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Abstract Network growth and evolution is a fundamental theme that has puzzled

scientists for the past decades. A number of models have been proposed to capture

important properties of real networks. In an attempt to better describe reality, more

recent growth models embody local rules of attachment, however they still require

a primitive to randomly select an existing network node and then some kind of

global knowledge about the network (at least the set of nodes and how to reach

them). We propose a purely local network growth model that makes no use of global

sampling across the nodes. The model is based on a continuously moving random

walk that after s steps connects a new node to its current location, but never restarts.

Through extensive simulations and theoretical arguments, we analyze the behavior

of the model finding a fundamental dependency on the parity of s, where networks

with either exponential or a conditional power law degree distribution can emerge.

As s increases parity dependency diminishes and the model recovers the degree

distribution of Barabási-Albert preferential attachment model. The proposed purely

local model indicates that networks can grow to exhibit interesting properties even

in the absence of any global rule, such as global node sampling.

1 Introduction

The growth and evolution of networks is a fundamental problem in Network Science

specially in the light that networks are constantly changing over time. Explaining

how and why different real networks grow and evolve the way they do has kept

researchers busy for the past decades. Not surprising, various mathematical models

for network growth and evolution have been proposed in the literature, either ad-hoc

models tailored to specific domains, or general models aiming to capture general

principles. A celebrated general network growth model is the Barabási-Albert (BA)

model [1] which embodies the principle of preferential attachment found in various

real networks.

A recognized drawback of most proposed network growth and evolution models

is the assumption of global information about the network [2, 4, 5, 8]. For example,

the BA model has a primitive to randomly select a node from the existing network

according to the degree distribution. To relax such assumption, models that attach
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new nodes and edges to the existing network using local attachment rules, such as

the Random Walk Model [9, 10], have been proposed. Clearly, random walks require

knowledge of the current node degree and its neighbors, a much more localized

information. Moreover, it seems more reasonable that new nodes connect to nearby

nodes (through some local process) rather than selecting new neighbors from the

entire population (through some global process). However, the Random Walk Model

studied in [9, 10] and others [5, 8] still require a primitive to randomly select a node

from the network (for the purpose of restarting the walker, for example) and are

thus not purely local, because they need to know the number and the identity of all

network nodes as well as a way to reach them. Such models have local attachment

rules, but global “entry point” selection. More recently, models that have no global

primitives have started to be explored [6, 7]. A drawback of these other models is

that they rely on an initial network already containing all nodes such as a lattice or

a regular tree, that is then modified according to local rules, and thus are technically

not growth models.

In this work we propose and explore a network growth model that is purely local,

requiring no global selection over the nodes or any initial network. The model works

as follows:

0. Start a network with a single node with a self-loop and place a random walk on

this node.

1. Let the random walk take exactly s steps.

2. Connect a new node to the node where the walker resides.

3. Stop if the number of nodes in the network is n, otherwise go to Step 1.

Intuitively, the random walk moves around continuously and after every s steps a

new node is added and connected to its current location. The new node immediately

becomes part of the network and the walker sees no difference between it and any

other node. Note that the model has two parameters s and n and grows an undi-

rected tree (apart from the self-loop at the initial node) since every new node starts

with degree one. Moreover, the random walk is uniform on the neighbors and is

never restarted, thus its name NRRW (No Restart Random Walk) model. Figure 1

illustrates a sample path of network growth with s = 1 and s = 2. Can such purely

local model give rise to interesting network structures such as networks that exhibit

a power-law degree distribution?

Interestingly, we uncover various non-trivial features of this model such as the

fundamental dependency on the parity and magnitude of s and its relationship to

the degree distribution. If s is odd and small we find that networks generated by the

model tend to have very short-tailed degree distribution and very long distances. On

the contrary, if s is even and small, networks exhibit a special kind of power law de-

gree distribution (to be formalized later) and very short distances! As s increases the

effect of parity decreases and networks exhibit a heavy-tailed degree distribution.

Interestingly, with s large enough, the observed degree distribution follows a power

law with exponent identical to the network generated by the BA model, recover-

ing the effect of preferential attachment. We also rigorously prove that for s = 1

the random walk is transient and the degree of every node is bounded from above
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by a geometric distribution. Other interesting features will be highlighted in what

follows.

The model here proposed is very related to the Random Walk Model [9] which

also allows a random walk to take s steps before connecting a new node. The key dif-

ference is that in [9], after a new node is attached to the network, the random walk is

restarted uniformly at random across all existing nodes in the network. Our random

walk never restarts, and is therefore a purely local model. Interestingly, the authors

of [9] show (through simulations and approximations) that their model is closely

related to the BA model and yields a power law degree distribution independently

of s. However, recently this finding has been questioned and for s = 1 it was mathe-

matically proven that this is not the case [3]. Our model and findings contributes to

this debate and possibly sheds light on how both results could be reconciled (more

on this on Section 6).

The remainder of this paper is organized as follows. Section 2 discusses the

model and its intuitive behavior, as well as the connection with prior works. Sec-

tion 3 presents the evolution of node degree induced by the model. Section 4 ana-

lyzes the depth of the tree generated by the model. Section 5 presents our theoretical

findings for the case s = 1, showing the transient nature of the model in this case.

Finally, we summarize our findings and present a brief discussion in Section 6.

Fig. 1 Examples of sample path for network growth for s = 1 (top) and s = 2 (bottom). The red

square denotes the walker position. The snapshots represent the growing network just after the new

node is connected.

2 Network Growth Model

As presented in Section 1, NRRW (No Restart Random Walk) model can be in-

terpreted as a simple random walk that attaches a new node to its current location

every s steps. Similar proposed random walk models for growing networks assume
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that the random walk restarts either after connecting a new node or adding some

number of edges to the new node [9, 10]. A restart consists of randomly select-

ing a node from the existing network (usually uniformly) and placing the random

walk on that node. Despite the similarities, the lack of restarts makes NRRW fun-

damentally different from models with restart. In particular, the restart significantly

reduces the correlation between consecutive node additions since it is very unlikely

that the random walk will visit the previous new node when walking to add a new

node. Intuitively, the random walk loses memory at every restart. Moreover, restarts

have the drawback of assuming knowledge of all network nodes and random access

to any such node, and is thus not a purely local growth model.

What is intuitively the behavior of NRRW? In a sense, when s is large the random

walk will have little memory between node additions. However, this behavior is

different from restarts since the random walk will not find itself on a node chosen

uniformly at random but on a node chosen randomly proportional to its degree.1

Thus, when s is large the NRRW seems similar to the BA model since new nodes

connect to random nodes chosen proportionally to their degree. However, since s

is fixed and the network grows, will NRRW indeed exhibit a behavior similar to

BA model when s << n and then s will finally become small in comparison to the

network size?

What about small values for s? Intuitively, the random walk will frequently stum-

ble over the newly created nodes. Interestingly, this local behavior depends funda-

mentally on the parity of s. If s = 1 then the random walk can always walk to the

newly created node and add a new node to it. Such behavior is just not possible if

s = 2 and the walker is not on the root. This qualitative difference is not limited to

s = 1 and s = 2. When s is odd the walker can always land to the most recently

added node after s steps and then add a new node. For s even, this is impossible

unless the walker does not traverse the loop at the initial node.

The above observation justifies why in the NRRW model we consider a single

node with a self-loop as a starting point. If this was not the case, for any s even

the random walk would only add nodes to the original node, trivially constructing

a star since it can never step on a newly created node. The loop allows a change of

“parity” with respect to the levels of the tree where new nodes can be added. In fact

if the random walk is at level k of the tree and s is even, the random walk can only

add new edges at the levels k+ 2h for h =−⌊ k
2
⌋, . . . ,−1,0,1,2, . . . until it does not

traverse the loop. For s odd this is not necessary as the walker can step on a newly

created node to be able to add to nodes in any level of the tree without returning to

the root. Thus, yet another fundamental difference between s even and odd.

Will these differences between small and large s and even and odd s manifest

themselves in structural properties of the trees generated by the model? In particular,

will the degree distribution fundamentally depend on s? In what follows we explore

the degrees and other properties of the trees generated by the model showing in fact,

that s plays a key role.

1 Recall that the steady state distribution of a random walk on a fixed network is given by di/∑ j d j ,

where di is the degree of node i.
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2.1 Simulations

In order to study the model we designed and implemented an efficient simulator (in

C++) for the NRRW model which has as parameters s, n and r, with r denoting the

number of independent runs. For each run, we start with a single node with a self

loop, move the random walk s steps, connect a new node to its current location,

and repeat. We collect statistics for the various properties merging the results across

the r simulation runs, such as degree distribution (fraction of nodes with degree k

across all runs). The worst case time complexity of a simulation run is O(sn logn)
but the amortized time complexity is O(sn), as we use a growing vector to represent

the neighbors of a node that doubles its capacity when needed. Thus, a walker step

requires Θ(1) time and a node addition takes O(1) amortized time.

3 Degree Behavior

In this section we study the degree distribution of NRRW through extensive simula-

tions illustrating its behavior and dependencies. Figure 2 shows the Complementary

Cumulative Distribution Function (CCDF) of nodes’ for various values for s. Sur-

prisingly, when s is small (between 1 and 8) the respective degree distributions are

fundamentally different, exhibiting a kind of power law for s even and an exponen-

tial tail for s odd. Note that when s = 1 we do not observe nodes with degree larger

than 40 while for s = 2 a non-negligible fraction of nodes have degree greater than

105. We also observe opposite trends in the degree distribution as s increases. For

s odd, increasing s yields a distribution with heavier tails, while for s even increas-

ing s yields a distribution with a lighter tails. As s increases into a medium range

(between 15 and 64) the trends continue and the two distributions approach each

other. For even larger s (between 127 and 256) the degree distributions become very

close, being almost indistinguishable. Interestingly, with large s the degree follows

a power law distribution, suggesting that the effect of even s value dominates the

dynamics. Moreover, for large s the CCDF exhibits a power law with exponent ap-

proximately −2 as it is also the case for the BA model which is based on linear

preferential attachment.2 This supports our initial intuition that when s is large, the

random walk samples nodes (adding a new node and connecting to it) with proba-

bility proportional to their degree, behaving similarly to the BA model.

Figure 3 shows the degree distribution for s = 2 but over different values for n.

Interestingly, note that independent of n the degree distribution exhibits the same

power law exponent. However, as n increases the fraction of nodes greater than k

becomes smaller for any fixed k > 0 (with the exception of the cut-off regime which

occurs when k is near n). This implies that the fraction of nodes with k = 1, the mini-

2 Recall that if D follows a power law distribution, then P(D = k)∼ k−α where α > 1 is the power

law exponent, and it follows that P(D ≥ k)∼ k−(α−1). Thus, the CCDF has an exponent that is one

unit less than the PDF.
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Fig. 2 Empirical degree Complementary Cumulative Distribution Function (CCDF) for various

values of s in log− log scale (n = 106, r = 103).

mum degree, is increasing with n. This is clear by observing d = 1 (leftmost point in

x-axis) and noting that the fraction of nodes with degree greater than 1 is decreasing

with n. Note that such behavior does not occur for s = 1 which maintains its degree

distribution as n increases (the dots for different n values are barely distinguishable

in plot).

If for s = 2 the fraction of nodes with degree 1 increases and converges to 1 as

n goes to infinity, then we cannot claim that the degree distribution follows a power

law. However, we can consider the degree distribution of the nodes that do not have

degree 1. In particular, the conditional degree distribution, conditioned on D > 1,

is shown in Figure 3. Note that the conditional degree distribution does not show

dependance on n and moreover seems to follow a power law. This finding is quite

interesting since the fraction of nodes with degree 1 can converge to 1 (as n → ∞)

while the remainder of nodes can still follow a power law. This may shed new light

on the contrasting results in [9] and [3]. We return to this discussion in Section 6.

Figure 3 also shows the fraction of nodes with degree greater than 1, P(D> 1), as

a function of n for different even s values (for s odd, it does not depend significantly

on n as shown in the top right part of Figure 3 for s = 1). Note that for small s the

fraction goes to zero reasonably fast (and thus, the fraction of nodes with degree 1

goes to one). As s increases the rate at which P(D > 1) decreases also decreases.

Note that for large s (128 or 256) this decrease is barely noticeable, despite being

present. Interestingly, as s odd increases, P(D > 1) decreases but without showing
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any dependency on n. When s = 257, P(D > 1) approaches the value shown in

Figure 3 for s = 256 (result not shown due to space constraints).
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Fig. 3 Empirical degree CCDF for various values of n in log− log scale (top plots). Empirical

degree CCDF conditioned on the degree being greater than 1; fraction of nodes with degree greater

than 1 (bottom plots).

As shown, the NRRW model has a very particular behavior with respect to the

degree distribution. In Section 6 we provide a further discussion with a few conjec-

tures for its asymptotic behavior with n.

4 Level Behavior

We now investigate the level of the nodes on the trees generated by the NRRW

model.3 As we have shown above, the model dynamics has a fundamental depen-

dence on the parity of s, specially when s is small. Indeed, this dependence also

manifests itself on the level of the nodes. Figure 4 shows the level distribution (frac-

tion of nodes at level larger than ℓ) for a few small values of s separated into odd

and even, respectively. The level distribution for s even decreases very fast. Note

that although n = 106, when s = 2, 90% of nodes are at level 4 or less and no node

3 Recall that the level of node on a tree is given by its distance to the root, and thus the root is at

level zero.



8 B. Amorim, D. Figueiredo, G. Iacobelli and G. Neglia

is at level 7 or higher. As s even increases the level distribution decreases relatively

slower, with 90% of nodes found at level greater than 4 when s = 8. Still, no node

is found at level greater than 10. The behavior is completely different for s odd,

and the level distribution seems to be uniform (straight line on a linear-linear plot).

For s = 1 the distribution has the heaviest tail with about 4 nodes per level, giv-

ing rise to 2.5 · 105 different levels. For s = 7 there are about 40 nodes per level,

giving rise to 2.5 · 104 different levels. Interestingly, as s even increases the level

distribution becomes heavier while as s odd increases the level distribution becomes

lighter. Figure 4 also shows the level distribution for large s. Indeed, as s increases

the level distributions for s even and s odd become more similar and the dependency

on the parity diminishes. This behavior is similar to what observed for the degree

distribution, illustrated in Section 3.

Note that from the level distribution we can infer the kind of trees that NRRW

generates. When s is small and even, the trees generated are “fat and short”, with

most nodes near the root and a few with very large degrees. When s is small and

odd, the trees are “thin and long” with few nodes spread across many levels and no

node with large degree. As s increases, the two kind of trees move in each other’s

direction, becoming more and more similar.
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Fig. 4 Empirical CCDF of the node level for different s values (n = 106, r = 103).
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5 Theoretical findings for s = 1

The numerical simulations with s odd and in particular with s = 1 suggest that trees

grow in depth as the number of nodes increases. In particular, the growth in depth

seems linear on the number of nodes. This is an indication that the random walk is

continuously pushing the tree to lower depths just never to return to its origins. In a

nutshell, the random walk is transient and visits each node in the tree only a relative

small number of times, with high probability. The following Theorem rigorously

formalizes this intuition.

Theorem 1. In the NRRW model with s = 1, the number of visits to a node is

stochastically dominated by 1 plus a geometric random variable with support on

Z>0.

Proof. We consider here that the initial network consists of a single node with no

self-loop. This simplifies the notation and does not compromise the main argument.

Let r denote the initial node of the growing network hereafter referred to as the

root of the tree (at any step the growing network is a tree) where the walker resides

at time zero. Note that r is the only node at level zero. Let Xn be the level (i.e. the

distance from the root) of the node visited by the NRRW at step n. We call the

process {Xn,n ∈ Z≥0} the level process. Note that the random walk visits r the same

number of times that the level process visits level zero. At step n > 0 the NRRW

is in a node vn with at least two edges: the one the NRRW has arrived from and

the new one added as a consequence of the NRRW’s arrival. Let dn ≥ 2 denote the

degree of node vn. If vn 6= r, the NRRW jumps from vn to a node with larger level

with probability dn−1
dn

≥ 1
2

and with the complementary probability 1
dn

≤ 1
2

to a node

with smaller level. If vn = r, then the level can obviously only increase. Note that,

due to the fact that degrees keep changing because of the arrival of new edges, the

level process is non-homogeneous (both in time and in space).

We now study the evolution of the level process every two steps, i.e. we consider

the process Yn , X2n. Given that the network is a tree and X0 = 0, the two-step

level process can be seen as a non-homogeneous reflecting ‘lazy’ random walk on

2Z≥0 = {0,2,4, . . .}. We denote by pk,h(n) the probability that the level at step n+1

is h conditioned on the fact that it is k at step n. Although the notation hides it, we

observe that the probabilities pk,h(n) depend on the whole history of the NRRW until

step n. The reason to consider the two-step level process is that we can get bounds

on the transition probabilities pk,h(n) that allow a simple comparison with a (biased)

homogeneous random walk. The bounds derived above for Xn lead immediately to

conclude that pk,k+2(n) ≥
1
2

1
2
= 1

4
for any level k ≥ 0 and pk,k−2(n) ≤

1
2

1
2
= 1

4
for

k ≥ 2, but we can get a tighter bound for pk,k−2(n). If the NRRW is at level k, all the

nodes on the path between its current position and the root r have degree at least 2.

If it then moves to node v at level k− 1, a new edge is attached to v, whose degree

is now at least 3. The probability to move from v further closer to the root to a node

with level k−2, is then at most 1
3
. It follows then that pk,k−2(n)≤

1
2

1
3
= 1

6
for k ≥ 2.

We consider now a homogeneous biased lazy random walk (Y ∗
n )n≥0 on 2Z≥0

starting from 0 with transition probabilities p∗k,k+2 =
1
4

for all k ∈ 2Z≥0 and p∗k,k−2 =
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1
6

for k ∈ 2Z≥0 and k 6= 0. We show that if (Y ∗
n )n≥0 also starts in 0 (Y ∗

0 = 0), it is

stochastically dominated by (Yn)n≥0. We prove it by coupling the two processes as

follows. Let (ωn)n≥0 be a sequence of independent uniform random variables over

[0,1]. We use them to generate sample paths for both processes (Yn)n≥0 and (Y ∗
n )n≥0

as follows:

Yn+1 =











Yn − 2, if ωn ∈ [0, pk,k−2(n))

Yn + 2, if ωn ∈ [1− pk,k+2(n),1]

Yn otherwise

Y ∗
n+1 =











Y ∗
n − 2, if ωn ∈ [0, p∗k,k−2)

Y ∗
n + 2, if ωn ∈ [1− p∗k,k+2,1]

Y ∗
n otherwise

where pk,k−2(n) and p∗k,k−2 are 0 if k = 2. We start observing that if Yn and Y ∗
n have

the same value k, then every time Yn increases also Y ∗
n increases because p∗k,k+2 =

1
4
≤ pk,k−2(n). On the contrary if Y ∗

n decreases (as it can happen only for k ≥ 2),

then Yn may decrease or not because pk,k−2(n) ≤
1
6
= p∗k,k−2. It follows that if Yn

and Y ∗
n are at the same level, then Y ∗

n+1 ≤ Yn+1.

We are going to prove by induction on n that Y ∗
n+1 ≤ Yn+1 for every n. With a

slight abuse of terminology we say that Yn increases (resp. decreases) if Yn+1 > Yn

(resp. Yn+1 < Yn). We start observing that indeed Y ∗
0 ≤ Y0, because both processes

start in 0. Let us assume that Y ∗
n = h ≤ k = Yn. For all values of h, every time Y ∗

n

increases also Yn increases because p∗k,k+2 =
1
4
≤ pk,k+2(n) and then Y ∗

n+1 = h+1≤

k + 1 = Yn+1. If h ≥ 2, then p∗h,h−2 = 1
6
≥ pk,k−2(n) and if Yn decreases then Y ∗

n

must also decrease (Y ∗
n+1 = h− 1 ≤ k − 1 = Yn+1). It follows that for h ≥ 2 then

Y ∗
n+1 ≤ Yn+1. The only case when Yn may decrease without Y ∗

n decreasing is when

h= 0 and k 6= 0, but in this case Y ∗
n+1 = 0 and Yn+1 ≥ 0. This proves that Y ∗

n+1 ≤Yn+1

for every n.

Given that Y ∗
n ≤ Yn and both processes start at level zero, the number of visits of

(Yn)n≥0 to level zero is bounded by the number of visits of (Y ∗
n )n≥0 to level zero. The

homogeneous biased lazy random walk (Y ∗
n )n≥0 is transient since p∗k,k+2 = 1/4 >

p∗k,k−2 = 1/6. Thus, the probability of the first return time to level 0 is f0 < 1.

By the strong Markov property, the number of visits to level 0 is geometrically

distributed on the set Z>0 with parameter equal to 1− f0. Since a visit to level

zero in (Xn)n≥0 (one level process) implies a visit to level zero in (Yn)n≥0 (two level

process), then it follows that the number of visits of (Xn)n≥0 to level zero is bounded

by a geometric random variable and then even more so by 1 plus the same geometric

random variable.

Now let us consider any node v in the growing network. If the NRWW never

visits v, then the degree of b is 1 and the thesis follows immediately. Otherwise, let

consider the first time the NRWW visits v to be time t = 0 and let consider v to be

the root of the current tree. We can retrace the same reasoning and conclude that the

number of visits to v for t > 0 is bounded by a geometric random variable on Z>0

with parameter equal to 1− f0. Then the total number of visits to v is bounded by 1

plus such random variable. This concludes the proof. ⊓⊔

Corollary 1. In the NRRW model with s = 1, the degree distribution of any node is

bounded by a geometric distribution.
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This follows since the degree of every node equals the number of visits of the ran-

dom walk to the node plus 1 (the plus 1 accounts for the fact that any node joining

the network, although not yet visited by the walker, has degree 1).

6 Discussion and Conclusion

As we have shown, the NRRW model exhibits interesting features that fundamen-

tally impact the networks it generates. For s = 1 the random walk is transient and

node degree is bounded by a geometric distribution (Theorem 1). For s = 2, the

fraction of nodes with degree 1 seems to converge to 1 as n → ∞. However, the con-

ditional degree distribution seems to follow a power law. Can such results be made

mathematically rigorous? Other interesting questions also emerge from our analysis

of the NRRW model. In particular, our numerical simulations seem to indicate that

for any s even, the fraction of nodes with degree 1 will converge to 1 as n → ∞.

On the other hand, our simulations also indicate that this is not the case for any s

odd. So will there be a fundamental difference between a fixed but arbitrarily large

even and odd s? It is hard to imagine that s = 210 and s = 210−1 would have funda-

mentally different behavior, since in both cases the random walk moves quite a lot

before adding a new node. Of course, any fixed s will be small as n → ∞. Thus, we

make the following conjecture:

Conjecture 1. For any fixed s even, the fraction of nodes with degree one converges

to 1, as n → ∞. For any fixed s odd, the fraction of nodes with degree one converges

to a number strictly less than 1, as n → ∞.

If true, such conjecture would imply that the degree distributions are also never

identical, for any fixed s even or odd. However, our numerical results indicate that

the conditional degree distribution (conditioned on degree being greater than one)

for s even, seems to converge to a power law as n → ∞. On the other hand, for s = 1

we have proved that the random walk is transient and degree distribution is bounded

by a geometric distribution (Theorem 1). Can fixed odd s values really generate

power laws? If this is the case, then there would be a phase transition on s, from

inducing a network with degree distribution with an exponential tail (s = 1) to a

power law tail. Despite the numerical results indicating the heavy tail degrees for

s = {127,255}, we make the following conjecture:

Conjecture 2. For any fixed s even, the conditional degree distribution is bounded

from below by a power law, as n → ∞. For any fixed s odd, degree distribution is

bounded from above by an exponential, as n → ∞.

Such conjectures consider that n diverges. In practice n must be finite when gen-

erating a network with NRRW model. Thus, for a fixed n, the differences induced by

an even or odd s may diminish as s increases. In particular, the degree distribution

generated by even and odd s values may become arbitrarily close as s increases, as

we have observed in numerical simulations for a fixed n (Figure 2).
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Last, we return to the recent dispute if the Random Walk model with restarts

generates a power law degree distribution, independently of s [3, 9]. It has been

mathematically proved that when s = 1 the fraction of nodes with degree one con-

verges to 1, as n → ∞ [3]. At the same time, simulation results suggest that the

degree distribution follows a kind of power law [9]. We can attempt to reconcile

such findings by leveraging our own findings on NRRW model. When s = 1 the

new node is connected to a given existing node u if i) a neighbor of u is selected at

the restart and then ii) the random walk moves to u. A node whose neighbors are all

leaves would be selected with a probability proportional to its degree. Now it has

been shown that when n → ∞ the fraction of nodes that are leaves converges to 1,

then most of the neighbors of a non-leaf node are leaves and this node is essentially

selected proportionally to its degree, similarly to the BA model embodying pref-

erential attachment. Thus, the conditional degree distribution, leaving out degree 1

nodes, will follow a power law distribution with the same exponent as in the BA

model. In some sense, this reconciles the findings of the two prior works [3, 9].

To conclude, as exemplified above, a fundamental understanding of NRRW

model adds to our understanding of purely local network growth models. In par-

ticular, besides requiring a less strict assumption to operate, models that do not rely

on any global primitive can also generate networks with rich and diverse structural

properties.
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