Game Theory: introduction and applications to computer networks

Introduction

Giovanni Neglia INRIA – EPI Maestro 27 January 2014

Part of the slides are based on a previous course with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University)

□ Same idea of equilibrium

each player plays a mixed strategy (*equalizing* strategy), that equalizes the opponent payoffs
 how to calculate it?

□ Same idea of equilibrium

 each player plays a mixed strategy, that equalizes the opponent payoffs

o how to calculate it?

□ Same idea of equilibrium

 each player plays a mixed strategy, that equalizes the opponent payoffs

o how to calculate it?

Colin considers *Rose's game*

□ Same idea of equilibrium

 each player plays a mixed strategy, that equalizes the opponent payoffs

o how to calculate it?

Rose playing (1/5,4/5) Colin playing (3/5,2/5) is an equilibrium

Rose gains 13/5 Colin gains 8/5

Good news: Nash's theorem [1950]

- Every two-person games has at least one equilibrium either in pure strategies or in mixed strategies
 - Proved using fixed point theorem
 - generalized to N person game
- This equilibrium concept called Nash equilibrium in his honor
 - A vector of strategies (a profile) is a Nash Equilibrium (NE) if no player can unilaterally change its strategy and increase its payoff

A useful property

- Given a finite game, a profile is a mixed NE of the game if and only if for every player i, every pure strategy used by i with non-null probability is a best response to other players mixed strategies in the profile
 - see Osborne and Rubinstein, A course in game theory, Lemma 33.2

Bad news: what do we lose?

- equivalence
- interchangeability
- identity of equalizing strategies with prudential strategies
- 🗖 main cause
 - at equilibrium every player is considering the opponent's payoffs ignoring its payoffs.
- New problematic aspect
 - group rationality versus individual rationality (cooperation versus competition)
 - absent in zero-sum games
- > we lose the idea of the solution

Game of Chicken

Game of Chicken (aka. Hawk-Dove Game)

o driver who swerves looses

Driver 2

		swerve	stay	
Driver	swerve	0,0	-1, 5	
	stay	5,-1	<u>-1</u> 0, -10	

Drivers want to do opposite of one another

Two equilibria: not equivalent not interchangeable! • playing an equilibrium strategy does not lead to equilibrium

The Prisoner's Dilemma

One of the most studied and used games
 proposed in 1950

Two suspects arrested for joint crime
 each suspect when interrogated separately, has option to confess

Pareto Optimal

Pareto Optimal

- Def: outcome o* is Pareto Optimal if no other outcome would give to all the players a payoff not smaller and a payoff higher to at least one of them
- Pareto Principle: to be acceptable as a solution of a game, an outcome should be Pareto Optimal

• the NE of the Prisoner's dilemma is not!

Conflict between group rationality (Pareto principle) and individual rationality (dominance principle)

- All the points in the convex hull of the pure strategy payoffs correspond to payoffs obtainable by mixed strategies
- The north-east boundary contains the Pareto optimal points

Another possible approach to equilibria

- NE ⇔equalizing strategies
- What about prudential strategies?

Each player tries to minimize its maximum loss (then it plays in its own game)

- Rose assumes that Colin would like to minimize her gain
- Rose plays in Rose's game
- Saddle point in BB
- B is Rose's prudential strategy and guarantees to Rose at least 2 (Rose's security level)

- Colin assumes that Rose would like to minimize his gain (maximize his loss)
- Colin plays in Colin's game
- mixed strategy equilibrium,
- (3/5,2/5) is Colin's prudential strategy and guarantees Colin a gain not smaller than 8/5

Prudential strategies

○ Rose plays B, Colin plays A w. prob. 3/5, B w. 2/5

○ Rose gains 13/5 (>2), Colin gains 8/5

□ Is it stable?

 No, if Colin thinks that Rose plays B, he would be better off by playing A (Colin's counter-prudential strategy)

		Colin			
		A	В		
Rose	A	5,0	-1, 4		
	В	3,2	2,1		

are not the solution neither:

- do not lead to equilibria
- do not solve the group rationality versus individual rationality conflict

dual basic problem:

 look at your payoff, ignoring the payoffs of the opponents

Exercises

Find NE and Pareto optimal outcomes:

	NC	С		A	В
NC	2,2	10, 1	A	2,3	3,2
С	1, 10	5,5	В	1, 0	0,1

	swerve	stay		A	В
swerve	0,0	-1, 5	A	2,4	1, 0
stay	5, -1	-10, -10	В	3,1	0, 4

Performance Evaluation

Routing as a Potential game

Giovanni Neglia INRIA – EPI Maestro

Possible in the Internet?

Overlay networks

Routing games

An Overlay for routing: Resilient Overlay Routing

Users can ignore ISP choices

Traffic demand

unit traffic demands between pair of nodes

Delay costs

 $R_{1,3} = \{a,b\}, R_{2,3} = \{b\}$ $f_a = f_{1,3}, f_b = f_{1,3} + f_{2,3}, f_c = f_d = 0$ $c_\alpha(f_\alpha), \alpha \in E = \{a,b,c,d,e\},$

Non-negative, non decreasing functions

Social cost: C_S = Σ_{αεE} f_α*c_α(f_α)
User cost:
C_{1,3}(f)= Σ<sub>αεR_{1,3} c_α(f_α)
</sub>

Pigou's example

transit_time_a=2 hour

- Two possible roads between 1 and 2
 - a) a longer highway (almost constant transit time)
 - b) shorter but traffic sensitive city road
- 2 Selfish users (choose the road in order to minimize their delay)

Pigou's example

- Two possible roads between 1 and 2
 - a) a longer highway (almost constant transit time)
 - b) shorter but traffic sensitive city road
- 2 Selfish users (choose the road in order to minimize their delay)
 - There is 1 (pure-strategy) NE where they all choose the city road...
 - \circ even if the optimal allocation is not worse for the single user!
- **D** What if transit_time_a= $2+\epsilon$?
- In what follows we only consider pure strategy NE

What is the cost of user selfishness for the community?

Loss of Efficiency (LoE)

 \odot given a NE with social cost $C_{S}(f_{NE})$

• and the traffic allocation with minimum social cost $C_{s}(f_{Opt})$

$$O$$
 LoE = $C_S(f_{NE}) / C_S(f_{Opt})$

Pigou's example

transit_time_a=2 hour

The LoE of (b,b) is 4/3
 The LoE of (b,a) and (a,b) is 1

Braess's paradox

□ User cost: $3 + \varepsilon$ □ Social cost: $C_{NE} = 6 + 2\varepsilon$ (= C_{Opt})

Braess's paradox

Braess's paradox

User cost: 4
Social cost: $C_{NE} = 8 > 6 + \varepsilon$ (C_{Opt})
LoE = $8/(6 + \varepsilon) \xrightarrow{->} 4/3$

Routing games

- 1. Is there always a (pure strategy) NE?
- 2. Can we always find a NE with a "small" Loss of Efficiency (LoE)?

Always an equilibrium?

Best Response dynamics

- Start from a given routing and let each player play its Best Response strategy
- What if after some time there is no change?

BR dynamics

- 1. Users costs: $(3 + \varepsilon, 3 + \varepsilon)$
- 2. Blue plays BR, costs: $(3, 4+\varepsilon)$
- 3. Pink plays BR, costs: (4, 4)
- 4. Nothing changes....

Always an equilibrium?

Best Response dynamics

- Start from a given routing and let each player play its Best Response strategy
- What if after some time there is no change?
- Are we sure to stop?

Games with no saddle-point

There are games with no saddle-point! □ An example?

maximin <> minimax

Always an equilibrium?

Best Response dynamics

- Start from a given routing and let each player play its Best Response strategy
- What if after some time there is no change?
- Are we sure to stop?
 - In some cases we can define a potential function that keeps decreasing at each BR until a minimum is reached.
 - Is the social cost a good candidate?

Potential for routing games

 $R_{1,3} = \{a,b\}, R_{2,3} = \{b\}$ $f_a = f_{1,3}, f_b = f_{1,3} + f_{2,3}, f_c = f_d = 0$

 $c_{\alpha}(f_{\alpha}), \alpha \in E=\{a,b,c,d,e\},$ Non-negative, non decreasing functions

 $\Box \text{ Potential} : P = \Sigma_{\alpha \epsilon E} P_{\alpha}(f_{\alpha}) = \Sigma_{\alpha \epsilon E} \Sigma_{t=1,...f\alpha} c_{\alpha}(t)$

Potential decreases at every BR

- 1. User costs: $(3 + \varepsilon, 3 + \varepsilon)$, P=6+2 ε
- 2. Blue plays BR, costs: (3, $4 + \varepsilon$), P=6+ ε
- 3. Pink plays BR, costs: (4, 4), P=6
- 4. Nothing changes....

Potential decreases at every BR

From route R to route R'

f'_α=f_α+1 if α in R'-R, f'_α=f_α-1 if α in R-R'
P_α-P'_α=-c_α(f_α+1) if α in R'-R,
P_α-P'_α=c_α(f_α) if α in R-R'
P-P'=Σ_{αεR}c_α(f_α)-Σ_{αεR'}c_α(f'_α)= =user difference cost between R and R'>0

BR dynamics converges to an equilibrium

- The potential decreases at every step
- There is a finite number of possible potential values
- After a finite number of steps a potential local minimum is reached
- The final routes identify a (pure strategy) NE