
Compound TCP with Random Losses

Alberto Blanc1, Konstantin Avrachenkov2, Denis Collange1, and Giovanni
Neglia2

1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France
{alberto.blanc,denis.collange}@orange-ftgroup.com

2 I.N.R.I.A. 2004 route des lucioles, 06902 Sophia Antipolis, France
{k.avrachenkov,giovanni.neglia}@sophia.inria.fr

Abstract. We analyze the performance of a single, long-lived, Com-
pound TCP (CTCP) connection in the presence of random packet losses.
CTCP is a new version of TCP implemented in Microsoft Windows
to improve the performance on networks with large bandwidth delay-
products. We derive a Markovian model for the CTCP sending window
and compute the steady state distribution of the window and the average
throughput of a CTCP connection. We observe that the previous approx-
imation, using a “typical cycle,” underestimates the average window and
its variance while the Markovian model gives more accurate results. We
use our model to compare CTCP and TCP Reno. We notice that CTCP
gives always a throughput equal or greater than Reno, while relative
performance in terms of jitter depends on the specific network scenario:
CTCP generates more jitter for moderate-high drop rate values, while
the opposite is true for low drop rate values.

Keywords: TCP, Compound TCP, Bernoulli Losses, Markov Model

1 Introduction

With the increasing popularity of faster access links like Fiber To The Home [9],
the current standard TCP is not always ideal. As indicated by Floyd [10] the cur-
rent standard is not able to reach high rates in realistic environments, i.e. with
typical packet loss rates. Many new transport protocols have been proposed and
are currently being studied to replace it. Some of them are already implemented
in the latest versions of some operating systems, like Compound TCP (CTCP)
on Windows, and Cubic (and others) on Linux. For a survey and comparative
analysis of several high speed TCP versions see, for example, [12, 15, 14]. For the
next few years, the new high speed TCP versions will play an increasing role
in resource sharing among flows in the Internet. Yet the behavior, the perfor-
mance, and the impact on the network of these protocols are not well-known. In
particular, there is no comprehensive analytical study of CTCP.

CTCP has been presented by Microsoft Research in [20] and [21] in 2006. It is
currently submitted as a draft to the IETF Network Working group with minor
differences [18]. CTCP is enabled by default in computers running Windows



Server 2008 and disabled by default in computers running Windows Vista [8]. It
is also possible to add support for CTCP to Windows XP. An implementation
of CTCP, based on [21, 18], is also available for Linux [2]. The main objective
of the authors of CTCP [21] is to specify a transport protocol which is efficient,
using all the available bandwidth, fair and conservative, limiting its impact on
the network. They propose to combine the fairness of a delay-based approach
with the aggressiveness of a loss-based approach. As the proposal of CTCP is
still recent, there are only a few published evaluations of it. The only analytical
model of CTCP in [21] is based on a de facto deterministic model.

In the present work we study the performance of CTCP under random losses.
This model has been widely used in the literature (e.g. [1, 13, 16]) to analyze the
influence of random traffic fluctuations on the performance of TCP Reno. While
it is not necessarily the most sophisticated model, it does capture the behavior
of TCP Reno in several real cases (see, for example, [1, 16]). Whether the same
holds true for more recent versions of TCP is an open question, to the best of our
knowledge. The present work is just a first attempt at studying the influence of
random losses on long-lived CTCP connections. These losses can be caused by a
large number of connections sharing the same bottleneck link or by transmission
errors in wireless networks. As new physical layer rates keep increasing thanks
to new technologies like WiMax, wireless networks can have larger bandwidth
delay products, reaching values for which the behavior of new versions of TCP
differs from Reno. (In the case of CTCP if the window is less than 41 packets
CTCP behaves like Reno.)

The outline of the paper and of our results is as follows. In Section 2 we give
a brief overview CTCP. In Section 3 we present a two-dimensional Markov chain
model for CTCP. With the help of this model we obtain the long-run average
throughput of CTCP and the distribution of its congestion window at congestion
events. Then, in Section 3.2 we use Palm calculus to obtain the distribution of
the congestion window at arbitrary time moments. In Section 3.3 we propose
some heuristics and compare them with the accurate two-dimension Markov
chain model. Finally, in Section 4 we provide numerical and simulation results
which confirm our theoretical findings. In particular, we conclude that CTCP
provides a higher throughput than TCP Reno and , even if more aggressive, it
causes less traffic jitter than TCP Reno on high speed links with small random
losses.

Due to space constraints, some technical details are provided in a companion
technical report [3].

2 Compound TCP Overview

In this section we give a very brief overview of CTCP (see [21] for a complete
description). The main idea of CTCP is to quickly increase the window as long
as the network path is not fully utilized, then to keep it constant for a certain
period of time and finally to increase it by one MSS (Maximum Segment Size)



per round trip time just like TCP Reno. We will often use the term “phases” for
these three different behaviors.

During phase 1 the sender computes the sending window (w) at the (i +
1)-th round trip as wi+1 = wi + αwk

i (as suggested in [21] we use α = 1/8
and k = 3/4). At each round trip the sender estimates the bandwidth-delay
product and the amount of data backlogged in the network using the same
method adopted by TCP Vegas [7]. If the amount of backlogged data is greater
than a certain threshold (γ, usually set to 30 [21, 19]) the sender switches to
phase 2 and keeps the window constant. This constant value corresponds to the
sum of the estimated bandwidth-delay product and the estimated amount of
backlogged data. We consider an ideal behavior of CTCP, assuming that such
estimates are correct. In such case the window in phase 2 is equal to θ , µτ̃ +γ,
where µ is the capacity of the bottleneck link and τ̃ is the round trip propagation
delay. In reality any queue size estimate available at the sender is outdated due to
feedback delays, this fact combined with the CTCP algorithm presented in [21]
causes the window to oscillate during this phase as we analyzed in [5]. The length
of phase 2 is dictated by the “congestion component” of the window. In fact in
CTCP the congestion window w is the sum of two components: the delay window
wd and the congestion window wc. The congestion component is incremented by
one every round trip (just like the TCP Reno congestion window) and when this
component reaches θ phase 2 ends. The delay component is set such that the
value of the total window (wi = wci + wdi) at the i-th round trip time follows
the following evolution in absence of packet losses:

wi =


wi−1 + δi , if wi−1 + δi < θ

θ , if wi−1 + δi ≥ θ and wc0 + i < θ

wi−1 + 1 , otherwise
(1)

where δi = max
{⌊
αwk

i−1

⌋
, 1
}

. Figure 1 shows the three phases of the window
evolution. When a loss occurs both the total window and the congestion window
are halved.

3 Performances with Random Losses

We consider a single long lived TCP compound flow using a path with µτ̃ band-
width delay product and buffer size equal to b. The flow will experience a loss
every time that its window size reaches the value µτ̃ + b. For this reason, we
can consider wmax = µτ̃ + b as an upper bound for the the window size. Beside
the deterministic losses due to buffer overflow, we consider also that each packet
can be dropped with some probability p, independently from all other packets,
i.e. according to a Bernoulli process. In what follows we derive the throughput
and the window distribution in steady state. We are going to assume that w can
only take integer values.



t

w(t)

1 2 3

w0

wc0

θ

wc

w

Fig. 1. The evolution of w and wc in CTCP

3.1 Throughput calculation

We define a cycle as the time interval between two consecutive losses. We denote
as wt

cn
(respectively wt

dn
) the congestion (respectively delay) window at the begin

of the (n+ 1)-th round trip time of the t-th cycle. We will omit the superscript
t whenever it is clear which cycle is being considered.

We observe that in our framework the evolution of the window in each cycle
t depends from previous cycles only through the window value at the begin of
the cycle, or, more precisely, through the two initial values wt

c0
and wt

d0
, which

can be determined by the final value of the windows at the t− 1-th cycle. This
also implies that it is possible to use the renewal reward theorem to compute
the average throughput as (see [16]):

E[λ] =
E[S]
E[T ]

(2)

where λ is the throughput (in MSS/s), S is the total number of packets sent
during a cycle and T is the duration of the cycle.

Both E[T ] and E[S] can be evaluated starting from the knowledge of the dis-
tribution size of the two (correlated) random variables Wc0 and Wd0 . We denote
g(wc0 , wd0), the probability mass function (pmf) of these random variables. We
first show how to derive the distribution of cycle duration from g(wc0 , wd0) and
then derive the pmf g() itself. E[S] can be evaluated similarly to E[T ].

A cycle has length equal to n if there is a loss at the n-th round trip time.
As we are assuming that there is a loss whenever w = wmax, all cycles have a
finite length. Let m(w0) = min {n|wn ≥ wmax} be the maximum possible length
(in round trips) of a cycle starting at w0. For n < m(w0) the probability of a
cycle having length equal to n can be derived from the Bernoulli loss process as:

P [T = n|Wc0 = wc0 ,Wd0 = wd0 ] = (1− p)Vn−1(w0) − (1− p)Vn(w0) (3)

, an(wc0 , wd0),



where

Vn(w0) ,
n−1∑
i=0

wi, V0 , 0,

and wi is computed as in (1) so that Vn is the number of packets sent during
the n-th round trip of a cycle starting with w = w0. Both Vn and an, as most
quantities used in this section, depend on the initial window w0 = wc0 + wd0 as
highlighted by the notation an(w0) and Vn(w0), even though we will also use the
simplified notation an and Vn.

The probability that a loss occurs at the m(w0)-th round trip can be evalu-
ated simply considering that

∑m
i=1 P [T = i] = 1:

P [T = m(w0)|Wc0 = wc0 ,Wd0 = wd0 ] = 1−
m(w0)−1∑

i=1

ai(wc0 , wd0).

Finally, being that the support of the discrete random variables Wc0 and Wd0 is
finite, we can use a finite sum to compute P [T ]:

P [T = n] =
∑

wc0 ,wd0

an(wc0 , wd0)g(wc0 , wd0). (4)

In order to compute g(wc0 , wd0) we model the evolution of the window (at
the beginning of each cycle) with a Markov chain. The evolution of the window
of TCP Reno at the begin of a cycle (wt

0) has been modeled in other works as
a Markov chain (see, for example, [13, 16]). In fact wt

0 is equal to half of the
window value at the end of the (t−1)-th cycle, which depends only on wt−1

0 and
on packet loss probability p.

In order to model CTCP we use a two-dimensional discrete Markov chain Xt

to account for wt
c0

and wt
d0

. For each state (i, j) the first index represents wt
c0

and the second wt
d0

. For any pair of states it is possible to compute the transition
probability as:

P [Xt+1 = (k, l)|Xt = (i, j)] =
∑
n∈B

an(i, j)

with wt
c0

= i, wt
d0

= j, B =
{
n|
⌊
wt

cn
/2
⌋

= k,
⌊
wt

dn
/2
⌋

= l
}

, where wt
cn

and wt
dn

are evaluated according to (1). The sum on the right hand side is needed because
different pairs (wt

cn
,wt

dn
) can originate, after a loss, the same pair (wt+1

d0
,wt+1

d0
)

as we use integer values for the window. As w ≤ wmax we have that wc0 ≤
bwmax/2c , N and, if θ is the value of the window during the constant window
phase, wd0 ≤ bθ/2c , M (as wd ≤ θ). Combining these two bounds we obtain
that the number of states in the Markov chain is NM . Using the ARPACK
implementation of the Arnoldi method [17] it is possible to efficiently calculate
the steady state distribution of the Markov chain Xt even for large values of NM .
The more time consuming step is actually to compute the transition matrix for
X. The complexity of the algorithm we used is O(MN2); we believe that it is not
possible to decrease the complexity of the algorithm given that it has to compute



all the possible transitions and these grow like MN2. Note that the number of
possible transitions for a Markov chain with NM states is N2M2 therefore we
already take into account that, in this case, some transitions are not possible.

Once the steady state distribution of the Markov chain Xt (g(wc0 , wd0)) is
derived, we can use it to compute E[T ], E[S] and then the average throughput
using (2).

We observe that so far we have implicitly measured T in terms of number of
round trip times, but we can slightly change our model in order to consider real
time duration (seconds) taking into account also queuing delay variation due to
the TCP flow itself [3].

3.2 Steady State Distribution of the Window

In the previous section we have described how to compute the steady state
distribution of wc0 and wd0 , and consequently also the value of the window
w0 = wc0 + wd at the beginning of each cycle. In this section we are interested
in the steady state distribution of the window as a function of time. We denote
as Yn the value of the window at the begin of the (n − 1)-th round trip time.
Note that Yn is different both from Xt, which is the value of the window after a
packet loss, and from wt

n, which is the value of the window at the begin of the
(n− 1)-th round trip time in the t-th cycle. Clearly Xt represents a subsequence
of the sequence Yn. We observe that Yn can also be modeled as a discrete time
Markov chain where a transition occurs every round trip. Also this Markov chain
is ergodic, hence it admits a steady state and we assume that it is in steady state
at time 0.

Using Palm calculus, we first compute P [Yn = k] starting from P [W0 = w0],
where Yn represents the window after n round trip times starting from some
arbitrary value (given that all the Markov chains involved are ergodic, the initial
value is irrelevant).

Let Zn be the (discrete) time of the n-th packet drop after time 0. Using the
intensity and inversion formulas of Palm calculus [6] we can compute P [Yn = k]
as a function of P [W0 = w0]:

P [Yn = k] = E
[
1{Yn=k}

]
= P [Z0 = 0]E0

[
Z1∑
s=1

1{Ys=k}

]
(5)

= ηE0

[
Z1∑
s=1

1{Ys=k}

]
(6)

= η
∑
w0,l

[
P [W0 = w0]P [Z1 = l|W0 = w0]

l∑
s=1

1{Ys=k|W0=w0}

]
(7)

where E0 is the Palm expectation, 1{Yn=k} is the indicator function for the event
Yn = k and η is the intensity of the process Zn. The second (5) and third (6)
equalities follow from the inversion and intensity formulas, respectively, while



(7) follows from the total probability theorem, conditioning on all the possible
values of W0 and l. Given that Zn is an ergodic process P [Z0 = 0] can be
computed, using the intensity formula, as the inverse of the expected value of
T

d= Zn − Zn−1 that is as the average length of a cycle (in round trips) so that
η = 1/E[T ] where E[T ] can be computed using (4).

As for the calculations in section 3.1 we can evaluate the distribution of the
window taking into account the effect of queueing delays as well [3].

3.3 A Simple Approximation and the Deterministic Response
Function

The method described in the previous section provides an exact solution, but
it can be computationally expensive for medium and large values of wmax and
θ. Using the same method as in [13] it is possible to quickly find an approxi-
mate solution for the average window size. The idea is to consider a sequence
of “typical” or “average” cycle. If p is the probability that a packet is dropped,
the average cycle has exactly 1/p packets (provided the probability of reaching
wmax is negligible). Let us denote w0 the initial window of an average cycle and
wn(w0) the final window, after n round trip times during which 1/p packets are
transmitted. Being that the following average cycle has to be identical and that
CTCP, as Reno, halves the window at the end of each cycle, it has to be:

wn(w0) = 2w0. (8)

Imposing the constraint Vn(w0) = 1/p (Vn(w0) is defined in section 3.1), we can
identify the unique possible value of w0 and then the unique possible window
evolution corresponding to p. Once the window evolution is known, the average
window can be obtained and can be plotted as a function of the drop rate.

As previously noted in [1] this approach corresponds to the calculation of
what is usually called the“deterministic response function.”This function is often
used in the literature on TCP. For example, [10] defines the response function
as “the function mapping the steady-state packet drop rate to TCP’s average
sending rate in packets per round-trip time.” Where the drop rate is simply the
inverse of the number of packets sent during each cycle. In this case the term
“drop rate” always refers to this quantity and not to any probabilistic model,
while this usage is not the most appropriate one it is, nonetheless, common in
the literature. From another point of view, we observe that the average cycle
corresponds to the actual evolution of the window under our loss model, when
there is no random loss, but the bandwidth delay product and the buffer size
are such to cause a deterministic loss every 1/p packets.

When the window update rule operates on a round trip time basis - as in
CTCP but also in Reno and HighSpeed for example - the deterministic response
function does not depend on physical parameters like capacity or propagation
delay. In other words it can be considered as an intrinsic property of the specific
growth function used to increment the window. On the contrary, for TCP Cubic
the growth of the window depends on real time and hence also on link capacities



and propagation delays, so that a comparison with the TCP versions indicated
above would need special care.

Figure 2 shows the response function for different values of θ, between 100 MSS
and 1000 MSS (Maximum Segment Size). The two lines correspond to two differ-
ent ways to express the window evolution in (8). The dotted line corresponds to
a fluid model where the growth of the window is approximated with a continuous
function (see [4]). More precisely

wn(w0) =
(
(1− k)αn+ w∗1−k

0

) 1
1−k .

The solid line, instead, considers only integer values of the window and computes
the increment of the window as according to (1) with wc0 = w0. In this case the
last round trip time of the cycle -the n-th one- is evaluated as n = min{i :
wi ≥ 2w0}. In both cases we have considered w0 as the independent value.
For each value of w0 we have then computed S, the total amount of packets
sent during a cycle starting with w = w0 and then we have plotted the average
window as a function of 1/S = p. Clearly the total number of packets sent during
such a cycle is a monotonically increasing function of w0 (as the TCP window
is monotonically increasing during each cycle) so that increasing values of w0

correspond to increasing values of S, and decreasing values of p = 1/S.
Regarding the integer approximation we observe that, for α = 1/8 and

k = 3/4 (values suggested in [21]), αwk ≥ 2 only if w > 30. That is the CTCP
window grows by one each round trip, the same as Reno, as long as w < 30.
This is somewhat consistent with what suggested in [21] where the authors call
for the delay component to be used (that is to increment the window by αwk)
only if the window is larger than lowwnd which they set equal to 41. This ob-
servation explains why for small values of w the fluid and integer approximation
are different, with the integer approximation giving a larger average value of the
window.

In the case of the integer approximation and for large drop rates (more than
10−3) the response function is the same as Reno. The same is true, regardless
of the approximation, for small drop rates (less than 10−6) given that, in this
latter case, the evolution of the window is the same in CTCP and Reno. For
drop rates roughly between 4 · 10−4 and 10−3 only the rapid increase phase of
CTCP is used so that the response function is steeper. For drop rates between
10−6 and 4 · 10−4 the “constant” window phase is used along with all the other
phases and this explains why the response function increases more slowly until
it reaches the Reno response function.

While for Reno and HighSpeed TCP the response function is only a function
of the drop rate, for CTCP the response function is also a function of θ (the value
of the window during the constant window phase). The larger the value of θ the
longer the rapid increase phase can be. In the extreme case of θ =∞ the other
phases would not take place at all and the response function would be much
steeper. Note that in [21] the authors compute the response function for exactly
this case (θ =∞). Given that they are interested in limiting the aggressiveness
of CTCP, they are in effect considering the worst case, by only considering the



10−7 10−6 10−5 10−4 10−3 10−2

p

101

102

103

w̄
/M

SS
θ = 100

θ = 450

θ = 250

θ = 1000

fluid model
integer approximation

Fig. 2. The deterministic response function for θ = 100, 250, 450, 1000

10−5 10−4 10−3

p

102

103

w̄
/
M

S
S

fluid model
int. approx.

prob. model

Fig. 3. CTCP response function

10−6 10−5 10−4 10−3

p

103

104

λ̄
/
(M

S
S
/
s)

CTCP (sim.)

Reno (sim.)

CTCP (Mark. ch.)

Reno (Mark. ch.)

Fig. 4. Average Throughput

rapid increase phase. At the same time it can be argued that, as a consequence,
CTCP is less aggressive than HighSpeed TCP as, for small values of p, CTCP
is as aggressive Reno, which is less aggressive than HighSpeed TCP.

Finally it is worth noting that, as p decreases, the difference between the
fluid and integer models for the rapid increase phase becomes negligible.

4 Numerical Results

Using the models presented in the previous sections we can compute the av-
erage throughput and the average window size for different values of the drop
probability p. Figure 3 shows the CTCP response function computed using the
two deterministic models presented in section 3.3 and the probabilistic model
discussed in section 3.1, for θ = 250 MSS. For the same “drop probability” the
deterministic model with integer approximations gives a smaller average window
than the probabilistic model, which uses the very same integer approximations,
as already observed in [1]. The fluid model, instead, does agree with the prob-
abilistic model, for larger values of p. As discussed in the previous section, the
fluid model overestimates the window growth for certain values of p (roughly
between 10−4 and 10−2). We cannot explain why this overestimation is almost



in agreement with the probabilistic model and we believe that it is just a coin-
cidence.

The probabilistic and deterministic models do have almost the same values
for values of p around 2 · 10−4. This can be explained by the fact that, for these
values of p, most of the drops take place during the “constant window” phase.
In this case even if the cycles have a different length the average window size is
the same: random drops do change the cycle length but not the average window
size.

One should take some care in comparing these two models: in the case of
the deterministic model the buffer size at the bottleneck is fixed (so that all the
cycles have the same size) while in the case of the probabilistic model the buffer
size at the bottleneck link is much larger (in theory infinite, set to 1600 MSS for
the numerical results) and allows the window to reach larger values. If we used
the same buffer size in both models the average window would be smaller in the
probabilistic case.

Figure 4 shows the average throughput for CTCP and TCP Reno. For CTCP
we have used the probabilistic model introduced in section 3.1 while for Reno
we have used an equivalent model but with a “one dimensional” Markov chain
as Reno does not have two components in the congestion window. The squares
and triangles in Figure 4 correspond to simulation results. For both versions of
TCP there is a good match between the probabilistic model and the simulations,
obtained using ns-2 (version 2.33) with a Linux implementation of CTCP [2]. The
simulations use the classical“dumbbell”topology with a single source and a single
destination. There is a single TCP connection with no cross traffic going through
a bottleneck of 100 Mb/s with propagation delay of 26.4 ms and where each
packet of 1500 B is dropped with probability p. The duration of each simulation
is 200 000 s. As the difference between different simulation runs is very small (less
than 1%) we did not plot errorbars. As the simulations and the model share the
same assumptions they can only be used as a sanity check. While assessing the
influence of the assumptions used in the model and how realistic they are is a
very interesting problem it is outside the scope of this work.

In Figure 4 wmax = 370 MSS, the bandwidth-delay-product is 220 MSS and
the buffer size is 150 MSS, while in Figure 3 wmax = 1600 MSS. This explains
why in Figure 4 the throughput is constant for small drop probabilities (most
of the packets are dropped when w = wmax) a similar behavior takes place for
larger values of wmax but for drop probabilities smaller than those included in
Figure 3.

Figures 5 and 6 show the distributions for w0, wc0 and wd0 when θ = 430 MSS
and wmax = 600 MSS for p = 3 · 10−4 and p = 5 · 10−6 respectively. The dotted
lines represent simulation results, confirming that there is a good match with
the Markov model. Figure 5 corresponds to the case where most of the packet
are dropped during phase 1 when the window is growing quickly. In this case the
distribution of wc0 is greater than the distribution of wd0 , so that, on average,
wc0 < wd0 . Figure 6 corresponds to the case where a significant fraction of
packets is dropped during the Reno phase (almost 50%). The jump at w0 =



0 50 100 150 200 250

w/MSS

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

wc0
w0
wd0

Fig. 5. Distribution of w0,wc0 and wd0

(θ = 430 MSS, wmax = 600 MSS, p =
3 · 10−4)

0 50 100 150 200 250 300

w/MSS

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

wc0
w0
wd0

Fig. 6. Distribution of w0,wc0 and wd0

(θ = 430 MSS, wmax = 600 MSS, p =
5 · 10−6)

0 100 200 300 400 500 600 700

w/MSS

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F p = 3 · 10−3

p = 3 · 10−4

p = 4 · 10−5

p = 5 · 10−6

Fig. 7. Distribution of Yn (θ = 430 MSS,
wmax = 600 MSS)

10−5 10−4 10−3

p

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

C
o
V

CTCP (Mark. Ch.)

Reno (Mark. Ch.)

CTCP (Det.)

Reno (Det.)

Fig. 8. Coefficient of variation of Yn for
CTCP and Reno

215 MSS represents the packets dropped during the constant window phase (with
the simulations having smaller jumps caused by the oscillations of the window).
The jump at w = 300 MSS correspond to the case when packets are dropped
due to a buffer overflow (recall that in this case wmax = 600 MSS and for the
simulations the buffer size b is 200 MSS and µτ̃ = 400 MSS). In this case the
distribution of wc0 is smaller than the distribution of wd0 , the opposite of what
happens in the previous case.

Figure 7 shows the steady state distribution of Yn for different values of
p with θ = 430 MSS and wmax = 2000 MSS. Again the dotted lines represent
the same distribution for the corresponding ns-2 simulations. As expected, with
increasing drop probabilities, each distribution is strictly greater than all the
previous ones. In Figures 6 and 7 while the probabilistic models have a sharp
jump for w = 215 MSS and w = 430 MSS the simulations (dotted lines) have
smaller jumps. This is caused the oscillations of the sending window during phase
2 in the simulations. As mentioned in section 2 this is consistent with the CTCP
algorithm but it is not taken into account by the probabilistic model. While it
is, at least in principle, possible to incorporate this aspect into the model, we
prefer using a simpler model with a constant value during phase 2 given that the
differences between this simplified model and the simulations are not significant
(especially as far as the throughput is concerned).



Figure 8 show the coefficient of variations (CoV) for CTCP (θ = 250 MSS,
wmax = 2000 MSS) and Reno for µτ̃ = 220 MSS. In this cases the difference
between the deterministic and probabilistic model is more pronounced than in
the case of the average window (response function). This can be explained by
the fact that the average window depends only the first moment of Yn while the
CoV depends on the second moment as well. For the CoV, in particular, the
difference between the two models is significant. For small values of p the CoV
of CTCP is smaller than Reno but for larger values of p the opposite is true
indicating that for p > 10−4 CTCP might not be the best solution.

5 Conclusions and Future Work

In this paper we have presented a Markovian model of CTCP under random
losses. This kind of model is a first attempt to roughly assess the impact of
varying network conditions on a CTCP connection. The network is seen as a
black box randomly dropping packets, due to buffer overflows. This model could
also be used to describe the impact of transmission errors in some ”challenging
environments” (e.g. wireless networks) as expected from new TCP versions [11].

In this first analysis, we have assumed that the loss arrivals follow a simple
Bernoulli process. We have computed the distribution of the sending window on
loss events with a Markovian model, and then the average throughput. Using
Palm Calculus we have computed the steady state distribution of the window. Its
value has a direct influence on the buffer occupancy and on the jitter experienced
by all the flows sharing the same bottleneck link.

This analysis can be extended in many ways. The Bernoulli loss process could
be replaced with a more bursty and realistic process. In this case, multiple losses
could take place during the same round-trip time, and the recovery time could
be longer. We could also consider time-outs in the case of high loss rates, as in
[16]. A similar analytical study could also be applied to the other TCP versions,
currently under standardization, comparing their efficiency and their robustness.

References

1. E. Altman, K. Avrachenkov, and C. Barakat. A stochastic model of tcp/ip with
stationary random losses. IEEE/ACM Trans. Netw., 13(2):356–369, 2005.

2. L. Andrew. Compound TCP Linux module. available at
http://netlab.caltech.edu/lachlan/ctcp/, April 2008.

3. A. Blanc, K. Avrachenkov, D. Collange, and G. Neglia. Compound tcp with ran-
dom losses. INRIA Research Report 6736, INRIA, December 2008. available at
http://hal.inria.fr/docs/00/34/98/45/PDF/RR-6778.pdf.

4. A. Blanc, D. Collange, and K. Avrachenkov. Modelling an isolated Compound
TCP connection. Tech. Report 6736, INRIA, December 2008. available at
http://hal.inria.fr/docs/00/35/00/41/PDF/RR6736.pdf.

5. A. Blanc, D. Collange, and K. Avrachenkov. Oscillations of the sending window
in Compound TCP. In Proc. 2nd NetCoop Workshop, 2008.



6. Jean-Yves Le Boudec. Understanding the simulation of mobility models with palm
calculus. Perform. Eval., 64(2):126–147, 2007.

7. L. S. Brakmo and L. L. Peterson. Tcp vegas: end to end congestion avoidance on
a global internet. IEEE JSAC, 13(8):1465–1480, 1995.

8. J. Davies. Performance enhancements in the
next generation TCP/IP stack. The Cable Guy
http://www.microsoft.com/technet/community/columns/cableguy/cg1105.mspx,
2007.

9. Fiber to the home council. http://www.ftthcouncil.org/.
10. S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimen-

tal), December 2003.
11. S. Floyd and M. Allman. Specifying New Congestion Control Algorithms. RFC

5033 (Best Current Practice), August 2007.
12. A. Kherani, B. Prabhu, K. Avrachenkov, and E. Altman. Comparative study of

different adaptive window protocols. Telecomm. Systems, 30(4):321–350, 2005.
13. T.V. Lakshman and U. Madhow. The performance of tcp/ip for networks with high

bandwidth-delay products and random loss. Networking, IEEE/ACM Transactions
on, 5(3):336–350, Jun 1997.

14. Y.T. Li, D. Leith, and R. Shorten. Experimental evaluation of tcp protocols for
high-speed networks. IEEE/ACM Trans. Netw., 15(5):1109–1122, 2007.

15. Y.T. Li, D.J. Leith, and B. Even. Evaluating the performance of TCP stacks for
high-speed networks. In Proc. 4th Int. Workshop on Protocols for FAST Long-
Distance Networks, February 2006.

16. J. Padhye, V. Firoiu, D.F. Towsley, and J.F. Kurose. Modeling tcp reno per-
formance: a simple model and its empirical validation. Networking, IEEE/ACM
Transactions on, 8(2):133–145, Apr 2000.

17. D. Sorensen, R. Lehoucq, C. Yang, and Maschhoff K. ARPACK. available at
http://www.caam.rice.edu/software/ARPACK/.

18. M. Sridharan, K. Tan, D. Bansal, and D. Thaler. Compound TCP: A new TCP
congestion control for high-speed and long distance networks. Internet draft, In-
ternet Engineering Task Force, October 2007. (Work in progress).

19. K. Tan, J. Song, M. Sridharan, and C.Y. Ho. CTCP-TUBE: Improving TCP-
friendliness over low-buffered network links. In Proc. 6th Int. Workshop on Proto-
cols for FAST Long-Distance Networks, March 2008.

20. K. Tan, J. Song, Q. Zhang, and M. Sridharan. Compound TCP: A scalable and
TCP-friendly congestion control for high-speed networks. In Proc. 4th Int. Work-
shop on Protocols for FAST Long-Distance Networks, March 2006.

21. K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp approach for
high-speed and long distance networks. In INFOCOM, 2006.


