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Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  extensions 
•  Applications 
-  Bianchi’s model 
-  Epidemic routing 



Mean fluid for Epidemic routing 
(and similar) 
1.  Approximation: pairwise intermeeting times 

modeled as independent exponential random 
variables 

2.  Markov models for epidemic routing 
3.  Mean Fluid Models 
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Inter-meeting times under random 
mobility (from Lucile Sassatelli’s course) 

Inter-meeting times mobile/mobile have been shown 
to follow an exponential distribution  

 [Groenevelt et al.: The message delay in mobile ad hoc networks. 
Performance Evalation, 2005]  

 

Pr{ X = x } = µ exp(- µx) 
CDF: Pr{ X ≤ x } = 1 - exp(- µx),           CCDF: Pr{ X > x } = exp(- µx) 
 

M. Ibrahim, Routing and Performance Evaluation of Disruption Tolerant Networks, PhD 
defense, UNS 2008 
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Pairwise Inter-meeting time 
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2-hop routing 

Model the number of occurrences of the message 
as an absorbing Continuous Time Markov Chain (C-
MC): 

•  State i∈{1,…,N} represents the number of 
occurrences of the message in the network. 

•  State A represents the destination node 
receiving (a copy of) the message. 



Model the number of occurrences of the message 
as an absorbing C-MC: 
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occurrences of the message in the network. 

•  State A represents the destination node 
receiving (a copy of) the message. 

Epidemic routing 
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(from Lucile Sassatelli’s course) 
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A further issue 

Model the number of occurrences of the message 
as an absorbing Continuous Time Markov Chain (C-
MC): 

•  We need a different convergence result 
[Kurtz70] Solution of ordinary differential equations as limits of 

pure jump markov processes, T. G. Kurtz, Journal of Applied 
Probabilities, pages 49-58, 1970 

 



[Kurtz1970] 

{XN(t), N natural} 
a family of Markov process in Zm 

with rates rN(k,k+h),   k,h in Zm   
It is called density dependent if it exists a 

continuous function f() in RmxZm such that 
rN(k,k+h) = N f(1/N k, h),  h<>0 

Define F(x)=Σh h f(x,h) 
Kurtz’s theorem determines when {XN(t)} are close 

to the solution of the differential equation: 
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The formal result [Kurtz1970] 
Theorem. Suppose there is an open set E in Rm and a 
constant M such that 
    |F(x)-F(y)|<M|x-y|,  x,y in E 
    supx in EΣh|h| f(x,h) <∞,  
  limd->∞supx in EΣ|h|>d|h| f(x,h) =0 
 
 Consider the set of processes in {XN(t)} such that  
 limN->∞ 1/N XN(0) = x0 in E 
 and a solution of the differential equation 
 
 
 such that x(s) is in E for 0<=s<=t, then for each δ>0 
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Application to epidemic routing 

rN(nI)=λ nI (N-nI) = N (λN) (nI/N) (1-nI/N) 
assuming β = λ N keeps constant (e.g. node 

density is constant) 
f(x,h)=f(x)=x(1-x), F(x)=f(x) 
as N→∞, nI/N → i(t), s.t. 

 
with initial condition  
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Application to epidemic routing 
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The solution is  
 
 
And for the Markov system we expect 
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