order

of the exogenous request pro
ess, and Cn = |C(n)| is the number of 
hildren of 
a
he n.

• evaluate the LST Z∗
n(µn,j) in the expression of the hit probability in (21) whi
h requires

Kn× Jn operations where Kn is the minimal order of the aggregated request pro
ess (and

it is at most equal to K̃1+Cn
n ) and Jn is the minimal order of the TTL distribution.

Then, the total 
ost is

K = O

(

N
∑

n=1

(1 + Cn + Jn)× K̃1+Cn
n

)

. (30)

For linear networks in Figure 5 (
ase of small maximum degree), the number of 
hildren per


a
he is Cn = 1 and there is no exogenous requests at 
a
he n > 1. Hen
e, the total 
ost is

Kline = O
(

NJ × (K0,1(J + 1))N
)

, J = max
n=1,...,N

Jn (31)

For star networks in Figure 6 (
ase of large maximum degree), the number of 
hildren at the

root is N − 1 and the total 
ost is

Kstar = O
(

NJK + J (K(J + 1))N−1
)

, J = max
n=1,...,N

Jn, K = max
n=1,...,N

K0,n (32)

TTLs with exponential distribution. The exponential distribution has the minimal order whi
h

is one. Hen
e, if we 
onsider exponential timers and exogenous requests are des
ribed by Poisson

pro
esses, we have K0,n = Jn = 1 at ea
h 
a
he n. Therefore the 
osts Kline and Kstar are

respe
tively equal to O(N × 2N ) and O(N + 2N ).

We showed in Se
tion 5 that alternative approa
hes like the Markov 
hain analysis 
an provide

exa
t results when the tree is fed by Poisson tra�
 and the TTLs are exponentially distributed.

The size of the state spa
e of the Markov pro
ess {x(t), t ≥ 0} is 2N
where N is the number

of nodes. The 
ost of determining the steady-state distribution by solving the linear equation

system is O(23N ). This is mu
h larger than the 
ost of our method O(N2N ).
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A di�erent approa
h is to obtain an approximate steady-state distribution of the Markov pro
ess

using an iterative method. This approa
h takes advantage of the fa
t that most of the transition

rates are zero. In fa
t, a state 
hange is triggered by an exogenous request arrival at a 
a
he

that does not have the data or by a timer expiration at a 
a
he with the data, i.e. from a given

state we 
an only rea
h other N states. Then the number of non-zero rates is N × 2N
and ea
h

iteration of the method requires O(N × 2N ) operations. The total 
ost of the iterative method

is then O(I × N × 2N ), where I is the number of iterations until termination. The quantity

I depends on the spe
tral gap of the matrix used at ea
h iteration, and also on the required

pre
ision. In general, we 
an expe
t that O(I × N × 2N ) ≪ O(23N ). Having this inequality,

we 
an say that our method, even in the worst 
ase, is still more 
onvenient than solving the

Markov pro
ess on linear/star networks, be
ause O(N2N ) < O(I ×N × 2N ).

TTLs with deterministi
 distribution. Let us now 
onsider the 
ase of a general tree network with


onstant TTLs (equal to T ). In this 
ase there is no exa
t solution to 
ompare our approa
h with,

so we 
onsider simulations as an alternative approa
h. We perform an asymptoti
 analysis. A

meaningful 
omparison of the 
omputational 
osts needs to take also into a

ount the in
ertitude

of the solution: both the simulations and our method 
an produ
e a better result if one is willing

to a�ord a higher number of operations. In order to 
ombine these two aspe
ts in our analysis, we


onsider as metri
 the produ
t pre
ision times number of operations. Intuitively the larger this

produ
t the more expensive is to get a given pre
ision. For the simulations the 
omputational


ost is at least proportional to the number of events that are generated, let us denote it by nE .

The in
ertitude on the �nal result 
an be estimated by the amplitude of the 
on�den
e interval,

that de
reases as 1/
√
nE, then the produ
t pre
ision times number of operations is proportional

to

√
nE for the simulations. In the 
ase of our approa
h, the most expensive operation is the

solution of the renewal equation. If we adopt the same τ and ∆ for all the integrals, we need to


al
ulate the value of the CDF of the miss rate (Y (t)) in nP = τ/∆ points and then we need to


al
ulate nP integrals. The integration interval is at most equal to the TTL duration T thanks to

(11), then ea
h integral requires a number of operations proportional to n′P = T/∆. If the value

of τ is sele
ted proportionally to T , then the 
ost of our method is proportional to n2
P . A naive

implementation of the integral as a sum of the fun
tion values leads to an error proportional to

the amplitude of the time step and inversely proportional to n′P or nP . In 
on
lusion the produ
t

pre
ision times the number of operations is proportional to nP . Then, for a given pre
ision, our

method would require a number of points mu
h larger than the number of events to be 
onsidered
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in the 
orresponding simulation (at least asymptoti
ally). The 
omparison would then lead to

prefer the simulations at least when small in
ertitude is required (then large nE and nP ). In

reality integrals 
an be 
al
ulated in more sophisti
ated ways, for example if we adopt Romberg's

method, with a slightly larger 
omputation 
ost, we 
an get a pre
ision proportional to n−2
P . In

this 
ase the produ
t pre
ision times number of operations is a 
onstant for our method, that

should be preferred.

Numeri
al experiments. We performed some experiments to validate our 
on
lusion based on an

asymptoti
 analysis. First, we 
onsider linear networks ofN = 1, 2, . . . 9 exponentially distributed

TTL-based 
a
hes as des
ribed in Figure 8a. We 
ompare the running time of solving the


orresponding Markov 
hain (see Se
tion 5.1) against our Algorithm 2. Figure 17 shows the

ratio of the 
omputation times TA
and TM

respe
tively for our Algorithm 2 and for the Markov


hain resolution. Both the solutions have been implemented in MATLAB, in parti
ular the naive

fun
tion linsolve has been used to determine the steady-state distribution of the Markov 
hain

and the Algorithm 2 has been implemented with basi
 routines. Our algorithm performs faster

than the Markov 
hain resolution spe
ially when the depth of the linear network is large.
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Figure 17: Computation time 
omparison on linear networks

Se
ond, we evaluate the 
omputational time of the event-driven simulation and our Algorithm 1

on the k-ary trees of Se
tion 5.2 where the TTLs are 
onstants and the request pro
esses are

IPPs. T S
and TA

are respe
tively the time to 
ompute all performan
e metri
s on these large

tree networks via event-driven simulations and our analyti
 methodology in Algorithm 1; they

are 
omputed by using the MATLAB routines ti
 and to
. Table 4 shows that as the number of


a
hes N in
reases, our analyti
 solution is 
learly preferable sin
e it is the least time 
onsuming.
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Type Degree Depth # Ca
hes, N T S TA

Binary Tree 2 5 31 53 88

Ternary Tree 3 4 40 197 129

Table 4: Comparison of 
omputation time on large trees

7. TTL-based model and other poli
ies

We re
all that the TTL-based model we presented till now assumes in�nite 
a
he 
apa
ities. We

address issues and pra
ti
al 
on
erns related to �nite 
apa
ity 
onstraints.

7.1. Pra-TTL 
a
he: A pra
ti
al implementation of a TTL-based 
a
he

While the TTL-based model allows an arbitrarily large number of 
ontents in its memory, a real


a
he will have a �nite 
apa
ity B. In this se
tion, we 
onsider a possible pra
ti
al implementa-

tion of our TTL-based model that we 
all Pra-TTL. The Pra-TTL 
a
he uses a timer for ea
h


ontent item in the same way as the TTL-based model, but does not dis
ard a 
ontent item whose

timer has expired as long as some spa
e is available in the memory. If a new 
ontent item needs

to be stored and the 
a
he is full, the 
ontent item to be erased is the one whose timer expired

furthest in the past (if any) or the one whose timer will expire soonest. We have 
ompared the

performan
e of the Pra-TTL 
a
he with that of our TTL-based model on a linear network of

N = 5 
a
hes labeled n = 1, . . . , 5 having the same 
apa
ities Bn = 20. The requests for ea
h

�le f = 1, . . . , F = 200 arrive only at the �rst 
a
he at rate λ1 = 2.0 i.e. there is no exogeneous

arrival at 
a
hes 2�5. We 
onsider that requests over the set of �les follow a Zipf popularity

law with parameter α = 1.2: i.e. requests for �le f are des
ribed by a Poisson pro
ess with rate

λ1,f = λ1 ×
(

1/
∑

g g
−α
)

/fα
. TTLs of �le f at 
a
he n are exponentially distributed with rate

µn,f = µn su
h that the total o

upan
y for the TTL-based model equals the 
orresponding


a
he 
apa
ity Bn. In other words, µn is 
hosen su
h that

∑F
f=1OP,n,f = Bn where OP,n,f is the

o

upan
y probability of �le f at 
a
he n 
al
ulted in Proposition 3.2 (i.e. predi
ted by the model

of an in�nite TTL-based 
a
he). The hit probability per �le f at ea
h 
a
he n is denoted HP,n,f

and the aggregate hit probability at 
a
he n is denoted HP,n,∗. We 
ompute theses performan
e
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Ca
he n Pra-TTL TTL-Model

1 0.5590 0.5585

2 0.4216 0.4658

3 0.3030 0.2672

4 0.1941 0.1670

5 0.1380 0.1154

Table 5: Aggregated Hit probability at 
a
he n, HP,n,∗

metri
s for both Pra-TTL and TTL-based 
a
hes by using the following expression for HP,n,∗:

HP,n,∗ =





∑

f

Λn,fHP,n,f



 /Λn,∗

where Λn,f is the total request rate of �le f at 
a
he n and Λn,∗ =
∑

f Λn,f . Then, Λn,f is simply

the miss rate of �le f at 
a
he n−1 sin
e the network is linear and there is no exogenous request

arrivals at 
a
he n (∀ n > 1). Table 5 and Figure 18 show that our model (that assume in�nite


a
he size) well predi
t the performan
e metri
s for Pra-TTL, both those of the aggregate at a


a
he and those of a spe
i�
 �le respe
tively.
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Figure 18: Hit probability HP,n,f of �le f at ea
h 
a
he n: Pra-TTL vs TTL-Model.

These preliminary results suggest that our analysis 
an be useful to study TTL-based poli
ies
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under 
apa
ity 
onstraints.

7.2. Relationship with other repla
ement poli
ies

In this se
tion, we establish a link between our TTL-based model and other repla
ement poli
ies

at a single 
a
he. We 
onsider a single 
a
he with 
apa
ity B serving F �les, where requests

are des
ribed by independent Poisson pro
esses with rates λf for f = 1, 2, . . . , F . We tune the

expiration rate µf for ea
h �le f in order to obtain the same performan
e metri
s of 
ommon

repla
ement poli
ies like LRU, FIFO or RND.

We detail the pro
edure for a single RND 
a
he, but it 
an be extended to the other poli
ies.

Let us denote by πf the stationary probability that �le f is in the RND 
a
he. This distribution

has been 
al
ulated in [5, 36℄. For the exponentially distributed TTL 
a
he, the stationary

o

upan
y probability of the f -th �le is given by

OP,f = λf

1−X∗
f (µf )

µf
,

where X∗
f (s) =

λf

λf +s
is the LST of inter-arrival times. If we sele
t µf = λf

(

1
πf
− 1
)

, it holds

OP,f = πf , ∀f , i.e. the two poli
ies have the same stationary 
a
he o

upan
y for ea
h �le.

If we sele
t the same TTL rate µ for all the �les it is possible to a
hieve the same average

o

upan
y at the 
a
he, i.e.

∑

f πf =
∑

f
λf

λf +µ
= B. For ea
h �le, the miss pro
ess of obtained

with the exponential TTL-based 
a
he is an a

urate des
ription of its miss stream on the RND


a
he [11℄. From the equality of the stationary 
a
he o

upan
y probabilities, the equality of

hit/miss probabilities and rates follows due to the PASTA property sin
e requests are des
ribed

by Poisson pro
esses.

In this sense, the TTL poli
y is more general than RND or LRU sin
e it 
an mimi
 their behavior

and reprodu
e their performan
e metri
s. While, the exponential TTL 
a
he enables easy 
al
u-

lation we 
an sele
t other distributions like the deterministi
 one (see Paragraph Approximation

for LRU 
a
hes in Se
tion 3) in order to better mat
h the CDF of the inter-miss times of a LRU


a
he as well.
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8. Con
lusion

In this paper, we introdu
ed a novel Time-To-Live (TTL) based repla
ement poli
y for 
a
he

networks in general and the 
ontent-routers of ICN ar
hite
tures in parti
ular. We developed

a set of building blo
ks for the performan
e evaluation of theses TTL-based 
a
he networks

through renewal arguments. We 
hara
terized a 
lass of networks for whi
h we provided the

exa
t performan
e metri
s: this 
lass 
ontains linear and star tree networks. We also provided

a re
ursive and approximate pro
edure to study arbitrary hierar
hi
al networks. We showed

that our theoreti
 model predi
ts remarkably well the performan
e metri
s with relative errors

less than 1%. We formally proved that deterministi
 TTLs are optimal when the inter-arrival

times have a 
on
ave CDF. Our approa
h is promising sin
e it appears as a unifying framework

to a

urately analyze a ri
her 
lass of networks also with heterogeneous poli
ies deployed at

di�erent 
a
hes. We have also demonstrated that our TTL-based model 
an be implemented

under 
apa
ity 
onstraints. Ongoing resear
h is investigating approximate TTL-based model for

�nite 
apa
ity 
a
hes running the LRU, FIFO and Random repla
ement poli
ies. We also aim

at 
onsidering the 
ase of 
orrelated requests modeled by semi-Markov pro
esses.
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Appendix

Optimality of a deterministi
 TTL-
a
he

In this appendix, we obtain the TTL distribution that maximizes/minimizes our metri
s of

interest (i.e. the hit probability HP and the o

upan
y probability OP ) when the mean TTL

value D = E[T ] is known.
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Lemma 8.1 (Convex ordering). If D and T are respe
tively 
onstant and random TTLs su
h

that E[T ] = D, then the following relation holds

D ≤cx T (33)

where ≤cx is the 
onvex ordering.

Proof. The de�nition of 
onvex ordering of random variables T1 and T2 says T1 ≤cx T2 if and

only if E[φ(T1)] ≤ E[φ(T2)] where φ(.) is a 
onvex fun
tion. We shall show that this 
onvex

ordering holds for any random TTL T and 
onstant TTL D su
h that E[T ] = D in order to

prove the lemma. For any random TTL T ≥ 0 and any 
onvex fun
tion φ(.), we have thanks to

Jensen's inequality :

E[φ(T )] ≥ φ(E[T ]) = φ(D) = E[φ(D)]

The last equality follows from the fa
t that φ(D) is a 
onstant. ⋄

Proposition 8.1 (Optimality of a deterministi
 TTL 
a
he). Given the expe
ted TTL value

D = E[T ] and the CDF X(t) of inter-arrival times, the o

upan
y OP is maximized when the

TTL is deterministi
 and equal to D. Moreover, if X(t) is a 
on
ave fun
tion then the hit

probability HP is maximized too.

Proof. We assume that the TTLs {Tn}n≥1 are sampled from a general distribution T (t) su
h

that E[T ] = D. Observe that the o

upan
y probability OP (T ) and hit probability HP (T ) are

fun
tions of the timer T and 
an be written as

OP (T ) = λE [φ(T )] , HP (T ) = E[X(T )]

where X(x) is the CDF of X and φ(t) =
∫ t

0 (1 − X(x))dx. The se
ond derivative of φ(t) is

φ′′(t) = −X ′(t) ≤ 0 be
ause X ′(t) is a probability density fun
tion; hen
e, φ(t) is a 
on
ave

fun
tion for any X(x). Then by applying Lemma 8.1, it follows that OP (T ) ≤ OP (D) for any

timer T su
h that E[T ] = D. Meanwhile, if X(x) is 
on
ave (resp. 
onvex), Lemma 8.1 states

that HP (D) ≥ HP (T ) (resp. HP (D) ≤ HP (T )). ⋄

We note that if the request pro
ess is a Poisson pro
ess, the o

upan
y OP and the hit probability

HP are equals and theses metri
s are maximized when the TTL is deterministi
.
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