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Mean fluid for Epidemic routing
(and similar)

1. Approximation: pairwise intermeeting times
modeled as independent exponential random
variables

2. Markov models for epidemic routing
3. Mean Fluid Models



Inter-meeting tfimes under random
m0b|||1'y (from Lucile Sassatelli's course)

Inter-meeting times mobile/mobile have been shown
to follow an exponential distribution

[Groenevelt et al.: The message delay in mobile ad hoc networks.
Performance Evalation, 2005]

Pr{ X = x } = py exp(- px)
CDF: Pr{ X <x}=1-exp(- ux), CCDF: Pr{ X > x } = exp(- px)
Log(CCDF) - RWP model

@ Ok,
&
V) 05\
()
<C
= i
-1.5 ' ' '
\ 0 5000 10000 15000
Time (seconds)

M. Ibrahim, Routing and Performance Evaluation of Disruption Tolerant Networks, PM])
defense, UNS 2008



Pairwise Inter-meeting time
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Pairwise Inter-meeting time
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Pairwise Inter-meeting time
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2-hop routing

Model the number of occurrences of the message
as an absorbing Continuous Time Markov Chain (C-
MC):
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(N-2)A

2\

State i€{1,.. N} represents the number of
occurrences of the message in the network.

State A represents the destination node
receiving (a copy of) the message.



Epidemic routing

Model the number of occurrences of the message
as an absorbing C-MC:

N-DA 2IN-2)A — 3(N=-3)A N-3)3A N-2)2h N-DA
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State i€{1,.. N} represents the number of
occurrences of the message in the network.

State A represents the destination node
receiving (a copy of) the message.



A mean-field interaction model for modeling dissemination
(from Lucile Sassatelli's course)

- Time t € N is discrete. There are N objects.
- Object n has state Z,SN)(t) in S ={0,1}.
- We assume that Y(V)(¢) = (Zl(N)(t), . .,Z,(\,N)(t)) is a

homogeneous Markov chain on SV,

- We assume that we can observe the state of an object but not its
label, i.e.,

KN(ivy oo ity i) =
Pr{iZMt+1) =i,....ZMt+1)=inZM@)=il,...,Z" () = in}
is stable under any permutation.

— The process Y(N)(t) is called a mean-field interaction model
with N objects.

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication s;f@ns,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



A mean-field interaction model for modeling dissemination

(from Lucile Sassatelli's course)

- Define the occupancy measure M(V)(¢) as the vector of
frequencies of states i € S at t:

I\/I,-(N)(t) = % Z,lyzl 1{2_(N)(t):i}. MV)(t) that takes vales in A.
M) (t) is a homogeneous Markov chain.

- Let us define the drift f(m) for m € A as the expected change to
M) () in one time-slot:

fMm) = EMM(t+1) - MM () MM (¢) = m]

= Y miPl(m)(er —e))
{i,i"}e€S, i’

where PI.(II.\,I) is the marginal transition probability:

PN (m) = Priz{M(t + 1) = 2" (t) = i, MM)() = m}.

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication sylfims,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



Convergence to the mean-field limit

(from Lucile Sassatelli's course)

If limpyoo FON) (M) = f(m) exists for all m € A,
Then MV)(t) converges to a deterministic process j(t) that

satisfies: dut)
{ T = f(u(t))
1(0)

= uo constant in N/

More exactly (Kurtz Th 3.1), V¢:

lim Pr{sup||MM(¢) — u(t)|| > 6} =0
Noo SSt

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication s;f@ns,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



Performance modeling of dissemination under two-hop

routing or epidemic routing
(from Lucile Sassatelli's course)

1= MM
L MM

- Two-hop routing: fi(m1) = As(1 — my1), where s is the fraction
of sources (constant in V)

- Epidemic routing: fi(m1) = Amy(1 — my)

- Let us rename u1(t) as x(t), standing for the fraction of infected
nodes.

- Let X(M)(¢t) be the number of infected nodes: X(N)(t) can be
approximated by Nx(t).

MV (t) =

MM (t) ]
MM (2)

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication s;f@rns,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



Performance modeling of dissemination under two-hop

routing or epidemic routing
(from Lucile Sassatelli's course)

From that we approximate X(M)(t) by the solution of:

C
@\6@“\ dX((;\/t)(t) _ aXM((N - XM(5)), XM (0) = 1
\
»(\NOX\O dX(C/;/t)(t) _ BN — XxM(£)), XM (0) = 0

- Defining T, as the packet delivery delay, we can derive
P(t) = Pr{Td < t}:

dP(t)
dt

= Ax(t)(1 = P(1))

Proof: Exercise class

MAESTRO

Zhang, X., Neglia, 6., Kurose, J., Towsley, D.: Performance Modeling of Epidemic Routing. Computer I\Tﬁorks
51, 2867-2891 (2007)



A further issue

Model the number of occurrences of the message
as an absorbing Continuous Time Markov Chain (C-

MC):

(N-DA (N=2)A (N=-3)A 3\ 20 A

0000

- We need a different convergence result

[Kurtz70] Solution of ordinary differential equations as limits of

ure ng? markov processes, T. 6. Kurtz, Journal of Applied
robabilities, pages 49-58, 1970



[Kurtz1970]

{Xn(1), N natural}

a family of Markov process in Z™
with rates ry(k,k+h), khinZnm

It is called density dependent if it exists a
continuous function f() in R"xZ™such that
ru(kkeh) = N F(I/N K, h), hoO
Define F(x)=Z, h f(x,h)
Kurtz's theorem determines when {X\(1)} are close
to the solution of the differential equation:
0x(S)
os

= F(x(s)),



The formal result [Kurtz1970]

Theorem. Suppose there is an open set E in R™ and a
constant M such that

F(x)-F(y)[<M|x-y|, xyinE
sup, i eZ,lh| f(x,h) <eo,
imd_>°°SUPx in Ez|h|>d|h| f(x,h) =0

Consider the set of processes in {X\(t)} such that
limye 1/N X ((0) = x5 in E
and a solution of the differential equation
ox(s
WP, x(0)=
such that x(s) is in E for O<=s<=t, then for each &0

>5}=0

L X (5)-x(s)

lim Pr4 su

N—o0

O<s<t



Application to epidemic routing

rn(np)=A nr (N-ng) = N (AN) (n/N) (1-n;/N)
assuming p = A N keeps constant (e.g. node
density is constant)
f(x,h)=f(x)=x(1-x), F(x)=f(x)
as N—o, n;/N — i(t), s.t.
i'(1) = pi()(1-i(2))

with initial condition
i(0) =limn,(0)/N

N —0



Application to epidemic routing

i'(1) = pi(t)(1-i(1)), «0)=limn,(0)/N

The solutionis  i(t) =

And for the Markov system we expect
N

1+( N -1)e-“f
n,(0)

nl(t) =~ Ni(1) =




