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Abstract—Efficient marketing or awareness-raising campaigns
seek to recruit a small number, w, of influential individuals –
where w is the campaign budget – that are able to cover the
largest possible target audience through their social connections.
In this paper we assume that the topology is gradually discovered
thanks to recruited individuals disclosing their social connections.

We analyze the performance of a variety of online myopic
algorithms (i.e. that do not have a priori information on the
topology) currently used to sample and search large networks.
We also propose a new greedy online algorithm, Maximum
Expected Uncovered Degree (MEUD). Our proposed algorithm
greedily maximizes the expected size of the cover, but it requires
the degree distribution to be known. For a class of random
power law networks we show that MEUD simplifies into a
straightforward procedure, denoted as MOD because it requires
only the knowledge of the Maximum Observed Degree.

I. INTRODUCTION

This paper addresses the need to efficiently select w individ-
uals in a network such that they cover, through their neighbors,
the largest possible fraction of the network. Online social
networks have generated much attention as a breeding ground
for new forms of social studies, social mobilization, and online
campaigns. The recent 2012 U.S. presidential election, for
instance, presents a real-life example on a social network
setting. A candidate’s Facebook app asked its subscribers to
send get-out-to-vote reminders to their like-minded friends in
swing states [1]. Thus, the effectiveness of a subscriber is
measured by how many of his or her friends live in swing
states.

Recruiting individuals from a population is no easy task.
The recruitment of each individual comes at a cost in time,
money, and social capital; and the total budget is often small
with respect to the budget required to recruit all individuals in
the population. Most of the works on network cover, e.g. [2],
[3], [4], consider the social network topology to be known
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in advance, which is often not the case in the wild. In this
work we look at the cover problem when the network topology
is unknown. Following previous works in the literature, we
assume that any individual in the network can be recruited,
but in our case recruitments happen through friends recruiting
friends.

Problem Formulation: We formulate the target subpopula-
tion cover problem as a Maximum Connected Network Cover
(MCNC) problem on an unknown connected undirected graph
G = (V,E), where V is the set of target individuals and
E the set of individuals’ mutual connections. The graph G
has n = |V | nodes, m = |E| edges and degree distribution
{pk}k=1,...n−1. Unless otherwise specified, we assume all
graph parameters to be unknown. Denote Na(v) the set of
neighbors of node v ∈ V and kv = |Na(v)| the degree of v.
The volume of a set of nodes U ⊂ V is defined as the sum of
all the degrees of the nodes in U and is denoted as vol(U).

Let w be a given campaign budget (say, funds to recruit
individuals) and, to simplify our exposition, assume that each
node has a unitary recruitment cost. Our main goal is to design
efficient online algorithms to solve the following problem:
determine a group of w individuals to be recruited in order
to maximize the size of the covered subset, i.e. the set
including the recruited nodes and their neighbors. Initially, the
only available information is a single node sampled from the
population. The algorithm progresses as each recruited node
discloses its neighbors, increasing the number of nodes that
can be recruited. It follows that the recruited nodes form a
connected subgraph.

More formally, at each step t = 1, . . . , w, we classify the
nodes in V into three disjoint sets. The set B(t) denotes
the recruited nodes at step t. Unrecruited neighbors of re-
cruited nodes are denoted as observed nodes and form the set
N (B(t)) = ∪v∈B(t)Na(v)\B(t). We say a node v ∈ V is
covered after t recruitments if v ∈ B(t) ∪ N (B(t)). The set
of all uncovered nodes is denoted as W(t) ( = V − (B(t) ∪
N (B(t))) ) and the set of covered nodes as W(t). The sizes
of the three sets B(t), N (B(t)), and W(t) are t, N(B(t))
and W (t), respectively. The three different sets are shown in
Fig. 1.
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The online algorithm proceeds as follows: at step t, 1 < t ≤
w, the algorithm recruits node v ∈ N (B(t− 1)) and performs
the update B(t) = B(t− 1)∪{v}. The objective of the online
algorithm is to maximize the size of the network cover set
B(w) ∪ N (B(w)) without having a priori access to topology
information. Note that for most of the algorithms considered
in this paper, knowledge of the topology is limited to the
recruited nodes and their connections. So, after t recruitments,
the algorithm is aware of the covered nodes and all their
neighbors, but it is unaware of the existence of nodes inW(t)
and links between the nodes in N (B(w)).

W(t)

W(t)

B(t)

N (B(t))

Fig. 1: Network sampling evolving sets.

Contributions: We make the following contributions:

(1) We thoroughly evaluate through extensive simulations on
social network datasets.The performance of several known
network sampling algorithms: Breadth-First Search (BFS),
Depth-First Search (DFS) and Random Walk (RW). We
observe that on social network topologies RW consistently
outperforms (sometimes significantly) BFS and DFS.
Moreover BFS performance exhibits a high variability as a
function of network homophily and the choice of starting
node. DFS performs the worst, because it tends to recruit
nodes that have a surprisingly small number of neighbors.
We also explain why this is the case.

(2) We propose a new online algorithm (MEUD, Maximum
Expected Uncovered Degree) that greedily maximizes the
expected size of the cover. Although MEUD requires knowing
the degree distribution, we show that, for a broad class
of power law networks, MEUD simplifies to the Maximum
Observed Degree (MOD) algorithm that (like BFS, DFS, and
RW) does not require degree distribution or network topology
side information. We show through extensive simulations over
a variety of social network datasets that MOD consistently
outperforms (sometimes significantly) all other analyzed algo-
rithms.

Due to space constraints most of our experimental results
are described in the companion technical report [5].

II. NETWORK COVERS, ORACLES, &
APPROXIMATE SOLUTIONS

To simplify the following discussion we introduce the
following time-dependent quantities for observed nodes (nodes
in N (B(t))). The observed degree at time t of an observed

node is the number of its neighbors that are recruited at time
t. The excess degree of the node is the difference between its
actual degree and its observed degree, i.e. it is the number
of its neighbors that belong to W(t) ∪ N (B(t)). Finally, its
uncovered degree is the number of its neighbors that belong
to W(t). We observe that, being the graph knowledge at time
t limited to the recruited nodes and their connections, the
observed and excess degrees of an observed node correspond
to the number of its links that are known and unknown,
respectively. Its uncovered degree is equal to the increment
in the number of covered nodes if the node is recruited at the
following step.

The problem we study is closely related to the well-studied
Maximum Coverage (MC) problem that is NP-hard [6]. The
MC problem can be described as finding the cover of maximal
size recruiting at most w nodes. Unlike our problem, MC
assumes the topology to be known and the subset of recruited
nodes is not required to be connected. A similar problem, the
Minimum Dominating Set (MDS) problem aims to find a sub-
set of nodes D ⊆ V with the minimum cardinality such that
all nodes in G are either in D or are neighbors to a node in D.
The Minimum Connected Dominating Set (MCDS) problem
imposes the additional restriction that the subgraph induced by
the vertices in D has to be connected. Guha and Khuller [3]
proposed an approximation algorithm for the MCDS problem,
that corresponds to growing a tree T in an online fashion,
starting from a single node and recruiting at each step the
neighbor that has the largest uncovered degree. They showed
that the above algorithm has a guaranteed approximation ratio
O(∆), where ∆ is the maximum degree. In this paper we
assume that the uncovered degree of an observed node is
unknown. Only the observed degree is available. We compare
the performance of the different algorithms with those of Guha
and Khuller’s algorithm. We refer to it as the “Oracle” because
of its one-hop lookahead capability. As expected, the Oracle
achieves better performance than other algorithms that do not
use this additional information.

Our MEUD algorithm (described in Sec. V) is similar
in the spirit to Guha and Khuller’s Oracle, but it greedily
recruits the node that maximize the expected uncovered degree
instead of the actual uncovered degree, that we assume to be
unknown. MEUD, however, requires the degree distribution
of the network as side information ({pk}k=1,...,n−1). In the
absence of such information, we show that for a class of
random power law networks, a natural myopic online greedy
algorithm recruiting the node with the maximum observed
degree approximates MEUD – this is our MOD algorithm.
Expected value analysis as well as simulations in Sec. V show
that MOD is a good heuristic when operating on realistic
social networks, such as those obeying a power law degree
distribution.

III. DATASETS & SIMULATION SETUP

We run experiments on 6 different social networks datasets
(Enron, Slashdot, Wiki-talk, EmailEU, Youtube, Flickr) as
well as three different types of “non-social” networks
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(Gnutella [7], HepTh, Amazon). All these datasets, except
Flickr [8], are available online at the SNAP repository [9]. Due
to space constraints, in this paper we only show the results for
the Enron email dataset (with n = 36, 692, average degree
〈k〉 = 10.02 and average clustering coefficient c = 0.5),
Slashdot blog commentators’ dataset (n = 82,168, 〈k〉 = 0.1,
c = 0.23), Wiki-talk (n = 2,394,385, 〈k〉 = 3.9, c = 0.2) is
Wikipedia user-to-user discussion graph, and the Flickr online
photosharing network with n = 1,715,255 nodes and average
degree 〈k〉 = 12.2. The results of the remaining datasets are
in the companion technical report [5].

Our metrics consist of averages over 1,000 simulation runs.
We use colored shaded regions (shadows) in our plots to show
the value of standard deviation plotted around the average. In
our simulations B(1) is initialized with a single node recruited
uniformly at random from V . The order in which neighbors
of a node appear on its list of neighbors is randomized from
run to run to avoid arbitrary biases that may arise from the
choice of node IDs in the dataset.

IV. BFS, DFS, AND RW COVERS

We begin our study by comparing the performance of
two different approaches derived from basic graph traversal
algorithms: Breadth-First Search (BFS) and Depth-First
Search (DFS). We will then discuss Random Walks (RW).
BFS is widely used in network sampling [8], [10], [11], [12].

In BFS and DFS the order in which nodes are recruited de-
pends on the time they have been observed. When a new node
is recruited, both algorithms check if each of its neighbors is
already recruited or has already been observed. The difference
is that BFS stores the observed nodes in a FIFO data structure
while DFS in a LIFO one.

Fig. 2 shows the average cover size 〈W (t)〉 of BFS and DFS
as a function of the number of recruitments t on the Enron and
on the Slashdot networks. We find similar results on all of our
social network datasets, please refer to our technical report [5].
The simulations show that, while both BFS and DFS achieve
the full coverage for t ≈ N , BFS significantly outperforms
DFS for all other values of t. To understand this difference,
we qualitatively analyze these algorithms. The performance
difference is due to the fact that larger degree nodes are
discovered earlier (in a stochastic order sense) than lower
degree ones, and then BFS recruits them earlier than DFS
because it uses a FIFO data structure. Indeed, if we assume
t� N , the probability qv(t) that node v ∈ V is first observed
(and then inserted in N (B(t))) at step t is approximately

qv(t) ≈ (γv/N)(1− γv/N)t−1, (1)

where γv = kv/〈k〉 (this simple formula is a good approx-

For the sake of simplicity, we allow a slight abuse of notation, denoting
by 〈.〉 both the empirical mean and the expected value. Moreover, we use the
convention that 〈k〉 denotes the average degree and we also define 〈x|y〉 to
be the average of x given y.

imation in a configuration model, where nodes are recruited
independently by both algorithms). Thus, large degree nodes
tend to be observed earlier in the process than small degree
nodes. As BFS recruits the earliest observed nodes from
N (B(t)), BFS tends to recruit large degree nodes first. On the
other hand, DFS recruitment policy leaves the first observed
nodes to be recruited last, effectively leaving large degree
nodes to be recruited last.

Figs. 2 consistently show larger standard deviations for
BFS than for DFS. This is because the cover size of a
non-neglegible fraction of the BFS runs deviates from the
average. This instability is due to the strong dependence of
the BFS cover size on the initial node B(0) = {i}. As BFS
explores the network in “waves” (expanding rings from i), the
initial node selection may significantly impact BFS’s cover
size. In highly clustered networks (where nodes tend to be
connected in communities) we expect BFS to recruit nodes
with significantly coverage overlap, reducing its performance.

Interestingly, our results contradict previous results in the
literature [4], where is reported that DFS outperforms BFS
(and most other algorithms). The reason behind the disparity
between our conclusions and those of the previous works [4] is
explored in detail in [5]. In a few words, these previous works
considered mostly technological networks whose topologies
differ significantly from social networks (more precisely, the
HepTh citation network and Amazon “Customers Who Bought
This Item Also Bought” product networks (see Sec. III for
a brief description of these datasets). To understand this
disparity, we reproduce the results in Maiya and Berger-
Wolf [4] over the same datasets (see Figures 3(a) and 3(b))
and then perform another set of simulations now randomizing
some of the network connections (see Figures 3(c) and 3(d)).
Surprisingly, the randomized networks show results consistent
to those of social networks presented in our work: for instance,
that BFS significantly outperforms DFS. This points to the
peculiar structure of the networks analyzed in Maiya and
Berger-Wolf, which are not social networks, and that led to
their results.

We now discuss the cover of Random Walks (RW), that
have received increased attention as a tool for network sam-
pling [16], [17], [18], [19], [20], [21] mostly due to their
good statistical properties. In this paper we consider a basic
Random Walk where the node visited by the walk at step v+1
is selected uniformly at random among the neighbors of the
node visited at step v. All the nodes visited by the walk are
recruited. The RW shares commonalities with DFS in that it
also traverses the graph from the last recruited node. Despite
of this similarity, it does not suffer from DFS’s drawbacks of
delaying recruitment of large degree nodes. In fact, the next
recruited node is selected independently from the time it was

A configuration model [13] is a random graph parameterized by degree
distribution {pk}k=1,...n−1. Samples can be generated as follows. The
degree ki is attributed to each node i according to the selected degree
distribution. Each vertex i can then be thought as having ki stubs attached
to it. The graph is generated in steps by randomly matching two unmatched
stubs in the graph at each step. The configuration model is widely used in
the complex network literature [14], [15] also to simplify the analysis.
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(b) Slashdot
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(c) Wiki-talk Network
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(d) Flickr Network

Fig. 2: Empirical average cover size 〈W (t)〉 of various social networks. Comparison between Oracle, RW, BFS, DFS, and
MOD algorithms. x-axis in log-scale.
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Fig. 3: The two datasets in which DFS outperforms MOD. Comparison between the empirical average cover size 〈W (t)〉 of Oracle, RW,
BFS, DFS, and MOD algorithms. Figs. 3(a) and 3(b) show the results on the original networks and Figs. 3(c) and 3(d) show the results
in their randomized counterparts. Note that when randomized, we see results similar to those seen in the social networks. Thus, the good
performance of DFS and poor performance of MOD are due to the peculiar network topology of these graphs. x-axis in log-scale.

first observed. Moreover, under a configuration model, Eq. 1
characterizes the probability that the next selected node has
degree k. This probability is clearly skewed to large degree
nodes.

The plots in Figs. 2 confirm that RW performs significantly
better than DFS. More surprisingly, in most of the analyzed
networks (Enron, Wiki-talk and for Youtube and EmailEU
in our technical report [5]), RW significantly outperforms
BFS too, while in Slashdot and Flickr their performance
are comparable. This difference cannot be explained by the
considerations above: indeed Eq. 1 predicts that BFS and RW
have the same skew toward selecting larger degree nodes. We
support the claim that the difference is due to the clustering
structure of the graph. For example in the companion technical
report [5] we show that on an infinite grid BFS asymptotically

covers only a new additional node at each recruitment. On
the contrary, RW in-depth search performs significantly better
than BFS on 3D grids when the probability for the RW
to go back to an already visited node is 0.34. The higher
the dimensionality of the grid the larger the performance
gap. To test if this explanation is valid also for the traces
considered here, we performed simulations (not reported here)
on randomly rewired instances of the above networks. In this
rewired networks the clustering effect is significantly reduced
and we observe that the performance of RW and BFS are
indistinguishable.

V. MEUD ALGORITHM

One lesson to take away from Guha and Khuller’s Oracle
(see Sec. II) is that the knowledge of which node in N (B(t))
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has the largest uncovered degree (number of neighbors not in
the cover) is the key to achieving a good cover. While the
uncovered degrees of nodes in N (B(t)) are not available to
us, we may still be able to estimate them. In this section we
propose an algorithm, denoted Maximum Expected Uncov-
ered Degree (MEUD), that at each step t recruits the node in
N (B(t)) with the largest expected uncovered degree.

Some preliminary observations will make clearer the com-
plexity of the problem MEUD is addressing. Let d(v, t) be
the observed degree of node v after t recruitments. Consider
two observed node v1, v2 ∈ N (B(t)) where v1 has a larger
degree than v2. Intuitively, we expect v1 to have a larger
expected observed degree than v2. This result can be formally
proven under a configuration model. Still, it would be incorrect
to conclude that the node with the largest observed degree
has also the largest expected uncovered degree. Indeed this
conclusion may be true or false depending on the degree
distribution of the observed nodes (it is easy to build examples
where opposite choices should be done for different degree
distributions even when the observed degrees are the same).
We have observed in the previous section that both BFS
and RW recruit earlier nodes with larger degree. Then the
degree distribution of the observed and uncovered nodes keep
changing (these sets become poorer and poorer of large degree
nodes). A consequence is then that the optimal choice of the
next node to recruit depends also on the advancement of the
recruitment process.

In our analysis we assume G follows a configuration model
and we omit t from some variables for the sake of conciseness.
Let 〈k|d〉 and 〈u|d〉 denote the expected degree and the
expected uncovered degree of a node with observed degree
d, respectively. Under the configuration model of G, if a node
has a larger expected excess degree than another node, then it
also has a larger expected uncovered degree. In fact each edge
that contributes to the excess degree has a (positive) probability
of being connected to an uncovered node. Thus, larger excess
degree implies larger expected uncovered degree. Then, we
want to identify the node in N (B(t)) with the largest excess
degree.

In what follows we obtain an approximation of 〈k − d|d〉
using {pk}k=1,..., that we assume to be known for the moment.
Later we show that for some important families of random
networks, the node with maximum observed degree is also the
node with the maximum expected excess degree. Let ζk(t) be
the probability that a random node in B(t) has degree k. Note
that ζk(0) = pk as, by definition, the initial node in B(0) is
randomly sampled from V . In general we have

ζk(t) = Cpk(1− bk(t)),

where bk(t) is the fraction of nodes of degree k in B(t) and
C is a normalization constant.

Let N (d)(B(t)) ⊆ B(t) denote the set of nodes with at
least d recruited neighbors. Note that N (1)(B(t)) = N (B(t))
and N (0)(B(t)) = B(t). Under the configuration model we
can determine {N (d)(B(t))}d=1,... and W(t) through the
following process that dynamically assigns nodes from B(t)

to these sets. Let’s assume N � 1 so we do not need to
worry about self-loops. Detach all nodes v ∈ V from their
neighbors such that node v with degree kv has kv “active
stubs.” Iteratively match an active stub in B(t) to another
random active stub in V . Whenever an active stub of a node
u ∈ N (d)(t), d ∈ {0, 1, . . .}, is selected, we add v to
N (d+1)(t) and mark both stubs of the edge “inactive”, that
is, we promote u to N (d+1)(t) but reduce its active degree by
one.

Now we need to consider the degree distribution of the
unrecruited nodes. The following recursion describes the de-
gree distribution {ζ(d+1)

k }k=d+1,... of the nodes in N (d+1)(t)

in terms of the degree distribution {ζ(d)k }k=d,... of nodes in
N (d)(t):

ζ
(d+1)
k =

(k − d)ζ
(d)
k

〈k〉ζ(d) − d
, k ≥ d, (2)

and ζ
(d)
k = 0 for k < d, where 〈k〉ζ(d) ≡

∑
k≥0 kζ

(d)
k is

the average degree of nodes with at least d recruited (black)
neighbors.

To obtain 〈k|d〉 from 〈k〉ζ(d) we use the fact that
N (0)(B(t)) ⊇ N (1)(B(t)) ⊇ · · · . Let Nd be the number
of nodes in N (d)(B(t)) with observed degree d. Note that
N1 = N(B(t)). For any two sets A, A′, such that A′ ⊆ A, the
following holds: vol(A−A′) = vol(A)−vol(A′). Considering
A = N (d) and A′ = N (d+1) it is easy to show that

〈k|d〉 =

〈
Nd

Nd −Nd+1

〉
〈k〉ζ(d) −

〈
Nd+1

Nd −Nd+1

〉
〈k〉ζ(d+1) .

The expectations of 〈Nd/(Nd − Nd+1)〉 and 〈Nd+1/(Nd −
Nd+1)〉 are hard to compute, as they are expectations over all
sample paths. However, in practice, the algorithm can estimate
the values of 〈Nd/(Nd − Nd+1)〉 and 〈Nd+1/(Nd − Nd+1)〉
empirically using the sample average, 〈Nd/(Nd −Nd+1)〉 ≈
Nd/(Nd −Nd+1) and 〈Nd+1/(Nd −Nd+1)〉 ≈ Nd+1/(Nd −
Nd+1).

Our calculations of 〈Nd/(Nd −Nd+1)〉 and 〈Nd+1/(Nd −
Nd+1)〉 should be used with caution as they do not consider the
extra density of connections inside B(t) created by the MEUD
recruitment process. Taking this bias into account is not trivial
and is the subject of future work. However, in our MEUD
simulations we observe that Nd+1 � Nd for large d, and,
under such scenario, it is reasonable to make the following
simplification 〈k − d|d〉 ≈ 〈k − d〉ζ(d) .

Unfortunately, obtaining 〈k − d〉ζ(d) still requires knowing
ζ
(d)
k , ∀k, d, which in turn requires knowing the degree distri-

bution. We observe that if 〈k − d〉ζ(d) is increasing in the
observed degree d, then MEUD simplifies to an algorithm
that always selects the node v? with the maximum observed
degree in N (B(t)). We denote this simplified MEUD heuristic
Maximum Observed Degree (MOD).

In the technical report [5] we perform the calculation of
〈k−d〉ζ(d) for different random graph families and in particular
for random graphs for which ζk follows a power law with
exponential cut-off (that has been shown to well approximate
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a variety of real world networks [22], [23]):

ζk =
k−τCkt
Liτ (Ct)

, for k ≥ 1,

where Ct < 1 is a parameter that depends on B(t) and t
and the normalization factor Lih(x) =

∑∞
k=1 x

k/kh is the h-
th polylogarithm function of x. For such networks we prove
analytically that at step t we should recruit: 1) the node v ∈
N (B(t)) with the largest observed degree if τ = 1, 2) the
node with either the largest or the second largest observed
degree if τ = 2, 3) a node with observed degree at least dτe
if Ct → 1 and τ > 0. These results suggest that MOD is a
good approximation of MEUD in these networks.

Also, in practice our simulations show that MOD outper-
forms all other heuristics over all social networks (see Enron,
Slashdot, Wiki-talk, and Flickr in Figure 2 and Youtube and
EmailEU in our technical report [5]). We also see that in
the randomized versions of the HepTh and Amazon product
networks MOD is either significantly better (for the random
HepTh, Figure 3(c)) or no worse than all other methods
(for the random Amazon, Figure 3(d)). The results are clear,
MOD is superior to all other algorithms (in the randomized
HepTh it even matches the performance of Oracle). In more
structured networks, unlike in social networks, such as the
original HepTh citation network and Amazon’s co-purchase
product network, DFS outperforms MOD due to the particular
structure of these networks. It remains an open question
whether, in respect to the network cover problem, most social
networks are more similar to “random networks” or more
similar to “highly structured networks”. Our datasets and
simulation results suggest that social networks tend to be
unstructured, more similar to random networks through the
network exploration point of view.

VI. CONCLUSIONS & RELATED WORK

We have considered the problem of providing an online
algorithm that, by recruiting nodes through their neighbors,
greedily maximizes the network cover of an online social
network. In our setting the network topology was unknown
and the only topological information available came from the
identity of the neighbors of already recruited nodes.

In this scenario, we have evaluated the efficacy of existing
network sampling algorithms (BFS, DFS, RW) and proposed
a new algorithm, Maximum Expected Uncovered Degree
(MEUD), inspired by the one-hop lookahead greedy approx-
imation to the minimum connected dominating set of Guha
and Khuller [3], (denoted “Oracle” in this work) to recruit at
every step the node with the largest excess degree. The MEUD
heuristic recruits the node with the largest expected uncovered
degree with the help of degree distribution side information. In
the absence of degree distribution information, we have shown
that on random power law and Erdös-Rényi networks MEUD
can be approximated by MOD (Maximum Observed Degree),
a greedy heuristic that at every step recruits the node with the
largest observed degree. We have shown through extensive

simulations on real world social network datasets that MOD
outperforms all other algorithms, often quite significantly.

Finally, we have uncovered an interesting previously un-
known property of DFS: DFS performs remarkably poorly on
social networks. In fact, DFS seems to avoid recruiting nodes
with large excess degrees. We have argued that this is due to
its tendency to keep large degree nodes at the bottom of its
recruitment queue. We note in passing that this property of
DFS may find applications in undercover military operations
where one seeks to recruit target individuals with the minimum
exposure (number of connections) to unrecruited targets.
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