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Abstract—WiFi-enabled buses and stops may form the back- only on bus-stop contacts and we study both single copy and
bone of a metropolitan delay tolerant network, that explois multiple copies options to route packets to their destimsti
nearby communications, temporary storage at stops, and pre \\e start with a simple mobility model for buses (Sec. 1)

dictable bus mobility to deliver non-real time information. This that i ted by the statistical vsis of t of |
paper studies the problem of how to route data from its sourceo al 1S supported Dy the sfatistical analysis Of a set of rea

its destination in order to maximize the delivery probability by ~traces of the public transportation system of Turin in ltaly
a given deadline. We assume to know the bus schedule, but weThis model allows us to represent the transportation system
take into account that randomness, due to road traffic condibns appropriately in terms of a graph with independent random
or passengers boarding and alighting, affects bus mobilityWe weights, that we call thestop-line graph(Sec. IV). Under

propose a simple stochastic model for bus arrivals at stops, thi tati qinal bl i identi t
supported by a study of real-life traces collected in a largeirban is representation, our original problem to identify wesi

network. A succinct graph representation of this model allws Maximizing the delivery probability by a given deadline (or
us to devise an optimal (under our model) single-copy routig maximizing theon-time delivery probabilitybecomes equiva-

algorithm and then extend it to cases where several copies #fe  |ent to a specific stochastic shortest path problem on th sto
same data are permitted. line graph. We are able to find an optimal algorithm, called

Through an extensive simulation study, we compare the opti- .
mal routing algorithm with three other approaches: minimizing ON-TIME, for the single-copy case (Sec. IV-A) and then to

the expected traversal time over our graph, minimizing the €Xxtend it for the multi-copy case through a greedy approach
number of hops a packet can travel, and a recently-proposed (Sec. IV-C). We compare the performance of these proposed

heuristic based on bus frequencies. Our optimal algorithm algorithms with three other heuristics (Sec. 1V-B) thatoals
outperforms all of them, but most of the times it essentially operate on the stop-line graph: an adaptation of the routing

reduces to minimizing the expected traversal time. For valaes lqorith d in 161 for bus-b icati
of deadlines close to the expected delivery time, the multepy ~2/90rithm proposed in [6] for bus-bus communications (we

extension requires onlyl0 copies to reach almost the performance refer to it as MN-HEADWAY), and the two naive algorithms,
of the costly flooding approach. MIN-DELAY, that determines the path with the least expected

weight, and MN-HoPS that minimizes the number of times

packets are forwarded until they are delivered to their des-
A bus-based network is a convenient solution as wirelegmations. Since the number of real-life traces we obtained

backbone for delay tolerant applications in an urban séenairs limited, the comparison (Sec. V) is based on simulations

In fact, a public transportation system provides access darried on a large set of synthetic traces generated on the

a large set of users (e.g. the passengers themselves), lsals of our bus mobility model and the schedule of Turin

is already designed to guarantee a coverage of the urlas system.

area. Moreover, such a wireless backbone is not significantl In the companion technical report [1] our analysis is ex-

constrained by power and/or memory limitations: a throwbarnded to the case when transmissions can fail.

can be easily placed on a bus and connected to its power

supply, or can be put in an appropriate place in bus stops, Il. RELATED WORK

which are usually already connected to the power grid to Most of the research on DTN routing has focused on bus-to-

provide lights and electronic displays. Finally, travehéis can bus communications [2], [4], [5] with the following apprdac

be predicted from the transportation system time-tablengfs Each vehicle learns at run time about its meeting process;

the actual times are affected by varying road traffic condgi then, the vehicles exchange their local view with other olelsi

and passengers’ boarding and alighting times, such a baekband use the information collected to decide how to route

still provides strong probabilistic guarantees on datavesl data. Unlike these studies, we mainly focus loums-to-stop

time that are not common in opportunistic networks. data transfersand derive a single-copy routing algorithm to
Given this scenario, this paper explores the basic questiomaximize the delivery probability by a given deadline. We

“how to route data over a bus-based network, from a givetmen extend the algorithm to address settings where several

source to a given destination, so that the delivery probigbil copies of the same data are permitted.

by a given deadline is maximized?Ve rely on the knowledge The use of fixed relay nodes was also considered in [3].

of bus schedule information and some stochastic charaateriThe authors report that the performance of a vehicular mtwo

tion of bus mobility, supported by real data traces. is improved by adding some infrastructure, like base gtatio
Most prior work exploits the contacts between the busesonnected to the Internet, a mesh wireless backbone, or fixed

In this paper we consider the alternative approach of rglyimelays (which are similar to our stops). They show that

I. INTRODUCTION



deploying some infrastructure has a much more significacttaracterization of the stochastic process of vehiclevalgri
effect on delivery delay than increasing the number of neobiht the stops.
nodes. These findings support our proposed architectute thalhe problem of maximizing the delivery probability by a
relies on an opportunistic connectivity between vehiclde® given deadline requires a realistic statistical charaéon
and fixed relays. of bus mobility patterns, which is also useful to generate a

We observe that we use the bus network for data transfarge set of synthetic traces and evaluate the performahce o
as it is used for passenger transfer. Thus, one could expegt routing algorithms.
that the same problem has already been addressed in th@/e have performed a statistical analysis of a one-day trace,
transportation literature (see [1] for more details). Heare provided by Turin’s public transportation company, wittusd
this is not the case: First, the possibility to exploit malbpy bus arrival times at their corresponding stops. Due to lack
is clearly absent in the transportation of people or merehasf space, the full details of this analysis appears only @& th
dize. Second, the probability to miss a transfer opporyunitompanion technical report [1]. Here, we only present the
is also not considered in transportation, while data temsffollowing two consequences of this analysis, and refer éorth
between two nodes may fail because of insufficient contagt Assumptions 1 and 2. These hypotheses are going to be kept
duration, channel noise or collisions. Third, even for &ng for granted in the rest of the paper and will be fundamental
copy routing, bus network passenger routes usually aim t develop our routing algorithm.
minimize the expected traversal tinfpossibly limiting the ~ Assumption 1:Bus travel times at consecutive stops are
maximum number of bus changes) and not to maximize tiglependent (but not necessarily identically distributed
delivery probability by a given deadline. particular, their distribution will depend on the corresping

In conclusion, to the best of our knowledge, this is the firgicheduled value).
paper that proposes an optimal routing algorithm that takespssumption 2:The distribution of the waiting time at a
advantage of bus schedule information as well as a stochastop (when switching between buses of different lines) only
characterization of bus mobility, supported by real deaes. depends on the stop and the characteristic ofigartingbus

I1l. M ODEL DEFINITIONS AND ASSUMPTIONS line, not on the line of the arriving bus.

In this section, we formally defin_e the terms and n_otation IV. ROUTING ALGORITHMS IN A BUS NETWORK
we use to describe a transportation system, following the
terminology used in transportation literature. As mentioned before, our routing algorithms aim to define
A transportation systerfi has a set of stops, denoted byan offline routing for the transportation system that maxesi
S, and a set of vehicles (buses), denotedihywhich travel data delivery probability by a given deadline.
between the stops according to a predetermined path and Refinition 1: Given a transportation system
predetermined schedule. For each vehicke V, the schedule 7 = (S,V,£,7(),t()), a source stops,, a destination
allows us to determine itsajectory, denoted trdjv), which is Stop sq, a start timet,q,+, and a deadlines;,,, the on-time
the ordered sequence of stops the vehicle traverseé)teaj delivery problemis to find a route between; and s; that
(50,51, ..5,). In addition, each vehicle is associated with starts after timety.,,» and maximizes the on-time delivery
a trip, denoted trigv), which is a time-stamped trajectory:probability; namelyPr{data is delivered before timg;,, }.
trip(v) = ((s0,70), (81,71),--- (80, 7n)), Such that a vehicle Next, we describe oustop-line graphfor a transportation
v should arrive at stop; along its trajectory at timer; = System. Note that in [1] we show that such a representation
7(v, 5;). We distinguish between the scheduled timend the is needed and simpler representations are not suited for our
actual timet; = t(v, s;), which is a random variable dependingoroblem. In the stop-line graptis; = (Va, Eq), nodes are
on road traffic fluctuations, passengers boarding and alight (s, ¢) pairs, wheres is a stop and is a line; (s, () € Vg if
etc.. and only if line/ € £ arrives at (or, equivalently, departs from)
A key concept in bus networks is the notion bifies stops € S. In addition, we add two node& and 3; which
which are basically different vehicles with the same trimjgc  are connected to all nodes that correspond to the source and
(at different times). Let{ denotes the set of lines. Fordestination stops. The edges@®f; are defined as follows: An
each vehiclev € V we denote its corresponding line byedge betweefs, ¢) and(s’, ¢') corresponds to a route between
line(v) = {v' € Vltrajlv) = traj(v’)}. Note that lines stopss ands’ on line ¢ that continues from stop’ on line
introduce an important characteristic of a bus transportat . If ¢ = ¢’ we call the edge @ravel edge while if ¢ # ¢
system: if a passenger misses a specific vehickhe/he can we call it atravel-switch edgeAn example ofG',; appears in
still catch another vehicle’ in line(v) and reach the sameFig. 1.
set of stops. We now define the random variables associated to the edges
In the sequel, we will refer to the transportation systemn Eg;. The random variable of a travel edge describes the
7T as the quintuple(S,V, L, 7(),#()), where the function corresponding travel time between two stops: formallyaser
7() is a way to represent the schedule arigl denotes a edgee = ((s, ), (s',£)) is associated with the random variable
we = tt(¢, s, s") describing the travel time of a linebus from
Iwe do not keep an explicit notation for the departure time béis from a stops to stops’. The random variable of a travel-switch edge
stop (which is not given by our traces). Notice that departimes determine . . .
includes the travel time between the corresponding stods an

the duration of the transmission opportunities, howeveséhare not important > . - "
in our setting, which does not take into account bandwidthstraints. the waiting time for the next line. Formally, a travel-sviitc
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Fig. 1. (a) Ex.ample of bus network with = {A, B,C, D, E, F'} and connecting a source and a destination with different tsmleimes. PathP;

£ = {1,2,3,4}: the node corresponds to a stop and the label on the edggs e |owest expected traversal time; the variandeds the smallest, while

represents the line connecting the two stops. (b) The quoresing line-stop  p.s variance is the largesP;, P> and P are respectively the optimal paths

graphGi;. Dotted edges are travel edges, while dashed edges aresvét@  computed by @-Time for deadlines betweesdt and43 minutes, larger than

edges. 43 minutes, and shorter thad minutes. The curve labelef; + Ps> + Ps
corresponds to the success probability obtained by a meity approach
exploiting all the three paths.

edgee = ((s,4),(s',¢")) is associated with the following
random variablev,.

CDF(traversal time)
o
(4]

smaller than that of the current best path, there is no need
we = tt(L, s, 8") +wt(l',s") to consider the rest of the path. From a practical point of
| Vview, working with a real transportation network, this simp
pPruning mechanism significantly reduces the number of paths
variables definingu, are known (they will be characterized in© P& considered, even if theoretically we may have a feaitori
Sec. IV-A); moreover, by Assumptions 1 and 2, they are diimber of paths to explore.
independerit In our implementation, we have introduced some other
_ ) ) ) simplifications, which reduce the computation time, but, at
A. Single-Copy Routing Algorithm and Implementation  the same time, may lead to suboptimal paths. First, we have
We now turn to define our routing algorithm, calledN© introduced a limith for the exploration depth during the
TIME, which aims at solving the on-time delivery problemsearch. Giverk as a constant, the algorithm is then guaranteed
ON-TIME finds, in general, different paths for different valueto run in polynomial time. We observe that upon termination,
of the (relative) deadling,;., — tsiqre. FOr example, Fig. 2 we are able to say if the algorithm has selected the optimal
compares the Cumulative Distribution Functions (CDF) fguath or there may be a better one. In fact, when we stop, if
the delivery times of 3 different paths. In this caseN-O there is still some path prefix of length not larger thasuch
TIME chooses one of the three paths depending on the givbat the pruning mechanism cannot discard it, then ther&lcou
deadline. Nevertheless, the larger the deadline, therdhge be a longer path with higher on-time delivery probabilitytB
resulting on-time delivery probability is. if this is not the case, then the current best candidate ismHygt
ON-TIME works by first determining a potentially good paththe optimal path. In our experiments on Turin transportatio
between the source and the destination (for example, thiat waetwork,, = 8 was enough to find all the best paths. Although
the minimum expected traversal time), and evaluating its othis value may change for other networks, we think that it wil
time delivery probability. This can be done by performing eemain a relatively small constant. Note that a suitabfer
(numerical)convolutionof the different random variables dis-each network can be found by conducting experiments similar
tributions along the path, yielding the end-to-end traaktime to ours.
distribution. By this distribution, it is then easy to cdlai@ A second simplification is that we restrict the set of eligibl
(using the corresponding CDF) the delivery probability bg t paths such that each line can be used only in consecutive
deadline. edges. This prevents the algorithm to explore paths usireg i
Then, the algorithm proceeds by exploring the graph then linel,, and then again liné,. We expect that these
through a breadth-first search, looking for paths with a &ighpaths have normally worse performance than those where a
on-time delivery probability. Apruning mechanism avoids data message just remains on lifie
the need to determine and evaluate all the paths. Being thaginally, we have avoided the computation burden of per-
the traversal time is obtained by adding non-negative lifkyming numerical convolution by assuming that the end-to-
weigths, for any pattP and any prefixP’ of P, Pr{tr(P) < end traversal time, which is a sum of independent random
t} < Pr{tr(P’) < t}. Thus, we can perform hop-by-hopyariaples, can be approximated by a normal distribution. In
convolution and compute, for each resulting distributitve s case, it is sufficient to take into account the mean aad th
probability that the weight (that is, the traversal time)tlos yariance of each edge weight (respectively,= E[w.] and
path’s prefix is less thafs;o, — tsiars; if the probability is 52 — viarw,]). Then, the CDF of the traversal time of path
2 , . . P is equal to the CDF of a normal distribution with mean
In the technical report [1], we consider the case where tnisgons might

: 2
not be successful. In this case, edge weights depend alscansntission > eep He and Var_"ancez:eep oc. In the case 9f travel gdges,
failure probabilities. average and variance of(l, s,s’) can be estimated directly

wherewt (¢, s') is the waiting time at stop’ before the arriva
of the next bus of line/’. We assume that all the rando



on the traces. In the case of travel-switch edges, we havetltem). This can be easily implemented by saving the best
also to evaluate the average and variance?, s) using the paths while enumerating all possible paths as im-OME.

first three moments of the interarrival times of the lihbuses Moreover, our pruning mechanism is changed accordingly to
to stops (which can be also measured on the traces) and soommnsider thek-th best value discovered so far (rather the
basic Palm calculus. maximum value as in the single-copy settirfgs)

In the rest of the paper, we evaluate the performancensf O However, since our algorithm works in a greedy manner,
TIME for different source-destination pairs under similar kinit does not consider the interaction between the paths, and
of deadlines. If we had fixed a given deadline for all the pairmore specifically the gain in probability over previously-
then this deadline could be unfeasible for some of them (s®lected paths (which can be very small in case the paths
the sense that there is no way to deliver the message by inerlap). This leads to a theoretical performance degi@ulat
deadline, e.g. if the deadline is smaller than the time ackehi with respect to an optimal, infeasible algorithm that cdess
would take to move from the source to the destination), atide joint-probability over all sets of paths. The following
trivially satisfiable for other pairs (many different patheuld theorem, whose proof is in [1], provides tight bounds on this
deliver with probability almost one). For this reason, giveperformance degradation:

a sourcesg, a destinations, and a real value: € [0,100], Theorem 1:The MC-ONTIME algorithm always achieves
let ¢(z, ss,s4) be the deadling,,, for which the on-time at leastl/k of the on-time delivery probability of an optimal
delivery probability of the path from, to sq with minimum  k-copy algorithm. In addition, there is a valid transpoxati
expected traversal time ig%. We denote by @-TIME(x) the graph for which MC-QuTIME achieves at mosh%s)k of
on-time routing algorithm where the deadline is set equal the on-time delivery probability of an optima multi-copy
o(z, ss, sq) for every source-destination pdiss, sq). algorithm, for arbitrarily smalk > 0.

B. Other Routing Approaches

Although the algorithm we described is optimal under our

. . . . We consider a set of 180 source-destinatien—s;) stop
model assumptions, we also consider sub-optimal but simple . . . g
heuristics. pairs. In the first 90 pairs both the source and the destimatio

The most intuitive approach (denoted asNVDELAY) is have been chosen uniformly at random in the entire metropoli

. tan area. In the second 90 pairs, the soutcés located in a
to route in G, along the path whose expected traversal . ) L .
AR : ; main transportation hub within the city center (close to the
time is minimal. Note that MN-DELAY is equivalent to ®-

TIME(50) under the Gaussian assumption on the distributié?]a'n train station), and all the destinatioss are chosen

of the traversal time. Fig. 2 shows that pdth found by MiN- Uniformly at random._ We generate a set of 100 traces with
. . the parameters obtained by the statistical analysis, gayer
DELAY, does not always correspond to path with the highes . .
X : o all 250 lines for the four hours available from the schedule.
on-time delivery probability. On the other hand,WDELAY ” .
. . ) . In addition, we have developed a simulator that computes the
is computationally attractive, because the path with tlastle

i . . .. delivery probability of each path by averaging across these
expegted trave.rsal t!me can be ea§|ly computed with Dgistr 100 traces; note that the one day real-life trace alone would
algorithm (by linearity of expectation).

A second algorithm, Mi-Hops sefects the path that min- o 6 eI R E o AN,
imizes the number of times a packet is forwarded until the . '
destinatiod. We start to compare the performance of the algorithms
Another approach, denoted INNHEADWAY, tries to min- de,;:_rl\eyd;: dsls/lfr;l -Ixagmi&mhaﬁﬁggg&rcmj’ol\r/iltlr’:lrh
imize the sum of all lines headways along a path [6], th at floods the network by taking advantage of all t%]e possibl

preferring frequent lines over infrequent ones; it was pemal . X
originally for bus-to-bus communications. In Sec. V, wewhocomactS (and therefore makm_g avery large numbe_r_ of chpies
e evaluate the actual on-time delivery probability of the

that it has the worst performance in our settings among all t . . )
P g ga est path obtained by each algorithm; for each pairsg,

different algorithms. we set the deadline tg(x) for different values ofz, and
C. Extension to Multi-Copy Routing we compute the 90% confidence interval of the delivery

We consider multi-copy algorithms, such that at mést probability considefing all the possible 180 pairs. Duehte t
copies of the packets are made throughout the executié¥ek of space, we will report the results only for= 10 (*short
Without this constraint a flooding scheme that can copy tifadline”) andr = 50 (“average deadline”), since these cases
data whenever there is a contact, namely in epidemic are representative.
manner would achieve the best possible delivery probability. Fig- 3 compares the delivery probability of the different

We propose a greedy mu|ti_copy a|gorithm for On_timélgorithms for the two deadlines. The gain ofIBEMIC with
routing, denoted simply as MC+OT IME. It computes the on- respect to all the other single-copy algorithms decreaséisea
time delivery probability of all paths in isolation and clseo deadline increases:FDEMIC achieves a delivery probability
the k best paths (without considering the interaction betweéhntimes larger than @-TimEe for deadlines(10), but only 1.5

V. PERFORMANCEEVALUATION

SNote that this path also maximizes the delivery probabitityan infinite 4When comparing to the heuristics of Sec. IV-B, we can siryilget thek
time-horizon when packets experience a constant tranemikss probability. paths with minimal expected traversal time, total headwayaximal success
In the technical report, this approach is referred to asxMPROB. probability.
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Fig. 3. Delivery probability for two deadlines and diffeterouting algo-

rithms. MIN-DELAY is the same as @ TIME(50). Fig. 4. Delivery probability (average and 90% confidenceerival) vs.

number of paths for deadling(50) and for multi-copy routing and no
transmission failuresp(r = 0).

times larger for deadline(50). Indeed, when the deadline is
large enough just one copy of the data is enough in orderifstance considered in each simulation run; since the numbe
reach100% delivery probability. In such a casepBEMIc Of these low-probability paths can be very large, due to
does not introduce any gain in terms of performance, and tte redundant connectivity of the bus transportation syste
cost in terms of copies and transmissions is much larger thaetropolitan area, there is a high probability that at lesms
under single-copy algorithms. For example we observed 6hthem will be used to deliver to the destination. Note that
average more thaf00 copies for¢(10) and more tharp00 the cost in terms of transmissions foPIBEMIC is two order
copies for¢(50) under EPIDEMIC up to the deadline, while of magnitude larger than the multicopy approach using a pre-
for all single-copy algorithms the number of transmissifors Selected subset of 10 paths.

each data is on average 5.0, and always less than 12.

ON-TIME(10) and Ou-TIME(50) obtain the maximum de-
livery probability respectively, for deadling(10) and ¢(50),

VI. CONCLUSIONS ANDACKNOWLEDGEMENTS
This paper lays the foundations for a framework to analyze

as expected. But comparing the corresponding confider%éstﬁasbed netwgrkhs, where Icomn;]unicati.on is. bet_\lfv”ﬁen the
intervals, they behave almost the same. A somewhat smgrisfno olle buses and the stops along their trajectories. Thraug
results is that in many cases2( out of 180) QN-TIME(10) statistical analysis of real bus traces, we were able toimbta
performsexactlyas ON-TIME (50) (o, equivalently, as Mi- & succinct stochastic graph representation of the systedh, a
DELAY). In fact we verified by direct inspection thatno® to de\{lse optimal routing algo_rlthms on this graph. .
TIME(10) and Qu-TIME(50) select exactly the same optimal An important outcome of this Stl_}dy IS that, alt_hough d_|ffer-
path. These results have been confirmed also for other dead nt frpm the optimal but computatlonglly-mtenswe algom,
values: The optimal route is not very sensitive to the deadli the simple MN-DELAY algorithm achieves excellent results
In most of the cases the best path computed by TVE (50) in term of success probability for all deadlines. In additio

is the best for every deadling(z) with = € [0,100]. Recall we show that !ncreasing the. number of data copies beyond
the example in Fig. 2, showing that the best path does qiﬁ)es not provide any meaningful performance improvement.
general depend on the deadline. Our experiments lead us tt'hel' re;le%rih ha§ been élg)fggei tt_)y lNRdIAb S’c\lehla—
conclude that these cases are very rare in a real transjpnrta‘?‘n 'E&'T\l Eef : e(;ra(\jnge ?]S E c ction and by INew-
system. Thus, one can choose the path solely on the basiSYl OE funded by the European Commission.
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